Dépôt numérique

Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data.


Téléchargements par mois depuis la dernière année

Plus de statistiques...

Dey, Subhadip; Bhogapurapu, Narayanarao; Homayouni, Saeid ORCID logoORCID: https://orcid.org/0000-0002-0214-5356; Bhattacharya, Avik et McNairn, Heather (2021). Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data. Remote Sensing , vol. 13 , nº 21. p. 4412. DOI: 10.3390/rs13214412.

[thumbnail of P4040.pdf]
Télécharger (50MB) | Prévisualisation


Global crop mapping and monitoring requires high-resolution spatio-temporal information. In this regard, dual polarimetric Synthetic Aperture Radar (SAR) sensors provide high temporal and high spatial resolutions with large swath width. Generally, crop phenological development studies utilized SAR backscatter intensity-based descriptors. However, these descriptors are derived either from the covariance matrix elements or from the eigendecomposition. Therefore, this approach fails to utilize the complete polarization information of the scattered wave. In this study, we propose a target characterization parameter, θxP that utilizes the 2D Barakat degree of polarization and the elements of the covariance matrix. We also propose an unsupervised clustering scheme using θxP and the scattering entropy, HxP. We utilize time-series Sentinel-1 data of canola and wheat fields over a Canadian test site to show the sensitivity of θxP to the development of crop morphology at different phenological stages. During the initial growth stages, θxP values are low due to the low vegetation density. In contrast, at advanced phenological stages, we observe decreased values of θxP due to the appearance of complex canopy structure. Similarly, the effectiveness of the unsupervised HxP/θxP clustering plane is also evident from the temporal clustering plots. This innovative clustering framework is beneficial for the operational use of Sentinel-1 SAR data for agricultural applications.

Type de document: Article
Mots-clés libres: sentinel-1; polarimetry; dual-pol; crop characterization; phenology; unsupervised classification
Centre: Centre Eau Terre Environnement
Date de dépôt: 09 févr. 2022 15:25
Dernière modification: 09 févr. 2022 15:25
URI: https://espace.inrs.ca/id/eprint/12219

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice