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Abstract: In recent years, several powerful machine learning (ML) algorithms have been developed
for image classification, especially those based on ensemble learning (EL). In particular, Extreme
Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) methods have
attracted researchers’ attention in data science due to their superior results compared to other
commonly used ML algorithms. Despite their popularity within the computer science community,
they have not yet been well examined in detail in the field of Earth Observation (EO) for satellite image
classification. As such, this study investigates the capability of different EL algorithms, generally
known as bagging and boosting algorithms, including Adaptive Boosting (AdaBoost), Gradient
Boosting Machine (GBM), XGBoost, LightGBM, and Random Forest (RF), for the classification
of Remote Sensing (RS) data. In particular, different classification scenarios were designed to
compare the performance of these algorithms on three different types of RS data, namely high-
resolution multispectral, hyperspectral, and Polarimetric Synthetic Aperture Radar (PolSAR) data.
Moreover, the Decision Tree (DT) single classifier, as a base classifier, is considered to evaluate the
classification’s accuracy. The experimental results demonstrated that the RF and XGBoost methods
for the multispectral image, the LightGBM and XGBoost methods for hyperspectral data, and the
XGBoost and RF algorithms for PolSAR data produced higher classification accuracies compared
to other ML techniques. This demonstrates the great capability of the XGBoost method for the
classification of different types of RS data.

Keywords: classification; ensemble classifier; bagging; boosting; multispectral; hyperspectral;
PolSAR

1. Introduction

Earth observations (EO) image classification is one of the most widely used analysis
techniques in the remote sensing (RS) community. Image classification techniques are used
to automatically and analytically interpret a significant amount of data from various EO
sensors for diverse applications, such as change detection, crop mapping, forest monitoring,
and wetland classification [1,2]. Thanks to the unique characteristics of EOs, which provide
spatial, spectral, temporal, and polarimetric information, they have been frequently used
in classification tasks for mapping various land use/land covers (LULC). To improve the
classification accuracy of remotely sensed imagery, the application of multi-source EO data
collected using different portions of the electromagnetic spectrum has been extensively
increased in the past decade [3].

In general, satellite image classification methods in the RS community can be cate-
gorized as two major types: unsupervised algorithms and supervised algorithms [4,5].
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The former group is associated with the methods in which there is no need to have prior
knowledge and labeled patterns of the study area. The latter group includes methods
that use prior knowledge and manually designed features of the study area [5]. Ensemble
learning (EL) methods or multiple classifier systems are among supervised classification ap-
proaches that combine multiple learners, which improve predictive performance compared
to utilizing a single classifier (see Figure 1).
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The core idea behind EL methods is to assemble “weak learners” to create a “robust
learner” in order to achieve a better classification result [6,7]. In other words, since the EL
methods are based on one classification algorithm as the base classifier, to improve the
classification result, several diverse algorithms are combined. Note that in this case, the
difference between various classifiers is not considered, and this is a key disadvantage
of such techniques [8,9]. EL approaches have been recently used in RS applications for
improving the LULC classification results [10] and for overcoming the instability of some
ML classifiers [11].

Bagging (acronym for Bootstrap AGGregatING) and boosting are two families of
the most commonly used integrated or so-called ensemble decision tree classifiers [12,13],
which are based on manipulating training samples [14]. Bagging is a kind of regular
ensemble classifier technique in which several predictors are made independently and
combined using some model averaging methods such as weighted average or majority
vote [15]. In contrast, Boosting is an EL technique in which the models are not built
independently but sequentially, and successive predictors are used in an attempt to correct
the errors generated by previous predictors [16,17]. There are some essential differences
between Bagging and Boosting techniques that are listed in Table 1.

Table 1. Main differences between Bagging and Boosting.

Bagging Boosting

Predictors/models are independent of each other. Predictors/models are not independent of each other.

There is no concept of learning from each other.
Each of the individual predictors in the chain learns to fix or

minimize the prediction error of the previous one while moving
sequentially forward.

Aims to decrease variance. Seeks to lower the bias.

Random Forest (RF) is one of the most well-known, commonly used Bagging tech-
niques for RS image classification in a variety of applications [18]. Additionally, over the
last two decades, several decision-tree-based boosting algorithms have been introduced,
which paved the way for data analysis. Adaptive boosting (AdaBoost), Gradient boost-
ing machine (GBM), Extreme gradient boosting (XGBoost), and Light gradient boosting
machine (LightGBM) are among the methods that fall under the category of Boosting
techniques in EL. XGBoost and LightGBM methods are examples of the new genera-
tion EL algorithms and have been used in RS in the recent years [19–21]. For instance,
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Georganos et al., (2018) compared XGBoost with other classifiers, such as support vector
machine (SVM), RF, k-nearest neighborhood, and recursive partitioning methods for land
cover classification using high-resolution satellite imagery [19]. They applied several
feature selection algorithms to evaluate the performance of ML classifiers in terms of
accuracy. Their study concluded that the XGBoost method achieves high accuracy with
fewer features. Shi et al., (2019) evaluated the performance of the LightGBM method in
the classification of airborne LiDAR point cloud data in urban areas [22] and showed the
effectiveness of EL approaches.

A comparison of XGBoost and RF algorithms’ performance in the process of early-
season mapping of sugarcane was conducted in [23] using sentinel-1 imagery time se-
ries. Their results indicated that the XGBoost accuracy in detecting target areas was
slightly lower than the RF accuracy, but its computation speed is several times faster.
Moorthy et al., (2020) assessed the performances of three different supervised models,
namely RF, XGBoost, and LightGBM methods for classifying leaf and wooded areas using
LiDAR point cloud data of forests [24].

Zhong et al., (2019) made use of deep learning, XGBoost, SVM, and RF methods for
the classification of agricultural products [25]. Among non-deep-learning classifiers that
they used, XGBoost produced the best outcomes and its accuracy was slightly lower than
the proposed deep learning model. Saini and Ghosh (2019) used Sentinel-2 images in their
study and compared the efficiency of XGBoost, RF, and SVM algorithms in crop classi-
fication of agricultural environment [26]. They verified the outperformance of XGBoost
method over the rest of the classifiers. In a study conducted by Dey et al., (2020), they
used RF and XGBoost classifiers for crop-type mapping using full polarimetric Radarsat-2
PolSAR satellite images [27]. Based on their assessment in two different case studies, the
accuracy of XGBoost is strongly higher than RF. In [28], Gašparovic and Dobrinic analyzed
various ML methods, including RF, SVM, XGBoost, and AdaBoost for urban vegetation
mapping using multitemporal Sentinel-1 imagery and concluded that SVM and AdaBoost
achieved higher accuracy than the other models.

Overall, and according to the reported literature, the ensemble classifiers have the
possibility to be utilized in a wide range of RS applications and LULC mapping. It is
concluded that the bagging and boosting methods such as RF, XGBoost and LightGBM
have remarkable performance relative to other ML approaches. The objective of this study
is to evaluate six different ML methods for classifying RS data. Some of the newly proposed
EL methods (e.g., XGBoost and LightGBM) are limited in applications to date. Therefore, a
comparative evaluation of the prediction power of these techniques is necessary to guide
application-oriented research. To the best of our knowledge, a comparative evaluation of
the possibility of utilizing these two EL categories (i.e., bagging and boosting methods) in
the classification of various RS data does not yet appear in the literature. Therefore, in this
paper, we aim at analyzing and comparing some of the well-known approaches to deal
with the classification of the three most popular and widely used benchmark RS datasets.

2. Ensemble Learning Classifiers

In the bagging algorithms, the model is built on bootstrap replicates of the original
training dataset with replacement. Each training data replica is then used in a classification
iteration using a ML algorithm (e.g., DT). To assign classes’ labels, the outputs from all
iterations are combined, by taking the average or voting principle [13]. The bagging
approach does not weight the samples. Rather, all classifiers in the bagging algorithm are
given equal weights during the voting [14].

As intimated in the introduction, the Boosting algorithm is a general supervised
technique that utilizes an iterative re-training procedure in which the weights of the
incorrectly classified observations are reduced, and the correct predictions receive more
weight during a successive iteration. Unlike bagging, the classifiers’ votes in boosting
are entirely dependent on their relative accuracy performance [14,29], and this decreases
the variance and bias in the classification task [11]. This could lead to more accuracy in
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results compared to other EL techniques. Despite these benefits and their accurate results,
some of the Boosting methods like GBM are generally noise sensitivity and demand high
computational cost [14].

2.1. Decision Tree (DT)

DT is a non-parametric, simple structure classification algorithm with an ability to
control nonlinear relations between features and classes [30]. In particular, DT is a tree-
based hierarchy of rules and can be defined as a procedure that partitions/splits the input
data into smaller and smaller subsets recursively [30,31]. The splitting process is based
on a set of thresholds delineated in each of the internal nodes in the tree (see Figure 2).
Internal nodes split input data from the root node—the first node in the DT- into sub-
nodes, and split sub-nodes into further sub-nodes [30,32]. Through this sequentially binary
subdivision, the input data are classified in which the end of nodes called leaf nodes (leaves)
represent the ultimate target classes [33,34]. There are some problems in using DTs. The
most important of them are generating a non-optimal solution and overfitting [34]. A DT
may not produce an optimal final model as it only relies on a single tree. Overfitting is also
another common problem that needs to be taken into account when using DT.
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respectively).

The main advantages and disadvantages of using DT method are listed in Table 2.

Table 2. Advantages and disadvantages of DT.

Advantages Disadvantages

Generates rules which are easy to understand
and interpret without any

statistical knowledge.
Over fitting is a common flaw of DT.

Can make classifications based on both
numerical and categorical variables.

Less applicable for estimation tasks, in the case
of predicting the value of a continuous feature.

Performs the classification with less
computational complexity.

Results in a loss of information when applying
DT to continuous values.

Non-parametric Non-optimal solution

2.2. Adaptive Boosting (AdaBoost)

Boosted DTs are also members of the EL family. As the models are built in such
methods, they are adapted to minimize the errors of the previous trees [35,36]. AdaBoost is
a type of boosted DT and works on the same principle of boosting, meaning that it retrains
samples which are difficult to classify [14,37]. As can be seen in Figure 3, the AdaBoost
is sequentially growing DTs, which are made by only one node and two leaves, named
stump. In other words, the AdaBoost method is a forest of stumps that incorporates all the
trees and uses an iterative approach where at each level of prediction, except the first, a
weight is assigned to each of the training items [38].
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Unlike boosted DTs in which only the incorrectly classified records from DT are passed
on to another stump, in AdaBoost both records are allowed to pass. Here, the strategy is
that the incorrectly classified samples are assigned a higher weight and easily classified
observations are assigned a lower weight, so they will have a higher probability in the
next round of prediction. The second stumps is therefore grown on this weighted data.
This process is continued for a specific number of iterations to generate subsequent trees.
Once the classifiers are trained, for each classifier a weight will be assigned and the final
prediction, which is based on weighted majority vote, will be appraised. To gain reasonable
results, a more accurate classifier will receive higher weight, so that it will have more effect
in the final prediction. The biggest advantage of this method is that the optimum solution
is obtained based on the combination of all the trees and not just the final tree.

The main advantages and disadvantages of using AdaBoost method are listed in Table 3.

Table 3. Advantages and disadvantages of AdaBoost.

Advantages Disadvantages

Easy to understand and to visualize Extremely sensitive to noisy data.

Has only a few hyper-parameters that need to be tuned. Operates poorer than RF and XGBoost when irrelevant features
are included.

Relatively robust to overfitting in low noise datasets. Is not optimized for speed.
Can be used in both regression and classification problems.

2.3. Gradient Boosting Machine (GBM)

GBM is a decision tree-based prediction algorithm [39], which gradually, additively
and sequentially produces a model in the form of linear combinations of DTs [40]. Un-
derstanding of AdaBoost makes it easy to explain GBM because they are established on
the same basis. The most important difference between AdaBoost and GBM methods is
the way that they control the shortcomings of weak classifiers. As explained in the previ-
ous subsection, in AdaBoost the shortcomings are identified by using high-weight data
points that are difficult to fit, but in GBM shortcomings are identified by gradients. The
methodology summary here is modeling data with simple base classifiers, analyzing errors,
focusing on those hard-to-fit data to get them correct and finally giving some weights to
each predictor to combine all predictions to achieve a final result. This technique has shown
considerable success in dealing with a wide range of applications and [41–43], including
text classification [44], web searching [45], landslide susceptibility assessment [46], image
classification [47], etc. However, gradient boosting may not have acceptable performance
for exceptionally noisy data, as this can result in overfitting. The schematic diagram of the
GBM classifier is depicted in Figure 4.
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The main advantages and disadvantages of using GBM method are listed in Table 4.
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Table 4. Advantages and disadvantages of GBM.

Advantages Disadvantages

Works great with categorical and numerical values. Can cause overfitting.
Can be used in both regression and

classification problems. Less interpretable.

Can be time and memory exhaustive.

2.4. Extreme Gradient Boosting (XGBoost)

XGBoost is a gradient tree boosting method developed by Chen and Guestrin in [42],
which applies some improvements over regular GBM. Some of the unique features of
XGBoost that make it more powerful are regularization (helps to avoid overfitting), tree
pruning (uses Maximum Tree Depth (MTD) parameter to specify tree depth at first and
prune tree backward instead of pruning on loss criteria, leading to better computation
performance), and parallelism (design of block structure for parallel learning to enable
faster computation) [25]. Overall, XGBoost uses a DT as a booster, and has demonstrated
excellent performance in many classification, regression, and ranking tasks [43]. However,
XGBoost has not been widely studied in the RS image classification tasks in conjunction
with spectral and spatial features from views such as classification accuracy, computational
effectiveness, and crucial parameter influence. The schematic diagram of this method is
shown in Figure 5.
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Figure 5. Schematic diagram of XGBoost classifier.

The main advantages and disadvantages of using XGBoost method are listed in Table 5.

Table 5. Advantages and disadvantages of XGBoost.

Advantages Disadvantages

Supports parallel processing to be much faster
than GBM.

Less interpretable, difficult to visualize and to
tune compared to AdaBoost and RF.

Continuous splitting until the MTD specified
and then starts pruning the tree backwards to
eliminate extra splits beyond which there is no

positive gain

It cannot handle categorical values by itself.

Can be used in both regression and
classification problems.

Only numerical values are
accepted for processing.

2.5. Light Gradient Boosting Machine (LightGBM)

The LightGBM algorithm is a gradient boosting framework proposed based on the
series of DTs [48]. LightGBM algorithm can effectively reduce the amount of computation
while ensuring good accuracy [22,39,48]. An essential difference of the LightGBM frame-
work from other decision-tree-based EL methods is related to the tree growth procedure.
Unlike the other methods, which grow trees level-wise (i.e., grows the tree horizontally), the
LightGBM algorithm grows trees leaf-wise (i.e., grows tree vertically (see Figure 6)), which
leads to an increase in the complexity of its structure [49]. Although the implementation
of XGBoost and LightGBM are relatively similar, the LightGBM method is upgraded over
the XGBoost in terms of training speed and the size of the data set it can handle. However,
improving the classification performance and achieving reliable results in both approaches
require extensive parameter tuning compared to other methods like RF.
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Figure 6. Schematic diagram of LightGBM classifier.

The main advantages and disadvantages of using LightGBM method are listed in
Table 6.

Table 6. Advantages and disadvantages of using LightGBM.

Advantages Disadvantages

Avoids overfitting. It is less used than other ensemble learning
methods due to less documentation available.

Better accuracy than other boosting methods.
Get better trees with smaller computational cost.
Handle both categorical and continuous values.

Outperforms XGBoost in terms of computational speed and
memory consumptions.

Speeds up the training process of conventional GBM.
Parallel learning supported.

2.6. Random Forest (RF)

RF is a robust EL method consisting of several DT classifiers to overcome the limita-
tions of a single classifier in obtaining the optimal solution (e.g., DT) [50–52]. Therefore, an
RF algorithm addresses this limitation by incorporating many trees rather than a single
tree and uses the majority vote technique to assign a final class label (Figure 7). This idea
is further expanded to resolve the issues regarding the handling of the high number of
variables in the model. Indeed, the training of each tree in the model is restricted to its
self-randomly generated subset of the training data and just employs a subset of that tree’s
variables. Although the combination of reduced training data and reduced number of
variables decreases the performance of each individual tree, yet there is a smaller correla-
tion between trees and this makes the ensemble as a whole more reliable. Since there are
multiple classifiers in the RF algorithm, it is not required to prune the individual trees [50].
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The main advantages and disadvantages of using RF method are listed in Table 7.
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Table 7. Advantages and disadvantages of RF.

Advantages Disadvantages

Handling overfitting and helps to improve the accuracy. May change considerably by a small change in the data.
Flexible to both classification and regression problems. Computations may go far more complex.

Handles both categorical and continuous values. Not easily interpretable.
The power of handle large data sets with higher dimensionality. Only numerical values are accepted for processing.

3. Remote Sensing Datasets

This paper uses three real-world benchmark datasets collected from different types
of sensors, including multispectral, hyperspectral, and PolSAR data sets. These data
are commonly used in the RS community to evaluate and analyze the performance of
state-of-the-art ML and deep learning tools.

3.1. ISPRS Vaihingen Dataset

This high-resolution multispectral image is a benchmark dataset of the International
Society for Photogrammetry and Remote Sensing (ISPRS) 2D semantic labeling challenge
in Vaihingen [53]. Vaihingen, Germany is a relatively small village with many detached
buildings and small multi-story buildings. The dataset consists of a true ortho-photo with
three bands (IRRG: Infrared, Red, and Green), and covers an area of 2006 × 3007 pixels at a
GSD (Ground Surface Distance) of about 9 cm. There are five labeled land-cover classes in
this dataset: impervious surface, building, low vegetation, tree, and car (listed in Table 8).
This dataset was acquired using an Intergraph/ZI DMC (Digital Mapping Camera) by the
RWE Power company [54]. The study image and its corresponding ground-truth image are
shown in Figure 8.

Table 8. The population of samples in the Vaihingen dataset.

# Class Samples Color Code
1 Impervious surfaces 2,059,368
2 Building 1,632,260
3 Low vegetation 1,157,157
4 Tree 1,127,394
5 Car 55,863

3.2. Pavia University Scene

The second dataset is a hyperspectral image captured by the reflective optics system
imaging spectrometer (ROSIS-3) with a GSD of 1.3 meters and 103 spectral bands over Pavia
University’s campus in the north of Italy. This scene covers an area of 610 × 340 pixels,
including nine land-cover classes. They comprise various urban materials (as listed in
Table 9). The ground truth map of this data covers 50% of the whole surface [55,56]. A false-
color composite image (using spectral bands 10, 27, and 46 as R-G-B) and the corresponding
ground truth are shown in Figure 9.

3.3. San Francisco Bay SAR Data

Over the past decade, the fully PolSAR C-band data of San Francisco’s bay area has
been one of the most employed datasets in the SAR-RS community for polarimetry analysis
and classification research. These data cover both northern and southern San Francisco bay
with 1380 × 1800 pixels, with a GSD of 8 m collected by RADARSAT-2 on 2 April 2008. It
provides a good coverage of both natural (e.g., water and vegetation) and human-made
land-covers (e.g., high-density and low-density developed areas) [57]. The Pauli-coded
pseudo-color image and the ground truth map of this dataset are shown in Figure 10. The
ground truth map represents five land-cover classes listed in Table 10.
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Table 9. Distribution of samples for the Pavia University dataset.

# Class Samples Color Code
1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947
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Figure 10. San Francisco PolSAR dataset and its corresponding ground truth data. (a) Pauli color
coded image; and (b) GT.

Table 10. Distribution of samples for the San Francisco dataset.

# Class Samples Color Code
1 Water 852,078
2 Vegetation 237,237
3 High-Density Urban 351,181
4 Low-Density Urban 282,975
5 Developed 80,616

4. Experiments and Results
4.1. User-Set Parameters

Most ML algorithms have many user-defined parameters that affect classification
performance. In Table 11, there is a list of some of the main parameters according to
their function across different models. In this study, we will cover and tune only the
important ones, which are listed below. Although the default values are often used for
user-set parameters, empirical testing is needed to determine the optimum values for these
parameters and thus, make ensure that the best achievable classification result has been
obtained. Parameters like Number of Base Classifiers (NBCs), Learning Rate (LR), and MTD,
etc. could be optimally selected through validation techniques like k-fold cross-validation.
To this end, ‘GridSearchCV’ is set to create a grid search hyper-parameter tuner on the
training set.

Some algorithms are particularly interesting because they require few user-defined
parameters. For example, the AdaBoost implementation of boosted DT only requires the
NBCs in the ensemble and the LR parameter that shrinks each classifier’s contribution. In
this study, however, the hyper-parameter optimization experiments for each method are
performed based on two user-defined parameters. In other words, we optimize each model
via the tuning of two parameters: DT (MTD and Minimum Sample Split (MSS)), AdaBoost
(NBCs and LR), GBM (MTD and NBCs), XGBoost (MTD and NBCs), LighGBM (MTD and
NBCs), and RF (MTD and NBCs).

The most critical hyper-parameters of six tree-based methods are presented in Table 11.
The range of values and the optimal value chosen for each of the parameters are given in
the following subsection.
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Table 11. Parameter Configuration of algorithms.

Algorithm Most Important User-Defined Parameters Example References

DT

maximum tree depth ([0, ∞])

[33,58]
minimum sample split ([0, ∞])
minimum sample split ([0, ∞])

minimum number of samples at a leaf node

AdaBoost
learning rate ([0, 1])

[35]number of boosted trees ([0, ∞])

GBM

maximum tree depth ([0, ∞])

[59]
number of gradient boosted trees

minimum sample split ([0, ∞])
learning rate ([0, 1])

XGBoost

maximum tree depth ([0, ∞])

[43]
number of gradient boosted trees ([0, ∞])

minimum sample split ([0, ∞])
learning rate ([0, 1])

LightGBM
maximum tree depth ([0, ∞])

[22,24]number of boosted trees ([0, ∞])
learning rate ([0, 1])

RF

number of decision trees ([0, ∞])

[18,50]
maximum tree depth ([0, ∞])

number of variables in each node split
minimum number of samples at a leaf node

minimum sample split ([0, ∞])

4.1.1. Hyper-Parameter Tuning for Multispectral Data

To provide a comparative analysis of the contribution of inputs/parameters, the mean
test accuracy score (MTA) was measured and visualized by plotting the relations of each
method’s parameters. The MTA describes the mean accuracy of scores accumulated when
predicting the test dataset and is used to rank the competing parameter combinations.
For the DT method (Figure 11a), on the ordinate is the MTA of a range of input values
calculated for Minimum Sample Split (MSS) while the horizontal axis represents the MTD
in the ensemble. As can be seen, by increasing the minimum number of samples, the
classifier’s accuracy increases while the MTD is less than 100. On the other hand, the
classifier’s accuracy for any given values for the MSS parameter (in this case, 2, 5, 8, and
10) is constant, as the MTD is higher than 100. For the DT method, it makes sense to choose
10 and 100 as the optimum values for MSS and MTD parameters, respectively.

For the AdaBoost method (Figure 11b), on the ordinate is the MTA of a range of input
values for LR (i.e., 0.1, 0.3, 0.5, 0.7, and 1) obtained, while on the horizontal axis is the
NBCs (i.e., 10, 25, 80 and 100) in the ensemble. Unlike other plots in Figure 11, various
tuning parameters substantially affect the AdaBoost algorithm’s accuracy. As shown in
Figure 11b, the AdaBoost method has a high accuracy when the LR is set to 1. Moreover,
the classification accuracy is almost constant for all input values of the LR while the NBCs is
higher than 80. Therefore, from the accuracy and processing time viewpoint, the optimum
values for the NBCs and the LR are 80 and 1, respectively, using the AdaBoost method.

To analyze the parameter tuning for GBM, XGBoost, LightGBM, and RF methods, the
NBCs and the MTD have been chosen as the most critical parameters in the accuracy of
classification results. In Figure 11c–f, on the ordinate is the MTA of a range of input values
for MTD (i.e., 10, 20, 30, 40, and 50) measured, while on the horizontal axis is the NBCs
in the ensemble. No significant fluctuation in the GBM method’s graphs was observed
when different hyper-parameters were set (see Figure 11c). The GBM is a time-consuming
method; therefore, the best tuning values for the NBCs and MTD are both 30. In Figure 11d,
MTD showed a negative correlation with the accuracy. Overall, the XGBoost method (with
MTD = 20 and NBCs = 30) has the best performance.
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The smooth trend of the LightGBM method’s graphs illustrates that setting different
hyper-parameters does not highly affect classification accuracy. Based on the results, the
LightGBM method achieves a high accuracy when the NBCs and MTD are set to 80 and 20,
respectively. Note that to decrease the computational cost, setting the NBCs to 50 with a
MTD of 10 can also produce acceptable results.

Assessment of the RF classifier’s results shows that increasing of the MTD may cause
an increase in computational cost without a positive effect on the accuracy. Figure 11f
illustrates that the optimum tuning values for the MTD and the NBCs parameters in the RF
method are 20 and 80, respectively.
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4.1.2. Hyper-Parameter Tuning for Hyperspectral Data

Changes in the DT method’s input variables do not alter the accuracy when the MTD
is set to a value higher than 100. The results of this method, however, reach a high accuracy
when the MSS = 8 and MTD = 200. It is interesting to see that this method has a similar
trend in both multispectral and hyperspectral datasets.

According to Figure 12b, tuned parameters significantly affect the AdaBoost tech-
nique’s accuracy. A similar function was performed in the multispectral dataset too. Yet,
increases in the LR value lead to increased accuracy, but increases in the NBCs do not
positively affect classification results. As shown in Figure 12b, the best values for the
mentioned tuning parameters are 1 and 25, respectively.
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According to Figure 12c, the MTD values greater than 30 have degraded the classifi-
cation results of the GBM method; then, the value of 30 is the optimum MTD. Moreover,
for the NBCs higher than 25, the classification accuracy decreases; therefore, the optimum
value for NBCs is 25. The XGBoost algorithm also follows a similar trend in multispectral
and hyperspectral datasets (see Figure 12d). On the whole, this method with MTD and the
NBCs equal to 30 and 50, respectively, had the best performance.

The LightGBM and RF methods by hyperspectral data do not follow the trends when
multispectral data have been utilized. Here, the NBCs and MTD do not have a predictable
relationship in the LightGBM method. An excessive increase in these two parameters
adversely affects classification results (see Figure 12e). According to Figure 12f, the RF
method does not have good results for a MTD of 10. When the MTD is higher than 10, the
accuracy is almost constant for any given input values of the NBCs. However, the best
classification results for the RF method are attained when the NBCs = 250 and MTD = 50.

4.1.3. Hyper-Parameter Tuning for PolSAR Data

Based on Figure 13a, for the San Francisco dataset, the high value of MSS decreases
the accuracy of the DT method when the MTD is lower than 150. In addition, for any given
input values of the MSS parameter (i.e., 2, 5, 8, 10) when MTD is greater than 150, the
classification result is constant. Therefore, the optimum tuning values for MSS and MTD,
are 5 and 150, respectively.
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Like AdaBoost’s performance for multispectral and hyperspectral datasets, it also
has a high dependency on input tuning parameters by PolSAR data. In other words,
by increasing the NBCs and LR values, the accuracy increases. The AdaBoost method’s
best results were obtained when the NBCs and LR were set to 80 and 0.8, respectively
(Figure 13b).

Figure 13c,d show that variation in tuning parameters (i.e., NBCs and MTD) does not
alter the accuracy of classification results using GBM and XGBoost algorithms. However,
high accuracy for these two methods is achieved when the input variables for GBM and
XGBoost are set to (NBCs = 80, MTD = 30) and (NBCs = 50, MTD = 30), respectively.

As illustrated in Figure 13e, there are high variations in the results of the LightGBM
method using different input values for the NBCs and MTD parameters. High accuracy is
acquired when these parameters are set to 100 and 30, respectively. In addition, the results
of the RF approach are also highly dependent on input values. As depicted in Figure 13e,
the optimum tuning values for these parameters are NBCs = 150, MTD = 20.

4.2. Classification Results

In this section, the experimental results will be illustrated and the qualitative and
quantitative analysis of classification methods will be discussed.

4.2.1. Land-Cover Mapping from Multispectral Data

The classification results of the six implemented ML algorithms using the ISPRS
Vaihingen multispectral dataset are demonstrated in Figure 14.

From the quantitative viewpoint, we made a numerical evaluation of classification
results. Numerous metrics have been introduced in the literature to evaluate the quality
and accuracy of different RS methods. In this paper, the classification methods’ results
were assessed by the overall accuracy (OA) and F1-Score (the reader is referred to [60] for
more information regarding these metrics). According to Figures 14 and 15, the comparison
of classification results demonstrates reliable performances for the RF, XGBoost, and DT
classifiers using the multispectral data.

4.2.2. Classification Results of Hyperspectral Data

The classification maps obtained from the six discussed approaches using the Pavia
University hyperspectral dataset are illustrated in Figure 16.
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 Figure 14. Classification results for ISPRS Vaihingen dataset. (a) DT, (b) AdaBoost, (c) GBM,
(d) XGBoost, (e) Light GBM, and (f) RF.
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Figure 15. Numerical evaluation of EL techniques in the classification of the multispectral dataset.

From a visual inspection of results in Figure 16, an initial qualitative conclusion can be
obtained about the most effective classification algorithms for the Pavia University dataset.
Considering the visual assessment of the resulting outputs, the LightGBM and XGBoost
models seem to be more effective than other types of approaches in classifying the objects
in the scene. The numerical evaluation in Figure 17 supports this conclusion.



Remote Sens. 2021, 13, 4405 17 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 23 
 

 

(d) (e) (f) 

Figure 14. Classification results for ISPRS Vaihingen dataset. (a) DT, (b) AdaBoost, (c) GBM, (d) 

XGBoost, (e) Light GBM, and (f) RF. 

From the quantitative viewpoint, we made a numerical evaluation of classification 

results. Numerous metrics have been introduced in the literature to evaluate the quality 

and accuracy of different RS methods. In this paper, the classification methods’ results 

were assessed by the overall accuracy (OA) and F1-Score (the reader is referred to [60] for 

more information regarding these metrics). According to Figures 14 and 15, the compari-

son of classification results demonstrates reliable performances for the RF, XGBoost, and 

DT classifiers using the multispectral data. 

 

Figure 15. Numerical evaluation of EL techniques in the classification of the multispectral dataset. 

4.2.2. Classification Results of Hyperspectral Data 

The classification maps obtained from the six discussed approaches using the Pavia 

University hyperspectral dataset are illustrated in Figure 16. 

   

(a) (b) (c) 

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 23 
 

 

   

(d) (e) (f) 

Figure 16. Classification results for Pavia University data. (a) DT, (b) AdaBoost, (c) GBM, (d) XGBoost, (e) Light GBM, and 

(f) RF. 

From a visual inspection of results in Figure 16, an initial qualitative conclusion can 

be obtained about the most effective classification algorithms for the Pavia University da-

taset. Considering the visual assessment of the resulting outputs, the LightGBM and 

XGBoost models seem to be more effective than other types of approaches in classifying 

the objects in the scene. The numerical evaluation in Figure 17 supports this conclusion. 

 

Figure 17. Numerical evaluation of EL techniques in the classification of the hyperspectral dataset. 

4.2.3. Classification Results of PolSAR Dataset 

The classification results for the six implemented ML algorithms using the San Fran-

cisco PolSAR dataset are shown in Figure 18. 

Figure 16. Classification results for Pavia University data. (a) DT, (b) AdaBoost, (c) GBM, (d) XGBoost, (e) Light GBM, and
(f) RF.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 23 
 

 

   

(d) (e) (f) 

Figure 16. Classification results for Pavia University data. (a) DT, (b) AdaBoost, (c) GBM, (d) XGBoost, (e) Light GBM, and 

(f) RF. 

From a visual inspection of results in Figure 16, an initial qualitative conclusion can 

be obtained about the most effective classification algorithms for the Pavia University da-

taset. Considering the visual assessment of the resulting outputs, the LightGBM and 

XGBoost models seem to be more effective than other types of approaches in classifying 

the objects in the scene. The numerical evaluation in Figure 17 supports this conclusion. 

 

Figure 17. Numerical evaluation of EL techniques in the classification of the hyperspectral dataset. 

4.2.3. Classification Results of PolSAR Dataset 

The classification results for the six implemented ML algorithms using the San Fran-

cisco PolSAR dataset are shown in Figure 18. 

Figure 17. Numerical evaluation of EL techniques in the classification of the hyperspectral dataset.



Remote Sens. 2021, 13, 4405 18 of 22

4.2.3. Classification Results of PolSAR Dataset

The classification results for the six implemented ML algorithms using the San Fran-
cisco PolSAR dataset are shown in Figure 18.

After the initial visualization, a numerical assessment was performed on the classifi-
cation maps. As presented in Figure 19, the XGBoost, RF, and LightGBM provided high
accuracy; thus, similar to the visual analysis, the classified maps’ numerical evaluation
endorsed the effectiveness of these methods.

4.2.4. The Final Summary of Classification Results

Table 12 gives the summary of different results obtained for each dataset using the
six ML methods. Based on this table, the classification of multispectral data with the RF
and XGBoost methods achieved OA of 77.41% and 77.28%, respectively, which are the
highest accuracies compared to the accuracy of other methods. Moreover, the LightGBM
and XGBoost methods using hyperspectral data with OA of 86.34% and 85.94%, respec-
tively, and XGBoost and RF algorithms using PolSAR data with the OA of 84.62% and
81.94%, respectively, produced the higher classification accuracies compared to other ML
techniques. In this paper, in terms of the pixel-based classification, the XGBoost method
produced better results than the other methods investigated and has a high potential in the
classification of different RS data types.
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Table 12. Comparison between the performance of different methods on the classification of multispectral, hyperspectral,
and PolSAR datasets.

Datasets Metrics
Methods

DT AdaBoost GBM XGBoost LightGBM RF

Multispectral OA 76.12% 72.3% 76.15% 77.28% 75.4% 77.41%
F1-Score 75.01% 70.14% 73.2% 75.79% 74.58% 75.8%

Hyperspectral OA 80.51% 78.29% 83.84% 85.94% 86.34% 85.52%
F1-Score 79% 72.8% 82.21% 84.48% 83.01% 83.44%

PolSAR
OA 77.12% 74.52% 66.79% 84.62% 80.09% 81.94%

F1-Score 74.55% 72.56% 65.48% 81% 78.51% 78.7%

5. Conclusions

In this study, six well-known EL methods, namely AdaBoost, GBM, XGBoost, Light-
GBM, and RF were compared in their classification of multispectral, hyperspectral, and
PolSAR datasets. The performance comparison was based on both hyper-parameter tuning
and model accuracy. According to Table 12, analyzing the final results can be examined
from two viewpoints: (1) from the methodology viewpoint: since the XGBoost and Light-
GMB methods are the improved versions of EL algorithms, in the most cases in the current
study, they provided the best results; and (2) from the dataset viewpoint: it is interesting to
see that all of the techniques produce higher accuracy when dealing with the hyperspectral
dataset. Such a result proves that EL algorithms can show a better performance when a
high number of features are fed into their models.

Overall, our experimental results showed that the LightGBM, XGBoost, and RF meth-
ods were superior to the other techniques in classifying various RS data. However, finding
the most suitable parameters for these methods is a challenging and time-consuming
process. The input parameters’ optimum values may vary depending on the size of the
input dataset and the number/complexity of the class types in the scene. Consequently,
setting the appropriate parameters is an important step and affects the classification results.
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RS Remote Sensing
EO Earth observations
LULC Land Use/Land Cover
ML Machine Learning
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DT Decision Tree
AdaBoost Adaptive Boosting
GBM Gradient boosting machine
XGBoost Extreme Gradient Boosting
LightGBM Light Gradient Boosting Machine
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