
11240 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

A New Convolutional Kernel Classifier for
Hyperspectral Image Classification

Mohsen Ansari , Saeid Homayouni , Senior Member, IEEE, Abdolreza Safari, and Saeid Niazmardi

Abstract—Multiple kernel learning (MKL) algorithms are
among the most successful classification methods for hyperspectral
data. Nevertheless, these algorithms suffer from two main
drawbacks of computational complexity and debility to admit
to the end-to-end learning paradigm. This article proposed a
convolutional kernel classifier (CKC) for hyperspectral remote
sensing images to address these issues. The CKC uses the Nyström
approximation method to estimate a low-rank approximation
of the basis kernels, thus solves the issues associated with
the high dimensionality of the basis kernels. The CKC uses
deep architecture to learn the optimal combination of the
basis kernels and the classification task to enable end-to-end
learning. The proposed CKC’s architecture is based on a
one-dimensional-convolutional neural network (CNN-1-D),
and it uses kernel dropout to prevent overfitting. It is the
first instance of deep-kernel algorithms in the field of remote
sensing. The proposed method was compared with several
well-known hyperspectral image analysis MKL algorithms,
including a multi-kernel variant of the deep kernel machine
optimization, MKL-average, Simple-MKL, and generalize
MKL, and state-of-the-art deep learning models, including
Vanilla recurrent neural network (VanillaRNN) and CNN-1-D
in classifying four benchmark hyperspectral datasets. The
experimental results show that the CKC consistently outperforms
all the competitor methods, and its runtime is lower than its
MKL algorithm counterparts on four benchmark hyperspectral
datasets. Moreover, the Nyström approximation solves the high
dimensionality of the basis kernels and boosts classification
accuracy. The source codes of CKC are available from:
https://github.com/MohsenAnsari1373/A-New-Convolutional-
Kernel-Classifier-for-Hyperspectral-Image-Classification.

Index Terms—Convolutional neural network (CNN), deep
kernel, hyperspectral classification, multiple kernel learning
(MKL).

I. INTRODUCTION

R ECENT advances in electro-optical technology have led
to hyperspectral sensors that can sample the object’s

Manuscript received August 10, 2021; revised September 18, 2021 and
October 10, 2021; accepted October 21, 2021. Date of publication October
27, 2021; date of current version November 15, 2021. (Corresponding author:
Mohsen Ansari.)

Mohsen Ansari and Abdolreza Safari are with the School of Surveying and
Geospatial Engineering, College of Engineering, University of Tehran, Tehran
14395-515, Iran (e-mail: moh.ansari@ut.ac.ir; asafari@ut.ac.ir).

Saeid Homayouni is with the Centre Eau Terre Environnement, Institut
National de la Recherche Scientifique, Quebec G1K 9A9, Canada (e-mail:
saeid.homayouni@ete.inrs.ca).

Saeid Niazmardi is with the Department of Surveying Engineering, Faculty of
Civil and Surveying Engineering, Graduate University of Advanced Technology,
Kerman 7631885356, Iran (e-mail: s.niazmardi@kgut.ac.ir).

Digital Object Identifier 10.1109/JSTARS.2021.3123087

visible and near-infrared spectral reflectance into hundreds of
spectral bands. With the rapid development of hyperspectral
sensors, considerable attention has been paid to spectral-based
processing and analysis, including classification [1], [2], spectral
unmixing [3], [4], dimensionality reduction [5], [6], and object
detection [7]. Hyperspectral images (HSIs) allow more accurate
classification than multispectral ones due to their high spectral
resolution. However, the high spectral resolution of this data
makes their classification more challenging and necessitates
more advanced algorithms [1, 8, 9]. Consequently, HSI clas-
sification has become one of the most active research areas in
remote sensing to overcome the challenges mentioned above and
find proper solutions and efficient algorithms.

Some recent papers about deep learning classifiers for HSI,
such as [10]–[12], emphasize that building highly nonlinear
models are crucial to modern machine learning techniques
to classify HSIs [13]. The success of deep neural networks
(DNNs) in a wide variety of classification of HSI tasks has
proven the superiority of highly nonlinear models [14]. In these
cases, connecting the-state-of-the-art deep topologies with large
datasets [12], [15], adopting effective optimization strategies
[16], [17], graphical processing units utilization, and using a
combination of multiple nonlinear transformations, with novel
loss function, DNNs can easily approximate a considerable
number of classes of function for classifying HSIs. As respects,
by increasing complication of the DNNs, exhaustive tuning of
several hyper-parameters is required, usually leading to model
overfitting or suboptimal solutions [14]. Although advances in
data augmentation and regularization techniques have partially
addressed these issues [18], [19], in the classification of HSIs,
it is challenging to propose DNNs that provide considerable
performance improvements over conventional machine learning
solutions [1, 14]. In this case, a more popular alternative solution
to obtaining more effective and nonlinear models is to employ
kernel methods [14].

Kernel-based methods have recently gained much attention
among different proposed algorithms for HSI data classifica-
tion thanks to their robust theoretical background [20]. These
methods map input data from its original space into a higher
dimensional reproducing kernel Hilbert space (RKHS), in which
the data has a more straightforward representation. The inner
product between all pairs of the mapped data points in the RKHS
can be computed using their values in the input space using a
kernel function.

The performance of kernel-based methods highly depends
on the choice of kernel function and tuning the values of its

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-1743-7965
https://orcid.org/0000-0002-0214-5356
https://github.com/MohsenAnsari1373/A-New-Convolutional-Kernel-Classifier-for-Hyperspectral-Image-Classification
https://github.com/MohsenAnsari1373/A-New-Convolutional-Kernel-Classifier-for-Hyperspectral-Image-Classification
mailto:moh.ansari@ut.ac.ir
mailto:asafari@ut.ac.ir
mailto:saeid.homayouni@ete.inrs.ca
mailto:s.niazmardi@kgut.ac.ir

ANSARI et al.: NEW CONVOLUTIONAL KERNEL CLASSIFIER FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11241

hyperparameters [21]. In this regard, several model selection
algorithms have been proposed to assist this choice, but arguably
the most used methods are MKL algorithms [20]. MKL com-
bines a set of predefined basis kernels into a composite kernel.
The basis kernels are usually constructed by using different
kernel functions or setting different values for their hyperpa-
rameters. To fuse the information contents of different kernel
functions, MKLs construct a combination function using a wide
variety of linear or non-linear combination functions.

Although MKL algorithms can be successfully used to ad-
dress the problem associated with kernel parameter selections,
some problems are yet to be solved. The first and foremost of
these problems is the computational complexity of the kernels
method, which arises from the dimensionality of kernel matrices
[14]. The dimensionality of kernel matrices grows quadratically
with the sample size, which impedes using these methods for
big datasets. Besides, using several kernels for MKL algorithms
escalates this problem [14]. In [20], [22]–[24], some accurate
MKL algorithms are introduced to address this problem, but they
are simply compatible with the small classification tasks. In a
recent effort [25], Alioscha-Perez et al. connected the traditional
batch solutions and stochastic gradient descent MKL approaches
to introduce new methods for handling big data.

The second problem arises because the data representation
provided by kernel functions is independent of the learning
task [14], unlike the deep learning methods that learn a task-
specific representation of the data through an end-to-end learn-
ing paradigm. It is well-established that one of the main reasons
for the outstanding performance of the deep learning models is
the end-to-end learning paradigm to which the kernel methods
are inherently incapable of admitting [15].

To overcome the problems mentioned above, it has been tried
to incorporate the advantages of both learning paradigms by
proposing new methods over the last years. These methods,
known as deep kernels, usually adopt different kernel functions
as inputs to various DNNs [21], [26]. The neural network learns
higher levels and task-specific data representations from the in-
put kernel functions [27]. This idea was implemented by Cho and
Saul [28] for the first time by introducing an arc-cosine kernel.
Cho and Saul have shown that an arc-cosine kernel behaves
similarly to an infinitive single-layer neural network, so they
proposed to mimic the behavior of DNNs by the composition of
arc-cosine kernels with the nested method [28]. Optimization of
kernel learning by applying DNNs architecture ideas can also be
done by Gaussian processes’ marginal likelihood as published in
[29]. In [30], a scalable deep kernel machine is introduced, which
extracts features by multiple layers. Each feature extraction layer
mimics an unsupervised MKL producer. This novel framework
uses the arc-cosine kernel [28], a multiple kernel form of the
proposed algorithm [31].

In [32], the authors proposed a new strategy by merging
deep multilayer features (MDFs) with an extended region-aware
multiple kernel learning (ER-MKL). The ER-MKL uses pre-
learned classifiers to fuse the MDF-generated representations.
Agethen and Hsu [33] proposed a novel convolutional long
short-term memory (LSTM) that supports convolutional ker-
nels’ composition. In that study, a set of convolutional kernels

used the convolutional LSTM network instead of a single con-
volutional kernel to form an MKL method. Lauriola et al. [27]
claimed that, in contrast to the top fully-connected (FC) layer
of a convolutional neural network (CNN), which extract finer
global features and high-level representation, the intermediate
convolutional layers encode contextual information and main-
tain the locality in the feature map. Thus, the authors merged
these two layers by MKL methods and introduced the KerNET
algorithm [27].

Some authors assumed that the traditional MKL methods are
not robust enough to cope with complex problems because they
find the composite kernel from one layer of kernels. Accordingly,
in [34]–[36], the authors proposed novel learning paradigms by
extending the single layer MKL to multilayer MKL as deep
MKL (DMKL). In this way, in [34], a self-adaptive DMKL
(SA-DMKL) method is proposed. In the SA-DMKL method,
each layer’s number and kernel’s number is not fixed in the
whole learning stage. SA-DMKL method first finds the optimal
parameters of each kernel by grid-search method and then finds
the optimal number and type of kernels in each layer using the
generalization error bound. At the end of the learning process,
if the appropriate parameters are not reached, the SA-DMKL
method adds a new layer. In connection with the previous study,
in [35], depth-width-scaling MKL (DWS-MKL) is introduced.
The DWS-MKL architecture highly depends on input data. The
input of each layer is the combined outputs of the previous layers
along with the network’s depth. The network’s width is extended
by parallelizing separate channels of these deep structures.

More recently, in [14], Song et al. proposed the M-DKMO
method to optimize MKL. To summarize, they combine MKL
with multilayer FC networks to develop end-to-end classifiers, in
which approximated kernels (ensemble embedding) are learned
as a feature extractor, and FC layers combine the features ex-
tracted by the kernels to infer task-specific MKL and use the
kernel dropout to prevent the overfitting [14]. In the continuation,
in [37], Instead of performing representation learning for each
ensemble embedding using a multilayer FC network like M-
DKMO, the authors proposed an ensemble DKMO (eDKMO)
method to perform representation learning for one ensemble
embedding. Compared with the DKMO, the eDKMO reduces
computation and time-space complexity because only one FC
network for representation learning.

This article proposes a novel convolutional kernel classi-
fier (CKC) algorithm that can learn a task-specific represen-
tation using either big kernels or multiple kernels. In con-
trast to previous research works that cannot handle big ker-
nels because of the high computational complexity of the ker-
nels, CKC can support much more kernels than others. Ad-
ditionally, the previous papers mostly use the FC architecture
through which the more straightforward representations are
produced than convolutional architecture. In this regard, the
proposed CKC algorithm creates a dense embedding of the
HSI in the RKHS by the Nyström method and then learns a
task-specific representation using CNN-1-D. The CKC algo-
rithm calculates a low-rank approximation of

kernel matrices using the Nyström approximation method
[38] for the first time in remote sensing literature. Since these

11242 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 1. Diagram of the proposed method.

approximated kernels have much less dimensionality than the
original ones, the CKC algorithm can handle big or numerous
kernels and cope with the first-mentioned problem (i.e., the
computational complexity of the kernels method problems) and
reduce the runtime of the algorithm.

Most importantly, the CKC algorithm takes advantage of a
new architecture based on the CNN-1-D and the kernel dropout
method [14] for the first time in deep kernel literature. Thanks
to CNN-1-D architecture, the CKC can learn a task-specific
representation, cope with the second problem above, and extract
more features shared across the HSI via localized filters than
the FC architecture. To the best of our knowledge, the CKC
algorithm is the first instance of the deep-kernel algorithms in
the field of remote sensing. Similar methods are proposed in
[14] and [37] in machine learning, whose authors have used a
multilayer FC network to represent learning. However, we used
CNN-1-D in this article because its filter can process and extract
the spectral features more robustly than multilayer FC networks
[1], [15]. Besides, the CKC algorithm can be considered a
novel optimization strategy in the MKL framework, which its
application is not limited to a fixed combination function. The
main contributions of this article are summarized as follows.

1) We developed the CKC as the first instance of deep kernel
methods in remote sensing literature, which creates dense
embedding of the HSI in the RKHS and learns a task-
specific representation of the data through an end-to-end
learning paradigm.

2) We created a dense embedding of HSI obtained from the
Nyström approximation method for the first time in remote
sensing literature to improve the effectiveness and reduce
the computational complexity of the classification.

3) We introduced the CNN-1-D for representation learning
for the first time in deep kernel methods literature because
its filters can process the spectral signatures and spectral
features in a more robust way than FC networks and
traditional machine learning methods.

4) To prevent overfitting, we presented kernel dropout for
the first time in HSI classification.

II. METHODOLOGY

The CKC algorithm consists of three main stages: dense
embedding; convolutional layer; and fusion Layer. First, the
predefined basis kernels were used in the dense embedding stage
to map the input data into different RKHS. Additionally, we
utilized the Nyström approximation to approximate kernels to
reduce the computational complexity of the learning procedure.
In the convolutional layer stage, a CNN-1-D architecture was
used to learn a task-specific representation for each kernel. The
last section used kernel dropout and FC architecture to combine
features extracted by the previous stage. These stages are shown
in Fig. 1.

A. Dense Embedding

The dense embedding stage is the critical component enabling
end-to-end learning because the fusion and convolutional layers
stages are separate from input, and the dense embedding stage
links them to input data. A kernel matrix can be viewed as

Ki,j = k (xi, xj) (1)

where K ∈ Rn×n is the kernel matrix, k is a kernel function,
xi is ith pixel of HSI, and n is the number of training samples.

ANSARI et al.: NEW CONVOLUTIONAL KERNEL CLASSIFIER FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11243

Ki,j has large value if training samples belong to the same class
as xj and small value otherwise.

Although there are many kernel functions in computer vision
and remote sensing literature, not all of them are useable and
popular in HSIs classification. Radial basis function (RBF) and
polynomial kernels are two widely used kernel functions in the
field of HSI classification

k(xi, xj)RBF = exp
(−‖xi − xj‖2/γ2

)
(2)

k(xi, xj)polynomial = (〈xi, xj〉+ α)β (3)

where (2) is related to RBF kernel, γ is a smoothing parameter,
(3) is related to polynomial kernel, β is the degree of the
polynomial kernel, and α is a number that usually considered as
0. The CKC can be used for any number and any type of kernels
from one kernel to m (see Fig. 1).

Kernels are usually high-dimensional matrices. Accordingly,
their direct use in the first layer of DNN is (or can be) com-
putationally challenging. A possible approach to alleviate this
challenge is transforming the original kernel matrix into a lower-
dimensional and more tractable representation using kernel ap-
proximation methods [14]. Nyström approximation [38] and the
random Fourier feature-based methods [39] are two of the most
popular kernel approximation approaches. The random Fourier
features-based methods are dedicated for shift-variant kernels
[39].

The Nyström approximation method directly constructs dense
embedding using the kernel matrix, where the source features
are not accessible [14], [38]. In this method, an approximate
kernel matrix L ∈ Rn×r can be found by a subset of s columns,
selected from K, where K � LLT , s � n, and r ≤ s. In
this article, we extract approximate kernels through random
sampling of the kernel matrix. Thus, s columns are randomly
selected fromKwithout replacement as a landmark. A single set
containing the s selected columns are considered as E ∈ Rn ×s

, the intersection of s and corresponding rows of K is denoted
as W ∈ Rs ×s, the optimal rank-r approximation of W ob-
tained using truncated SVD is denoted as W̄r, and the rank-r
approximation of K is considered as K̄r which is obtained by

K̄r = EW̄rE
T. (4)

The time complexity of the kernel approximation corresponds
to performing SVD on W, which reduces to O(s3) and can be
more reduced by randomizing the SVD algorithm, as shown in
[40]. The final form of approximated kernel mapping function
L can be gathered by [40]

L = E
(
UW̄r

Λ
−1/2

W̄r

)
(5)

where ΛW̄r
and UW̄r

are top r Eigenvectors and Eigenvalues
of W. So, proposed methods can work with L instead of Kr.
An ensemble of embedding of HSIs obtained from Nyström
approximation methods reduces the computational complexity
of the classification task [41].

B. Convolutional Layer

In this stage, convolutional representation learning is per-
formed for each dense embedding using a CNN-1-D to facilitate
and improve the effectiveness of the task-specific classification.
CNN-1-Ds are composed of one-dimensional convolutional lay-
ers (CONVs), activation function, and pooling layers (POOLs),
which are explained in detail in [15]. As shown in Fig. 2, every
row of the dense embedded data is considered a dense embedded
vector, considered input data for the convolutional layer. In this
regard, CONV can be considered a traditional sliding window
[42], [43], where Q fixed-size one-dimensional filters overlap
the q size over the dense embedded vector. The convolutional
representation is resulted after applying the activation function
(ReLU) and POOL. At the end of the convolutional layer stage,
the fully connected architecture receives the convolutional rep-
resentation and produces the final representation. The CNN-1-D
models can extract the features which are shared across the HSI
via localized filters.

C. Fusion Layer

The fusion layer, which can choose from various fusion strate-
gies to access the final multiple kernel representation for the
classification task, receives each kernel’s learned representation.
Concatenation, multiplication, averaging, and summation are
the most common fusion strategies. Although the backpropa-
gation algorithm can jointly optimize both the parameters of
the fusion layer and those of the representation learning, the
combination of different kernels and the significant number of
parameters may overfit the learning process [14]. In [14], Song
et al. introduced kernel dropout to alleviate this problem.

Kernel dropout has been inspired by typical dropout, intro-
duced in [17]. For training DNNs, a typical dropout randomly
chooses neurons to remove from the network along with all their
outgoing and incoming connections [17]. Kernel dropout drops
the kernel representation learned from some randomly chosen
kernel dense embedding to optimize the fusion layer [14]. The
total number of kernels is denoted by P , the hidden layer before
the fusion layer is denoted as Ω = {ωp}Pp=1, a vector associated
with P independent Bernoulli trials is considered as t, the repre-
sentation which is dropped from fusion layer if tp is 0, is denoted
as ωp. Therefore, the feed-forward is expressed as [14], [17]

tp ∼ Bernoulli (P) (6)

Ω̄ = {ω|ω ∈ Ω and tp > 0} (7)

ω̄ = (ωj) , ωj ∈ Ω̄ (8)

ȳj = f (wjω̄ + bj) (9)

where the weight vector for hidden neuron j is denoted
as wj, the vector concatenation is considered as (·), the soft-
max activation function is considered as f , and the output of
the softmax activation function is considered as ȳj . In [14],
Song et al. reported that the kernel dropout leads to speed-up
convergence of the network and improves learning performance.
After concatenating the latent representation of kernels by con-
catenation layer and kernel dropout, in order to fusion those,

11244 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. Convolutional layer stage.

TABLE I
USED HSI DATSETS AND THE NUMBER OF THEIR LABELED SAMPLES

the FC architecture is used to access the final multiple kernel
representation for the HSIs classification task.

III. HYPERSPECTRAL DATASETS AND EXPERIMENTAL SETUP

This article selected four widely-used HSI datasets in HSI
classification to evaluate the proposed method. It should be noted
that all HIS datasets have been normalized in advance. Tables I
and II give the details of four HSI datasets.

In this article, we have evaluated the proposed method us-
ing three experiments. In the first experiment, first of all, we
evaluate the performance of the CKC with different values of
the landmark parameter (s) and the kernel dropout to find the
optimal value of the s and the kernel dropout, and then we try
to illustrate the performance of the CKC during the training
and validation stages on all datasets. In this experiment, we
find out how the loss function of CKC converges to the low
value during the training and validation stages on all datasets.

ANSARI et al.: NEW CONVOLUTIONAL KERNEL CLASSIFIER FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11245

TABLE II
HSI DATASETS DETAILS

Fig. 3. Sensitivity of CKC to the change of the landmark parameter (s) and the kernel dropout on (a) the University of Pavia, (b) Salinas Valley, (c) Berlin, and
(d) the University of Houston.

Additionally, we try to determine whether the kernel dropout can
reduce the overfitting or not. Therefore we compare the CKC’s
using kernel dropout and concatenation method (i.e., simple
mode). To this end, 20% of the labeled data of the University of
Pavia, Salinas Valley, and Berlin datasets and training dataset of
the University of Houston [44] are used to construct RBF kernel,
third and second polynomial degree kernel, and the linear kernel
is used as basis kernel. The optimal γ parameters for The RBF
kernel for the University of Pavia, Salinas Valley, Berlin, and the
University of Houston datasets were set to 2, 0.25, 0.125, and
0.03125, respectively [15]. The Adam optimizer was carried
out to optimize the network, with the learning rate of 0.001
for the University of Houston and Berlin datasets and 0.0008
for the University of Pavia and Salinas Valley datasets [15].
The categorical cross-entropy loss function was used to evaluate
the performance of the CKC during the training and validation

process because of its relevant results in HIS classification in the
previous studies [1], [15]. The CKC has been trained using 300
epochs for all of the datasets.

In the second experiment, we evaluated every three stages
of the CKC on its classification accuracy and runtime. To this
end, 20% of the labeled data of the University of Pavia, Salinas
Valley, and Berlin datasets and training dataset of the University
of Houston [44] are used. We then evaluated the performances
of the CKC algorithms in the following four scenarios.

(1) In this scenario, RBF kernel, third and second polynomial
degree kernel, and linear kernel are considered input data
without Nyström approximation. The FC architecture
(see Table IV) is used instead of the convolutional layer
stage. In the fusion layer of this scenario, the kernel
dropout method is omitted.

11246 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 4. CKC convergence during both training and validation process over (a) the University of Pavia, (c) Salinas Valley, (e) Berlin, and (g) the University of
Houston datasets using the kernel dropout and CKC convergence during both training and validation process over: (b) the University of Pavia; (d) Salinas Valley;
(f) Berlin; and (h) the University of Houston datasets using the concatenation method.

TABLE III
ADOPTED PARAMETERS FOR IMPLEMENTING CNN-1-D. THE NUMBER IN THE

PARENTHESES SHOWS THE DIMENSIONS OF KERNELS IN CONV AND

MAX-POOL LAYERS AND THE NUMBER OF NEURONS IN FC LAYERS

(2) The difference between this scenario and the 1) scenario is
the dense embedding, which means that the four kernels,

TABLE IV
ADOPTED PARAMETERS FOR IMPLEMENTING FC ARCHITECTURE. THE NUMBER

IN THE PARENTHESES SHOWS THE NUMBER OF NEURONS

as mentioned earlier, are approximated by the Nyström
approximation.

ANSARI et al.: NEW CONVOLUTIONAL KERNEL CLASSIFIER FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11247

Fig. 5. OA evolution of each mentioned classifier with different training
percentages over (a) the University of Pavia, (b) Salinas Valley, (c) Berlin, and
(d) the University of Houston datasets.

(3) The difference between this scenario and the 2) scenario
is kernel dropout, used in the fusion layer section. It is
noteworthy that this architecture is introduced in [14] as
M-DKMO.

(4) This scenario is our proposed method. The difference
between this scenario and the 3) scenario is the CNN-1-D
architecture of the representation learning stage.

Table III gives the topology of the CNN-1-D, which Is used
in the convolutional layer stage.

Table IV gives the topology of the FC architecture in the
fusion layer stage. Additionally, dropout with a fixed rate of 0.5
and batch normalization are used after every hidden layer in the
training process to avoid exploding/vanishing gradient.

In the third experiment, we have compared CKC with M-
DKMO [14], SimpleMKL [45], GMKL [46], and MKL-average
[47], which are the most successful MKL algorithms in the lit-
erature, and two state-of-the-art deep learning methods, vanilla
recurrent neural network (VanillaRNN) [15], [48] and CNN-1-D
[15]. Besides comparing general performances of the methods
mentioned above, this experiment aims to analyze how the
different number of training samples affect the performances
of these algorithms. This experiment was conducted using the
same kernels and parameter setting as the previous one. We
evaluated the methods using 1%, 5%, 10%, 15%, 20%, 25%,
and 30% of the labeled data of the University of Pavia, Sali-
nas Valley, and the Berlin datasets and training dataset of the
University of Houston. In this article, a support vector machine
(SVM) classifier is used for MKL-average algorithms. Using
the five-fold cross-validation method, optimal C parameter for
SVM, SimpleMKL, and GMKL for the University of Pavia,
Salinas Valley, Berlin, and the University of Houston datasets
was respectively set to 1× 103 , 1× 103, 200, and 1× 105.

In order to assess the classification results for all three ex-
periments, five quantitative metrics were employed, the overall
accuracy (OA); the average accuracy (AA); the Kappa coeffi-
cient; the recall accuracy (per class); and McNemar [49]. Our
experiments have been conducted on a hardware environment
composed of an 8th-generation Intel R Core TM i7- 8550 K
processor, with 8 MB of Cache and a processing speed of 4.20
GHz with four cores/8 way multitask processing. It includes 16
GB of DDR4 RAM with 2400 MHz serial speed. The software
environment consists of Microsoft Windows 10 and Python 3.9
as the programming language.

IV. EXPERIMENTAL RESULT

A. Results of the First Experiment

Fig. 3 shows the performance of the CKC with different values
of the landmark parameter (s) and the kernel dropout. Although
the OA has increased with the increase of landmark parameters,
the difference in OA in case 200 onward has not been noticeable.
Therefore, the optimal combination of landmark parameter and
kernel dropout for all datasets set 200 and 0.5, respectively.

Fig. 4 illustrates the convergence of the CKC during the train-
ing and validation stages on all datasets, where the horizontal
and vertical axes represent the number of epochs and the value of
loss function, respectively. From the Fig. 4 (a), (c), (e), and (g),

11248 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 6. Ground truth and the classification maps obtained from classifying the University of Pavia dataset using different methods. (a) Ground truth. (b)
MKL-average. (c) SimpleMKL. (d) Generalize MKL. (e) Multikernel variant of the deep kernel machine optimization. (f) Vanilla recurrent neural network. (g)
One-dimensional-convolutional neural network. (h) Convolutional kernel classifier. The close-up of ground truth and the classification maps of Gravel class using
different methods. (i) Ground truth. (j) MKL-average. (k) SimpleMKL. (l) Generalize MKL. (m) Multikernel variant of the deep kernel machine optimization. (n)
Vanilla recurrent neural network. (o) One-dimensional-convolutional neural network . (p) Convolutional kernel classifier.

TABLE V
EFFECTS OF EACH STAGE OF CKC ON HSIS CLASSIFICATION ACCURACY

TABLE VI
EFFECTS OF EACH STAGE OF CKC ON HSIS CLASSIFICATION RUNTIME

it can be seen that the value of loss function of CKC decreases
with the number of training epochs, and the training value of loss
function is approximately equal to the validation value of loss
function at the 300 th epoch in the case of the University of Pavia,
Salinas Valley, and the Berlin datasets. In Salinas Valley, the
CKC converges faster than other cases and reaches the low loss
function value after a few epochs. In the case of the University
of Houston, the differences between the training value of loss

function and the validation value of loss function are higher
than those obtained in other cases. Additionally, by comparing
the convergence of the CKC during the training and validation
stages in the case of using the kernel dropout (i.e., Fig. 4 (a), (c),
(e), and (g)) with using the concatenation method (i.e., Fig. 4
(b), (d), (f), and (h)), it can be concluded that the the kernel
dropout can reduce the overfitting, especially in the University
of Houston dataset. In better words, the differences between the

ANSARI et al.: NEW CONVOLUTIONAL KERNEL CLASSIFIER FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11249

Fig. 7. Ground truth and the classification maps obtained from classifying the Salinas Valley dataset using different methods: (a) Ground truth. (b) MKL-average.
(c) SimpleMKL. (d) Generalize MKL. (e) Multikernel variant of the deep kernel machine optimization. (f) Vanilla recurrent neural network. (g) One-dimensional-
convolutional neural network. (h) Convolutional kernel classifier. The close-up of ground truth and the classification maps of Vinyard-untrained class using different
methods. (i) Ground truth. (j) MKL-average. (k) SimpleMKL. (l) Generalize MKL. (m) Multikernel variant of the deep kernel machine optimization. (n) Vanilla
recurrent neural network. (o) One-dimensional-convolutional neural network. (p) Convolutional kernel classifier.

training value of loss function and the validation value of loss
function are closer to each other using the kernel dropout rather
than using simple concatenation method.

B. Results of the Second Experiment

TablesⅤ andⅥ give the classification performance as OA and
runtime on four used datasets and scenarios, respectively. The
importance of dense embedding (i.e., Nyström approximation)
is evident from the comparison between scenarios (a) and (b)
in Tables Ⅴ and Ⅵ. Nyström approximation not only increased
the classification accuracies by about 3.86% for the University
of Pavia dataset, 2.96% for the Salinas Valley dataset, 2.76%
for the Berlin dataset, and 1.15% for the University of Houston
dataset, but also decreased the runtimes by about 220.37 s for
the University of Pavia dataset, 248.88 s for the Salinas valley
dataset, 179.85 s for the Berlin dataset, and 287.13 s for the
University of Houston dataset. This fact substantiates the claim
that using the Nyström approximation method reduces the com-
putational complexity and improves classification performance.
The results show that kernel dropout has also increased the
classification accuracy and decreased the runtime for all datasets.
For example, the kernel dropout has increased network accuracy
for Berlin and the University of Houston datasets by 1.41% and
2.21%, respectively. The increased performance of classification
accuracy, the decreased runtime, and (d) compared to scenario

(c) is due to the convolutional layer. As an example, it can be
seen that the obtained classification accuracy of Berlin and the
University of Houston datasets has increased 1.74% and 4.08%
using the convolutional layer. Most importantly, the runtime
decreased by about 64.52 s for the University of Pavia dataset,
20.52 s for the Salinas Valley dataset, 134.28 s for the Berlin
dataset, and 67.14 s for the University of Houston dataset using
the convolutional layer.

According to these results, the three mentioned stages could
be arranged in the dense embedding stage, convolutional layer
stage, and kernel dropout stage, based on increasing classi-
fication accuracy and decreasing runtime. Additionally, each
stage of the proposed algorithm has been effective in improving
accuracy and runtime.

C. Results of the Third Experiment

Fig. 5 shows the performance of CKC and all other
methods trained with different percentages of labeled data. From
analyzing Fig. 5, we can observe that the behavior of Sim-
pleMKL and MKL-average is very similar, especially in the
University of Pavia and Salinas Valley datasets. Although their
performance is acceptable, they are not comparable to the CKC.
Additionally, the performance of the MKL-average method
in the University of Houston dataset has been abysmal. The
performance of the GMKL is better than the SimpleMKL and

11250 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 8. Ground truth and the classification maps obtained from classifying the University of Houston dataset using different methods. (a) Ground truth (train).
(b) Ground truth (test). (c) MKL-average. (d) SimpleMKL. (e) Generalize MKL. (f) Multikernel variant of the deep kernel machine optimization. (g) VanillaRNN.
(h) One-dimensional-convolutional neural network. (i) Convolutional kernel classifier.

MKL-average, especially in the University of Pavia dataset. It
can be said that the performance of the GMKL in the University
of Pavia dataset is comparable to that of CKC because it can
have higher accuracy than CKC in the case of 1% and 5%
training data mode, and this superiority can be justified due to the
high trainable parameters of the CKC compared to the GMKL
method. As can be seen from Fig. 5, although the M-DKMO and
CNN-1-D performed well, in most cases, it had lower accuracy
than the proposed method, especially in Berlin and Salinas
Valley datasets. The performance of the VanillaRNN method
is in no way comparable to the proposed method, but in some
cases, such as the 5% of training data of the Berlin dataset, it has
performed better than GMKL, SimpleMKL, and MKL-average.
In general, In the case of using more than 10% of training data,
the performance of the CKC has been better and more accurate
than all the methods mentioned earlier. As shown in Fig. 5, all
methods reached low OA in the case of the low training dataset.
The crux of this matter lies in the fact that one of the main reasons
for low classification accuracy in the case of the small dataset is
overfitting. Although the kernel dropout can prevent overfitting
(see Fig. 4), it is not powerful enough to solve this problem in a
small dataset case.

For further analysis, the OA, AA, Kappa coefficient, recall
accuracy, and runtime of all the mentioned methods on four
datasets are given in Tables VII–X, and their classification
maps are presented in Figs. 6–10. It can be observed that the
proposed method achieved the highest classification accuracy
as compared with other mentioned methods in all HSI datasets,
and its classification maps have the sharpest object boundary
and the least noise than others.

The MKL-average methods are the fastest runtime, although
the consumed time during their parameter search has not been
reflected, and the GMKL method is the slowest due to its
computational complexity. Due to the Nyström approximation
and convolutional architecture of the proposed method, the com-
putational time of CKC is lower than the SimpleMKL, GMKL,
and M-DKMO in all datasets.

The CKC achieved the highest OA of 95.22% for the
University of Pavia dataset (see Table VII), which exceeds
M-DKMO, MKL-average, SimpleMKL, GMKL, VanillaRNN,
and CNN-1-D. Our proposed method achieved better recall
accuracy than others in most cases, especially in the Gravel
class, as shown in Fig. 6. Fig. 6(i) shows the close-up map
of the ground truth of the University of Pavia dataset. By

ANSARI et al.: NEW CONVOLUTIONAL KERNEL CLASSIFIER FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11251

TABLE VII
CLASSIFICATION OF THE UNIVERSITY OF PAVIA DATASET USING 20% OF LABELED DATA

The best result in each row is highlighted in bold

TABLE VIII
CLASSIFICATION OF SALINAS VALLEY DATASET USING 20% OF LABELED DATA

The best result in each row is highlighted in bold

comparing Fig. 6(i) and (p), it can be seen that the proposed
method can classify the Gravel class better than its counterparts.
The processing time of CKC is lower than the SimpleMKL,
GMKL, and M-DKMO by 84.32, 98.79, and 64.52 seconds,
respectively, and the lower processing time of CKC indicates that
the computational complexity of CKC is lower than other MKL
methods.

Based on the Salinas Valley dataset (see Table III), the
performance of CKC was better than all the other methods
and achieved the highest performance. The Vinyard-untrained
class was classified with an accuracy of 84.25% using our

proposed method, which was 7.29% percent more accurate
than the obtained result of the second-best algorithms (i.e.,
VanillaRNN). It can be observed from Fig. 7 that the CKC cor-
rectly labeled almost all classes with similar spectral behavior,
such as Vinyard-untrained and Grapes-untrained. Additionally,
the computational time of CKC is lower than the other MKL
methods based on their processing time given in Table VIII.

The CKC for Berlin dataset (see TableIX) also had the best
accuracy, and its OA of 93.94% exceeds MKL-average, Sim-
pleMKL, and GMKL by 5.2%, 3.61%, and 3.51%, respectively.
The higher performance of the CKC method can be seen from

11252 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE IX
CLASSIFICATION OF BERLIN DATASET USING 20% OF LABELED DATA

The best result in each row is highlighted in bold

TABLE X
CLASSIFICATION OF THE UNIVERSITY OF HOUSTON DATASET USING AVAILABLE TRAINING DATA

The best result in each row is highlighted in bold

TABLE XI
STATISTICAL SIGNIFICANCE FROM THE MCNEMAR’S TEST

the comparison between the obtained classification accuracy of
the Built-up and Impervious classes. By comparing the close-up
maps in Fig. 8, the CKC can classify the built-up and Im-
pervious classes better than the other methods. As shown in

Fig. 8(i)–(p), the classification map of the CKC [see Fig. 8(p)]
is more similar to the ground truth map [see Fig. 8(i)] than those
obtained using other methods. Thanks to the Nyström approx-
imation method, the processing time of CKC is lower than the

ANSARI et al.: NEW CONVOLUTIONAL KERNEL CLASSIFIER FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11253

Fig. 9. Ground truth and the classification maps obtained from classifying the
University of Houston dataset using different methods. (a) Ground truth (train).
(b) Ground truth (test). (c) MKL-average. (d) SimpleMKL. (e) Generalize MKL.
(f) Multikernel variant of the deep kernel machine optimization. (g) Vanilla
recurrent neural network. (h) One-dimensional-convolutional neural network.
(i) Convolutional kernel classifier.

SimpleMKL, GMKL, and M-DKMO by 86.6, 110.6, and
134.28 s, respectively.

The most challenging class of the University of Houston
dataset is the highway class since the cloud partially covers it.
As we can observe in Table X and Fig. 4, our proposed method
in the University of Houston dataset reached better accuracy
than other methods and classifies Highway class 27% more
accurately than the obtained result of the second-best algorithms

Fig. 10. Close-up ground truth and the classification maps of Highway class of
the University of Houston dataset using different methods. (a) Ground truth, (b)
MKL-average. (c) SimpleMKL. (d) Generalize MKL. (e) Multikernel variant
of the deep kernel machine optimization. (f) Vanilla recurrent neural network.
(g) One-dimensional-convolutional neural network. (h) Convolutional kernel
classifier.

(i.e., SimpleMKL). As shown in Fig. 10, MKL-average and
SimpleMKL could not classify the cloud-covered area in the
University of Houston dataset, while M-DKMO, GMKL, and
CKC reached better results and showed some spatial structures
of the hidden area, for example, Parking lot1 and Parking lot2.

To further evaluate, the nonparametric McNemar’s test [49]
has been employed. McNemar’s test evaluates whether the dif-
ference between the obtained accuracy of two classifications
(CKC and other MKL or deep learning methods) is statistically
different. The absolute values of McNemar’s test statistics larger
than 2.58 indicate that the two results are statistically different at
99% confidence levels. Table XI gives the values of McNemar’s
test statistics when the CKC is compared against the other
methods. Based on Table XI, the differences between accuracies
obtained by the CKC and those obtained by all the other methods
were statistically different at a 99% confidence level. The CKC
and the MKL-average are statistically very different because

11254 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

their absolute values of McNemar’s test are greater than 13 in
all four cases. The absolute values of McNemar’s test of CKC
compared against SimpleMKL and GMKL are acceptable and

In contrast, the better classification results of CKC compared
to the M-DKMO in previous experiments can result from the
fact that the features extracted by CNN-1-D are more robust
than those extracted by FC architecture. The differences between
CKC and CNN-1-D indicates that the kernel representation can
extract different feature than CNN-1-D architecture. Therefore,
it can be concluded that the combination of multiple kernels
and convolutional representation can complement each other to
classify the HSI dataset accurately.

To summarize, the CKC outperforms all its counterparts in
terms of OA. Moreover, its computational complexity is lower
than the other standard MKL methods. The kernel representation
and convolutional representation complement each other in the
CKC for classifying mentioned benchmark datasets, and they
were successful in most cases. However, in the case of using few
training samples, some other methods perform better. Although
the processing time of VanillaRNN and CNN-1-D is lower than
our proposed method, the CKC outperformed these algorithms
considering the classification accuracy. As discussed in [4], Al-
though spectral variability in the HSIs reduces the classification
accuracy of all HSIs classifiers, the CKC can reduce its effects
intrinsically using its statistical and physical normalization.
Nevertheless, the remaining of spectral variability can reduce the
classification accuracy. In this regard, the CKC can accurately
classify most classes of the four mentioned HSI datasets, but
some classes cannot reach the highest accuracy.

V. CONCLUSION

This article introduced a new multiple kernels classifier,
namely CKC, using deep kernel methods for land cover mapping
from HSI data. The proposed method utilizes the Nyström
approximation to alleviate the problems associated with the
dimensionality of kernels and employs CNN-1-D to carry out
end-to-end learning. As the first instance of the deep kernel
method in remote sensing, the CKC inherits the informative
representation provided by a multiple kernel learning method
and the end-to-end learning capability of deep learning models.
We designed three experiments to study the effectiveness of the
CKC for HSI data classification using four benchmark datasets.

The first experiment showed how well the loss function value
of CKC converges to the low value during both training and
validation stages and the ability of kernel dropout to prevent
overfitting. The second experiment was designed to evaluate
the effects of the different components of the CKC algorithm
on its performance. The results from the second experiment
showed that using the Nyström approximation reduces the com-
putational cost of the algorithm and can improve classification
accuracy and processing time. Furthermore, the results of this
experiment confirm the superiority of CNN-1-D over the FC
method in the CKC algorithm. The third experiment showed that
the CKC algorithm, as an MKL framework, outperformed the
most common MKL algorithms in the literature in both OA and
processing time. In addition, the CKC performance was better
than its state-of-the-art deep learning model counterparts. The

CKC’s success can substantiate the claim that the deep kernel
method can be considered a proper method in remote sensing and
an alternative to building multiple kernel learning approaches. In
future studies, we plan to extend CKC algorithms’ capability by
substituting its 1-D convolutional layer with 2-D and 3-D layers,
which enable the algorithm to learn spatial-spectral features.

ACKNOWLEDGMENT

The authors would like to acknowledge the IEEE Geoscience
and Remote Sensing Society (GRSS) Image Analysis and Data
Fusion Technical Committee during the 2013 Data Fusion Con-
test (DFC) for preparing the University of Houston dataset [44].

REFERENCES

[1] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson,
“Deep learning for hyperspectral image classification: An overview,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709, Sep. 2019,
doi: 10.1109/TGRS.2019.2907932.

[2] D. Hong, N. Yokoya, J. Xu, and X. Zhu, “Joint & progressive learning
from high-dimensional data for multi-label classification,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 469–484.

[3] D. Hong and X. X. Zhu, “SULoRA: Subspace unmixing with low-
rank attribute embedding for hyperspectral data analysis,” IEEE J. Sel.
Topics Signal Process., vol. 12, no. 6, pp. 1351–1363, Dec. 2018,
doi: 10.1109/JSTSP.2018.2877497.

[4] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented linear
mixing model to address spectral variability for hyperspectral unmixing,”
IEEE Trans. Image Process., vol. 28, no. 4, pp. 1923–1938, Apr. 2018,
doi: 10.1109/TIP.2018.2878958.

[5] D. Hong, N. Yokoya, and X. X. Zhu, “Local manifold learning with
robust neighbors selection for hyperspectral dimensionality reduction,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2016, pp. 40–43,
doi: 10.1109/IGARSS.2016.7729001.

[6] D. Hong, N. Yokoya, and X. X. Zhu, “Learning a robust local manifold
representation for hyperspectral dimensionality reduction,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2960–2975,
Jun. 2017, doi: 10.1109/JSTARS.2017.2682189.

[7] D. Hong, W. Liu, J. Su, Z. Pan, and G. Wang, “A novel hierarchi-
cal approach for multispectral palmprint recognition,” Neurocomputing,
vol. 151, no. 1, pp. 511–521, 2015, doi: 10.1016/j.neucom.2014.09.013.

[8] W. Sun and Q. Du, “Hyperspectral band selection: A review,” IEEE Geosci.
Remote Sens. Mag., vol. 7, no. 2, pp. 118–139, Jun. 2019.

[9] J. Peng et al., “Low-Rank and sparse representation for hyperspectral
image processing: A review,” IEEE Geosci. Remote Sens. Mag., to be
published, doi: 10.1109/MGRS.2021.3075491.

[10] D. Hong et al., “More diverse means better: Multimodal deep
learning meets remote-sensing imagery classification,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 5, pp. 4340–4354, May 2021,
doi: 10.1109/TGRS.2020.3016820.

[11] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph
convolutional networks for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 7, pp. 5966–5978, Jul. 2021,
doi: 10.1109/TGRS.2020.3015157.

[12] D. Hong, J. Hu, J. Yao, J. Chanussot, and X. X. Zhu, “Multi-
modal remote sensing benchmark datasets for land cover classifica-
tion with a shared and specific feature learning model,” ISPRS J.
Photogramm. Remote Sens., vol. 178, no. Sep./Oct., pp. 68–80, 2021,
doi: 10.1016/j.isprsjprs.2021.05.011.

[13] D. Hong et al., “Interpretable hyperspectral AI: When non-
convex modeling meets hyperspectral remote sensing,” IEEE
Geosci. Remote Sens. Mag., vol. 9, no. 2, pp. 52–87, Apr. 2021,
doi: 10.1109/MGRS.2021.3064051.

[14] H. Song, J. J. Thiagarajan, P. Sattigeri, and A. Spanias, “Opti-
mizing kernel machines using deep learning,” IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 29, no. 11, pp. 5528–5540, Mar. 2018,
doi: 10.1109/TNNLS.2018.2804895.

[15] M. Paoletti, J. Haut, J. Plaza, and A. Plaza, “Deep learning classifiers for
hyperspectral imaging: A review,” ISPRS J. Photogramm. Remote Sens.,
vol. 158, pp. 279–317, Dec. 2019, doi: 10.1016/j.isprsjprs.2019.09.006.

https://dx.doi.org/10.1109/TGRS.2019.2907932
https://dx.doi.org/10.1109/JSTSP.2018.2877497
https://dx.doi.org/10.1109/TIP.2018.2878958
https://dx.doi.org/10.1109/IGARSS.2016.7729001
https://dx.doi.org/10.1109/JSTARS.2017.2682189
https://dx.doi.org/10.1016/j.neucom.2014.09.013
https://dx.doi.org/10.1109/MGRS.2021.3075491
https://dx.doi.org/10.1109/TGRS.2020.3016820
https://dx.doi.org/10.1109/TGRS.2020.3015157
https://dx.doi.org/10.1016/j.isprsjprs.2021.05.011
https://dx.doi.org/10.1109/MGRS.2021.3064051
https://dx.doi.org/10.1109/TNNLS.2018.2804895
https://dx.doi.org/10.1016/j.isprsjprs.2019.09.006

ANSARI et al.: NEW CONVOLUTIONAL KERNEL CLASSIFIER FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11255

[16] X.-L. Li, “Preconditioned stochastic gradient descent,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1454–1466, May 2017,
doi: 10.1109/TNNLS.2017.2672978.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jun. 2014.

[18] D. Hong et al., “Endmember-Guided unmixing network (EGU-Net):
A general deep learning framework for self-supervised hyperspectral
unmixing,” IEEE Trans. Neural Netw. Learn. Syst., to be published,
doi: 10.1109/TNNLS.2021.3082289.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017, doi: org/10.1145/3065386.

[20] S. Niazmardi, B. Demir, L. Bruzzone, A. Safari, and S. Homayouni,
“Multiple kernel learning for remote sensing image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 3, pp. 1425–1443, Mar. 2018,
doi: 10.1109/TGRS.2017.2762597.

[21] T. Wang, L. Zhang, and W. Hu, “Bridging deep and multiple kernel
learning: A review,” Inf. Fusion, vol. 67, pp. 3–13, Mar. 2020.

[22] A. Jain, S. V. Vishwanathan, and M. Varma, “SPF-GMKL: Generalized
multiple kernel learning with a million kernels,” in Proc. 18th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2012, pp. 750–758.

[23] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, “Large scale
multiple kernel learning,” J. Mach. Learn. Res., vol. 7, pp. 1531–1565,
Jul. 2006.

[24] F. R. Bach, G. R. Lanckriet, and M. I. Jordan, “Multiple kernel learning,
conic duality, and the SMO algorithm,” in Proc. 21st Int. Conf. Mach.
Learn., 2004.

[25] M. Alioscha-Perez, M. C. Oveneke, and H. Sahli, “Svrg-mkl: A
fast and scalable multiple kernel learning solution for features com-
bination in multi-class classification problems,” IEEE Trans. neu-
ral Netw. Learn. Syst., vol. 31, no. 5, pp. 1710–1723, May 2020,
doi: 10.1109/TNNLS.2019.2922123.

[26] L. A. Belanche Muñoz and M. R. Costa-Jussà, “Bridging deep and kernel
methods,” in Proc. 25th Eur. Symp. Artif. Neural Netw., 2017, pp. 1–10.

[27] I. Lauriola, C. Gallicchio, and F. Aiolli, “Enhancing deep neural networks
via multiple kernel learning,” Pattern Recognit., vol. 101, May 2020,
Art. no. 107194.

[28] Y. Cho and L. Saul, “Kernel methods for deep learning,” Adv. Neural Inf.
Process. Syst., vol. 22, pp. 342–350, 2009.

[29] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel
learning,” in Proc. 19th Int. Conf. Artif. Intell. Statist., 2016, pp. 370–378.

[30] A. Afzal and S. Asharaf, “Deep multiple multilayer kernel learning in core
vector machines,” Expert Syst. Appl., vol. 96, pp. 149–156, Apr. 2018,
doi: 10.1016/j.eswa.2017.11.058Get.

[31] A. Afzal and S. Asharaf, “Deep kernel learning in core vector machines,”
Pattern Anal. Appl., vol. 21, no. 3, pp. 721–729, Feb. 2018.

[32] B. Sheng, J. Li, F. Xiao, and W. Yang, “Multilayer deep features with
multiple kernel learning for action recognition,” Neurocomputing, vol. 399,
no. 3, pp. 65–74, Jul. 2020.

[33] S. Agethen and W. H. Hsu, “Deep multi-kernel convolutional LSTM
networks and an attention-based mechanism for videos,” IEEE Trans.
Multimedia, vol. 22, no. 3, pp. 819–829, Mar. 2020.

[34] S. Ren, W. Shen, C. N. Siddique, and Y. Li, “Self-Adaptive deep multiple
kernel learning based on rademacher complexity,” Symmetry, vol. 11, no. 3,
2019.

[35] T. Wang, H. Su, and J. Li, “DWS-MKL: Depth-width-scaling multiple
kernel learning for data classification,” Neurocomputing, vol. 411, no. 18,
pp. 455–467, 2020, doi: 10.1016/j.neucom.2020.06.039.

[36] M. Jiu and H. Sahbi, “Deep representation design from deep kernel
networks,” Pattern Recognit., vol. 88, pp. 447–457, 2019.

[37] X. Zhang et al., “Emotion recognition from multimodal physiolog-
ical signals using a regularized deep fusion of kernel machine,”
IEEE Trans. Cybern., vol. 51, no. 9, pp. 4386–4399, Sep. 2021,
doi: 10.1109/TCYB.2020.2987575.

[38] P. Drineas and M. W. Mahoney, “On the Nyström method for approximat-
ing a gram matrix for improved kernel-based learning,” J. Mach. Learn.
Res., vol. 6, pp. 2153–2175, Dec. 2005.

[39] A. Rahimi and B. Recht, “Random features for large-scale kernel ma-
chines,” Adv. Neural Inf. Process. Syst., vol. 3, no. 4, pp. 1177–1184, 2008.

[40] M. Li, W. Bi, J. T. Kwok, and B.-L. Lu, “Large-scale nyström
kernel matrix approximation using randomized SVD,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 152–164, Jan. 2015,
doi: 10.1109/TNNLS.2014.2359798.

[41] S. Sun, J. Zhao, and J. Zhu, “A review of nyström methods for large-scale
machine learning,” Inf. Fusion, vol. 26, pp. 36–48, Nov. 2015.

[42] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep
learning for visual understanding: A review,” Neurocomputing, vol. 187,
pp. 27–48, 2016.

[43] Y. Li, W. Xie, and H. Li, “Hyperspectral image reconstruction by deep
convolutional neural network for classification,” Pattern Recognit., vol. 63,
pp. 371–383, 2017.

[44] C. Debes et al., “Hyperspectral and LiDAR data fusion: Outcome of the
2013 GRSS data fusion contest,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 7, no. 6, pp. 2405–2418, Jun. 2014, doi: 10.1109/JS-
TARS.2014.2305441.

[45] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, “Sim-
pleMKL,” J. Mach. Learn. Res., vol. 9, pp. 2491–2521, 2008.

[46] Z. Sun, N. Ampornpunt, M. Varma, and S. Vishwanathan, “Multiple kernel
learning and the SMO algorithm,” in Proc. Adv. Neural Inf. Process. Syst.,
2010, pp. 2361–2369.

[47] C. Cortes, M. Mohri, and A. Rostamizadeh, “Learning non-linear com-
binations of kernels,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 396–404.

[48] K. Doya, “Universality of fully connected recurrent neural networks,”
Dept. Biol., Univ. California San Diego, San Diego, CA, USA, 1993.

[49] A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, “Hyperspectral
image classification with independent component discriminant analy-
sis,” IEEE Trans. Geosci. remote Sens., vol. 49, no. 12, pp. 4865–4876,
Dec. 2011, doi: 10.1109/TGRS.2011.2153861.

Mohsen Ansari received the B.Sc. degree in sur-
veying and geomatics engineering and the M.Sc. de-
gree in remote sensing from the School of Surveying
and Geospatial Engineering, College of Engineering,
University of Tehran, Tehran, Iran, in 2018 and 2021,
respectively.

He has worked on various remote sensing appli-
cations, including but not limited to land cover/land
use classification, water resource management, water
salinity, and change detection. His research interests
include analyzing different remote sensing datasets

through AI and ML approaches for urban and agro-environmental applications.

Saeid Homayouni (Senior Member, IEEE) received
the B.Sc. degree in surveying and geomatics engi-
neering from the University of Isfahan, Isfahan, Iran,
in 1996, the M.Sc. degree in remote sensing and ge-
ographic information systems from Tarbiat Modares
University, Tehran, Iran, in 1999, and the Ph.D. degree
in signal and image from Télécom Paris Tech, Paris,
France, in 2005.

From 2006 to 2007, he was a Postdoctoral Fellow
with the Signal and Image Laboratory, University
of Bordeaux Agro-Science, Bordeaux, France. From

2008 to 2011, he was an Assistant Professor with the Department of Surveying
and Geomatics, College of Engineering, University of Tehran, Tehran, Iran.
From 2011 to 2013, through the Natural Sciences and Engineering Research
Council of Canada Visitor Fellowship Program, he worked with the Earth
Observation Group of the Agriculture and Agri-Food Canada, Ottawa Center of
Research and Development, Ottawa, ON, Canada. In 2013, he was a Replacing
Assistant Professor of remote sensing and geographic information systems
with the Department of Geography, Environment, and Geomatics, University
of Ottawa, Ottawa, ON, Canada. Since April 2019, he has been an Associate
Professor of environmental remote sensing and geomatics with the Centre Eau
Terre Environnement, Institut National de la Recherche Scientifique, Quebec,
QC, Canada. He is currently leading a research group on Earth Observation
Analytics by Artificial Intelligence with interests in optical and radar earth
observations analytics for urban and agroenvironmental applications.

https://dx.doi.org/10.1109/TNNLS.2017.2672978
https://dx.doi.org/10.1109/TNNLS.2021.3082289
https://dx.doi.org/org/10.1145/3065386
https://dx.doi.org/10.1109/TGRS.2017.2762597
https://dx.doi.org/10.1109/TNNLS.2019.2922123
https://dx.doi.org/10.1016/j.eswa.2017.11.058Get
https://dx.doi.org/10.1016/j.neucom.2020.06.039
https://dx.doi.org/10.1109/TCYB.2020.2987575
https://dx.doi.org/10.1109/TNNLS.2014.2359798
https://dx.doi.org/10.1109/JSTARS.2014.2305441
https://dx.doi.org/10.1109/JSTARS.2014.2305441
https://dx.doi.org/10.1109/TGRS.2011.2153861

11256 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Abdolreza Safari received the B.S. degree in sur-
veying and geomatics engineering, and the M.Sc.
and Ph.D. degrees in geodesy from the School of
Surveying and Geospatial Engineering, College of
Engineering, University of Tehran, Tehran, Iran, in
1993, 1998, and 2004, respectively.

He is currently a Professor with the School of
Surveying and Geospatial Engineering, College of
Engineering, University of Tehran. His research in-
terests include the mathematical modeling of remote
sensing and geodetic data.

Dr. Safari is a Member of the Center of Excellence for Surveying Engineering
in Natural Disaster Management, College of Engineering, University of Tehran.

Saeid Niazmardi (Student Member, IEEE) received
the B.S. degree in surveying and geomatics engineer-
ing from the University of Isfahan, Isfahan, Iran, in
2009, and the M.Sc. and Ph.D. degrees in remote
sensing from the University of Tehran, Tehran, Iran,
in 2009 and 2016, respectively.

He is currently an Assistant Professor with the De-
partment of Surveying and Geomatics Engineering,
Faculty of Civil and Surveying Engineering, Graduate
University of Advanced Technology, Kerman, Iran.
His research interests include machine learning using

remotely sensed data.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

