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1. Introduction 13 

Pollution of the oceans and seas from oil spills has long been a significant and unavoidable problem (Fustes et al. 14 

2014; Bayındır, Frost, and Barnes 2018; K Topouzelis et al.; Ivanov 2010). Oil spills resulting from intentional or 15 

accidental release of liquid petroleum hydrocarbons into water are responsible for several ecological disasters that 16 

affect the marine life cycle and damage the quality and productivity of the marine environment (Bayındır, Frost, and 17 

Barnes 2018; Salberg, Rudjord, and Schistad Solberg 2014; Singha, Bellerby, and Trieschmann 2012). Because almost 18 

two-thirds of the Earth’s surface is covered by oceans, contributing to the quality of life and economic livelihood of 19 

humans worldwide, protecting marine environments’ health is of crucial importance for both short- and long-term 20 

sustainability (Lang et al. 2017). 21 

 22 

In the marine environment, oil spills are more hazardous and destructive than those on flatter terrain. They can 23 

spread rapidly over several hundred kilometers and form a thin crust of oil, which can cover beaches. Detection and 24 

monitoring such pollution is a time-consuming and costly task. However, it is crucial to develop an immediate 25 

response program to reduce catastrophic effects (Raeisi, Akbarizadeh, and Mahmoudi 2018). A practical operation 26 

to reduce the environmental effects of oil pollution depends on the marine environment’s systematic monitoring. 27 

This operation allows for the accurate estimation of oil spread areas, allowing rapid response and recovery 28 

(Keramitsoglou, Cartalis, and Kiranoudis 2006; Dutta et al. 2018). In the last decades, the detection of oil spills over 29 

oceans has received considerable attention because they pose threats to human health and have severe 30 

environmental and economic impacts on the marine environment, fisheries, wildlife, benthic communities, the 31 
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human settlement on the beaches, mangrove forests, and other social interests (Anne H. Schistad Solberg 2012; 32 

Zhang et al. 2011; Dabboor et al. 2018; Nunziata et al. 2019). 33 

As a result of increasing marine transport trade and developing marine petroleum platforms, the risk for 34 

environmental pollution due to oil discharges has been dramatically increased in the past decades. Therefore, the 35 

marine environment has become an urgent subject of public, political, and scientific concern (Liu et al. 2010; Chang 36 

et al. 2008). The exploration, production, transportation, refining, storage, distribution, and consumption of oil and 37 

petroleum products is overgrowing all over the world; consequently, the threat of destructive and hazardous effects 38 

of oil pollution increases accordingly as oil spills frequently occur in the world’s marine water bodies (Caruso et al. 39 

2013; de Oliveira et al. 2020). According to the international literature, the primary sources of oil slicks are 40 

operational/illegal discharges from vessels, platform accidents, and natural resources (Mera et al. 2012; Sharafat 41 

2000). Although there are different sources for oil slicks on sea, ranging from human-made to natural, previous 42 

studies showed that marine tankers, offshore platforms, and large ships are major sources of oil spills in seas or 43 

oceans (Duk-jin Kim, Moon, and Kim 2010; Chen et al. 2019). 44 

Monitoring and detecting oil slicks and predicting their trajectories play a crucial role in contingency planning for 45 

oil spills to conserve marine ecosystems and wildlife (Ceyhun 2014; Zhang et al. 2020). In order to make the proper 46 

response to environmental emergencies, effective monitoring and intervention means are required (Shu et al. 2010). 47 

Traditional ocean surveillance systems, including ships and aircrafts equipped with instruments, such as radar 48 

systems, are costly and have limitations for large areas monitoring. Therefore, given the need for near real-time 49 

detection and monitoring of oil spills, remote sensing (RS) satellite data have proven to be a suitable and efficient 50 

option that provides a cost-effective solution to accomplish such a task (Buono et al. 2019; Mera et al. 2014). Satellite 51 

RS systems improve the operational monitoring of Earth’s surface by covering broad geographical areas with multi-52 

sensor and multi- temporal data (Ivanov 2010; Li et al. 2019; Jafarzadeh and Hasanlou 2019b; Mahdianpari et al. 53 

2020; Jafarzadeh and Hasanlou 2019a). 54 

In the literature, several survey studies overview the oil spill issues from the RS point of view (e.g., (Fingas and 55 

Brown 2018, 2014; Leifer et al. 2012; Robbe and Hengstermann 2006; Migliaccio,  56 

Nunziata, and Buono 2015; Gens 2008)). These studies are mainly dedicated to characteristics and utilization of 57 

different sensor types, existing techniques for oil spill extraction, and applications. Brekke and Solberg (Brekke and 58 

Solberg 2005b) presented the first review of RS applications in oil spill detection. They provided a general review 59 

focusing on the detectability of oil spills using different sensor types under various conditions. 60 

The main systems to monitor sea-based oil pollution are the use of satellites equipped with Synthetic Aperture 61 

Radar (SAR). However, a comprehensive overview and investigation of different SAR sensors’ characteristics, 62 

employed SAR-based oil spill detection schemes, extracted and adopted features from SAR data, impacts of 63 

environmental conditions on SAR images, etc., is missing, and would be welcome by those who seek to learn the 64 

principles of using SAR data in oil spill detection. Thus, the current review paper aims to present a comprehensive 65 

and thorough survey of publications to point out the most successful and utilized characteristics of SAR data, plus 66 

reliable and practicable algorithms for oil spill monitoring in marine regions. Across a meta- analysis, we have 67 

recognized, categorized, and analyzed the reviewed literature. To the best of our knowledge, this is the first meta-68 

analysis, wherein the role of SAR systems is thoroughly discussed for the oil spill detection task. 69 

Table 1 summarizes the earlier review papers on oil spill detection using RS data. It should be noted that the 70 

available review papers are descriptive (i.e. discuss the issue of oil spills more generally and from some specific point 71 

of view) and do not convey a quantitative assessment of the oil spill detection task. Accordingly, the main goal of 72 

this study is to fill this knowledge gap by reviewing SAR-based oil spill detection papers (e.g. highlighting most 73 

commonly  74 
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investigated study areas, mostly used sensor types, number of images utilized per study, frequently utilized 76 

polarization modes, most popular adopted methods, etc.). 77 

2. Background 78 

Marine oil slicks, based on spill sources, can be categorized as two main groups: (1) biogenic oil and (2) mineral oil. 79 

The former, also called surfactants, is surface films that contain surface-active organic compounds produced by 80 

marine plants (e.g., planktons) or animals (e.g., fish) or they are floating macro-algae such as sargassum and kelp 81 

(Najoui et al. 2018; Minchew, Jones, and Holt 2012). The latter contains two subcategories, including natural oil 82 

seeps that stem from sea bottom petroleum reservoirs (crude oil) and anthropogenic oil spills that discharged and 83 

leaked from ships and platforms, oil terminals, processing of industrial or urban plants (e.g., sewage plants), oil 84 

pipelines, and refineries (Najoui et al. 2018; Espedal and Johannessen 2000). It is important to note that the focus 85 

of this paper is to review the studies and advances to address the monitoring of mineral oil spills. So anywhere in 86 

the paper, the phrase “oil spill” refers to anthropogenic oil spills, not any kind of spills. 87 

The use of remotely sensed data in the past few decades has been extensively considered for tracking and 88 

detecting oil spills. Both optical and radar satellite Earth observations have been used for this application (Bayramov, 89 

Kada, and Buchroithner 2018; Jha, Levy, and Gao 2008; Xing et al. 2015). However, each option has its own 90 

advantages and disadvantages, which are briefly discussed in the following subsections. 91 

2.1. Optical data 92 

With respect to weather conditions, the clear-sky optical imagery is challenging over the seas and oceans; thus, the 93 

use of optical products has not been as widespread as that of SAR data in oil pollution studies. Although the 94 

utilization of optical sensors is severely constrained by sun illumination and cloud-free requirements, integrating 95 

multi-sensor data can be beneficial and to some extent, compensates the limitations of visible sensors (Brekke and 96 

Solberg 2005b). Thanks to temporal resolution and spatial coverage of passive optical sensors, they could provide a 97 

unique complement to fill spatial and temporal gaps for complete coverage of an oil spill (Oscar Garcia-Pineda et al. 98 

2020; Sun et al. 2016; Hu et al. 2009). Moreover, multispectral observations of optical images give additional 99 

information to distinguish actual oil spills from water features (e.g., algal blooms) (Brekke and Solberg 2005b; Zhao 100 

et al. 2014a). In contrast, it would be challenging to discriminate between oil slicks and such features on the SAR 101 

data since they have similar scattering properties (Zhao et al. 2014b; Bayramov, Kada, and Buchroithner 2018). 102 

However, detailed oil spectral properties may not be determined across the visible spectrum, and one could not 103 

categorically identify oil discharges using only optical range (M. Fingas and Brown 2018, 2014). 104 

2.2. SAR data 105 

During the past decades, SAR has received considerable attention in RS communities and became an indispensable 106 

source of information in Earth observation, notably because of its broad coverage and almost all-weather and all-107 

day imaging capabilities under the different environmental conditions at the fine spatial resolution (Arslan 2018; 108 

Bayramov, Kada, and Buchroithner 2018; El-Magd et al. 2020; Akar, Süzen, and Kaymakci 2011; Topouzelis et al. 109 

2006). Despite some challenges of utilizing SAR in oil spill detection (as discussed in the following subsection), it has 110 

become a useful and valuable tool for rapid and accurate marine pollution monitoring (Chaudhary and Kumar 2020; 111 

Carvalho et al. 2019). Unlike optical sensors, SAR signal penetration depth through natural media and sensitivity to 112 

surface roughness, altered in an oil spill, helps observe oil pollution (Shahsavarhaghighi et al. 2013). 113 

The primary steps in pre-processing SAR images are divided into four parts: (1) radiometric calibration, (2) 114 

geocoding, (3) filtering, and (4) land masking, and will be described briefly below. First of all, to minimize the 115 

radiometric distortions and confirm that the received signals in SAR data are associated with the sigma naught 116 

backscattering coefficient, which expresses the reflective strength of a radar target, the radiometric calibration is 117 
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applied (Stussi, Amélie Beaudoin, and Gigord 1996; Frulla et al. 1998). The second step, known as SAR data 118 

geocoding, is essential, ensuring that the image displays the correct location on the Earth’s surface. This step also 119 

enables integrating multi-source geospatial data to increase the accuracy of oil pollution monitoring and detection 120 

procedures in SAR data (Moreira et al. 2013; Loew and Mauser 2007). As the third step, speckle removal is crucial in 121 

pre-processing and interpreting SAR data, especially in oil spill monitoring (Shah et al. 2017). The speckle 122 

phenomenon results from the coherent interference of radar echoes from target scatters (Caruso et al. 2013). It 123 

causes a pixel-to-pixel variation of intensities that produces a “salt and pepper” appearance in SAR images (Lee et 124 

al. 1994; McCandless and Jackson 2004). The presence of SAR speckle-noise reduces the quality of images and 125 

degrades the separability between the oil spill candidate areas and the background, which seriously affects oil slicks’ 126 

detection (Xu et al. 2015; Wang, Zhang, and Patel 2017; Chierchia et al. 2017). 127 

In the reviewed literature, the following filters were employed to minimize the effects of speckle-noise and avoid 128 

producing false detections: Lee (Dutta et al. 2018; Chaudhary and Kumar 2020; Bayramov, Kada, and Buchroithner 129 

2018; Misra and Balaji 2017; Tong et al. 2019; Song et al. 2018; Li, Jia, and Velotto 2016a), enhanced Lee (Zhang et 130 

al. 2020; Li et al. 2018), Frost (Carvalho et al. 2016), Gaussian (Shu et al. 2010; Song et al. 2018), sigma (Barni, Betti, 131 

and Mecocci 1995), Kuan (Barni, Betti, and Mecocci 1995), median (Lang et al. 2017; Cantorna et al. 2019; Konik and 132 

Bradtke 2016; Sefah-Twerefour, Wiafe, and Adu Agyekum 2012; Chang, Cheng, and Tang 2005), Gamma (Arslan 133 

2018; Martinis, Gähler, and Twele 2012), Lopez (Li et al. 2018), boxcar (Guo, Wei, and Jubai 2018; Hassani, Sahebi, 134 

and Asiyabi 2020; Li et al. 2018; Espeseth et al. 2017; Yin, Moon, and Yang 2015), and non-local mean filters (Lang 135 

et al. 2017). Finally, land masking is a further step in the pre-processing of SAR images that contain land surfaces. 136 

This step prevents interfering of the land pixels with the detection of oil spills (Singha, Vespe, and Trieschmann 137 

2013). 138 

2.3. Challenges of utilizing SAR data 139 

Oil spill detection in seawater is clarified by comparing oil spectral radiance and surrounding water radiance (Araújo 140 

et al. 2004). Owing to the influence of short-wavelength gravity waves (produced on local winds and are responsible 141 

for the sea spectrum energy spreading) and capillary waves (engendered by friction and associated with wind speed 142 

and sea- surface characteristics), backscattering from the sea surface is weakened, resulting in oil slicks to appear 143 

as dark spots with complex patterns on SAR images (Guo, Wei, and Jubai 2018; Mercier and Girard-  144 

Ardhuin 2005; Arslan 2018; Li et al. 2013; Ardhuin, Mercier, and Garello 2003; Grégoire Mercier and Ardhuin 2006a; 145 

Minchew, Jones, and Holt 2012). These wind-generated waves are called “Bragg waves” (Velotto, Soccorsi, and 146 

Lehner 2014) and are directly related to the radar brightness of the sea (Perkovic et al. 2010; Shao, Sheng, and Sun 147 

2017). 148 

No Bragg waves are generated at very low wind speeds, causing the entire image to be dark due to specular 149 

reflection of the radar signal and rendering any slick invisible (Perkovic et al. 2010; Alpers et al. 2013). Consequently, 150 

identification of oil spills in SAR images always includes the first and essential step, which is detecting any dark-151 

spotted areas that have high contrast relative to its surrounding (Zhang et al. 2008; Akkartal and Sunar 2008). 152 

Unluckily, several ocean phenomena and interfering substances can dampen the Bragg waves and produce low 153 

backscattering areas. They appear as dark patches (false targets) in SAR imagery, which are called lookalikes (Najoui 154 

et al. 2018). 155 

In general, based on a comprehensive literature review, main types of oil spill lookalikes that frequently appear 156 

on SAR imagery are presented in Figure 1 (Espedal and Johannessen 2000; Holstein et al. 2018; Vijayakumar and 157 

Rukmini 2016; Carvalho et al. 2020; Chaturvedi, Banerjee, and Lele 2020; Topouzelis et al. 2007; Fingas and Brown 158 

2018; Clemente-Colon and Yan 2000; Alpers, Holt, and Zeng 2017). A short description of each of these categories 159 

is reported in the following: 160 

(1) Natural biogenic slicks: as discussed earlier, these are surface films produced by the decaying of marine 161 

organisms. This category is the most intricate oil spill lookalike because radar signatures of biogenic spills can 162 
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be quite similar to those of mineral oil films (Skrunes, Brekke, and Eltoft 2014; Alpers, Holt, and Zeng 2017). 163 

Since the only oil spills considered in this paper are anthropogenic ones, the natural biogenic slicks are 164 

grouped as lookalikes. 165 

(2) Low wind zones: the surface roughness strongly depends on the wind, and variability in wind speed changes 166 

the backscatter level. Low wind speed (i.e., wind speed <3 m/s) produces a low backscatter area because of 167 

atmospheric circulation variation. Coastal topography and man- made obstacles also cause wind shadowing 168 

and produce dark patches (Clemente-Colon and Yan 2000). 169 

(3) Rain effects: the atmospheric attenuation due to volume scattering in a rain system also produces a low 170 

backscatter area (Clemente-Colon and Yan 2000). This is problematic at higher frequencies (Danklmayer et 171 

al. 2009). Furthermore, rain cells hit the sea surface, resulting in turbulence in the upper water layer and 172 

dampen the Bragg waves. 173 

(4) Upwelling: cold and nutrient-rich water reaches the surface through an oceanographic phenomenon known 174 

as upwelling. A decrease of water temperature on the sea surface alters the stability of the air–sea interface, 175 

results in lower wind stress, and reduces Bragg waves. Furthermore, the nutrient-rich waters on the water 176 

surface contribute to the formation of natural biogenic slicks (Clemente-Colon and Yan 2000). 177 

(5) Internal waves: they affect the local sea surface velocities, cause divergent flow regimes, and alter the Bragg 178 

spectrum. Tidal flow over underwater sand banks also has a similar effect. The internal ocean waves are 179 

generated when the water density changes with depth, and strong currents interact with shallow underwater 180 

bottom topography. The SAR image of internal waves consists of adjacent bright and dark bands (Clemente-181 

Colon and Yan 2000;  182 

Solberg, Brekke, and Husoy 2007). 183 

(6) Sea ice: first-year ice floes have a smooth surface and high salinity. Accordingly, they reflect the SAR signal 184 

and appear dark relative to multiyear ice in SAR imagery. Similarly, grease ice (i.e., newly formed ice 185 

composed of small millimeter-sized crystals) also dampens the Bragg waves and reduces SAR backscatter. 186 

Grease ice forms slicks, similar to those produced by mineral or biogenic surfactants (Clemente- Colon and 187 

Yan 2000). 188 

(7) Other sources: these include dry-fallen sand banks during ebb tide, storm water that flows from land into the 189 

sea, plant oil spilled into the sea during tank cleaning of ships, transporting palm oil, fish oil, fluvial run-off, 190 

ship wakes, and coastal boating (Alpers, Holt, and Zeng 2017). 191 

Distinguishing oil spills from lookalikes is a challenging and complex issue, which involves analysis of surface oil 192 

characteristics in the SAR images (e.g., shape, size, dB-values, gradients, and texture), environmental conditions 193 

(e.g., instantaneous wind and currents), and oil-spill prone areas (e.g., locations of oil platforms, ship lanes, and 194 

 

Figure 1. Main types of oil spill lookalikes that frequently appear on SAR images. 
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natural seepage) (Espedal 1999; Ardhuin, Mercier, and Garello 2003; Akar, Süzen, and Kaymakci 2011). Hence, 195 

choosing the appropriate SAR specifications and investigating the effects of field conditions is challenging for the oil 196 

spill monitoring task and should be explored more thoroughly. 197 

The knowledge of wind conditions is necessary for oil spill monitoring. The detection of an oil spill is strongly 198 

dependent upon the wind speed. Many research studies investigated the relation between SAR backscatter and 199 

wind conditions in marine applications (Skrunes et al. 2018; Dagestad et al. 2013). The wind is the component that 200 

causes waves and can significantly impact oil’s behavior on the ocean surface and disrupt data analysis, notably at 201 

high and very low wind speeds (Fingas 2011; Skrunes et al. 2018). Subsequently, the visibility of oil slicks is restricted 202 

to a limited range of wind speeds (Fan et al. 2015). 203 

In addition to wind conditions, the detectability of oil spills in SAR data is a function of the sensor characteristics. 204 

Frequency is of the most fundamental characteristics of SAR imaging that encompasses the different microwave 205 

bands used in data acquisition, including L-, C- and X-bands. Notably, for L-, C-, and X-band SAR, the detectability 206 

relies on polarization, noise equivalent sigma zero (NESZ), incidence angle, swath width, and spatial resolution 207 

(Ivonin et al. 2020; Skrunes, Brekke, and Eltoft 2014; Cheng et al. 2011; Latini, Fabio, and Jones 2016). 208 

One of the critical factors affecting surface backscattering and, consequently, oil spill characterization is the NESZ, 209 

i.e., the noise equivalent sigma zero, which measures the sensitivity of a SAR sensor. The NESZ value must be lower 210 

than the measured normalized radar cross-section (NRCS) value so that the backscattered signal from the surface 211 

will not be corrupted by noise (Skrunes, Brekke, and Eltoft 2014; Alpers, Holt, and Zeng 2017; Angelliaume et al. 212 

2018). The NESZ and radar incidence angle have an inverse variation relationship. The increase in the radar incidence 213 

angle leads to a decrease in SAR backscattering intensity. As the backscatter decreases, the signal approaches the 214 

NESZ; therefore, causing the detection to be challenging (Skrunes et al. 2018; Marghany 2016). 215 

Other critical elements of SAR to be considered are the swath width and the spatial resolution, which refers to 216 

the smallest discernible details on images. There is an inverse relationship between these two parameters. It makes 217 

sense to choose large swath widths for operational oil spill detection because it covers and observes large areas, 218 

although very small oil slicks will not be detected (Topouzelis 2008). 219 
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3. Methods 220 

3.1. Bibliographic base and search query 221 

To prepare for this meta-analysis and comprehensive review, the Institute for Scientific Information (ISI) Web of 222 

Science and Scopus bibliographic databases were used on and up to 27 September 2020, for full- length English 223 

language papers, including journal articles and conference papers constrained to a time from 1990 to 2020. To this 224 

end, a logical literature search query was systematically developed using four sets of keywords to locate highly 225 

relevant papers in the database (see Figure 2). In order to retrieve papers that utilized SAR RS data and addressed 226 

the application of detection in the marine area, the keywords in the second, third and last columns were searched 227 

in the topic field (title/abstract/keyword). However, the first column keywords were exclusively searched in the title 228 

field to narrow the search down and make it more specific. This research obtained only the studies that analyzed 229 

the SAR data for anthropogenic oil spill detection. 230 

Based on the search query, 1396 journal and conference papers were found in the mentioned databases. 231 

Afterward, we followed the methodology of Preferred Reporting Items for Systematic Reviews and Meta-Analyses, 232 

known as PRISMA (Moher et al. 2009) to select eligible papers to be included in our analysis. PRISMA is a checklist 233 

designed to improve the reporting standards of systematic literature reviews and meta-analyses. This reporting 234 

guideline consists of four phases flow diagram, including “identification,” “screening,” “eligibility,” and “included” 235 

(see Figure 3). 236 

Following an initial assessment of the obtained 1396 published papers, a total of 1061 papers are selected. To be 237 

more specific, only those publications with titles and abstracts related to “oil spill detection by SAR imagery” were 238 

selected for further analysis in the next step. Moreover, only the publications that employed RS techniques based 239 

on airborne or spaceborne SAR data were selected as final items to be reviewed to maintain a controllable workload. 240 

Studies classified as review papers, book chapters, and reports were not considered in this systematic review. From 241 

the conference papers, we selected only those published in the International Society for Photogrammetry and 242 

Remote Sensing (ISPRS) archive and the IEEE International Geoscience and Remote  243 

 

Figure 2. Search query criteria design for retrieving literature on SAR-based oil spill detection from WoS and Scopus 

databases. 
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 244 

Figure 3. PRISMA flow diagram for manuscript selection. 245 
Table 2. List of extracted attributes from the reviewed papers in the 246 
database. 247 

No. Attribute Type Categories 

1 Publication Title Free text – 
2 Authors Free text – 
3 Affiliation Free text – 
4 Publication Year Free text – 
5 Document Type Classes Article; Conference 
6 Journal Free text – 
7 Citation Numeric – 
8 Study Area Free text – 
9 Sensor type Classes ERS-1,2, JERS-1, RADARSAT-1&2, ENVISAT ASAR, ALOS-1&2 

PALSAR, TerraSAR-X, Cosmo Skymed, RISAT-1, Sentinel-1 
10 Date of Data Acquisition Numeric – 
11 Number of images Numeric – 
12 Platform Classes Spaceborne; Airborne 
13 Polarization Mode Classes Single; Dual; Full; Hybrid 
14 Imaging Mode Free text – 
15 Used frequency Classes L; C; X bands 
16 Incident Angle Numeric Range of incidence angles 
17 Wind Speed Numeric Range of wind speeds 
18 Method Classes Classification, Segmentation, Statistical, Deep Learning 
19 Research Objective Free text – 
20 Accuracy Assessment Numeric Percentage 

248 
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Sensing Symposium (IEEE-IGARSS) proceedings. In addition, papers that did not contain most of the defining features 249 

listed in Table 2 were excluded. Conclusively, 308 papers were identified as eligible for our comprehensive review. 250 

A summary of manuscript selection can be seen in Figure 3. 251 

3.2. Extracted attributes from the screened records 252 

Table 2 includes the extracted attributes from the reviewed studies. This meta-analysis summarized these attributes 253 

to give an overview of how SAR data have been used across studies. Among these attributes, sensor type plays a 254 

crucial role in the SAR specifications, including frequency, incidence angle, and polarization. Another essential 255 

attribute is the type of Earth observation platform; airborne or spaceborne. Since airborne platforms (e.g., UAVSAR) 256 

provide lower spatial coverage than spaceborne sensors, they can be used for close analysis of relatively small case 257 

studies. On the other hand, spaceborne platforms cover a wide ground range with frequent revisit times. 258 

4. Results 259 

As mentioned earlier, based on the criteria outlined in the previous section, a total of 308 articles were selected. 260 

Several data categories have been extracted based on the review of journal and conference papers related to oil 261 

spill detection. In this section, detailed results of the systematic review will be presented. To this end, first, the 262 

articles’ general characteristics, including the journals, the number of published papers per year, and the study 263 

areas, are presented. Afterward, study regions, SAR sensor types used in the literature and their characteristics such 264 

as frequency and polarization mode, the number of images utilized per study, and different types of methods 265 

employed in oil spill detection were discussed in detail. Finally, the reported accuracies in studies that used different 266 

types of SAR polarizations were assessed. Quantitative and qualitative results of the current meta-analysis are 267 

presented in the remainder of this section. 268 
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4.1. General characteristics in oil spill detection studies 269 

Figure 4 indicates the publication trends among 308 papers reviewed using PRISMA and illustrates the number of 270 

major oil spill events within the period 1990–2020. The increasing trend of publications in Figure 4 emphasizes the 271 

importance of oil spill detection for the scientific community. Given the increasing number of SAR sensors and their 272 

promising performance in oil spill detection, about 42% of the papers were published in recent years (2016–2020). 273 

The fact that 42% of the papers were published between 2016 and 2020 could also be related to the European Space 274 

Agency’s open data policy (ESA) adopted for Sentinel- 1 data, making it easier to access SAR data. According to 275 

reports published by (ITOPF 2020), there has been a marked downward trend in the number of oil spill events over 276 

the last few decades. The frequency of oil spills greater than 700 tones has been shown in Figure 4. 277 

Overall, the reviewed papers in our study were published in 89 different journals and two conferences, revealing 278 

the wide breadth of disciplines interested in the oil spill monitoring theme. We found that 70 of these journals have 279 

published only one or two papers in the field of oil spill detection. Only journals and conferences published more 280 

than two oil spill papers are included in Figure 5. 281 

As shown in Figure 5, the highest number (top seven) of publications associated with oil spill detection occurs in 282 

the IEEE-IGARSS archive, International Journal of Remote Sensing (IJRS), IEEE Transactions on Geoscience and 283 

Remote Sensing (IEEE-TGRS), IEEE Journal Selected Topics in Applied Earth Observation and Remote Sensing (IEEE-284 

JSTARS), Remote Sensing (MDPI), ISPRS archives, and Remote Sensing of Environment (RSE). 285 

Figure 6 illustrates the published papers’ global geographical coverage based on the articles’ reported research 286 

institutions. In 20 countries, three or more papers were published. As illustrated, researchers affiliated with 287 

institutions in China account for the bulk of oil spill studies with 61 articles, followed by 46 articles in Italy. The 288 

articles from China and Italy consisted of about 34% of the studies. This number of publications may be due to the 289 

universities’ and  290 

 

Figure 4. The fluctuation and the total number of publications per year, and the annual number of major oil spills from 1990 to 

2020. 
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 291 

Figure 5. The number of oil spill detection papers published per journal (only those journals published three or more papers 292 
are included). 293 

 294 

Figure 6. Distribution and frequency of published papers per country, according to the country reported in the papers. 295 
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 296 

Figure 7. The global distribution and counts of study regions from all reviewed oil spill studies. 297 

institutions’ extensive scientific studies located in these countries. It could also be a result of the higher interests in 298 

marine pollution monitoring in these countries. The remaining countries in which more than three oil spill studies 299 

have been published are Norway (25), USA (20), Canada (15), France (15), Germany (15), India (14), Brazil (12), 300 

Malaysia (12), Russia (11), Greece (9), Spain  301 

(8), South Korea (7), Iran (6), Turkey (6), Algeria (3), Azerbaijan (3), Taiwan (3), and United Kingdom (3). 302 

4.2. Study regions and oil spill-prone areas 303 

The worldwide distribution of study regions is shown in Figure 7. As shown, most studies were conducted in the Gulf 304 

of Mexico (82). Furthermore, the 38 and 21 studies performed over the North Sea and the Mediterranean Sea 305 

represent the strong attention of researchers on those areas. Moreover, the number of remaining study areas that 306 

were studied three or more times in the reviewed literature are as follows: Galicia coast (17), Norwegian Sea (17), 307 

Bohai Sea (13), Caspian Sea (12), East and South China Sea (11), Baltic Sea (10), Black Sea (10), Yellow Sea (10), 308 

Atlantic Ocean (5), Pacific ocean (5), Guimaras Strait (5), Kerch Strait (5), Adriatic Sea (4), South Korea coast (4), and 309 

the coast of Mumbai (3). 310 

Sea-based offshore platforms can be the primary source of marine oil pollution. An offshore oil and gas platform 311 

includes facilities to explore, extract, store, and process petroleum and natural gas through drilled wells, increasing 312 

the risk of oil spills ruining and poses devastating effects on the marine environment. As seen in Figure 8, the North 313 

Sea and the Gulf of Mexico (United States) can be classified as the most prone oil spill zones because of the large 314 

number of installed offshore drilling rigs, totaling 184 and 175 rigs, respectively (Fazeres-Ferradosa et al. 2019). In 315 

addition, the significant number of oil platforms in the Persian Gulf (159), far east Asia (155), and southeast Asia 316 

(152) may also contribute and pose a threat to the marine environment. 317 

Accidents involving ships or oil rigs and platforms, breaking of outdated and damaged facilities, human mistakes, 318 

and wars make the ocean water became contaminated by liquid petroleum hydrocarbon, which would cause 319 

damages to the marine environment for decades. In some cases, a vast range of polluted marine environment with 320 

a massive release of tens of millions of oil gallons, resulting in substantial effects from injured wildlife to the loss in 321 
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tourism revenue. Examples of historical major oil spills are listed in Table 3 (Hoffman and Devereaux Jennings 2011; 322 

O’Rourke and Connolly 2003; Congress 1991; Chen et al. 2019). 323 

4.3. SAR sensors used for oil spill detection 324 

In the current meta-analysis, satellite-borne SAR has been proven as a useful and indispensable source of  325 

 326 

Figure 8. Location and distribution of offshore oil rigs worldwide. 327 
Table 3. Major oil spill disasters in the world history ranked by the amount of spill 328 
size. 329 

No. Spill/Tanker Location Date Amount Spilled (million 

gallons) 
1 Gulf War oil spill Persian Gulf, Kuwait 19 January 1991 380–520 
2 Deepwater Horizon Macondo Prospect, Central Gulf of Mexico 22 April 2010 206 
3 Ixtoc-I Oil Spill Bay of Campeche off Ciudad del Carmen, Mexico 3 June 1979 140 
4 Atlantic Empress Oil Spill Off the coast of Trinidad and Tobago 19 July 1979 90 
5 Kolva River Oil Spill Kolva River, Russia 6 August 1983 84 
6 Nowruz Oil Field Spill Persian Gulf, Iran 10 February 1983 80 
7 Castillo de Bellver Oil Spill Off Saldanha Bay, South Africa 6 August 1983 79 
8 Amoco Cadiz Oil Spill Portsall, France 16 March 1978 69 
9 ABT Summer Oil Spill About 700 nautical miles off the coast of Angola 28 May 1991 51–81 
10 M/T Haven Tanker Oil Spill Genoa, Italy 11 April 1991 45 
11 Odyssey Oil Spill Off the coast of Nova Scotia, Canada 10 November 1988 40.7 
12 The Sea Star Oil Spill Gulf of Oman 19 December 1972 35.3 
13 The Torrey Canyon Oil Spill Scilly Isles, U.K. 18 March 1967 25–36 
14 Sanchi Off Shanghai, China 6 January 2018 34 
15 Irenes Serenade Navarino Bay, Greece 23 February 1980 30 
16 Urquiola La Coruna, Spain 12 May 1976 30 
17 Hawaiian Patriot 300 nautical miles of Honolulu 23 February 1977 30 
18 Independenta Bosphorus, Turkey 15 November 1979 28.9 
19 Jakob Maersk Oporto, Portugal 25 January 1975 26.4 
20 Braer Shetland Islands, UK 5 January 1993 25.5 

330 
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data for oil spill detection. Table 4 lists some of the well-known SAR-equipped satellite missions widely employed in 331 

the reviewed literature along with their life span, repeat cycle, wavelength, frequency, polarization, and orbital 332 

inclination. 333 

From the RS platform viewpoint, 291 publications have applied satellite-borne SAR images. Sensor types included 334 

in these studies are shown in Figure 9. As shown, ENVISAT, RADARSAT-2, and ERS-2 are the most frequently 335 

employed data sources and were used in 84, 82, and 69 studies, respectively. Moreover, the number of remaining 336 

types of SAR sensors studied oil spill detection are as follows: ERS-1 (52), RADARSAT-1 (45), TerraSAR-X (40), ALOS-337 

PALSAR (29), UAVSAR (20), COSMO-SkyMed (20), SIR-C/X-SAR (14), Sentinel 1A/ B (13), RISAT-1 (5). Note that 338 

sensors used five times or more in the literature are included in Figure 9. 339 

Figure 10(a and b) indicates that about 93% of papers used spaceborne SAR data, and the remaining 7% applied 340 

airborne SAR data in oil spill studies. The satellite broad coverage capabilities should be the primary motivation that 341 

most reviewed studies employed spaceborne data sets. The presence of oil spills may appear differently when 342 

different SAR imaging sensors are used because surface characteristics can vary based on wavelength, frequency, 343 

polarization, and incidence angle. SAR sensors operate at different frequencies. Based on the reviewed literature, L-344 

, C-, and X-band at a wavelength of 24, 6, and 3 centimeters, respectively, are the most used microwave bands for 345 

oil spill monitoring. 346 

Regarding the choice of sensor, the reliability of detection is mainly subject to the frequency band and the sensor 347 

noise floor. Gade et al. in (Gade et al. 1998) proved that SAR images acquired at high frequency (i.e., X-band or C-348 

band) are preferable to those acquired at a lower frequency (i.e., L-band) for oil slick detection. The damping ratio 349 

– a measure of the difference in spectral energy density of the ocean surface waves between oil-free and oil-covered 350 

surfaces (Wismann et al. 1998) – increases at higher frequencies, so the contrast between oil spills and clean sea is 351 

reported to be highest in X-band, moderate in C-band, and lowest in L-band (Marzialetti and Laneve 2016; Fingas 352 

and Brown 2018; Skrunes et al. 2015), and that is why X and C-band is superior to L-band (Vespe and Greidanus 353 

2012; Marzialetti and Laneve 2016). However, it is also demonstrated in (Minchew, Jones, and Holt 2012b) that low 354 

noise L-band SAR systems can provide helpful oil spill data and identify oil slick successfully. 355 

As shown in Figure 10(a), C-band appears to be the primary SAR wavelength for oil spill detection with 236 studies, 356 

followed by X-band (48 studies) and L-band (31 studies). This fact could be triggered by the higher number of SAR 357 

satellites operating in the C-band than the X- and L-bands (refer to Table 4). According to Figure 10(b), L-band 358 

airborne SAR data has been used in 25 studies in the reviewed literature. Some studies employed a multi-frequency 359 

dataset  360 
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 362 

Figure 9. Distribution of employed sensor types in oil spill detection studies. The numbers on the graph indicate the frequency 363 
of sensors’ usage in the reviewed literature. 364 

 365 

Figure 10. The usage of spaceborne and airborne SAR imagery; and X-, C-, and L-band in oil spill detection studies. 366 

(combinations of X-, C-, and L- bands) for oil spill detection. The relative detection capacities of SAR are strongly 367 

connected with the frequency of used instruments, depending on the different penetration capabilities. Because 368 

SARs of different microwave frequency bands (L-, C-, X-band) interact with different components of the ocean wave 369 

spectrum, an approach involving multi-frequency characteristics of SAR can offer further information about the 370 

damping behavior of oil spills (Latini, Fabio, and Jones 2016). For operational purposes, concurrent acquisition (or 371 

near temporal overlap) of SAR images at L-, C-, and X-band over the same regions may require better examination. 372 

Considering the potentials of SAR systems acquiring data over the same spill and at the same time, the studies 373 

adopted a combination of SAR bands less often. As seen in Figure 11, studies combining C- and L-bands are the most 374 

common (18 studies). There are 11 studies in the reviewed literature that combined all three mentioned bands. In 375 

addition, 10 papers utilized the combination of X- and C-bands SAR data and just one study established a method 376 

for the oil spill detection task based on X- and L-band SAR jointly. 377 

4.4. Number of SAR images used in different studies 378 

The statistical results shown in Figure 12 demonstrate the number of spaceborne or airborne images used in a 379 

specific period per paper. As shown in Figure 12,  380 
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most of the reviewed studies employed the images acquired during 2006–2010, mostly related to the Deepwater 381 

Horizon oil spill in the Gulf of Mexico, as indicated in Figure 7. 382 

4.5. SAR polarization modes used in oil spill detection 383 

The availability of advanced polarimetric SAR sensors and the generation of various polarization options allow users 384 

to select the most suitable SAR observations for oil pill detection in various ocean conditions. Polarization options 385 

could be single-pol, dual-pol, quad-pol, and hybrid/compact-pol. The single-pol SAR provides one channel of SAR 386 

data in either HH, HV, VH, or VV. Different polarizations make it possible to observe different features. For example, 387 

from an oil spill detection viewpoint, an oil spill incident can easily be observed in the VV SAR polarization, while 388 

other corresponding polarizations may not observe it in such an obvious way. SAR images obtained in single-pol HH 389 

or VV are widely used in operational services (Ivonin et al. 2020). 390 

A linear dual-pol SAR system transmits one polarization and receives two, resulting in either HH/HV or VH/VV 391 

imagery. A dual-pol SAR system provides additional information about surface features through the different and 392 

complementary echoes compared to a single-pol system. A quad-pol system would alternate between transmitting 393 

H and V radar signals and coherently receive both H and V, resulting in HH, HV, VH, and VV imagery. Finally, a hybrid-394 

 

Figure 11. Combination of L-, C-, and X-band radar backscatter data used in the reviewed literature on oil spill 

detection. 

 

Figure 12. Distribution of the number of spaceborne and airborne images per time period. 
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pol transmits a circularly polarized radar signal (right or left) and coherently receives H and V, also known as 395 

compact- pol. 396 

The backscattered signal level from the ocean surface is higher for single-pol VV than for HH-pol (Valenzuela 397 

1978). Therefore, the VV channel is often preferred to HH for oil spill monitoring (Angelliaume et al. 2018). As 398 

presented in Figure 13, 133 papers have used single-pol SAR data from all the screened studies. In these studies, 44 399 

and 89 papers have used HH and VV polarization, respectively. This result is expectable since VV polarization is 400 

favorable for marine SAR applications. 401 

In addition, a total of 40 papers utilized dual-pol SAR imagery, of which HH-VV, HH-HV, and VV-VH were used 32, 402 

3, and 5 times, respectively. Moreover, a total of 81 and 29 papers used full and hybrid polarization, respectively. 403 

Since most of the available spaceborne SAR sensors have a moderate noise floor (refer to Table 5), the cross-404 

polarization (HV or VH) channels have the most negligible share in the detection of oil slicks (Angelliaume et al. 405 

2018). 406 

4.6. SAR polarization modes and their detection accuracy 407 

To evaluate and compare the effects of different types of SAR polarizations on the overall accuracy (OA) of oil spill 408 

detection schemes, the OA’s boxplots were calculated and presented in Figure 14. Herein, the median OA for all 409 

types of polarization is more than 87%. The median OA of full-pol data is nearly 94%, and the lower and upper 410 

whiskers extend from 83% to 99%. The more utilization of single-pol data has made the results less consistent, and 411 

their accuracies depend on the applied methods and marine conditions. The median OA of single-pol data is around 412 

91%, and the lower and upper whiskers extend from 70% to 99%. Furthermore, the median accuracies of dual-pol 413 

and hybrid data are 87.6% and 93%, respectively. According to Figure 14 and the reviewed literature (e.g., 414 

(Ferdinando Nunziata, Gambardella, and Migliaccio 2008; Velotto et al. 2011; Shirvany, Chabert, and Tourneret 415 

2012; Nunziata, Gambardella, and Migliaccio 2013; Skrunes, Brekke, and Eltoft 2014; Salberg, Rudjord, and Schistad 416 

Solberg 2014)), quad- pol data can improve the detection capability of slicks compared to dual-pol data. It should 417 

be kept in mind that operational costs will be considerably high when using multi-channel SAR systems. 418 

4.7. The effects of NESZ and incidence angle 419 

We know from the theories mentioned above that the NESZ and incidence angle are inversely related. According to 420 

(Skrunes et al. 2018), for incidence angles above 30°, the VV channel provides higher backscattering values, followed 421 

by the HH channel. The HV channel provides the lowest backscattering. In (Espeseth et al. 2019), the authors found 422 

that a signal- to-noise ratio (SNR) of at least 10 dB is required to ensure that the scattering properties are not 423 

affected by noise. Hence, investigating the marine surface’s signal level relative to the noise floor is crucial for oil 424 

spill monitoring (Tong et al. 2019). 425 

As mentioned in the current meta-analysis, the UAVSAR system is widely studied for oil spill detection due to its 426 

very low NESZ (−53 dB). The available satellite-based SAR sensors have higher noise floors (Skrunes, Brekke, and 427 

Eltoft 2014; Brent Minchew, Jones, and Holt 2012). The acquisition mode, incidence angle, and NESZ values of typical 428 

spaceborne SAR sensors are listed in Table 5 for a more comprehensive understanding and better comparison.  429 

 430 

Figure 13. The number of oil spill monitoring studies that used each type of SAR 431 
polarization. 432 
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Table 5. The acquisition mode, incidence angle, and NESZ values of satellite-borne SAR 433 
sensors. 434 

Satellite mission Acquisition Mode NESZ (dB) Incidence Angle (deg) Number of reviewed studies with imaging 

mode 
ERS-1,2 Stripmap −21 to −24 20–26 14 
JERS-1 Stripmap <−20.5 35 – 
SIR-C/X-SAR fine quad −22 to −35 15–55 3 
RADARSAT-1 Fine  

Standard  
Wide  
ScanSAR narrow  
ScanSAR wide  
Extended High  
Extended Low 

−21  
−21  
−21  
−21  
−21  
−21  
−21 

37–47  
20–49  
20–45   

20–49  
20–49  
52–58 

2  
7  

12  
13  
9  
–  
1 

ENVISAT ASAR Image  
Alternating polarization,  
wave, Wide 
swath,  
Global monitoring 

−20 to −22  
−19 to −22  
−20 to −22  
−21 to −26  
−32 to −35 

15–45  
15–45  
15–45  
17–42  
17–42 

14  
1  
– 

44  
- 

ALOS PALSAR Fine 1  
Fine 2  
Polarimetry  
ScanSAR 

<−23  
<−25  
<−29  
<−25 

8–60  
8–60  
8–30  

18–43 

3  
2  
1  
3 

RADARSAT-2 Fine  
Standard  
Wide  
ScanSAR narrow  
ScanSAR wide  
Extended High  
Fine Quad- polarization 

−28  
−31  
−23  
−23  
−23  

−27.5 to −43 

20–52  
20–45  
20–46  
20–49  
49–60  
18–49 

1  
3  

14  
5  
–  

39 

TerraSAR-X Spotlight (LR)  
Spotlight (HR)  
Stripmap 

ScanSAR 

−23  
−23  
−22  
−21 

20–55  
20–55  
20–45  
20–45 

–  
– 

15  
14 

Cosmo Skymed ScanSAR wide region 

ScanSAR huge region 
−21  
−21 

18.4–59.9  
18.4–59.9 

2  
4 

RISAT-1 CRS ScanSAR  
MR ScanSAR  
FR Stripmap1  
FR Stripmap2 

−18  
−18  
−18  
−18 

12–34  
12–55  
12–55  
12–55 

–  
1  
3  
- 

Sentinel-1 Stripmap  
Interferometric wide swath  
Extra wide swath  
Wave 

−22.2  
−23.7  
−23.1  
−26.3 

18.3–46.8  
29.1–46  
18.9–47  
21.6–38 

–  
8  
1  
- 

435 

Besides, the number of reviewed studies utilized each type of imaging mode is provided. 436 

4.8. The effect of wind speed 437 

As investigated in the reviewed literature, the most favorable wind speed range for monitoring oil slicks  438 
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in SAR images is approximately between 4 m/s and 10 m/s (Espedal et al. 1998; Espedal 1999; Wismann et al. 1998). 439 

It is also clear from Table 6 that most of the oil spill studies have been done under favorable wind and sea-state 440 

conditions. The wind speed conditions listed in Table 6 are reported in reviewed papers, based on Quick 441 

Scatterometer (QuikSCAT)-  442 

 443 

Figure 14. Box-and-whisker plots displaying the effect of different SAR polarizations on the OA. 444 

SeaWinds observations (Mercier and Girard-Ardhuin 2005; Quintero-Marmol et al. 2003; Migliaccio et al. 2007; Shao 445 

et al. 2008; Mercier and Ardhuin 2006b), underwater gliders for in-situ ocean measurements, and Cross Calibrated 446 

Multi-Platform (CCMP) wind data (Tian, Huang, and Hongga 2017). Moreover, in some of the papers, these 447 

conditions were estimated and retrieved from SAR images using the CMOD4/5 model (CMOD is a C-band geophysical 448 

model that provides an empirical relation between the radar backscatter sensed from the roughened sea surface 449 

Table 6. Oil Slick response according to wind speed obtained from reviewed studies. 
Wind Speed 

(m/s) 
Oil slick signature 

Number of 

reviewed 

studies 
0–2 Oil slick detection is impracticable. The term “glassy sea” is used for such condition. 36 
2–4 No impact of the wind on oil slicks. The detection of hydrocarbons is not easy given the increased 

lookalikes. 
79 

4–7 Relatively desirable condition. The wind speed does not have any significant effects on oil slicks. Plus, there 

are much fewer lookalikes. 
115 

7–10 Oil slicks begin to be affected by the chop, and Oil-polluted areas gradually disappear from the sea 

surface water as they are “washed down” by breaking waves. 
71 

10–12 Due to the dispersion of thin spills, only the thickest oil spills are detectable. 27 
>12 Oil slicks are broken up and dispersed, making it difficult and almost impossible to detect, even the thick 

ones. 
12 
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and wind speed) (Najoui et al. 2018; Vijayakumar and Rukmini 2016; Mera et al. 2017; Hersbach, Stoffelen, and de 450 

Haan 2007; Garcia-Pineda et al. 2013; Kim et al. 2015). 451 

4.9. Different analytical oil spill detection methods 452 

The detection of oil spills in SAR data generally comprises segmentation, feature extraction, and classification 453 

procedures (Brekke and Solberg 2005a; A. H. S. Solberg, Brekke, and Husoy 2007). Different algorithms have been 454 

presented in the literature for the detection of oil spills. In the current meta-analysis, we summarized the common 455 

and widely used oil detection methods into four categories: traditional machine learning approaches, deep learning 456 

(DL) methods, threshold and segmentation techniques, and statistical algorithms. 457 

The main common traditional and machine learning methods employed for detection of oil spills are as follows: 458 

support vector machine (SVM) (Hassani, Sahebi, and Asiyabi 2020; Cao, Linlin, and Clausi 2017; Xu, Jonathan, and 459 

Brenning 2014; Zhang et al. 2017; Mera et al. 2017; Zou et al. 2016), Decision Tree (Topouzelis and Psyllos 2012; 460 

Mihoub and Hassini 2014; Konik and Bradtke 2016; Akar, Süzen, and Kaymakci 2011), Maximum likelihood (Zhang 461 

et al. 2017; Misra and Balaji 2017), Naïve Bayes (Chehresa et al. 2016), Mahalanobis distance (Yang, Ying, and Zhu 462 

2017), Random forest (RF) (Tong et al. 2019), k-means (Skrunes, Brekke, and Eltoft 2014), Classification And 463 

Regression Trees (CART) (Mera et al. 2014) and Artificial Neural Networks (ANNs). Moreover, the most conventional 464 

deep Learning (DL) methods in oil spill detection scheme include convolutional neural network (CNNs) (Guo, Wei, 465 

and Jubai 2018; Temitope Yekeen, Balogun, and Wan Yusof 2020; Cantorna et al. 2019; Zeng and Wang 2020), 466 

Generative Adversarial Networks (GANs) (Yu et al. 2018), deep belief networks (DBNs) (Chen et al. 2017), and 467 

Autoencoders (AEs) (Chen et al. 2017). Widely used statistical approaches include statistical region-based classifier 468 

(Genovez et al. 2019), Markov chain (Yao et al. 2014; Mercier et al. 2003), region- based generalized likelihood ratio 469 

test (GLRT) (Chang et al. 2008; Chang, Cheng, and Tang 2005), logistic regression (Cantorna et al. 2019). Threshold 470 

and segmentation methods mainly consist of adaptive and hysteresis thresholding, edge detection, and entropy 471 

approaches such as the maximum descriptive length algorithm (Montali et al. 2006; Galland, Refregier, and Germain 472 

2004; Pelizzari and Bioucas-Dias 2007; Yu et al. 2017; Li, Jia, and Velotto 2016b). 473 

As displayed in Figure 15(a), about 103 studies adopted traditional machine learning approaches in the reviewed 474 

literature. In addition, the number of segmentation techniques, statistical methods, and DL algorithms were 82, 61, 475 

and 26, respectively. 476 

Moreover, feature (parameters of the dark formations) extraction is a critical step in the oil spill detection 477 

schemes, making it possible to use a group of features to distinguish oil slicks and lookalikes. Figure 15(b) presents 478 

the more common features  479 

different types of features extracted from SAR data. 480 

 

Figure 15. (a) The number of studies associated with each oil detection strategy. (b) The number of publications associated with  
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adopted in oil spill detection studies. These features can be separated into five major groups: (1) features referring 481 

to the geometrical properties of dark formations (e.g., area, perimeter, shape) (Karathanassi et al. 2006; Brekke and 482 

Solberg 2005b), (2) features concerning the physical/statistical behavior of oil spills (e.g., mean, max, standard 483 

deviation, and ratios of backscattering coefficient values) (Karathanassi et al. 2006; Topouzelis 2008), (3) features 484 

denoting to the oil spill context (e.g., presence of rig/ship, distance to ship) (Brekke and Solberg 2005b; Topouzelis, 485 

Stathakis, and Karathanassi 2009; Chehresa et al. 2016), (4) derivatives of gray-level co-occurrence matrix known as 486 

GLCM-based texture features (e.g.,  487 

 488 
contrast, correlation, entropy, energy) (Chehresa et al. 2016; Yang, Ying, and Zhu 2017; Guo, Danni, and Jubai 2017), 489 

and (5) features extracted from different polarimetric SAR images (e.g., degree of polarization, alpha angle) (Song 490 

et al. 2017; Zhang et al. 2017; Li et al. 2018). 491 

4.10. Strategies in oil spill detection studies 492 

As discussed earlier, the reviewed papers used different methods to deal with oil spill detection issues. In general, 493 

these methods follow related sub-objectives in line with the primary objective (i.e., oil spill detection). Figure 16 494 

illustrates the  495 
Figure 16. Different strategies in oil spill 496 
detection. 497 

different types of sub-objectives considered in the 498 

reviewed studies. As shown, 40% of studies were 499 

benefited from “classification and discrimination” 500 

strategies followed by “modelling and monitoring,” 501 

which accounts for 23% of the studies. The “modelling 502 

and monitoring” group includes various strategies, 503 

including monitoring the spatial distribution and 504 

primary sources of oil spills, visual interpretation, 505 

contamination probability modeling and assessment, 506 

time series analysis and oil spill frequency modeling, 507 

numerical simulations to simulate the trajectories of the 508 

oil spills, oil slick trajectory forecasting model, and 509 

characterizing oil- water mixing. 510 
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Based on Figure 16, 27% of the studies adopted their 511 

strategies based on image segmentation. Furthermore, 512 

only 10% of studies are categorized as “analysis” group, 513 

mainly focused on interpreting  514 

SAR backscattering mechanisms over oil-covered waters, oil-polluted areas’ backscattering simulation, 515 

characterizing the scattering from oil spills and biogenic surface films under different wind conditions, and 516 

assessment of experience from a field experiment. Studies associate with multi- sensor, multi-polarization and 517 

multi-frequency analyses of different SAR systems in oil spill events and their response in oil-polluted areas are also 518 

involved in this group. 519 

5. Conclusions and future research needs 520 

In this paper, we presented a comprehensive review and meta-analysis of oil spill detection studies. Our research 521 

provides a systematic investigation of indexed research studies’ compilation and analysis, focusing on several 522 

features, such as data, platform, and sensor type, SAR imaging mode, microwave carrier frequency (e.g., L-, C-, and 523 

X-bands), polarization option (i.e., single-pol, dual-pol, full-pol, and compact- pol), incidence angle, and wind speed 524 

condition. Furthermore, it gives a comprehensive overview of the approaches established to deal with the oil spill 525 

detection task through SAR imagery. The current meta-analysis is the only research conducted to provide both 526 

descriptive and quantitative investigation of oil spill studies using a database containing 308 eligible papers, of which 527 

230 are journal papers and 78 are conference papers. A summarization of the paper’s content and crucial findings 528 

are given in the following: 529 

● The summarized papers in the present meta- analysis have been published in 89 different journals and two 530 

conferences. From all of these publications, about 42% of them were published from 2016 to 2020. 531 

● Researchers affiliated with institutions in China and Italy account for the bulk of oil spill studies with nearly 20% 532 

and 15% of the database, respectively. Consequently, a significant part of this review study is conducted in 533 

either of these two countries, followed by Norway (8%), USA (7%). 534 

● Since the coverage of the spaceborne missions is much more extensive than that of the airborne missions, most 535 

of the reviewed studies employed spaceborne data sets in maritime oil spill detection with a 93% share. 536 

● In terms of sensor type, ENVISAT (84 studies),  537 

RADARSAT-2 (82 studies), ERS-2 (69 studies), ERS-1 (52 studies), RADARSAT-1 (45 studies), and TerraSAR-X (40 538 

studies) are the most frequently studied data sources. 539 

● Most of the reviewed studies employed the images acquired during 2006–2010, which could be related to the 540 

Deepwater Horizon oil spill in the Gulf of Mexico. 541 

● From the polarization perspective, single-pol (133 studies) and full-pol (81 studies) SAR data have a significant 542 

share in the reviewed literature with a median overall accuracy of 94% and 91%, respectively. Furthermore, 543 

the median accuracy of dual-pol (40 studies) and Hybrid (29 studies) data are 87.6% and 93%, respectively. 544 

● Reviewed studies indicated that C-band radar had been used widely in the oil spill detection task with 236 545 

studies, followed by L-band (56 studies) and X-band (48 studies). 546 

● From a methodology point of view, about 103 studies adopted different traditional classification methods in 547 

the reviewed literature. Additionally, the number of studies that utilized segmentation methods, statistical 548 

methods, and DL algorithms were 82, 61, and 26, respectively. 549 

● Environmental wind speed condition measurements play a significant role in oil spill detection. About 68% of 550 

reviewed papers adopted these measurements. 551 

SAR sensors are efficient RS tools for oil spill detection, and various techniques have been proposed to cope with 552 

the monitoring of oil pollution using SAR data in recent decades. Nevertheless, there is a need to develop real-time 553 

monitoring systems. Providing techniques based on cloud computing services and proposed automatic DL models, 554 
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considering the continuous development in computer vision will significantly increase the success in this area. In 555 

addition, it is still necessary to extensively explore the potential of compact hybrid polarization, which is currently 556 

provided operationally by the RADARSAT Constellation Mission, for oil spill monitoring. It is also expected from the 557 

scientific community, i.e., from RS experts to environmental monitoring specialists, to access various multi-sensor 558 

images collected over different locations and open-source annotated datasets related to oil spill events. This will 559 

increase the speed of achieving new detection algorithms that are desperately needed to protect the marine 560 

environment. A detailed investigation and review of oil spill detection methods in the literature is also absent. 561 
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