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a b s t r a c t

ttcrpy is a package for computing traveltimes and raytracing of seismic and electromagnetic waves
for geophysical applications, e.g. ray-based seismic/GPR tomography, microseismic event location (joint
hypocenter-velocity inversion), and migration. The package allows performing computations on 2D and
3D rectilinear grids, as well as 2D triangular and 3D tetrahedral meshes. For improved versatility, three
different algorithms have been implemented: the Fast-Sweeping Method, the Shortest-Path Method,
and the Dynamic Shortest-Path Method. Calculations can be run in parallel on a multi-core machine.
The core computing code is written in C++, and has been wrapped with Cython for practical use.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.1.8
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00123
Code Ocean compute capsule https://codeocean.com/algorithm/76d9ec7f-746e-4c8e-b455-9aa0a2f42eb9/
Legal Code License GPL-3.0
Code versioning system used git
Software code languages, tools, and services used Python, C++

Compilation requirements, operating environments & dependencies C++11 compliant compiler, Cython
If available Link to developer documentation/manual https://ttcrpy.readthedocs.io/en/latest/
Support email for questions bernard.giroux@ete.inrs.ca

1. Motivation and significance

Geophysical methods are used to characterize the subsurface
nd build representations of natural and man-made structures
ound underground [1]. Among geophysical techniques, seismic
ethods and Ground-Penetrating-Radar (GPR) play an important

ole due to their capacity to provide high-resolution images.
common aspect of these two methods is that the ground is

robed with waves, of mechanical nature for seismics and elec-
romagnetic for GPR. Wave propagation is influenced by contrasts
n acoustic or electromagnetic impedance, and the aim of the
ethods is to infer the location and magnitude of such contrasts

rom the measurements.
Processing and interpreting seismic and GPR data often re-

uire computing the traveltime of a wave propagating from a

E-mail address: bernard.giroux@ete.inrs.ca.

source to some receivers, as well as computing the trajectory
from that source to the receivers (raytracing), for various spa-
tial distribution of wave velocity. This is the case for instance
in traveltime tomography [2], migration [3], and microseismic
event location [4]. Depending on the application, data can be col-
lected with sources and receivers covering a volume, or aligned
along a plane or a line. Survey design is dictated by the spatial
distribution of velocity, which could be 3D, or which could be
approximated by a 2D model with acceptable accuracy. Surveys
can be carried out over more or less flat land, on accidented
terrains with varying topography, or over sites with known in-
frastructure of arbitrary shape (e.g. mine galleries, tunnels, or
dams). The choice of discretization is therefore important to
accurately represent the features present at the study site. On the
other hand, this choice may be dictated by other considerations.
For example, unstructured meshes are well suited to map objects

of arbitrary shapes, but are more complex to handle than regular
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rids, and could be overkill when no complex features are found
t the location. Unstructured meshes could also not be handled
y a critical component of the computing code at hand, leading
o an intermediate regriding step causing loss of accuracy. The
im of the ttcrpy package is to allow seamlessly performing
raveltime computation and raytracing for a variety of scenarios.
he package currently accepts velocity models discretized with
D and 3D rectilinear grids as well as 2D triangular and 3D
etrahedral meshes. For additional flexibility, it is also possible
o assign slowness (inverse of velocity) values at the nodes or to
he cells of the mesh. For the latter case, isotropic velocity can
e defined for all supported meshes, and transverse isotropy is
ossible for rectilinear grids.
The code was integrated in a framework developed to map

eismic velocity changes precursor to mining rockbursts [5]. Us-
ng data collected in a Canadian mine, their methodology suc-
essfully mapped velocity changes associated to two rockburst
nstances. A critical step in their framework is the comparison
f measured arrival times with arrival times computed using
pdated velocity models, which is performed with ttcrpy. This
ode is also a key component of hypopy, a Python module for
eismic hypocenter location working with rectilinear grids [6].
wing to the capabilities of ttcrpy, hypopy is currently under
evelopment to support tetrahedral meshes. The ttcrpy package
s versatile, easy to install and simple to use, and it is expected
hat it will be adopted for a wide array of applications.

The ttcrpy package can be used in most situations where
raveltime or raypaths are required. The only requirements are
hat a description of the spatial distribution of velocity and the
ocation of the sources and receivers be defined on a chosen mesh.
he general approach is to first create an instance of the meshes
upporting the description of the velocity model. This instance
an then be used to compute the traveltimes and raypaths for
arious combinations of sources and receivers. Values of veloc-
ty within the mesh can be updated at any point prior to the
omputations, so the mesh instance can be reused in iterative
lgorithms.
The general approach used for computing traveltimes with

tcrpy combines two sequential steps. The first uses a grid-
ased method (i.e. the Fast-Sweeping method (FSM) [7], the
hortest-Path method (SPM) [8,9], or the Dynamic Shortest-Path
ethod (DSPM) [10]) to compute traveltime at all nodes of the
esh. The second uses the steepest traveltime gradient method

o trace back raypaths for each source–receiver pair. Traveltimes
t each receiver are recomputed using slowness values along the
aypaths. The second step incurs some overhead, but generally
ncreases accuracy, unless complex velocity models with strong
radients are fed in input [10]. If such a condition is warranted,
he second step can be optional. Traveltimes at receiver locations
re then interpolated instead.

. Software description

ttcrpy is a free Python package published under the GNU
eneral Public license (GPLv3) [11]. The codebase is open to con-
ributions and further development on GitHub [12]. Installation
nd distribution have been established since early 2020 through
he Python Package Index [13], and the Python API is documented
n ReadTheDocs [14].

.1. Software architecture

At its core, ttcrpy is a collection of C++ classes that are
rapped with Cython. Each C++ class holds the implementation
f a particular algorithm (Fast-Sweeping in 2D rectilinear grid, or

inherit from two major superclasses: Grid2D and Grid3D, which
share a common interface. On the Cython side, the number of
classes is reduced to four: rectilinear grids and unstructured
meshes in 2D and 3D. The classes, named Grid2d, Grid3d,
Mesh2d, and Mesh3d, all share a common interface. The choice of
a particular implementation is made during object instantiation,
depending on the choice of the class itself as well as on arguments
passed to the constructor. Apart from a few Cython declaration
files, the Cython code is contained in two files (rgrid.pyx and
tmesh.pyx), which constitute the two modules of the ttcrpy
package. Fig. 1 depicts the relationship between the C++ classes
and their Cython counterpart.

Each Cython class holds a pointer to either a Grid2D or
Grid3D C++ object. Cython class methods take Python objects as
arguments and create new C++ object to pass information to the
Grid2D or Grid3D C++ object when needed. At no time do the
C++ objects use Python built-in type objects, which means that
they can be used without the Python global interpreter lock (GIL).
Once objects are instantiated, calculations are done by calling a
method called raytrace. If calculations must be performed for a
number of sources, all source coordinates can be passed at once in
argument and, provided that the option was selected at creation
time, calculations are then performed in parallel following a
task pattern [15]. Parallel calculations are handled on the C++

side using a dedicated thread pool with a predefined number of
threads. This means that parallel work is transparent to Python
and that it runs in the background, irrespective of the GIL.

2.2. Software functionalities

The main functionalities of ttcrpy are to compute travel-
time and raypaths for various scenarios. Parameters passed to
the constructor determine the choice of the algorithm. Other
functionalities that are selected at instantiation are:

1. if slowness values are assigned to grid cells or grid nodes,
2. if anisotropy should be considered (currently available for

2D rectilinear grids only),
3. if traveltimes should be computed in a two-step approach

using gradient along raypaths or simply interpolated, and
4. if calculations should be performed in parallel.

Choosing whether slowness values should be assigned to grid
cells or grid nodes has implication in tomography problems as
it determines the number of unknown parameters to estimate.
With rectilinear grids, the number of cells is always smaller
than the number of nodes, and it is thus advantageous to assign
slowness to cells with this type of grid, as the system to solve
will be smaller. The opposite applies to triangular or tetrahedral
meshes.

Inverse problems such as tomography require the Jacobian
matrix, or Fréchet derivatives, in order to update the sought
parameters [16]. Construction of the Jacobian matrix depends
on the discretization, and ttcrpy contains implementations for
a number of scenarios. For instance, consider the case where
slowness values are assigned to cells. Fig. 2 shows an example of
a raypath that runs across the grid cells, from the transmitter to
the receiver. In continuous media, the traveltime t is the integral
of slowness along the raypath l from the transmitter Tx to the
receiver Rx:

t =

∫ Rx

Tx
s(l) dl, (1)

where s is the slowness, which is a function of the raypath. In
discrete form, the integral becomes a summation over the ray
segments,

t =

segments∑
sjli, (2)
ynamic Shortest-Path in 3D tetrahedral meshes). C++ classes i

2
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Fig. 1. Structure of the ttcrpy codebase. Naming convention for the C++ classes defines first dimensionality, then type of mesh (letter ’r’ for rectilinear and letter
u’ for unstructured), attribution of slowness to cells (letter ’c’) or to nodes (letter ’n’), and finally algorithm (’fs’ for fast-sweeping, ’sp’ for shortest-path, and ’dsp’
or dynamic shortest path).

here sj is the slowness in the cell traversed by the ith segment,
nd li is the length of the segment in the cell. The Jacobian matrix
ontains the derivatives of t with respect to model parameters,
t/∂s for this specific case, and the elements of the matrix are
hen either 0 for cells not traversed by ray segments, or li for
he other cells. Upon user request, when calling the raytrace
ethod, the process of filling the matrix for all pairs of source
nd receivers given the computed raypaths is handled in the
ython methods. This returns a SciPy sparse matrix. Note that
n alternative formulation is used when slowness values are
ssigned at grid nodes.
The choice of using the two-step approach to compute trav-

ltimes may have implications when it is used in tomography
roblems, especially when the inverse problem is highly ill-
onditioned and regularization does not allow for a realistic
elocity model. In our experience, this can arise when non phys-
cally admissible velocity contrasts are introduced in the model,
specially close to the source. In such a case, the gradient of the
raveltimes is susceptible to errors and may not point toward the
ource point with sufficient accuracy. This can preclude conver-
ence of the raytracing step. A runtime exception is raised when
onvergence cannot be achieved, and calculation of the travel-
ime is interrupted. This convergence problem can be avoided
y selecting the Shortest-Path Method, in which raytracing is
erformed using a different algorithm. With the SPM, a ‘‘dis-
rete’’ raypath is recorded while traveltimes are computed at
ll grid nodes [15], and convergence is guaranteed. Performance
spects of these different approaches are discussed in details for
etrahedral meshes in [10].

Most users will want the possibility to save grid values and
aypaths for further visualization in external programs such as
araview. This capability has been implemented in ttcrpoy us-
ng the VTK format [17]. Grid values refer to scalars assigned
ither to grid cells or grid nodes, typically whole grid traveltimes
r velocity models obtained after tomography. This functionality
s achieved through the method to_vtk, which is implemented
n all four Cython classes.

Fig. 2. Example of segmented raypath for a model with slowness values assigned
to grid cells. For illustrative purposes, ray segments are alternating between
dark and light gray. Grid cell numbers appear in their lower left corner. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

3. Illustrative examples

The following simple examples illustrate the main functionali-
ties of the package. The first case is a 3D layered model discretized
with a rectilinear grid. The following lines of code show how
the model is defined and how an instance of a Grid3d object
is created, along with how it can be saved for visualization.
Space and time units are not explicitly defined in the codebase,
and traveltime units will be consistent with the units used for
3
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lowness and spatial dimensions. In the following, units are not
efined simply to lighten notation. Fig. 3 shows the resulting
odel.

N = 40 # number of voxels in each direction
dx = 0.5 # cell size

# node coordinates
xn = np.arange(0, (N+1)*dx, dx)
yn = np.arange(0, (N+1)*dx, dx)
zn = np.arange(0, (N+1)*dx, dx)

# create grid with default values (by default,
# slowness is defined for cells)
grid = Grid3d(xn, yn, zn)

# values of slowness along vertical axis,
# define first vertical gradient
V0 = 1.0
V20 = 3.0
b = (V20-V0)/20.0
# fill array
slowness = np.empty((N,))
for n in range(N):

z = 2*int(zn[n]/2) + 1
# z at the center of the layer
slowness[n] = 1.0 / (V0 + b*z)

# repeat for all x & y locations
slowness = np.tile(slowness , N*N)

# Assign slowness to grid
grid.set_slowness(slowness)

# Save to VTK format to visualize
grid.to_vtk({’Velocity’: 1./slowness}, ’example1’)

he next logical step is to compute traveltimes and raypaths for
ome sources. This is accomplished by the next lines of code.

# Define the source location
src = np.array([[0.5, 0.5, 0.5]])

# Define some receivers , first a horizontal spread
rcv = np.c_[np.arange(1.5, 20.0),

np.arange(1.5, 20.0),
0.5+np.zeros((19,))]

# Add receivers in a " borehole " - vertical receiver
# line
rcv = np.r_[rcv, np.c_[19.5+np.zeros((19,)),

19.5+np.zeros((19,)),
np.arange(1.5, 20.0)]]

# Compute traveltimes and raypaths
ref = time.time()
tt, rays = grid.raytrace(src, rcv, return_rays=True)
compute_time1 = time.time() - ref
# Save raypaths
grid.to_vtk({’raypaths for shot no 1’: rays},
’example1_rays’)

The results are shown in Fig. 4. By default, the FSM is used and
the raypaths are computed by using the direction of the gradient
of traveltime, from the receivers toward the source. For this case,
rays should (1) be straight inside the layers, (2) exhibit a sharp
change of direction at the interfaces, and (3) the path of head
waves should follow exactly the interfaces. Fig. 4 shows that it
is not the case for the FSM since rays bend smoothly as they get
closer to the interfaces. This means that this solution deviates
from theoretical paths they should adopt at the interfaces.

The same example is repeated using the SPM to illustrate the
differences that can result from this method. The important thing
to remember is that SPM records the raypaths during traveltime
computation over the grid nodes. In this case, a second grid must
be created to accommodate this functionality. This is done as
shown in the following code example.

# create SPM grid with default number of secondary
# node (5)

Fig. 3. Velocity model of example 1.

grid_spm = Grid3d(xn, yn, zn, method=’SPM’)

# Compute traveltimes and raypaths
ref = time.time()
tt, rays = grid_spm.raytrace(src, rcv,

slowness=slowness , return_rays=True)
compute_time2 = time.time() - ref

The results are presented in Fig. 5. We see from this example that
the raypaths follow trajectories that are closer to the theoretical
solution. The cost for this improvement in accuracy is, however,
an increase in computation time. On a 2013 Apple Mac Pro, it
takes 2.8 s to solve with the FSM and 54.1 s to solve with the
SPM. This is almost 1:20 increase in computation time. This large
increase in computing resources, combined with many situations
where smooth velocity models can be the norm, make the FSM
the default option for this type of grid.

We conclude this first example by showing how the Jacobian
matrix is computed. This matrix is used in inversion to compute
model perturbations. Provided that model perturbations are small
between iterations, this matrix can be assumed to remain con-
stant for a few iterations. In such a case, traveltimes are obtained
from a fast matrix–vector product. The next lines of code show
a comparison example, where the matrix–vector product takes
3.6×10−4 s to compute, i.e. about 4 orders of magnitude faster
than calling raytrace.
tt, L = grid_spm.raytrace(src, rcv, slowness=slowness,

compute_L=True)
tt2 = L@slowness
np.linalg.norm(tt - tt2) # equal to 1.45e-13

The complete Python code for this example can be found in a
Jupyter notebook in the GitHub repository.

The second example illustrates how topography can be taken
into account and how secondary arrivals can be computed. A
2D model that contains two irregular layers has been discretized
with a triangular mesh. The resulting model is shown in Fig. 6. To
get reflected arrival times, one must first record the direct arrival
times at points along the interface between the layers. These are
then used as a second source for a subsequent modeling run.
This approach can be generalized in order to compute multiply
transmitted, converted and reflected arrivals, as proposed by [18].

Fig. 7 shows the modeled raypaths obtained after the two runs.
We can see in this example the influence of irregular interfaces
on wave propagation. The corresponding traveltimes are shown
in Fig. 8. The effect of the irregular surface and interface can be
seen in the reflected and refracted arrivals.

The complete Python code example, including mesh genera-
tion with gmsh, can be found in a second Jupyter notebook in
the GitHub repository.
4
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Fig. 4. Traveltimes and raypaths obtained with default parameters.

Fig. 5. Traveltimes and raypaths (in green) obtained with the SPM. Raypaths obtained with the FSM are shown in red. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Velocity model of example 2.

4. Impact

As saw shown in the previous examples, ttcrpy is versatile
and flexible, and will be useful to tackle any problem where
traveltimes and raypaths are needed. In particular, the use of
unstructured grids is growing in importance in geophysics [19],
and ttcrpy provides researchers with a framework that can be
used readily with such grids.

Bringing the C++ codebase into Python has been instrumental
for its adoption by young researchers (e.g. graduate students)
with limited or no experience with compiled languages. This,
combined with a parallel implementation, speeds up testing re-
search hypotheses and allows more rapid debugging, as was the

case for instance in the development proposed by [5]. The Cython
codebase also includes utility routines to compute matrices useful
for inverse problems, such as smoothing matrices (1st and 2nd
order spatial derivative), matrix of interpolation weights for ve-
locity data points constraint, and matrix of partial derivative of
travel time with respect to slowness or velocity.

ttcrpy is a relatively young package, but statistics from
Google BigQuery indicates that monthly downloads range be-
tween 3500 and 8000 from December 2020 to May 2021. Google
BigQuery also indicates an increasing trend of downloads from
pip, the package installer for Python, starting with 9 in February
2021 and reaching 214 in May 2021. As of 2021, the package is
5
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Fig. 7. Raypaths for the direct, reflected and refracted arrivals. Top: first run with primary source at the surface, bottom: second run with secondary source at the
interface between the layers.

Fig. 8. Traveltime curves modeled in example 2.

lso used by the author in his modeling and inversion class, which
hould increase its visibility outside his group.

. Conclusions

In this article, the ttcrpy package is introduced. It provides a
convenient way to compute traveltimes and raypaths for a variety
of 2D and 3D grids. The package is designed with flexibility and
versatility in mind, without sacrificing performance. The core of
the compute-intensive code is programmed in a collection of
C++ classes, and Cython is used to interface it with Python.

The package is released under the GNU Public Licence ver-
sion 3 and source code is hosted on GitHub. Python wheels are
provided on the Python Package Index (PyPi) website for easy
installation with the package installer for Python (pip). The target
user base includes Earth scientists, technical personnel from the
private sector and academic researchers.

Current work is dedicated to bug fixing, improving docu-
mentation of the C++ codebase, and augmenting the test case

suite of automated testing. Efforts are also planned to implement
compute-critical portions of the code to GPU.
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