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Abstract: Cardiovascular morbidity and mortality are influenced by meteorological conditions,
such as temperature or snowfall. Relationships between cardiovascular health and meteorological
conditions are usually studied based on specific meteorological events or means. However, those
studies bring little to no insight into health peaks and unusual events far from the mean, such as a
day with an unusually high number of hospitalizations. Health peaks represent a heavy burden for
the public health system; they are, however, usually studied specifically when they occur (e.g., the
European 2003 heatwave). Specific analyses are needed, using appropriate statistical tools. Quantile
regression can provide such analysis by focusing not only on the conditional median, but on different
conditional quantiles of the dependent variable. In particular, high quantiles of a health issue can be
treated as health peaks. In this study, quantile regression is used to model the relationships between
conditional quantiles of cardiovascular variables and meteorological variables in Montreal (Canada),
focusing on health peaks. Results show that meteorological impacts are not constant throughout the
conditional quantiles. They are stronger in health peaks compared to quantiles around the median.
Results also show that temperature is the main significant variable. This study highlights the fact
that classical statistical methods are not appropriate when health peaks are of interest. Quantile
regression allows for more precise estimations for health peaks, which could lead to refined public
health warnings.

Keywords: quantile regression; cardiovascular diseases; health peaks; meteorological conditions;
environmental health; heatwaves

1. Introduction

Cardiovascular diseases (CVDs) are the second cause of all deaths behind cancers [1]
in Canada. In Québec, they are the second cause for all hospitalizations, whereas cancers
are the fifth [2]. The number of hospitalizations due to CVDs has been constantly increasing
each year by 2.3% on average since 2005 [3]. Therefore, they represent a major public health
challenge. This situation is not uncommon in developed countries, since CVDs are the first
cause of death in the world [4]. Therefore, CVDs comprehension, analysis, and prevention
remain significant tasks [5,6].

Various factors can influence CVDs. Life habits such as smoking, nutrition or sport
practice are known to play important roles [7–9]. On the other hand, atmospheric pollution
(e.g., ozone or particulate matter) is strongly associated with CVD occurrence [10]. It is now
widely accepted that air pollution has a predominant impact on CVDs, both indoor and out-
door [11,12]. In addition, a large body of literature dealing with impacts of meteorological
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conditions on CVD occurrence such as cold exposure, heatwaves, and diurnal temperature
variations is available [13]. Snowfall and humidity are also linked to a higher CVD occur-
rence [14,15]. Moreover, those impacts are also present in Québec, especially regarding
temperature [16–18]. However, climate change, by modifying the meteorological variables
distribution, may also change those established relationships. In Québec, a significant
increase in mean temperatures is, among others, expected by 2050 [19] with the number of
hot days (≥30 ◦C) likely to be multiplied by a factor of three. Consequently, heatwaves,
which are linked to CVD occurrences, will increase in intensity and frequency. Thus, it is
crucial to properly quantify relationships between peaks and meteorological conditions in
order to promote population and health services adaptation.

Most of the available studies use statistical models that implicitly focus on mean health
events, not specifically peaks. This is a necessary process in order to understand relation-
ships between a health issue and meteorological variables, notably for CVD surveillance.
Nevertheless, health peaks (or simply peaks) are not correctly analyzed by those models.
Those specific observations lie far from average events and their modeling using statistical
models based on the mean can be misleading (results from mean-based regressions cannot
be extended to noncentral locations; [20]). Furthermore, they are by definition scarce and
they can have heavy consequences on the health system (e.g., emergency departments
overflow [21]), which should warrant studies on their own. Few studies examine the ex-
treme nature of health variables from a statistical modeling point of view and they usually
focus on peak series once they have been extracted from the datasets [22–24]. Although
peaks have strong implications, they are usually not studied from an overall point of view.
They can also be analyzed from a descriptive (without modeling) and local point of view
for a given extreme event, such as the 2003 European heatwave [25]. Quantile regression
(QR) is a statistical model which employs all the observations and would allow comparing
the impacts of meteorological variables on average events as well as on health peaks with
higher quantile order [26].

The QR model can explore not only the conditional median (as a measure of central
tendency), but all quantiles of the dependent variable. Since peaks can be defined as
high quantiles, QR is appropriate to investigate in-depth the conditional distribution of
peaks. Moreover, an independent variable could have a significant effect in one quantile,
whereas it would not be so in another quantile. Studying only the conditional mean
actually “dilutes” information related to the rest of the conditional distribution, especially
concerning peaks. QR has been used in public health, but not to explore relationships
with meteorological conditions (even less so concerning CVDs). QR is popular when it
comes to studying indicators that may have heterogeneous effects. In health sciences,
QR has shown the ability to discover heterogeneous effects of independent variables
such as air pollution or socioeconomic factors on various health issues [27–29]. This non-
homogeneous influence over different quantiles cannot be highlighted by standard linear
regression, which estimates only the conditional mean (as does any other mean-based
regression such as the Poisson regression [26]). On the other hand, by using QR, the
whole conditional distribution of a health outcome can be reproduced, and comparisons of
multiple quantiles can then take place. The objective of this study is thus to examine the
impact of meteorological conditions on CVD morbidity and mortality with QR, focusing
on health peaks (high quantiles) and their differences with other quantiles, relative to the
whole conditional distribution.

The rest of this paper is organized as follows. Available data and methods are de-
scribed in Section 2, while the results are shown in Section 3. Discussion and limitations
are presented in Section 4. Finally, Section 5 presents the conclusions of this study.

2. Materials and Methods

This section describes the data and statistical methods used in this study. A more
exhaustive description is given in the complete research report of Chiu et al. [30].



Int. J. Environ. Res. Public Health 2021, 18, 13277 3 of 14

2.1. Data

The study area is Montreal metropolitan community in Canada (abbreviated as Mon-
treal, Figure 1), with 3,994,990 inhabitants in 2018. In this study, health and meteorological
sets are used. The daily number of hospitalizations and deaths due to CVDs are the
dependent variables, while daily meteorological variables are the independent variables.
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Figure 1. Montreal metropolitan community (Canada). Red dots are the meteorological stations used
for measuring meteorological variables.

2.1.1. Health Data

Health data are the daily total of CVD hospitalizations and deaths. Daily raw data were
provided by the National Institute of Public Health of Québec (Institut national de santé
publique du Québec, INSPQ, Québec (QC), Canada). Versions 9 and 10 of the International
Classification of Diseases (ICD) were used to classify hospitalization (main and secondary
diagnoses), and death (main diagnosis) causes in order to select only the deadliest CVDs
for our study (Table 1). The transition from ICD-9 to ICD-10 occurred in April 2006 for the
hospitalization files and in January 2000 for the death files. Hospitalizations and deaths
were summed to obtain daily numbers of events. Thus, one health datum is either a
daily total number of hospitalizations or deaths. Hospitalizations range from 1996 to 2006
(4077 days) inclusively, while deaths range from 1981 to 2011 (11,322 days), resulting in
4077 daily total hospitalizations and 11,322 daily total deaths. Corresponding descriptive
statistics are summarized in Table 2.
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Table 1. ICD-9 and ICD-10 for considered CVDs in this study.

Most Deadly CVDs ICD-9 ICD-10

Ischemic heart diseases 410–414 I20–I25

Heart failure 428 I50

Cerebrovascular diseases
Transient cerebral ischemia

362.3 G45.x (excluding G45.4)
430 H34.0
431 H34.1

434.x I60.x
435.x I61.x
436 I63.x (excluding I63.6)

I64

Table 2. Descriptive statistics for daily CVD deaths and hospitalizations in Montreal.

Deaths Hospitalizations

Minimum 3 49

Maximum 53 220

Mean 17 131

Median 17 136

75% quantile 20 158

90% quantile 24 172

2.1.2. Meteorological Data

Meteorological data from 1981 to 2011 are provided by Environment Canada and
have been matched to deaths and hospitalizations. Daily series of temperature, atmo-
spheric pressure (pressure), relative humidity (humidity), total precipitations, and snow
height are available (Table 3). Of note, snow height is measured during the winter, while
total precipitations are measured all year round. They were measured over multiple
meteorological stations in Montreal and spatially averaged. Giroux et al. [31] found no
advantage in using weighted kriging instead of the spatial mean in this area. Correspond-
ing descriptive statistics are given in Table 4. Montreal is in a humid continental climate
(http://mddelcc.gouv.qc.ca/climat/normales/climat-qc.htm, accessed on 9 December
2021) where summers are hot and humid while winters can be severely cold.

Maximal values for temperature, humidity and pressure have been used to study
the impact of meteorological variables, but mean and minimal values have also been
investigated with only minor changes in the results [30]. In this study, maximal values
have been chosen to illustrate best how QR can be relevant to public health studies.

Table 3. Meteorological variables description.

Variable Type Unit

Maximal temperature

Daily data

Celsius degrees

Total precipitations Millimeter

Snow height Centimeters

Maximal atmospheric pressure
Hourly data

Kilopascals

Maximal relative humidity Percentages (%)

http://mddelcc.gouv.qc.ca/climat/normales/climat-qc.htm
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Table 4. Descriptive statistics for meteorological variables in Montreal from 1981 to 2011.

Temperature Humidity Pressure Precipitations Snow

Minimum −26.5 34.0 99.1 0.0 0.0

Maximum 35.0 100.0 105.2 89.8 79.2

Mean 11.4 81.6 102.0 2.8 6.8

Median 12.2 84.0 101.9 0.3 0.0

75% quantile 22.4 91.8 102.5 3.0 8.9

90% quantile 26.8 96.0 103.0 8.9 27.4

2.2. Methods

In the rest of this paper, q refers to a quantile order (0 < q < 1). For a complete
description of QR, the reader is referred to the book of Koenker [26]. Let Y be the dependent
variable and X1, . . . Xp be the independent variables (in this study, the health variables and
the meteorological variables, respectively), then the QR model is defined as:

Qy
[
q
∣∣x1, x2, . . . , xp

]
= β0(q) + β1(q)x1 + β2(q)x2 + . . . + βp(q)xp (1)

for any quantile 0 < q < 1. In contrast to a classical regression, coefficients β0(q), β1(q), . . . ,
βp(q) vary with q. Their interpretation is similar to that in the classical regression, though
only valid in one given quantile. They are obtained by minimizing a sum of weighted
absolute residuals [32], whereas classical mean regression is usually solved by ordinary
least squares or by maximum likelihood. Unlike the latter, QR does not assume normality
or homoscedasticity, which makes QR a more robust regression [33]. Confidence intervals
(CI) for estimated coefficients are computed using the inverse rank method [26].

Considered quantile orders in this study spread out from q = 0.01 to q = 0.99 with a
0.025 step. We used this step in order to explore the health variable conditional distribution
in-depth, thus leading to a level of detail that would not be attained by mean-based regres-
sion. This study defines a death or hospitalization peak as an observation corresponding
to a conditional quantile greater than 90%, as an analogy to the meteorological definition
of extreme [34]. Therefore, in the case of our data, death and hospitalizations peaks are
defined as days with a total of at least 24 deaths and 172 hospitalizations, respectively
(Table 2). The independent variable effects are then compared with the effects in lower
conditional quantiles.

Lags are considered for meteorological variables, as their impacts on health can be
delayed [16,35,36]. We explored the following lags: 0 (same day exposure), 3, 7, and
14 days. All models controlled for seasonality [37,38], though we did not conduct separate
analyses (e.g., summer and winter [39,40]) in order to produce the entire conditional
distribution and to not decrease statistical power in the high quantiles. All results are
obtained using the statistical software R (R Foundation for Statistical Computing, Vienna,
Austria) and quantreg package (v5.85). Meteorological variables are standardized (i.e.,
centered and divided by their standard deviation) in order to facilitate interpretations
as the meteorological variables have different measure scales (Table 3). The statistical
significance level is set at α = 5%.

3. Results

QR estimation results are presented in this section for hospitalizations and deaths in
Montreal. Results are described for each meteorological variable.

3.1. Hospitalizations

Results are shown in Figure 2. QR coefficients in the y-axis are plotted versus quantiles
in the x-axis; each column represents a given lag (0, 3, 7, and 14 days) for each meteoro-
logical variable. Regarding temperature, the coefficient curve exhibits a similar pattern
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over the different lags; it starts at a negative value close to 0, decreases until the 10%
quantile, increases until the 40% quantile and decreases again up to the highest quantiles
(the peaks). Coefficients are non-significant around the 1% and 40% quantiles, whereas in
other quantiles an increase in temperature is associated with a decrease in hospitalizations.
CI for the classical regression and QR estimations are crossing overall, with the exception
of peaks higher than the 95% quantile at lag 7 and 14. In those peaks, differences are
significant, and the classical regression estimation underestimates temperature influence.
Besides, QR coefficients are the strongest in peaks, more than twice the values for quantiles
in the median vicinity.
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An inverse association between hospitalizations and humidity is observed at every lag
(negative estimated coefficients), except in peaks at lags 3, 7, and 14. However, coefficients
are mostly non-significant. There are some exceptions, such as lags 7 and 14, around
the median. For peaks (higher than the 95% quantile) at lag 7, the humidity effect is
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significant with negative estimated coefficients. In this case, a classical regression finds
a non-significant effect, whereas there could be a significant one in the peaks. Overall,
classical regression coefficients are not significantly different from QR coefficients.

QR coefficients for pressure are neither significant nor different from a classical re-
gression until lag 7. From this lag on, they become significant in quantiles higher than the
median. The coefficients are larger in the peaks (particularly at lag 7). Note that coefficients
are positive, indicating an increase in hospitalizations when pressure increases at lags 3, 7,
and 14. Coefficients are negative the same day, but they are non-significant.

Coefficients for precipitations are mainly non-significant. Some coefficients are, around
the 80% quantile. QR and classical regression CI cross each other for every estimation.

The QR coefficient curve for snow is similar to the one for temperature. It follows a
decreasing (until the 20% quantile), increasing (until the 40% quantile) and again decreasing
pattern. At lags 0 and 3, coefficients are positive and mainly significant, except in peaks
higher than the 95% quantile. At lags 7 and 14, the situation is inversed since most of
the coefficients become non-significant, whereas those in peaks become so. Note that QR
coefficients quantiles around the median are positive but become negative in the peaks. In
those peaks, they are furthermore larger in absolute value than in other quantiles, and QR
and classical mean regression CI do not cross.

3.2. Deaths

Figure 3 provides results for QR estimated coefficients. Regarding temperature, an
increase is associated with a decrease in deaths as the estimated coefficients are negative.
Moreover, this effect is significant for all quantiles and lags, getting larger (in absolute
value) in higher quantiles and lags. QR coefficients in the peaks are indeed 1.5 to 2 times
stronger when compared to those in low or median quantiles. Finally, QR coefficients are
not different from those estimated by classical regression, except at lag 14. At this lag,
classical mean regression coefficients are larger and smaller than those of QR in low and
high quantiles respectively.

Humidity coefficients are either constant through the estimated quantiles or decreas-
ing. Humidity coefficients are non-significant on the same day but are significant for the
other lags. Estimated coefficients are negative, with the highest intensity in the peaks.
Furthermore, the value of the 99% quantile coefficient grows larger from lag 0 to 14 (from
−0.5 to −1.5). It is, however, not possible to differentiate QR estimations from those of
classical regression.

In contrast to humidity, pressure is significant only for exposure on the same day,
between the median and the 95% quantile. Estimated coefficients are negative and not
distinguishable from a classical regression. Notice that estimated QR coefficients are the
strongest in peaks starting from the 92.5% quantile.

Precipitation coefficients are mainly non-significant. A small portion is significant,
under the 20% quantile at lag 14.

Finally, snow estimated coefficients are non-significant at lag 14, though they are for
the other lags. Snow is associated with more deaths in peaks, where estimated coefficients
are the largest (especially for exposure on the same day). Besides, on the same day and
for the peaks higher than the 90% quantile, QR coefficients are different and larger than
classical mean regression.



Int. J. Environ. Res. Public Health 2021, 18, 13277 8 of 14Int. J. Environ. Res. Public Health 2021, 18, x 8 of 14 
 

 
Figure 3. QR (blue dots) and classical mean regression (red full line) coefficients against quantiles 
for deaths in Montreal. 95% confidence intervals are shown in light blue for QR and in red dashed 
lines for classical mean regression. 

4. Discussion 
Each meteorological variable is discussed below, followed by general considerations. 

4.1. Temperature 
The temperature turned out to be the most important meteorological variable in 

terms of statistical significance and coefficient values. A negative association was found 
as all the estimated coefficients were negative, meaning that lower temperatures are asso-
ciated with a higher number of CVD hospitalizations and deaths in the investigated quan-
tiles. One possible explanation would be that CVD peaks mainly occur during cold peri-
ods [41–43]. This negative association between temperature and CVD health has been 
found in other parts of the world, such as Lille in France [44] or Honk Kong in China [45]. 
Specifically, in Montreal, it has been shown that found that cold weather induces more 

Figure 3. QR (blue dots) and classical mean regression (red full line) coefficients against quantiles for
deaths in Montreal. 95% confidence intervals are shown in light blue for QR and in red dashed lines
for classical mean regression.

4. Discussion

Each meteorological variable is discussed below, followed by general considerations.

4.1. Temperature

The temperature turned out to be the most important meteorological variable in terms
of statistical significance and coefficient values. A negative association was found as all the
estimated coefficients were negative, meaning that lower temperatures are associated with
a higher number of CVD hospitalizations and deaths in the investigated quantiles. One
possible explanation would be that CVD peaks mainly occur during cold periods [41–43].
This negative association between temperature and CVD health has been found in other
parts of the world, such as Lille in France [44] or Honk Kong in China [45]. Specifically, in
Montreal, it has been shown that found that cold weather induces more CVD deaths than
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hot weather [46,47]. Furthermore, absolute values for the coefficients increased in higher
quantiles, which indicates stronger relationships in the peaks.

4.2. Atmospheric Pressure

Opposite results were found concerning the effect of pressure on CVD deaths and
hospitalizations. Indeed, an increase in pressure was associated with a decrease in deaths
(mainly on the same day, lag 0). Besides, this effect was larger in the peaks than in lower
quantiles. Schwartz [48] and Vaduganathan et al. [49] also found a negative association for
pressure in the United States and Italy, respectively, though results were for deaths due to
all causes for the first and not focusing on the peaks for both. On the contrary, a positive
association with deaths due to myocardial infarction and heart failure has been found in
previous studies [44,50,51].

For hospitalizations, pressure coefficients were non-significant at lag 0. Starting from
lag 3, positive coefficients were then obtained. In Québec, another study found that an
increase in pressure in the previous 7 days was associated with a higher risk of being
hospitalized for heart failure [51]. Fong and Ma [45] also discovered an association between
pressure and CVD hospitalizations in China with lags up to 2 weeks and mentioned that
high-pressure systems can produce stagnation episodes (i.e., pollutant accumulation due to
weak winds). Notice that atmospheric pressure daily measures were used in this study, but
pressure variations also appear to be detrimental to acute myocardial infarctions, especially
over one day [52]. Therefore, more studies are needed to explore the relationships between
atmospheric pressure and CVD, especially peaks.

4.3. Relative Humidity

In this study, relative humidity did not have a significant impact on hospitalizations.
This absence of effect has been reported in China and the United States [37,45]. However,
Abrignani et al. [53] found a significant relationship between daily hospital admissions
due to angina pectoris and relative humidity, although they considered a particular subset
of CVDs.

Concerning deaths, a negative and significant association that increased with the lag
was found where the effects were stronger for the peaks. Masselot, et al. [46] also found
a significant association in Montreal. They uncovered a link between CVD deaths and
hospitalizations with humidity at large scales (periodicity of several years). In our study,
considered lags spread out from 0 to 14 days, therefore results are not comparable. It is
widely accepted that humidity influences perceived temperature, and those two variables
are usually studied together in a health context [54,55].

4.4. Snow Height

Snow height exhibited inverse relationships for hospitalizations (increasing curve)
and deaths (decreasing curve). Furthermore, QR coefficients are significant in the peaks
at lags 14 and 0–3, respectively. This suggests an immediate effect of the snow on death
peaks but a more prolonged effect on hospitalization peaks. QR coefficients in the peaks are
also opposite at the mentioned lags: negative for hospitalizations and positive for deaths.
An increase in snow is thus associated with fewer hospitalizations but more deaths when
focusing on the peaks. Important and long snowfalls might discourage people from going
out, therefore decreasing their exposure [56,57]. On the other hand, there is an increased
risk for death and hospitalization due to myocardial infarction immediately after a snowfall
in Québec [14], associated with snow shoveling. Those consequences of snowfall are visible
in this study around the median, but the negative association in the hospitalization peaks
has not been explored yet in the literature.

4.5. Precipitations

Precipitation effects were mainly non-significant on CVD deaths and hospitalizations.
Some quantiles for hospitalizations (at every lag) revealed significant negative coefficients,
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which means that an increase in precipitations was associated with a decrease in hos-
pitalizations. However, this effect was non-significant in the peaks. As with the other
meteorological variables, this heterogeneous impact would not be revealed using a classical
regression. To the best of our knowledge, though some studies link health conditions
to precipitations (such as hydric diseases [58]), no study has focused on CVDs. As with
humidity, precipitations are rarely investigated alone when studying health impacts, more
frequently with temperature or snow height [59,60].

4.6. General Considerations

Overall, classical regression and QR coefficients were similar as their 95% CI crossed.
Notable exceptions were in the peaks. As QR coefficients varied from one quantile to
another, estimated associations were most of the time stronger in the health peaks than in
any other quantiles. This coefficient heterogeneity could not be investigated using classical
regression and is one of the main advantages of QR. Besides, QR allows reconstructing
the entire conditional distribution rather than the conditional mean, as advocated by other
authors in health research [61–63]. In particular, Siciliani et al. [62] found that the effect
of the dependent variables is larger at the higher conditional quantiles, as found in the
present study (e.g., temperature effect in Figure 2).

Another difference that can be observed when using QR is the sign inversion for
QR parameters. For instance, Marrie et al. [61] found opposing effects between a mean
regression and a 90% QR. This situation occurred in this study, such as the case of snow
with hospitalizations at lag 14 (Figure 2). QR coefficients around the mean were estimated
positive, whereas they were negative starting from the 90% quantile, thus opposing the
classical mean regression. Therefore, QR is relevant in the health peak study as it allows
comparing the conditional mean to the high quantiles, where results may be larger or
even inverse. More generally, it complements classical regression analysis by providing a
conditional distribution [64].

In fields other than environmental health, heterogeneous and accentuated effects
for independent variables in the high conditional quantiles have also been observed
(climatology or hydrogeology [65,66]). Authors support QR use as it can decompose
relationships in quantiles other than the median. More recently, QR has been used in the
same spirit to study the effects of home quarantine during the COVID-19 pandemic [67].
The authors evaluated multiple variables on the distribution of happiness and found that
low and high quantiles were not influenced by the same variables. In other words, people
with increased happiness (high quantiles) did not experience the quarantine at home the
same way that people with decreased happiness (low quantiles) did.

4.7. Limitations

Daily aggregation for the health variables did not allow for the inclusion of relevant
individual variables, such as comorbidities or life habits (smoking, nutrition, or physical
exercise). Those variables have an impact on CVD occurrence [7–9]. Furthermore, besides
meteorological variables, atmospheric pollution variables should also be included in future
research [68,69].

From a statistical point of view, nonlinear QR could be used to investigate specific
quantiles [61]. However, since nonlinear QR produces a regression curve instead of a
regression line for each quantile, chances that multiple curves cross each other would be
increased (a non-trivial issue known as crossing QR, for which research is still active [70,71]),
leading to invalid results.

5. Conclusions

This paper aimed at studying relationships between CVD health and meteorological
conditions using QR, examining health peaks and lower conditional quantiles at the same
time. Different lags and multiple quantiles have been investigated. Even though the focus
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here is on CVDs, QR could also be used to investigate possible relationships between
meteorological conditions and any other chronic disease.

In previous studies, the temperature has shown a significant effect. This is similar
to the results in this study, confirming the importance of temperature on CVD health.
Moreover, QR has allowed for more precise estimations and has shown the heterogeneous
effects of meteorological conditions in the health variables quantiles. In particular, impacts
were found to be stronger in health peaks compared to median quantiles. This result
could not be obtained using a classical regression, as the information would be “diluted”.
Therefore, along with meteorological forecasting, those results could be useful for health
peak forecasting and its management in health warnings and services.

Finally, this study supports the idea of completing classical health and meteorological
conditions studies with health peaks studies. Doing so would result in more complete
estimations of health variable conditional distributions.

Author Contributions: Conceptualization, Y.M.C., F.C., B.A., D.B. and P.G.; Methodology, Y.M.C. and
F.C.; Software, Y.M.C.; Validation, F.C., D.B. and P.G.; Formal Analysis, Y.M.C. and F.C.; Investigation,
Y.M.C. and F.C.; Resources, F.C., D.B. and P.G.; Data Curation, Y.M.C.; Writing—Original Draft Prepa-
ration, Y.M.C.; Writing—Review & Editing, Y.M.C., F.C., B.A., D.B. and P.G.; Visualization, Y.M.C.;
Supervision, F.C., D.B. and P.G.; Project Administration, F.C., D.B. and P.G.; Funding Acquisition,:
F.C., B.A., D.B. and P.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Fonds Vert du Québec, in the context of Action 21 of the
2006–2012 Québec Government Action Plan on Climate Change, and by the INSPQ.

Institutional Review Board Statement: For The health data, the study was conducted according
to an agreement established between the INSPQ and the government of Québec as part of the
ministerial plan of multithematic health surveillance. This plan has received its ethics approval by
the Public Health Ethics Committee in January 2010 (ISBN: 978–2–550-58576-3; https://www.inspq.
qc.ca/publications/1124).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are not available, due to governmental privacy policy.

Acknowledgments: The authors thank the Institut national de la santé publique du Québec for
access to the health data. The authors also wish to thank Jean-Xavier Giroux (INRS-ETE) for his
expertise on the data. The authors had many discussions with Pierre Masselot (The London School of
Hygiene & Tropical Medicine), who significantly improved the quality of this paper and graciously
provided the code for Figure 1.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abrignani, M.G.; Corrao, S.; Biondo, G.B.; Lombardo, R.M.; Di Girolamo, P.; Braschi, A.; Di Girolamo, A.; Novo, S. Effects of

ambient temperature, humidity, and other meteorological variables on hospital admissions for angina pectoris. Eur. J. Prev.
Cardiol. 2012, 19, 342–348. [CrossRef] [PubMed]

2. Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart
disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [CrossRef]

3. Auger, N.; Potter, B.J.; Smargiassi, A.; Bilodeau-Bertrand, M.; Paris, C.; Kosatsky, T. Association between quantity and duration of
snowfall and risk of myocardial infarction. Can. Med. Assoc. J. 2017, 189, E235–E242. [CrossRef] [PubMed]

4. Auliciems, A.; Frost, D. Temperature and cardiovascular deaths in Montreal. Int. J. Biometeorol. 1989, 33, 151–156. [CrossRef]
[PubMed]

5. Austin, P.C.; Tu, J.V.; Daly, P.A.; Alter, D.A. The use of quantile regression in health care research: A case study examining gender
differences in the timeliness of thrombolytic therapy. Stat. Med. 2004, 24, 791–816. [CrossRef] [PubMed]

6. Baker-Blocker, A. Winter weather and cardiovascular mortality in Minneapolis-St. Paul. Am. J. Public Health 1982, 72, 261–265.
[CrossRef] [PubMed]

7. Barnett, A.G.; Hajat, S.; Gasparrini, A.; Rocklöv, J. Cold and heat waves in the United States. Environ. Res. 2012, 112, 218–224.
[CrossRef]

8. Bayentin, L.; El Adlouni, S.; Ouarda, T.B.; Gosselin, P.; Doyon, B.; Chebana, F. Spatial variability of climate effects on ischemic
heart disease hospitalization rates for the period 1989-2006 in Quebec, Canada. Int. J. Health Geogr. 2010, 9, 5. [CrossRef]

https://www.inspq.qc.ca/publications/1124
https://www.inspq.qc.ca/publications/1124
http://doi.org/10.1177/1741826711402741
http://www.ncbi.nlm.nih.gov/pubmed/21450571
http://doi.org/10.3945/ajcn.113.076901
http://doi.org/10.1503/cmaj.161064
http://www.ncbi.nlm.nih.gov/pubmed/28202557
http://doi.org/10.1007/BF01084599
http://www.ncbi.nlm.nih.gov/pubmed/2599675
http://doi.org/10.1002/sim.1851
http://www.ncbi.nlm.nih.gov/pubmed/15532082
http://doi.org/10.2105/AJPH.72.3.261
http://www.ncbi.nlm.nih.gov/pubmed/7058966
http://doi.org/10.1016/j.envres.2011.12.010
http://doi.org/10.1186/1476-072X-9-5


Int. J. Environ. Res. Public Health 2021, 18, 13277 12 of 14

9. Bergh, I.H.; Skare, Ø.; Aase, A.; Klepp, K.-I.; Lien, N. Weight development from age 13 to 30 years and adolescent socioeconomic
status: The Norwegian Longitudinal Health Behaviour study. Int. J. Public Health 2015, 61, 465–473. [CrossRef]

10. Bind, M.-A.; Peters, A.; Koutrakis, P.; Coull, B.; Vokonas, P.; Schwartz, J. Quantile Regression Analysis of the Distributional Effects
of Air Pollution on Blood Pressure, Heart Rate Variability, Blood Lipids, and Biomarkers of Inflammation in Elderly American
Men: The Normative Aging Study. Environ. Health Perspect. 2016, 124, 1189–1198. [CrossRef]

11. Blais, C.; Rochette, L. Portrait de l’Ensemble des Maladies Vasculaires au Québec: Prévalence, Incidence et Mortalité; INSPQ: Québec
City, QC, Canada, 2018; p. 19.

12. Cannon, A.J. Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with
application to rainfall extremes. Stoch. Environ. Res. Risk Assess. 2018, 32, 3207–3225. [CrossRef]

13. Chebana, F.; Martel, B.; Gosselin, P.; Giroux, J.-X.; Ouarda, T.B. A general and flexible methodology to define thresholds for heat
health watch and warning systems, applied to the province of Québec (Canada). Int. J. Biometeorol. 2013, 57, 631–644. [CrossRef]

14. Chiu, Y.; Chebana, F.; Abdous, B.; Bélanger, D.; Gosselin, P. Mortality and morbidity peaks modeling: An extreme value theory
approach. Stat. Methods Med. Res. 2018, 27, 1498–1512. [CrossRef]

15. Chiu, Y.; Chebana, F.; Abdous, B.; Bélanger, D.; Gosselin, P. Étude des Relations Entre les Pics de Maladies Cardiovasculaires et les
Conditions Météorologiques par la Régression Quantile, dans les Communautés Métropolitaines de Québec et de Montréal (Québec); Institut
National de la Recherche Scientifique: Québec City, QC, Canada, 2017; p. 74.

16. Chiu, Y.; Chebana, F.; Bélanger, D.; Gosselin, P.; Abdous, B. Modélisation des Pics Sanitaires de Maladies Cardiovasculaires en Fonction
de la Météo dans les Communautés Métropolitaines de Québec et Montréal; Institut National de la Recherche Scientifique: Québec City,
QC, Canada, 2016; p. 128.

17. Curriero, F.C.; Patz, J.A.; Rose, J.B.; Lele, S. The association between extreme precipitation and waterborne disease outbreaks in
the United States, 1948–1994. Am. J. Public Health 2001, 91, 1194–1199. [CrossRef] [PubMed]

18. Danet, S.; Richard, F.; Montaye, M.; Beauchant, S.; Lemaire, B.; Graux, C.; Cottel, D.; Marecaux, N.; Amouyel, P. Unhealthy effects
of atmospheric temperature and pressure on the occurrence of myocardial infarction and coronary deaths. A 10-year survey: The
Lille-World Health Organization MONICA project (Monitoring trends and determinants in cardi-ovascular disease). Circulation
1999, 100, E1–E7. [CrossRef] [PubMed]

19. De Zea Bermudez, P.; Mendes, Z. Extreme value theory in medical sciences: Modeling total high cholesterol levels. J. Stat. Theory
Pract. 2012, 6, 468–491. [CrossRef]

20. Dinas, P.C.; Koutedakis, Y.; Flouris, A.D. Effects of active and passive tobacco cigarette smoking on heart rate variability. Int. J.
Cardiol. 2013, 163, 109–115. [CrossRef] [PubMed]

21. Dominici, F.; McDermott, A.; Zeger, S.L.; Samet, J.M. On the use of generalized additive models in time-series studies of air
pollution and health. Am. J. Epidemiol. 2002, 156, 193–203. [CrossRef]

22. Fong, T.; Ma, E. Effects of meteorological parameters on hospital admission for respiratory and cardiovascular diseases. J. Public
Health 2013, 21, 175–182. [CrossRef]

23. Franklin, B.A.; Brook, R.; Arden Pope, C., 3rd. Air pollution and cardiovascular disease. Curr. Probl. Cardiol. 2015, 40, 207–238.
[CrossRef]

24. Gagné, M. Principales Causes d’Hospitalisations au Québec, Hommes et Femmes Confondus; INSPQ: Québec City, QC, Canada, 2017.
25. Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobías, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al.

Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375.
[CrossRef]

26. Giroux, J.X.; Chebana, F.; Bélanger, D.; Gloaguen, E.; Ouarda, T.B.M.J.; Saint-Hilaire, A. Projet M1: Comparaison de l’Utilisation des
Moyennes Spatiales à Celle du Krigeage, Appliquée à la Relation Mortalité par MCV-Météorologie, au Québec, de 1996 à 2007. Rapport
Final; INRS-ETE: Québec City, QC, Canada, 2013.

27. Goldberg, M.S.; Gasparrini, A.; Armstrong, B.; Valois, M.-F. The short-term influence of temperature on daily mortality in the
temperate climate of Montreal, Canada. Environ. Res. 2011, 111, 853–860. [CrossRef] [PubMed]

28. Hao, L.; Naiman, D.Q.; Naiman, D.Q. Quantile Regression; Sage Publications: Thousand Oaks, CA, USA, 2007.
29. Hirschi, M.; Seneviratne, S.I.; Alexandrov, V.; Boberg, F.; Boroneant, C.; Christensen, O.B.; Formayer, H.; Orlowsky, B.; Stepanek, P.

Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 2011, 4, 17–21. [CrossRef]
30. Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and

cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43. [CrossRef]
31. Houck, P.D.; Lethen, J.E.; Riggs, M.W.; Gantt, D.S.; Dehmer, G.J. Relation of atmospheric pressure changes and the occurrences of

acute myocardial infarction and stroke. Am. J. Cardiol. 2005, 96, 45–51. [CrossRef] [PubMed]
32. IPCC. The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate

Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1007p.
33. Jagger, T.H.; Elsner, J.B. Modeling tropical cyclone intensity with quantile regression. Int. J. Climatol. 2009, 29, 1351–1361.

[CrossRef]
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