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Abstract

Today’s telecommunication networks enable people and devices to exchange a tremendous amount of
audiovisual and data content.With the advent of commercially available haptic/tactile sensory and
display devices and conventional triple-play (i.e., audio, video, and data) content communication
now extends to encompass the real-time exchange of haptic information (i.e., touch and actuation)
for the remote control of physical and/or virtual objects through the Internet. This paves the way
towards realizing the so-called Tactile Internet. Through human-machine interaction, the Tactile In-
ternet is expected to convert today’s content delivery networks into skillset/labor delivery networks.
The Tactile Internet holds great promise to have a profound socio-economic impact on a broad ar-
ray of applications in our everyday life, ranging from industry automation and transport systems
to healthcare, telesurgery, and education. In most of these industry verticals, very low latency
and ultra-high reliability are key for realizing immersive applications such as robotic teleoperation.
While necessary, though, the design of ultra-reliable and low-latency converged communication net-
work infrastructures is not sufficient to unleash the full potential of the Tactile Internet. In this
thesis, we put forward the idea that the Tactile Internet may be the harbinger of human augmen-
tation and human-machine symbiosis envisioned by contemporary and early-day Internet pioneers.
In search for synergies between humans and machines/robots, we explore the idea of treating the
human as a “member” of a team of intelligent machines rather than keep viewing him as a con-
ventional “user” while putting a particular focus on developing systems that are human-aware and
help advance the human condition, e.g., economic inequality. After describing the Tactile Internet’s
human-in-the-loop-centric design principles and haptic communications and traffic models, we elab-
orate on the development of decentralized cooperative dynamic bandwidth allocation algorithms
for end-to-end resource coordination in fiber-wireless (FiWi) access networks. We then use machine
learning to decouple haptic feedback from the impact of extensive propagation delays. Next, we
propose a context- and self-aware allocation scheme for both physical and digital tasks to coor-
dinate the automation and augmentation of mutually beneficial human-machine coactivities while
spreading ownership of robots across users. In addition to realizing collective context-awareness
via task coordination, we aim to exploit local self-awareness in order to improve the energy-delay
performance of mobile robots. Further, we study the problem of joint prioritized scheduling and
assignment of delay-constrained teleoperation tasks to human operators. Finally, this doctoral the-
sis investigates the performance gains of cooperative computation offloading for multi-access edge
computing (MEC) enabled FiWi enhanced heterogenous networks (HetNets) with capacity-limited
backhaul links. After presenting the envisioned two-tier MEC architecture for a FiWi based net-
working infrastructure, a simple but efficient offloading strategy is proposed, which relies on the
flexible trilateral cooperation between end-devices, edge servers, and the remote cloud.

Keywords: AI, Computation Offloading, Context-awareness, FiWi enhanced HetNets, Motion
Planning, Multi-access Edge Computing, OPEX, Self-awareness, Teleoperation, Task Allocation.
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Résumé

Introduction

Tandis que l’exploitation commerciale de l’Internet mobile permet aux utilisateurs d’échanger le
trafic traditionnel à triple play (i.e., audio, vidéo et donné), le nouveau réseau Internet Tactile
émergeant envisage de réaliser des communications haptiques, permettant aux utilisateurs de non
seulement voir et entendre, mais aussi toucher et manipuler des objets physiques et/ou virtuels
distants via Internet. L’Internet Tactile promet de créer de nouvelles opportunités entrepreneuriales
et nouvelles emplois, qui devraient avoir un impact socio-économique profond sur presque chaque
segment de notre vie quotidienne, avec des cas d’utilisation allant de la réalité augmentée/virtuelle
(AR/VR) à la conduite autonome, et les réseaux électriques intelligents. Un grand nombre de ces
secteurs de l’industrie nécessitent une très faible latence et une fiabilité extrême pour la réalisation
d’applications interactives ultra-réactives telles que la télé-opération/télé-présence bilatérale. Notez
cependant que certains cas d’utilisation ne nécessitant pas nécessairement une mobilité constante
peuvent être réalisés sur des réseaux à large bande fixes. Cela suggère que les futurs réseaux
cellulaires doivent être entièrement convergés, ce qui permet une sélection flexible de différentes
technologies d’accès fixes et mobiles tout en partageant les fonctionnalités du réseau principales.
Les systèmes interactifs, notamment AR/VR et la télé-opération, exigent une latence aller-retour
ultra-faible de 1 à 10 ms et une grande fiabilité. La haute disponibilité et la sécurité, les temps de
réponse ultra-rapides et extrêmement fiables, ainsi que la fiabilité de l’Internet Tactile de niveau
opérateur, ajoutera une nouvelle dimension à l’interaction des humains avec les machines/robots.

Objectifs

Le premier objectif de la thèse est d’examiner les principes de conception centrés sur l’homme (HITL)
qui ajoutent une nouvelle dimension à l’interaction homme-machine via Internet, et démarquer
Internet Tactile de l’Internet des objets (IoT) plus centré sur la machine. Un autre objectif de la
thèse est d’explorer comment nous pouvons nous assurer que le potentiel de l’Internet Tactile soit
libéré pour une course avec (plutôt que contre) des machines. L’un des principaux objectifs de
cette thèse est de comprendre le trafic Internet Tactile en matière de débit de paquets, de taille de
paquets, de temps d’inter-arrivage de paquets et d’auto-corrélation d’échantillon. Le délai décisif
pour le déploiement réussi de la télé-opération Internet Tactile est le temps de latence de bout en
bout, qui est soit imposé par la vitesse de la lumière (également appelée délai de propagation), soit
par la ou les files d’attente intermédiaires. Concevoir des solutions appropriées de contrôle d’accès au
support (MAC) au niveau des réseaux d’accès, ainsi que rapprocher les points d’interaction de télé-
opération peut réduire en partie le dernier composant de délai. Néanmoins, le délai de propagation
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pose toujours de fortes limites quant à la possibilité de réaliser une télé-opération transparente
et stable. Vers une conception de la télé-opération Internet Tactile réactive, à très faible latence
et extrêmement fiable, afin de libérer pleinement le potentiel des réseaux améliorés par la fibre-
sans fil (FiWi), le rôle de l’intelligence de bord, déployé au sein de l’informatique de périphérie à
accès multiples (MEC) serveurs situés à proximité des utilisateurs finaux, nécessite une enquête
approfondie. Un objectif important de la thèse est de fournir des informations sur l’utilisation de
l’apprentissage automatique pour compenser les échantillons haptiques retardés via une approche
de conception centrée sur l’homme. Bien que nécessaires, un temps d’exécution réduit et une
connectivité homme-robot ultra-fiable ne suffisent pas pour libérer tout le potentiel des applications
HART (Human-Agent-Robot Teamwork) résultantes. L’un des objectifs de la thèse est d’étudier
les possibilités d’étendre davantage les capacités des HetNets LTE-A améliorés par la FiWi, en
accordant une attention particulière à la dichotomie entre l’automatisation et l’augmentation (c’est-
à-dire, l’extension des capacités) de l’homme via Internet Tactile. L’un des objectifs de la thèse est
de concevoir une solution algorithmique pour résoudre le problème de l’ordonnancement conjoint
et de l’attribution de tâches de télé-opération à des opérateurs humains tout en tenant compte des
considérations économiques. Outre les considérations économiques et les exigences ultra-fiables en
matière de communications à faible temps de latence (URLLC), un autre aspect important de la
vision de la 5G est la décentralisation. Un objectif important de la thèse est donc d’étudier le rôle
de la MEC coopérative dans un scénario informatique hiérarchique en nuage, en périphérie et au
niveau local.

Méthodologie

La méthode de recherche appliquée dans cette thèse comprend la modélisation du trafic, la concep-
tion de l’architecture de réseau, la conception des mécanismes et l’analyse de la performance, comme
résumé à la fig. R.1. Dans cette thèse, une modélisation statistique du trafic de télé-opération basée
sur les traces est réalisée, qui étudie le rôle du codage en bande morte pour réduire le débit de
paquets haptique. La caractérisation du trafic haptique présentée vise à modéliser la taille ainsi que
le processus d’arriver des paquets haptiques dans les chemins de commande et de retour, en tenant
compte du codage perceptuel. De plus, les modèles de corrélation au sein des échantillons de retour
sont identifiés et modélisés en matière d’auto-corrélation des échantillons. Du point de vue de la con-
ception architecturale, de nouvelles architectures de réseau basées sur FiWi sont développées pour
permettre l’application des applications Internet immersives à faible temps de latence. Les architec-
tures développées incluent notamment l’intelligence artificielle (AI) intégrée à MEC sur des réseaux
HetNets améliorés par le FiWi, ce qui permet de prévoir des échantillons haptiques. En outre, une
architecture informatique de bord hiérarchique est développée pour permettre un déchargement
informatique coopératif afin d’aider les utilisateurs mobiles à accélérer l’exécution des tâches tout
en économisant de l’énergie. De nouvelles solutions algorithmiques sont présentées tout au long
de la thèse pour répondre aux objectifs susmentionnés. Ces algorithmes/mécanismes comprennent
la prévision d’échantillons haptiques basée sur l’IA, la coordination de tâches conscientes du con-
texte et de soi, la planification hiérarchisée et l’attribution de tâches de télé-opération, ainsi qu’une
stratégie de déchargement informatique coopératif. Dans la thèse, la théorie des files d’attente, la
théorie des probabilités, l’optimisation multi-objectifs et l’apprentissage automatique ont été mis à
profit pour développer les cadres d’analyse et mener des évaluations de performance. En particulier,
un cadre analytique complet basé sur la théorie des probabilités et la théorie de la file d’attente est
développé.
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Figure R.1: Méthodologie de recherche.

Contributions de la thèse

Cette thèse est une compilation de dix publications, qui sont publiées ou acceptées pour publication
dans des revues de haut calibre IEEE et OSA ainsi qu’à des éditeurs de livres renommés. Les
principales contributions de la thèse sont brièvement décrites ci-après.

Expériences Internet Tactile immersives via Edge Intelligence

Nous portons notre attention sur la télé-opération bilatérale à titre d’exemple d’application HITL
et présentons une étude approfondie de la caractérisation et de la modélisation du trafic haptique
en matière d’arrivée de paquets et d’auto-corrélation d’échantillons. Notre objectif est de dévelop-
per de nouveaux modèles de description des temps inter-arrivés de paquets ainsi que de l’auto-
corrélation d’échantillons tridimensionnels. Nous explorons ensuite comment MEC en général et
l’intelligence périphérique, en particulier, peuvent être utilisés pour aider à réaliser une expérience
de télé-opération immersive et fiable sur des infrastructures de réseau basées sur FiWi.

Un exemple intéressant d’expérience Internet Tactile permettant une immersion à distance est
le cas d’utilisation de la télé-opération centré sur HITL basé sur les communications haptiques. La
figure R.2 illustre une description d’un système de télé-opération typique basé sur une communica-
tion haptique bidirectionnelle entre un opérateur humain (HO) et un télé-opérateur robot (TOR)
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Figure R.2: Système de télé-opération basé sur des communications haptiques bidirectionnelles entre
HO et TOR dans un environnement de tâches distant.

dans un environnement de tâche distant. Le HO s’interface avec le réseau de communication via
le dispositif d’interface homme-système (HSI), utilisé pour afficher une interaction haptique avec le
TOR distant vers le HO. Les contrôleurs situés aux deux extrémités du système de télé-opération
assurent les performances de suivi et la stabilité du HSI et du TOR. Une réduction de données basées
sur une bande morte perceptuelle peut être utilisée comme mécanisme de compression avec perte
en exploitant le fait que les utilisateurs finaux humains ne sont pas en mesure de discriminer des
différences arbitrairement petites entre les stimuli haptiques. La perception humaine de l’haptique
peut être exploitée pour réduire le débit de paquets haptiques. Plus précisément, la loi de Weber,
bien connue, détermine la différence juste perceptible (JND), c’est-à-dire le changement minimal
de l’ampleur d’un stimulus pouvant être détecté par l’être humain. La loi de Weber donne lieu à
la technique dite “codage de la bande morte”, selon laquelle un échantillon haptique n’est trans-
mis que si sa modification par rapport à l’échantillon haptique précédemment transmis dépasse un
paramètre de bande morte donné d ≥ 0. Notez que malgré l’intérêt croissant pour l’Internet Tactile,
la compréhension des caractéristiques du trafic haptique réel reste limitée, notamment au niveau
des paquets. Dans cette thèse, nous étudions deux séries de traces haptiques obtenues à partir
d’expériences de télé-opération impliquant des TOR à différents degrés de liberté (DoF). Les deux
expériences de télé-opération envisagées impliquent des TOR avec 1 et 6 DoF. De plus, nos traces
haptiques comprennent des mesures avec différentes valeurs de paramètre de bande morte d.

La figure R.3 résume nos conclusions sur les différentes distributions de temps inter-arrivage
de paquets les mieux adaptées pour les chemins de commande et de retour avec et sans codage en
bande morte dans les deux scénarios de télé-opération. Nous observons qu’en général, les chemins
de commande et de retour peuvent être modélisés conjointement par la distribution généralisée de
Pareto (GP), la distribution de gamma ou par la distribution temporelle inter-arrivale des paquets,
en fonction de la valeur donnée des paramètres de bande morte dc et df , respectivement, comme
indiqué dans Figure R.3.

La figure R.4 décrit l’architecture de réseau générique des réseaux HetNets LTE-A améliorés
par le FiW. Le backhaul de la fibre consiste en un EPON IEEE 802.3ah/1/10 Gb/s multiplexage
temps/longueur d’onde (TDM/WDM) avec une distance de fibre typique de 20 km entre le terminal
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Figure R.3: Récapitulatif de la distribution temporelle optimale entre paquets pour les chemins de
commande et de retour avec et sans codage en bande morte: (a) télé-opération à 6 DoF et (b) télé-
opération à 1 DoF.

Figure R.4: Télé-opération locale et non locale dans les réseaux HetNets LTE-A améliorés par le FiWi
avec fonctionnalités MEC basées sur l’IA.

de ligne optique (OLT) centrale et les unités de réseau optique (ONU) distantes. L’EPON peut
comprendre plusieurs étapes, chaque étape étant séparée par un séparateur/combineur de diffusion
en longueur d’onde ou un multiplexeur/démultiplexeur en longueur d’onde. Il existe trois différents
sous-ensembles d’ONU. Une unité ONU peut desservir des abonnés fixes (câblés). Une unité ONU
peut également se connecter à une station de base de réseau cellulaire (BS) ou à un point portail
maille (MPP) WLAN IEEE 802.11n/ac/s, donnant lieu à une unité ONU-BS ou ONU-MPP co-
localisée, respectivement. Selon son positionnement, un utilisateur mobile (UM) peut communiquer
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Figure R.5: Retard moyen de bout en bout des utilisateurs mobiles (UMs) par rapport au taux de
trafic de fond moyen λBKGD(paquets/seconde) pour les communications H2H locales et non locales.

via le réseau cellulaire et/ou le maillage de réseau maillé WLAN, composé d’ONU-MPP, de point de
maille (MP) intermédiaires et de point d’accès maille (MAP). Notez que la connexion de ces trois
différents ensembles d’unités ONU via une infrastructure de backhaul à fibre partagée EPON permet
d’atteindre l’important objectif de gain de convergence fixe-mobile de la stratégie d’opérateur de
réseau actuelle. Dans cette thèse, contrairement aux études précédentes qui étudiaient uniquement
la communication humain-à-humain (H2H) conventionnelle entre les MU, nous étudions le potentiel
et les limites de la télé-exploitation coexistante dans les réseaux HetNets LTE-A améliorés par le
FiWi. La figure R.5 illustre le délai moyen de bout en bout des UM par rapport au taux de trafic
de fond moyen λBKGD pour les communications H2H locales et non locales dans les réseaux FiWi
améliorés LTE-A. La figure montre qu’un délai moyen de bout en bout de 100 = 1 ms peut-être
atteint pour les communications H2H non locales pour une large gamme de charge de trafic en
arrière-plan.

Malgré l’intérêt récent porté à l’exploitation de l’apprentissage automatique pour les commu-
nications optiques et les réseaux, l’intelligence périphérique permettant aux opérateurs humains
de vivre une expérience de télé-opération immersive et transparente n’a pas encore été explorée.
Dans cette thèse, nous présentons l’apprentissage automatique à la périphérie de notre réseau de
communication considéré pour la réalisation d’expériences Internet immersives et sans friction.
Pour réaliser l’intelligence périphérique, certaines ONU-BS/MPP sont équipées de serveurs MEC
améliorés par IA. Ces serveurs s’appuient sur les capacités de calcul des cloudlets co-implantés à
l’interface optique sans fil (voir Fig. R.4) pour prévoir les échantillons haptiques retardés dans le
chemin de retour. La figure R.6 montre clairement la précision de prévision supérieure de notre
schéma de prévision d’échantillons de bord (ESF) basé sur le perceptron multicouche (MLP) en
matière d’erreur quadratique moyenne sur une large plage de valeurs deλBKGD pour scénarios de
télé-opération locaux et non locaux, dans lesquels une erreur quadratique moyenne faible est réalis-
able dans le scénario précédent. En particulier, pour la télé-opération non locale, notre schéma ESF
basé sur MLP réduit l’erreur quadratique moyenne d’environ 0.9 à 0.65 ×10−3, ce qui se traduit par
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Figure R.6: Comparaison de la précision de prévision entre les schémas ESF naïfs et à base de MLP
proposés pour la télé-opération locale et non locale sans codage en bande morte dans le chemin de
retour(df = 0).

une amélioration de 27.8%. Pour la télé-opération locale, il est possible de garder l’erreur quadra-
tique moyenne proche de zéro entre 0.006 et 0.007 ×10−3 à une charge de trafic d’arrière-plan faible
à moyenne λBKGD.

Contexte et conscience de soi pour la coordination des tâches

Ensuite, la connaissance du contexte est utilisée pour développer un algorithme de coordination
de tâches centré sur un HART qui minimise le temps d’exécution des tâches physiques/numériques
ainsi que les dépenses opérationnelles (OPEX) en répartissant la propriété des robots sur les utilisa-
teurs mobiles. En outre, la conscience de soi est mise à profit pour améliorer les performances d’un
robot donné en identifiant ses capacités ainsi que les exigences objectives par le biais d’une plani-
fication de mouvement optimale afin de minimiser sa consommation d’énergie ainsi que son temps
de parcours. Le schéma d’allocation proposé, centré sur HART et tenant compte du contexte, pour
les tâches physiques et numériques est utilisé pour coordonner l’automatisation et l’augmentation
de co-activités homme-machine mutuellement bénéfiques dans une infrastructure Internet Tactile
basée sur le FiWi. Les contributions de ce chapitre sont notamment les suivantes: (i) nous formu-
lons un problème d’optimisation à objectifs multiples afin de minimiser le temps d’achèvement des
tâches, la consommation d’énergie et OPEX pour l’attribution de tâches multi-robots dans Internet
Tactile sur Réseaux améliorés par le FiWi, (ii) nous développons un algorithme de coordination de
tâches centré sur HART tenant compte du contexte, qui minimise le temps de réalisation des tâches
physiques/numériques, tout en portant une attention particulière à la réduction des OPEX en ré-
partissant la propriété des robots sur des utilisateurs mobiles, (iii) nous proposons un algorithme
de planification de mouvement optimal auto-conscient, qui s’exécute localement sur les robots mo-
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biles, avec pour objectif de trouver le meilleur compromis entre temps de traversée et consommation
d’énergie en s’appuyant sur la conscience de soi locale des robots mobiles pour identifier leurs limites
et capacités respectives ainsi que les exigences objectives pour accomplir les tâches attribuées, et
(iv) nous fournissons un cadre analytique pour le calcul du délai de connexion et la fiabilité da la
connexion homme-robot, deux attributs clés de l’Internet Tactile.

Dans notre formulation du problème, nous supposons que les membres HART sont conscients de
leurs objectifs, besoins, applications et contraintes respectifs. En outre, par le biais de la communica-
tion, ils établissent une prise de conscience collective du contexte dans le but de minimiser le temps
d’exécution des tâches par les robots mobiles (MRs), qui peuvent être détenus par l’utilisateur
ou par le réseau. Notre algorithme de coordination de tâches multi-robots vise à minimiser le
temps d’achèvement de la tâche T (∙) ainsi que la consommation énergétique E(∙) et OPEX C(∙)
de l’exécution de tâches physique/numérique par les MRs. Clairement, T (∙), C(∙) et E(∙) peuvent
être des objectifs contradictoires, car minimiser T (∙) et E(∙) ne peut pas nécessairement minimiser
C(∙). La raison en est que, pour certaines tâches, la sélection de MR appartenant à un réseau peut
réduire considérablement le temps d’exécution de la tâche, ce qui entraîne une augmentation des
frais d’exploitation (OPEX) en raison de la tarification plus élevée des MRs appartenant au réseau
par rapport à ceux des utilisateurs. Nous notons également que la consommation d’énergie d’un
MR est fonction de ses paramètres locaux, par exemple ses paramètres de moteur et de mouvement,
entre autres, qui peuvent de préférence ne pas être partagés par les MRs, car ils sont considérés
comme des informations privées. De plus, le coordonnateur de tâches doit prendre des décisions
sans connaître a priori les instants d’heure d’arrivée des tâches à venir, rendant ainsi impossible
l’exploitation des méthodes d’optimisation conventionnelles pour obtenir la solution optimale du
problème qui nous intéresse. Par conséquent, afin de trouver un compromis approprié entre les trois
objectifs et de parvenir à une solution satisfaisante, nous hiérarchisons les objectifs du problème par
ordre décroissant de T (∙), C(∙) et E(∙). Plus spécifiquement, nous découplons le problème en deux
sous-problèmes, à savoir la coordination de tâches multi-robots et la planification de mouvements,
le premier visant à minimiser T (∙) et C(∙), tandis que le second minimise E(∙).

Notre algorithme proposé de coordination de tâches multi-robots dynamiques (CADMRTC)
tenant compte du contexte assigne la tâche donnée au MR le plus proche disponible appartenant à
l’utilisateur, le cas échéant. Sinon, il essaie de trouver le MR le plus ancien disponible appartenant
à l’utilisateur jusqu’à une échéance maximale donnée, D ≥ 0 secondes, avant de retomber sur les
MRs appartenant au réseau. Dans ce cas, la tâche est affectée au MR le plus proche disponible
appartenant au réseau ou au plus ancien disponible, s’il n’y en a pas. Notez que notre schéma
tenant compte du contexte donne la priorité aux MRs appartenant à l’utilisateur, réduisant ainsi
considérablement les coûts d’exploitation. Il est intéressant de mentionner que notre objectif est de
minimiser la consommation d’énergie du MR attribué en utilisant notre planification de mouvement
auto-conscient proposée, qui vise à trouver le profil de vitesse optimal en énergie d’un MR pour un
chemin donné à parcourir.

La figure R.7 illustre le ratio OPEX moyen par tâche par rapport au ratio de coût utilisa-
teur/réseau, rU2N = ϕU

varphiN
≤ 1. Fait intéressant, nous observons que si la pleine propriété de

l’utilisateur (c’est-à-dire γO = 100%) est toujours bénéfique pour les UMs en termes d’économies
OPEX, la propriété partielle par l’utilisateur (c’est-à-dire γO < 100%) ne l’est pas nécessairement.
La figure R.7 montre que la propriété de l’utilisateur de γO = 25% est moins coûteuse que celle
d’un réseau complet (c’est-à-dire que γO = 0%) uniquement pour rU2N < 0.39. En revanche, pour
rU2N > 0, 39, les unités centrales sont confrontées à un OPEX inférieur par tâche avec une propriété
réseau complète (γO = 0%) par rapport à une propriété utilisateur partielle de γO = 25%. La raison
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Figure R.7: Coût moyen, C̄, par tâche exécutée par rapport au ratio OPEX de l’utilisateur sur le
réseau rU2N (D = 0 fixée).

en est que pour γO = 0%, notre algorithme de coordination des tâches attribue des tâches aux MRs
préférés de l’utilisateur, qui sont chargés de fournir le service à toutes les unités centrales de la zone.
Ceci, à son tour, augmente la distance moyenne parcourue par les MRs appartenant à l’utilisateur,
augmentant ainsi le temps de parcours moyen et la consommation d’énergie. Lorsque ϕUϕN devient
supérieur à 0.39, la propriété intégrale du réseau s’avère donc moins coûteuse. De plus, notez que
pour une propriété partielle de l’utilisateur, γO = 50% et γO = 75% soit moins coûteuse que la
propriété du réseau complet (γO = 0%), rU2N ne doit pas dépasser 0,58 et 0,73, respectivement
(voir aussi Fig. R.7). De plus, nous observons que comme ϕUϕN → 0, l’impact bénéfique de la pro-
priété des utilisateurs sur l’épargne OPEX est plus prononcé, alors que pour ϕUϕN → 1, la moyenne

des OPEX C̄rU2N par tâche pour différentes valeurs de γO convergent vers celle de γO = 100%. En
effet, comme ϕUϕN → 1 nous avons ϕU ≈ ϕN , ainsi la propriété de l’utilisateur ne révèle pas un gain
OPEX notable par rapport à la propriété du réseau à part entière.

Les résultats obtenus sur le front de Pareto en deux dimensions de notre algorithme CADMRTC
proposé sont illustrés à la figure R.8, qui caractérise le compromis entre l’OPEX moyen par tâche
et le temps moyen d’achèvement de la tâche. La Fig. R.8 révèle qu’aucun des résultats obtenus
pour un γ0 donné n’est dominant. Le décideur peut donc offrir un compromis souple entre les deux
objectifs du problème en définissant de manière appropriée le délai d’attente D.

Planification et attribution de tâches de télé-opération à délai limité

Contrairement à leurs homologues totalement autonomes, les systèmes robotiques semi-autonomes
reposent sur une assistance humaine de temps à autre via la télé-opération et/ou la télé-présence
lorsqu’une expertise de domaine est nécessaire pour accomplir une tâche spécifique, permettant
ainsi une approche de conception centrée sur HITL. Etant donné que ces robots auront besoin
de demander une assistance humaine via la télé-opération/présence, ces demandes adressées aux
opérateurs humains eux-mêmes constituent un problème difficile d’optimisation multi-critères avec
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Figure R.8: Diagramme Pareto-front 2D de notre algorithme CADMRTC proposé pour différentes
valeurs du facteur de dispersion de propriété γ0 (la valeur de l’attente de l’échéance D augmente le
long de la flèche indiquée sur chaque courbe).

l’objectif de minimiser le temps de réalisation moyen pondéré, le retard maximal et l’OPEX moyen
par tâche. Dans ce chapitre, après avoir exposé en détail notre infrastructure de réseau bimodale
FiWi considéré et son rôle dans la réalisation de la télé-opération dans l’Internet Tactile, nous for-
mulons et résolvons le problème de la planification conjointe par ordre de priorité et de l’attribution
de tâches de télé-opération soumises à des délais excessifs aux opérateurs afin de minimiser la durée
moyenne pondérée des tâches, retard maximal, et le moyen OPEX par tâche. Les contributions de
ce chapitre sont notamment les suivantes: (i) nous expliquons le rôle des réseaux améliorés par le
FiWi en tant qu’infrastructures de communication sous-jacentes permettant de nouvelles applica-
tions Internet Tactile sensibles aux délais, dans le but de réaliser des télé-opérations locales et/ou
non locale sur des réseaux améliorés FiWi, en exploitant les technologies Ethernet à faible coût
axées sur les données (fibre optique et sans fil) en fronthaul et backhaul, (ii) nous définissons le
problème de la planification conjointe prioritaire et de l’attribution de retard des tâches de télé-
opération sur des opérateurs humains qualifiés disponibles, et après avoir formulé notre problème
d’optimisation multi-objectifs, nous proposons notre algorithme appelé “ordonnancement prioritaire
et attribution de tâches sensible au contexte” (CAPSTA) pour obtenir des résultats satisfaisants
en faisant des compromis appropriés entre les objectifs contradictoires du problème, et ( iii) nous
développons notre cadre analytique pour estimer le temps de transmission de bout en bout des
paquets de télé-opération locale et non locale sur les réseaux améliorés par le FiWi .

Nous considérons le problème d’assignation et d’ordonnancement conjoints de tâches de télé-
opération à N retardées sur un nombre fixe M de HO, comme suit. Soit M = {O1, O2, ..., OM}
et J = {J1, J2, ..., JN} dénotant l’ensemble des M HO disponibles et des N tâches attribuées,
respectivement. Soit Tj le temps d’opération de la tâche Jj ∈ J . Chaque tâche Jj ∈ J a une
échéance Dj et est associée à un poids Ωj . Les poids plus importants correspondent aux niveaux de
priorité les plus élevés. Bien que les tâches soient censées être accomplies dans les délais impartis,
tout retard encouru est soumis à une pénalité de coût. Nous considérons un scénario de planification
hors ligne, dans lequel toutes les tâches sont disponibles à l’instant zéro et le sont continuellement
par la suite. Chaque tâche ne peut être exécutée que par un seul opérateur humain à la fois et chaque
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opérateur humain ne peut exécuter qu’une seule tâche à la fois. Nous supposons également que la
préemption n’est pas autorisée, ce qui signifie que les tâches ne peuvent pas être scindées. En effet,
si les tâches étaient divisées et planifiées sur des périodes non continues, la préemption engendrerait
un temps système supplémentaire de reconfiguration/configuration, ce qui est significatif lorsque la
durée de configuration est non négligeable. De plus, nous supposons que N � M . Pour la tâche
Jj , les heures de début et d’achèvement sont respectivement notées Sj et Cj . Une affectation/un
calendrier réalisable spécifie quand et par quel opérateur humain une tâche donnée est exécutée.
Avec un calendrier réalisable, on peut calculer le retard de la tâche Jj comme max{0, Cj − Dj}.
L’objectif est d’attribuer les tâches aux SH de manière à ce que les contraintes suivantes soient
satisfaites: (1) pas plus d’une tâche n’est assignée à un HO à la fois, (2) aucune tâche n’est assignée
à plus d’un HO, (3) les tâches ne sont pas pré-emptées, et (4) le délai moyen de transmission de
bout en bout d’une télé-opération planifiée ne dépasse pas un seuil de délai donné.

Après avoir formulé notre problème multi-objectif d’ordonnancement et d’attribution de tâches
de télé-opération, nous constatons que pour des moments de problème de grande taille de la for-
mulation développée, les difficultés de calcul associées à la recherche de la solution satisfaisante
augmentent considérablement. Par conséquent, afin de trouver un compromis approprié entre les
objectifs contradictoires, nous proposons notre algorithme CAPSTA sensible au contexte. Lors de
la conception de l’algorithme CAPSTA proposé, nous adoptons deux règles de tri, à la fois en af-
fectation et en phases de planification, afin de privilégier les tâches hautement prioritaires dont les
délais sont plus courts. Dans un premier temps, l’algorithme CAPSTA proposé vise à partitionner
l’ensemble de tâches donné J en M sous-ensembles. À cette fin, notre politique de tri indique que
les tâches données sont triées dans un ordre décroissant de Ωj

Tj
. Ensuite, les tâches sont sélectionnées

à partir de l’ensemble trié, puis attribuées aux HO d’une manière alternée. Nous notons cependant
que l’affectation de la tâche Jn à l’opérateur humain Om n’est valide que si les délais moyens es-
timés de bout en bout dans les chemins de commande et de retour satisfont aux contraintes de délai.
Sinon, nous sélectionnons le HO qui correspond au délai moyen minimal de bout en bout avec la
tâche Jn dans les chemins de commande et de retour. Cela résout le sous-problème d’affectation.
Ensuite, l’algorithme proposé CAPSTA s’attaque au sous-problème d’ordonnancement pour les HO.
À cette fin, parmi les tâches non planifiées, nous sélectionnons d’abord la tâche avec le montant
minimum de DjΩi

, puis la planifions lorsque le HO devient disponible pour la première fois. De ce
fait, les tâches ayant des poids plus importants et des délais plus courts sont privilégiées.

Nous comparons les performances de notre algorithme CAPSTA proposé avec un algorithme de
référence assignation aléatoire et ordonnancement (RAS), dans lequel, pour une tâche donnée, un
HO est sélectionné de manière aléatoire à partir du pool d’opérateurs disponibles. Premièrement,
nous présentons le temps moyen pondéré d’exécution (AWCT) et le retard maximal par rapport au
nombre total d’opérateurs humains disponibles, en M , sur les figures R.9 et R.10, respectivement.
Nous observons dans la Fig. R.9 que l’augmentation de M entraîne une diminution exponentielle de
AWCT dans les algorithmes RAS et CAPSTA proposé. Plus précisément, dans l’algorithme proposé
CAPSTA, l’augmentation de M de 1 à 3 entraîne une réduction de 67%, tandis que l’augmentation
de M de 3 à 5 ne donne qu’une réduction de 41% de la valeur AWTC. En outre, nous notons
que l’algorithme CAPSTA proposé permet une réduction de 15 à 27% du AWTC par rapport à
l’algorithme RAS. Bien que l’AWCT proposé soit moins performant que l’algorithme RAS, l’effet
bénéfique de celui-ci est plus prononcé en termes de retard maximal, comme le montre la figure R.10.
Nous observons que l’algorithme CAPSTA proposé permet une réduction de 49 à 56% du retard
maximal. Plus précisément, pour N = 300, pour que le retard maximal soit inférieur à 25 min-
utes, un nombre total de 5 HOs est nécessaire dans l’algorithme RAS, alors que dans l’algorithme
CAPSTA proposé, seuls 2 HOs suffisent pour obtenir le même résultat au niveau de performance.
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Figure R.9: Temps moyen pondéré d’exécution des tâches par rapport au nombre total d’opérateurs
humains disponibles: M (α = 1 fixée).

Figure R.10: Retard maximal des tâches par rapport au nombre total d’opérateurs humains disponibles
M (α = 1 fixée).

En outre, si le décideur préfère maintenir le retard maximal au-dessous de 10 minutes, le nombre
d’opérateurs humains requis est respectivement de 5 et 12 dans les algorithmes CAPSTA proposé
et RAS, ce qui permet de réaliser une économie notable en OPEX.

Déchargement coopératif des calculs dans les réseaux FiWi améliorés 4G HetNets

Pour faire face à la contradiction entre l’augmentation rapide des applications gourmandes en temps
et à calcul intensif et les appareils mobiles intelligents dotés de ressources limitées, l’informatique
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en nuage mobile (MCC) a émergé pour réduire la charge de calcul des appareils mobiles et élargir
leurs capacités en élargissant le concept d’informatique en nuage à l’environnement mobile par le
déchargement complet et/ou partiel des calculs. Bien qu’un nuage (distant) conventionnel offre des
capacités de stockage et de calcul élevées, il peut entraîner une latence importante en raison des
communications, car généralement il est physiquement distant des utilisateurs mobiles. D’autre
part, MEC peut offrir une latence réduite induite par la communication, mais elle peut également
entraîner une latence de traitement excessive en raison de capacités de calcul limitées. Dans une
vision plus large, les serveurs cloud et MEC distants peuvent ainsi coexister et se compléter, ce
qui donne lieu à déchargement coopératif de calcul. En fait, le but ultime de MEC est d’obtenir un
temps de réponse extrêmement bas, défini comme étant l’intervalle de temps entre le moment où
une tâche est libérée d’un périphérique mobile et son traitement (localement ou à distance) et le
résultat est reçu par le périphérique.

Dans cette thèse, nous examinons les gains de performances obtenus par le déchargement
coopératif des calculs dans des réseaux HetNets améliorés par le FiWi compatible avec MEC,
qui s’appuie non seulement sur les capacités de calcul des serveurs Edge/Cloud, mais également
sur les ressources informatiques locales limitées du côté des périphériques. Plus spécifiquement,
nous visons à concevoir une architecture MEC compatible FiWi améliorés HetNets à deux niveaux,
dans laquelle les périphériques mobiles ainsi que les serveurs de périphérie délèguent de manière
coopérative leurs tâches de calcul de manière à réduire le temps de réponse moyen. Nous prenons
en compte les aspects cruciaux des limitations liées aux communications et au calcul dans notre
approche de conception via une modélisation précise des serveurs fronthaul/backhaul ainsi que des
serveurs Edge/Cloud, tout en accordant une attention particulière au processus de prise de décision
entre utilisateurs mobiles et serveurs Edge en tant que serveurs de périphérie et le cloud distant.

Un autre aspect important de MEC est de faire face à la complexité supplémentaire qui peut
survenir dans un tel scénario en s’appuyant entièrement ou partiellement sur les ressources informa-
tiques locales limitées des utilisateurs mobiles lorsque celles-ci sont le plus nécessaires. La nature
inhérente aux réseaux HetNets améliorés par le FiWi, qui est une conséquence directe de la mo-
bilité des utilisateurs, implique d’exploiter une fonction qui ajuste en permanence les capacités de
calcul locales des périphériques mobiles afin d’assurer une qualité d’expérience améliorée (QoE).
Ceci peut être réalisé via une reconfiguration adaptative d’un utilisateur mobile en fonction de
ses objectifs, de ses capacités et de ses contraintes, via une approche de conception communément
appelée conscience de soi. Pour contribuer à cet effort, nous tirons parti de la conscience de soi
des utilisateurs de téléphonie mobile en appliquant la technique de dimensionnement dynamique
de la tension (DVS) pour soumettre les compromis de délai d’énergie appropriés à des contraintes
d’énergie et de délai données.

La figure R.11 décrit l’architecture générique du réseau HetNets LTE-A amélioré par le FiWi con-
sidéré. Nous équipons certaines ONU-BS/MPP de serveurs MEC (ou simplement appelés serveurs
périphériques) co-localisés à l’interface optique sans fil. Les unités centrales peuvent décharger en-
tièrement ou une partie de leurs tâches de calcul entrantes sur des serveurs Edge à proximité. Outre
les serveurs de périphérie, la terminaison OLT est équipée d’installations d’informatique en nuage,
composées de plusieurs serveurs dédiés au traitement des tâches mobiles. Chaque UM utilise un
planificateur de tâches qui décide de décharger une tâche sur un serveur Edge ou de l’exécuter
localement dans son CPU. Nous modélisons le planificateur de tâches dans chaque UM par un sys-
tème de mise en file d’attente, comme illustré à la Fig. R.12. Nous supposons que dans chaque
appareil mobile, il y a deux serveurs, à savoir le processeur et l’interface sans fil (c’est-à-dire WiFi
ou LTE-A). Le premier serveur est utilisé pour modéliser l’exécution de la tâche locale au niveau de
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Figure R.11: Architecture générique du réseau HetNets LTE-A amélioré par le FiWi compatible avec
MEC.

Figure R.12: Schéma du planificateur de tâches et du système de mise en file d’attente pour MU i,
qui comprend deux files d’attente séparées desservies par un processeur local et une interface sans fil
WiFi/LTE-A.

la CPU de la UM, tandis que le second est responsable du déchargement des tâches sur un serveur
de périphérie situé à proximité. Nous supposons que les UM génèrent du trafic Poisson de fond au
débit de paquets moyen λB (en paquets/seconde) (voir la Fig. R.12). Nous supposons également
que les tâches arrivent au planificateur de UM i au tarif λUMi . Le planificateur de tâches situé
dans UM i prend sa décision en fonction de la valeur de la prétendue probabilité de déchargement,
βi, définie comme la probabilité qu’une tâche entrante soit déchargée sur le serveur de bord. Les
tâches générées par UM i sont caractérisées par Bli et D

l
i, indiquant la taille moyenne des données

d’entrée de calcul (par exemple, codes de programme et entrée paramètres) et le nombre moyen de
cycles de processeur requis, respectivement. Les tâches de calcul sont supposées être atomiques et
ne peuvent donc pas être divisées en sous-tâches. Nous supposons également que chaque serveur
de périphérie est équipé d’un planificateur de tâches, qui décide s’il convient d’exécuter une tâche
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(a) (b)

Figure R.13: (a) Temps de réponse moyen vs probabilité de déchargement de UM β pour différentes
valeurs de ζ (α = 0 et fi=150 MHz); (b) moyenne d’énergie par tâche vs probabilité de déchargement
de UM β pour différentes valeurs de la fréquence d’horloge locale fi(ζ = 20%).

entrante ou de la décharger davantage sur le nuage distant. Comme pour les UM, une tâche arrivant
sur le serveur de périphérie j est ensuite déchargée dans le nuage distant avec la probabilité αj ou
exécutée localement avec la probabilité (1− αj).

Selon notre analyse, une QoE améliorée n’est obtenue que lorsqu’un réglage optimal des proba-
bilités de déchargement est effectué à la fois du côté périphérique et du côté serveur. Tout écart par
rapport à ce paramètre optimal peut entraîner une dégradation des performances. En raison de la
nature inhérente du statut du réseau, qui varie dans le temps et qui est une conséquence directe de la
mobilité de l’utilisateur et des fluctuations du trafic, un tel réglage optimal peut ne pas être obtenu
et maintenu facilement. Pour faire face à ce problème, nous donnons aux utilisateurs mobiles une
conscience de soi qui leur permet de s’appuyer, le cas échéant, sur leurs ressources informatiques
locales. Ce faisant, nous développons un cadre d’optimisation des critères pour permettre aux UMs
d’utiliser leurs informations locales et de minimiser le temps de réponse ainsi que leur consommation
d’énergie en ajustant de manière dynamique leur probabilité de déchargement ainsi que la fréquence
d’horloge de CPU à l’aide de la technique DVS.

Premièrement, considérons le scénario d’informatique de périphérie avec α défini sur zéro. Les
figures R.13(a) et (b) décrivent les performances en termes de retard en énergie du déchargement
partiel assisté par MEC. Le temps de réponse moyen en fonction de la probabilité de déchargement
β pour différentes valeurs de ζ est présenté à la Fig. R.13(a). Les résultats indiquent que le temps
de réponse moyen est une fonction convexe de β. Pour ζ = 20%, définir β = 0.66 entraîne une
réduction de 82% du temps de réponse moyen par rapport au schéma de calcul entièrement local
(c’est-à-dire, β = 0). Nous notons que la valeur optimale de β dépend en grande partie de ζ. Plus
précisément, lorsque ζ augmente, la valeur optimale de β diminue, comme le montre la Fig. R.13(a).
La figure R.13(b) décrit la consommation d’énergie moyenne par tâche par rapport à β pour dif-
férentes valeurs de la fréquence d’horloge du processeur fi. Les courbes du bas des figures R.13(a)
et (b) mettent en évidence le compromis qu’une UM peut faire entre le temps de réponse moyen et
l’énergie par tâche pour ζ = 20%. Nous observons également d’après la figure R.13(b) que, pour
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Figure R.14: Comparaison des performances en termes de temps de réponse moyen de edge unique-
ment, en cloud uniquement et l’informatique coopérative (ζ = 20%).

des valeurs plus grandes de fi, le déchargement partiel réduit non seulement le temps de réponse
moyen, mais il aide également les UMs à réduire leur consommation d’énergie.

Ensuite, nous examinons les gains de performances obtenus grâce à notre informatique coopéra-
tive trilatérale dispositif-périphérique-nuage (device-edge-cloud) proposé. La figure R.14 illustre le
temps de réponse moyen par rapport à β pour les trois scénarios suivants: (i) uniquement en pé-
riphérie (α = 0), (ii) en nuage uniquement (α = 1), et (iii) l’informatique coopérative (α = α∗), où
α∗ indique la valeur optimale de α définie par le réseau pour minimiser le temps moyen d’exécution
des tâches des serveurs de périphérie. La figure R.14 montre que le schéma de calcul coopératif
proposé offre de meilleures performances en terme de retard que le schéma à bord seul ou en nuage,
en particulier pour β > 0.64. Alors que les schémas Edge et Cloud uniquement peuvent tous deux
prendre un temps de réponse plus long en raison d’un délai de mise en file d’attente excessif pour
des valeurs élevées de β, la coopération trilatérale entre le processeur, le serveur Edge et le cloud
distant réduit le temps de réponse de définir β et α sur leurs valeurs optimales (voir la courbe
inférieure de la Fig. R.14).

Conclusion

L’Internet a constamment évolué de l’Internet mobile dominé par le trafic H2H vers l’IdO émergent
avec ses communications M2M sous-jacentes. L’avènement de la robotique avancée, associé aux
infrastructures de réseau émergentes ultra-réactives, permettra de transmettre la modalité tactile
(également appelée sensation haptique) en plus du trafic traditionnel triple play (voix, vidéo et don-
nées) sous le terme communément appelé Internet Tactile. L’IdO, sans aucune implication humaine
dans les communications machine-à-machine (M2M) sous-jacentes, est utile pour l’automatisation
de processus industriels et autres processus centrés sur les machines, tout en préservant largement
l’humain. En revanche, l’Internet Tactile permet de piloter et de contrôler de manière tactile non
seulement des objets virtuels, mais aussi des objets réels via des robots télé-opérés, sera centré sur
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les communications humain-à-robot/-machine (H2R/M), appelant ainsi une approche centrée sur
l’homme.

Cette thèse de doctorat est construite sur les réseaux HetNets LTE-A améliorés par le FiWi, en
tant qu’infrastructures de réseau sous-jacentes prometteuses sur lesquelles l’Internet Tactile émer-
gent devrait s’appuyer. En particulier, nous avons étudié différents aspects de l’Internet Tactile
émergent et présenté des informations techniques approfondies sur la réalisation de réseaux améliorés
de télé-opération centrée sur la technologie HITL, notamment la modélisation du trafic haptique à
base de traces, la prévision d’échantillons haptiques, la coordination des tâches via la connaissance
du contexte et de soi, l’attribution de tâches de télé-opération et le déchargement informatique
coopératif. Nous nous sommes concentrés sur l’Internet Tactile en train de devenir l’une des ap-
plications les plus intéressantes à faible temps de latence pour la création de nouvelles expériences
immersives. Nous avons passé en revue les principes de conception centrés sur HITL qui ajoutent
une nouvelle dimension à l’interaction homme-machine via Internet et distinguent l’Internet Tactile
de l’IdO plus centré sur la machine. Exploitant la perception humaine de l’haptique pour réduire
le débit de paquets haptiques au moyen du codage en bande morte, nous avons déduit modèles
de trafic haptique à partir d’expériences de télé-opération. Notre analyse des traces haptiques a
montré que supposer que le trafic Internet Tactile était distribué par Pareto n’était pas valable pour
le trafic analysé, tout en supposant qu’il s’agisse d’un trafic de Poisson, n’était valable que dans
un cas particulier. En général, nous avons observé que les chemins de commande et de rétroaction
des systèmes de télé-opération peuvent être conjointement modélisés par la distribution de Pareto
généralisée, la distribution gamma ou les distributions de temps inter-arrivée de paquet déterministe,
en fonction de la valeur donnée des paramètres de bande morte respectifs. Nous avons ensuite utilisé
l’apprentissage automatique pour implémenter un prévisionniste d’échantillons multi-échantillons,
capable de dissocier la rétroaction haptique de l’impact de retards de propagation importants. Cela
permet aux humains de percevoir des environnements de tâches distants dans le temps avec une
granularité de 1 ms. Nous avons ensuite étudié les performances de l’allocation de tâches multi-
robots centrée sur HART, auto-consciente et contextuelle, sur des infrastructures Internet Tactile
basées sur FiWi. Nous avons mis en lumière à quel moment, de quelle manière et dans quelles circon-
stances la propriété des MRs par les utilisateurs devenait bénéfique en termes de OPEX par tâche
exécutée. En outre, nous avons évalué les performances de notre algorithme CADMRTC proposé en
termes de temps moyen d’achèvement des tâches, d’OPEX par tâche exécutée et de rapport entre
le nombre de tâches exécutées par les MRs propriétaires et le nombre total de tâches. Nous avons
ensuite examiné les performances de notre algorithme CAPSTA proposé pour résoudre l’attribution
prioritaire et la planification des tâches de télé-opération à délai dans les infrastructures de Internet
Tactile amélioré par le FiWi. Les résultats obtenus montrent que l’algorithme proposé réduit le
temps moyen d’achèvement des tâches pondéré, le retard maximal et l’OPEX moyen par rapport à
l’algorithme de référence RSA.

Finalement, nous avons étudié le déchargement coopératif des calculs dans réseaux HetNets LTE-
A améliorés par le FiWi compatible avec MEC du point de vue de la conception de l’architecture
de réseau et du mécanisme de déchargement. Outre la conception de réseaux HetNets LTE-A
améliorés par le FiWi compatible avec MEC à faible temps de latence, nous avons présenté une
stratégie de déchargement simple mais efficace qui exploite la coopération trilatérale entre pé-
riphériques, serveurs de périphérie et cloud distant. Nous avons développé un cadre analytique
pour estimer le temps de réponse moyen et la consommation d’énergie des utilisateurs mobiles dans
une infrastructure de réseau compatible MEC basée sur FiWi. Nos résultats démontrent les perfor-
mances supérieures du schéma de calcul coopératif proposé par rapport aux schémas de type Edge
ou Cloud. De plus, nous avons montré qu’en définissant de manière optimale les probabilités de
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déchargement, les UMs pouvaient réduire le temps de réponse moyen jusqu’à 81%. Afin de faire face
à la complexité engendrée, nous avons également conçu un mécanisme basé sur l’auto-organisation,
qui permet à un UM, utilisant des informations locales, de faire des compromis de délai d’énergie
appropriés et de minimiser conjointement le temps d’exécution moyen et la consommation d’énergie
en ajustant de manière dynamique la probabilité de déchargement et sa fréquence d’horloge CPU
locale en utilisant la technique DVS.
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Chapter 1

Introduction

1.1 Background and Motivation

While the commercial exploitation of the mobile Internet is enabling users to exchange traditional

triple-play (i.e., audio, video, and data) traffic, the emerging Tactile Internet envisages to realize

haptic communications, enabling users to not only see and hear but also touch and manipulate

remote physical and/or virtual objects through the Internet [1] [2]. The Tactile Internet, which is

driven by recent advancements in computerization, automation, and robotization, is expected to

significantly augment human-machine interaction, thereby converting today’s content delivery net-

works into skillset/labour delivery networks [3], [4], [5]. The Tactile Internet holds promise to create

new entrepreneurial opportunities and jobs, which are expected to have a profound socioeconomic

impact on almost every segment of our everyday life with use cases ranging from augmented/virtual

reality (AR/VR) and autonomous driving to healthcare and smart grid. Many of these industry

verticals require very low latency and ultra-high reliability for realizing ultra-responsive interac-

tive applications such as bilateral teleoperation/telepresence. Note, however, that some use cases

which do not necessarily require mobility all the time can be realized over fixed broadband net-

works. This suggests that future cellular networks need to be fully converged networks, allowing

for a flexible selection of different fixed and mobile access technologies while sharing core network

functionalities [6].
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Figure 1.1 – Revolutionary leap of the Tactile Internet in compliance with ITU-T Technology Watch
Report.

Interactive systems, including in particular AR/VR and teleoperation, demand an ultra low

round-trip latency of 1-10 ms together with high reliability. The high availability and security,

ultra-fast and highly-reliable response times, and carrier-grade reliability of the Tactile Internet will

add a new dimension to interaction of humans with machines/robots. To gain a more profound

understanding of the Tactile Internet, it may be helpful to compare it to the emerging Internet of

Things (IoT) and 5G mobile networks. While the concept of IoT is far from novel and goes back

to 1995, it is only recently that we are experiencing a rapidly increasing growth of interest in IoT

from both industry and academia. Figure 1.1 depicts the revolutionary leap of the Tactile Internet

in compliance with the ITU-T1 Technology Watch Report on the Tactile Internet [7]. While the

ultra-fast response time and carrier grade reliability of the Tactile Internet will add a new dimension

to human-machine interaction, emerging 5G networks have to handle an unprecedented growth of

mobile data traffic as well as an enormous volume of data from smart sensors and actuators, the

empowering elements of the IoT. It is evident that unlike the previous four generations, future

mobile networks will lead to a seamless integration of WiFi and cellular technologies and standards,

paving the way towards realizing so-called heterogenous networks (HetNets) based on small-cell

technologies, which mandates the need for addressing the backhaul bottleneck challenge.

1International Telecommunication Union - Telecommunication Standardization Sector (ITU-T)
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The subtle difference between the Tactile Internet and IoT may be best expressed in terms of

underlying communications paradigms and enabling end-devices. The Tactile Internet involves the

inherent human-in-the-loop (HITL) nature of human-to-machine interaction, whereas the IoT is

centered around autonomous machine-to-machine (M2M) communications without any interaction

with humans. The Tactile Internet relies on human-to-machine/robot (H2M/R) interaction and

thus allows for a human-centric design approach towards creating novel immersive experiences, ex-

panding humans’ capabilities through the Internet. A popular misinterpretation about robotics is

that intelligent robotic systems will eventually substitute humans in one job after another. This

argument may be true for some jobs, but we note that even though advanced robotics can be de-

ployed to automate certain jobs, its greater potential, yet to be further explored, is to complement

and augment human capabilities. New jobs and innovative business opportunities that arise from

human-machine symbiosis emerge in the so-called missing middle that refers to the new ways that

have to bridge the gap between human-only and machine-only activities. This paves the way toward

the so-called third wave of business transformation, which will be centred around human+machine

hybrid activities [8]. An important requirement of developing the missing middle is to fully under-

stand how humans can help machines and how machines can help humans. A recent example of

identifying the relative strengths of humans and machines and leveraging them to fill the missing

middle can be found at automobile manufacturer Audi. Having deployed a fleet of Audi Robotic

Telepresence (ART) systems, Audi has set forth employee augmentation that not only helps train

technicians in diagnostics and repair, but also accelerates delivery of service to customers [9].

By augmenting traditional audiovisual and data communications by the haptic modality2, touch-

ing, sensing, and physically interacting with remote objects becomes a reality. This, in turn, sub-

stantially improves human-to-human (H2H) as well as H2R interaction. For illustration, Fig. 1.2

depicts a typical teleoperation system based on bidirectional haptic communications between a hu-

man operator (HO) at one end and a teleoperator robot (TOR) at the other. The ultimate goal

of a bilateral teleoperation system is to provide the HO with the impression of feeling immersed

and being present in the remote environment. This can be achieved by providing the HO with

multi-modal sensory feedback including visual, auditory, and haptic signals [11]. In a teleoperation

2The term "haptics" refers to both kinesthetic perception (information of forces, torques, position, velocity, etc.,
which are sensed by the muscles, joints, and tendons of a human body) and tactile perception (information of surface
texture, friction, etc. sensed by different types of mechanoreceptors in the skin) [10].
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Figure 1.2 – Teleoperation system based on bidirectional haptic communications between human op-
erator (HO) and teleoperator robot (TOR) in a remote task environment.

system, the term degrees-of-freedom (DoF)3 refers to the number of independent coordinates re-

quired to completely specify and control/steer the position, orientation, and velocity of the TOR.

Further, a local human system interface (HSI) device is used to display haptic interaction with the

remote TOR to the HO. The local control loops on both ends of the teleoperation system ensure the

stability and tracking performance of the HSI and TOR. Furthermore, as shown in Fig. 1.2, percep-

tual deadband based data reduction may be deployed as a lossy compression technique by exploiting

the fact that human end-users are not able to discriminate relatively small changes in haptic stimuli.

In this thesis, we particularly focus on the communication network aspects of teleoperation, paying

particular attention to the notion of average end-to-end delay, given its importance in the Tactile

Internet. The average end-to-end delay induced by the communication network is the time elapsed

between the time instant a haptic packet arrives at the medium access control (MAC) queue of a

given source HO/TOR and the time instant when it is successfully received by the corresponding

destination TOR/HO.

The discussion above indicates that improving quality-of-experience (QoE) for immersive bi-

lateral teleoperation applications mandates the need for ultra-reliable low-latency communica-

tions (URLLC), which not only provides a low average end-to-end latency, but also ensures an

upper-bound delay experienced by haptic packets. From a communication network perspective, ef-

3Currently available teleoperation systems range from 1-DoF to >20-DoF TORs. For instance, a 6-DoF TOR
allows for both translational motion (in 3D space) via force and rotational motion (pitch, yaw, and roll) via torque.
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forts towards realizing an immersive ultra-responsive teleoperation experience have been pursued in

the following domains: (i) communication network and (ii) intelligent edge-computing/-processing.

First, we focus on the communication network for networked teleoperation coexistent with conven-

tional H2H and M2M traffic. Note that delay requirements of HITL-centric bilateral teleoperation

systems range from 1 ms to hundreds of milliseconds, depending on the application scenarios and

dynamicity of the remote environment. If the remote environment is less dynamic, the interaction

between the HO and TOR is increased. Conversely, highly dynamic environments may place high

demands for ultra-fast response times of as low as 1 ms. Current cellular networks (e.g., 3G or 4G

LTE-A) miss this target by at least one order of magnitude. End-to-end latency measurements in

an LTE network in a dense urban area for a low-mobility scenario with a proprietary application

running on an Android smartphone showed an average end-to-end delay of roughly 47 ms and 54

ms for low and high cell load scenarios [12]. More recently, the authors of [6] have reported that the

achieved average round-trip delay of 3G and 4G networks are 63 and 53 ms, respectively, according

to the traces released by UK regulator Ofcom. According to carrier WiFi vendor Aptilo Networks,

despite the ongoing competition between LTE and WiFi, the two technologies are in fact comple-

mentary, as the latency being roughly ten times less in WiFi leads to a higher user experience,

whereas LTE provides long-range outdoor coverage (see http://www.aptilo.com for further details).

With the wide deployment of passive optical networks (PONs) providing high capacity and

reliability and wireless networks offering ubiquitous and flexible connectivity, interest has been

growing in bimodal fiber-wireless (FiWi) networks that leverage the complementary benefits of

optical fiber and wireless technologies. FiWi enhanced LTE-A HetNets represent a compelling

solution to enable 4G cellular networks to meet the key requirements of low-latency and high-

availability [13]. Recently, the authors of [13] have evaluated the maximum aggregate throughput,

offloading efficiency, and delay performance of FiWi enhanced LTE-A HetNets and have shown that

via WiFi offloading and fiber backhaul sharing, an ultra-low latency of 1-10 millisecond and highly

reliable network connectivity can be achieved, especially at low to moderate traffic loads.

Next, we turn our attention to intelligent methods to compensate for the communication induced

latency. To bridge the gap between the rapid increase of computation-intensive, delay-sensitive

applications (e.g., Tactile Internet, AR/VR, and interactive gaming) and resource-limited smart

mobile devices, mobile cloud computing (MCC) has emerged to reduce the computational bur-

den of mobile devices and widen their capabilities by extending the notion of cloud computing to
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the mobile environment via computation offloading. MCC allows mobile devices to benefit from

powerful computing resources to save their battery power and accelerate task execution, though it

raises several technical challenges due to additional communication overhead and poor reliability

that remote computation offloading may introduce. To overcome these limitations, mobile edge

computing has recently emerged to provide cloud computing capabilities at the edge of access net-

works, leveraging the physical proximity of edge servers and mobile users to achieve a reduced

communication latency and increased reliability. More recently, the European Telecommunications

Standards Institute (ETSI) has dropped the word “mobile” and introduced the term multi-access

edge computing (MEC) in order to broaden its applicability to heterogeneous networks, including

WiFi and fixed access technologies (e.g., fiber) [14]. There is now a growing interest among industry

players in extending the cloud to decentralized levels of self-managed entities. This trend toward

decentralization has led to the new paradigm of MEC, in which computing and storage resources,

variously referred to as cloudlets, mircro datacenters, or fog nodes, are placed at the Internet’s edge

in proximity to wireless end devices in order to achieve low end-to-end latency.

1.2 Tactile Internet: Prior Art and Open Challenges

In this section, we review prior research work related to the Tactile Internet and, after classifying

it into four separate yet interdependent categories, we discuss each one in greater detail. The main

branches of our classification are URLLC, multi-robot task allocation, HITL-centric teleoperation,

and MEC.

1.2.1 URLLC

For a comprehensive and up-to-date survey on methodologies and technologies for enabling URLLC

infrastructures for haptic communications, we refer the interested reader to [10] and the references

therein. Ref. [15] provided an overview of communication features and capabilities of 5G and its role

as a distributed computing platform to support Tactile Internet services. Recently, there have been

numerous research efforts in the area of 5G enabled Tactile Internet. The authors of [15] provided

an overview of communication features and capabilities of the 5G and its role as a distributed

computing platform to address the Tactile Internet services. The authors of [16] proposed a resource
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allocation framework in a single-cell sparse code multiple access wireless network with multiple

users with the objective of maximizing throughput subject to a given transmit power and delay

constraint for haptic users. In [17], a proactive packet dropping mechanism was proposed for time

division duplexing cellular systems, which, together with optimizing the queue state information

and channel state information dependent transmission policy, was proven to satisfy given quality-

of-service requirements with finite transmit power. To achieve low per-packet in-order delivery

delays for 5G and Tactile Internet applications, the authors of [18] investigated multipath transport

protocols across cellular and/or public WiFi networks. More recently, the authors of [19] studied

the Tactile Internet from a physical layer and medium-access control perspective and then presented

novel system design of URLLC for new radio (NR) LTE technologies. We note, however, that the

above mentioned works focused on designing sophisticated channel access mechanisms for cellular

networks only and they considered neither backward compatibility issues nor the widely-deployed

WiFi technology.

In order to meet the stringent latency and reliability requirements of the Tactile Internet in

a more efficient manner, network operators will rely on softwarization and virtualization via the

concepts of software-defined networking (SDN) and network function virtualization (NFV). While

softwarization allows for timely and cost-efficient deployment of new services, virtualization will

be instrumental in service migration, upgrade, and scalability for mobile users. In this context,

SDN enables to exploit the so-called method of network slicing, which allows for allocating network

resources more efficiently to satisfy the often heterogenous QoS requirements of different applica-

tions. For instance, the authors of [20] presented a game theory based flexible dynamic network

slicing strategy for Tactile Internet applications, where incoming traffic from users can be temporar-

ily offloaded from operator-provided networks to user-provided networks, if needed. The authors

of [21] developed an SDN-based low-latency management framework for distributed service function

chains. A softwarized 5G architecture for end-to-end reliability of the mission-critical traffic was

proposed in [22].

Clearly, a cost-efficient realization of the URLLC for the Tactile Internet requires leveraging not

only the cellular networks but also widely deployed, low-cost Ethernet-based technologies, e.g., WiFi.

Toward this end, the authors of [23] investigated a time and wavelength division multiplexing passive

optical LAN and demonstrated the benefits of using a predictive resource allocation algorithm for

future Tactile Internet based e-health applications. Note, however, that the main focus of this
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study was only on the optical backhaul without considering any wireless access mechanism. In

contrast, [24] studied downlink transmission mechanisms for SmartBANs based on IEEE 802.15.6

technology. In [25], the authors developed an analytical framework using an M/G/1 queueing model

for estimating the wireless transmission latency from tactile body-worn devices to the wireless

access point, whereby the hybrid coordination function controlled channel access (HCCA) MAC

protocol is used. The authors of [26] took a different approach and focused on the latency and

reliability requirements of Tactile Internet based cooperative automated driving, relying on recent

advancements in vehicular networking and automated driving. Note that backhaul was not discussed

in these studies. Further, none of these works presented a unified delay analysis of teleoperation

over a bimodal FiWi based Tactile Internet networking infrastructure.

1.2.2 Multi-robot task allocation

Clearly, while URLCC is necessary to meet the very low latency and ultra-high reliability require-

ments of the Tactile Internet, it does not address the proper task assignment nor does it provide

suitable mechanisms to orchestrate the mutually beneficial cooperation of humans and machines.

Beside URLLC networking infrastructures, which lay the groundwork for the Tactile Internet, an-

other important aspect and key challenge of the Tactile Internet vision is related to economic

considerations, addressing the problem of assignment of tasks in a networked multi-robot system.

Ref. [27] presented an overview of open research challenges in cloud robotics and explored the po-

tential benefits of big data, cloud computing, collective robot learning, and human computation in

cloud-based robotic and automation systems. The authors of [28] presented a comprehensive com-

parison between stand-alone, networked, and cloud robotic systems and then put forward the idea of

sharing the processing resources across a group of individual robots in a cloud-assisted cooperative

robotic scenario.

Despite an existing great body of literature on development of advanced intelligent stand-alone

robots, coordination of (tele)robots in a system of networked robots has received only little at-

tention. In this context, a task allocation strategy that combines suitable host robot selection and

computation task offloading onto collaborative nodes was presented in [29]. To mitigate failures dur-

ing task execution, a neighboring robot-assisted failure reporting mechanism was introduced in [30].

We note that both [29] and [30] addressed a static task allocation problem, where the task coordi-
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nator has a priori knowledge of the given task demands, robot locations, and failure probability. A

hierarchical auction-based resource allocation scheme for cloud robotics systems in ad-hoc networks

was presented in [31]. The authors of [32] aimed at modeling and solving the problem of mobile

robot task planning by means of mixed-integer programming and constraint programming. None

of the existing studies in multi-robot task coordination addresses both self- and context-awareness

in a unified manner.

1.2.3 HITL-centric teleoperation

After designing an URLLC networking infrastructure that lays the groundwork for the Tactile Inter-

net, the next important aspect and key challenge is enhancing the quality-of-experience/immersion

of users/human operators, while taking into account economic considerations. Typical bilateral

teleoperation systems provide the human operator with haptic feedback, which can be categorized

as kinesthetic force or cutaneous tactile feedback. Kinesthetic feedback provides forces and torques

perceived by a human operator’s hand/joints, whereas tactile feedback provides stimulation to her

skin. In such systems, haptic feedback is instrumental for precise manipulation of the remote en-

vironment. Unlike the transmission of audio and video signals, in bilateral teleoperation systems

haptic information are exchanged bidirectionally over the underlying networking infrastructure. It

involves a human operator on one end and closes a global control loop between her and the actua-

tors/teleoperators on the other. In such systems, even minor communication induced time delays

and packet losses may destabilize the haptic communications system. For a comprehensive sur-

vey on methodologies for stabilizing bilateral teleoperation systems over delayed communications

networks we refer the interested reader to [10] and the references therein.

A true immersion into the remote environment becomes possible only when the human operator

is provided with enough multimodal sensory feedback, including in particular the sense of touch.

This is realized via the so-called robotic embodiment. Toward this end, the authors of [33] studied

the feasibility of displaying interaction force information to the human operator through fingerpad

tactile skin deformation feedback. In [34], the authors explored the embodiment enhancement

of teleoperated industrial tasks by means of employing AR feedback to the human operator and

showed that full AR overlay can lead to an improved task execution in terms of accuracy as well

as completion time. The authors of [35] introduced the vision of the Tactile Robots (i.e., avatars)
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as the next evolutionary step in rapidly developing robotic systems and elaborated on the enabling

technologies for embodiment of the Tactile Internet via smart wearables.

To the best of the author’s knowledge, none of the existing studies in machine scheduling ad-

dresses the multi-objective optimization of joint prioritized scheduling and assignment of delay-

constrained teleoperation tasks to human operators, taking into account economic considerations

from a system point of view. The joint assignment and scheduling of delay-constrained teleoperation

tasks on multiple human operators can be viewed as a variation of the well-studied parallel machine

scheduling problem [36]. Mapping the problem of assignment and scheduling of delay-constrained

teleoperation tasks to the parallel machine scheduling problem allows leveraging on the existing

scheduling strategies, algorithms, and mathematical derivations for developing and evaluating new

solutions.

1.2.4 MEC

While computation offloading for mobile computing systems has been around for almost a decade,

the edge/fog computing paradigm has emerged only recently. The authors of [37] proposed a novel

cloudlet cellular network architecture to enable mobile users to offload their computation workload

to nearby cloudlets and then designed a latency-aware workload offloading strategy to allocate the

offloaded workload to suitable cloudlets. The work in [37] was extended in [38] by incorporating a

two-tier hierarchical architecture for cloudlets. In [39], a multiobjective optimization problem for

fog computing systems was formulated with the joint objective of minimizing energy consumption,

execution delay, and payment cost by finding the optimal offloading probability and transmit power

of mobile devices. Note, however, that in [39] the cooperation between edge servers and the remote

cloud is limited to the case when the edge servers are overloaded with the offloaded tasks from mobile

devices, thus not fully reaping the benefits of the two-tier hierarchical edge computing architecture.

The authors of [40] aimed to minimize the response time in a scenario with two MEC servers by

focusing on both computation and communication latencies through virtual machine migration and

transmission power control, respectively. The work in [40] was extended in [41] to further reduce

the average response time of users by using a particle swarm optimization approach to balance the

workload between MEC servers. Note that these studies assumed non-adjustable computational
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capabilities of the CPUs at the device side. Besides, they considered only the cellular access mode

without any computation offloading through WiFi.

To achieve the desired energy-delay performance, the so-called dynamic voltage scaling (DVS) is

a promising technique that varies the supply voltage and clock frequency based on the computation

load to achieve a suitable tradeoff between task execution time and energy consumption [42]. In

DVS, the local execution time of delay-sensitive tasks as well as the energy consumption of mobile

devices can be further minimized by controlling the local CPU frequency. In [43], a Lyapunov

optimization-based dynamic computation offloading algorithm was proposed for MEC systems with

mobile devices powered by renewable energy, which jointly determines the offloading decision, CPU

cycle frequencies, and transmit power for offloading. Note that neither the role of backhaul nor

conventional cloud were discussed in [43], nor was WiFi considered therein. In [42], the authors

investigated partial computation offloading by jointly optimizing the computational speed, trans-

mission power, and offloading ratio of mobile devices in a single-hop edge computing scenario. For

femto-cloud computing systems, where the cloud server is formed by a set of femto access points,

the transmit power, precoder, and computation load distribution were jointly optimized in [44]. The

work in [45] was one of the first to address the joint computation offloading and resource scheduling

problem with task dependencies for mobile cloud computing.

To the best of the author’s knowledge, while many studies have addressed the problem of MEC-

based offloading, the performance-limiting impact of backhaul latency and user mobility has not

been examined in sufficient detail previously. Further, none of the existing studies have addressed

dynamic cooperative offloading for MEC enabled FiWi enhanced HetNets from an architecture

design and offloading orchestration perspective, while considering both WiFi and cellular access

networks. Moreover, in all previous studies that aimed to realize multi-tier hierarchical MEC, the

incorporation of self-organization via DVS has not been investigated yet.

1.3 Objectives

The objectives of this thesis are as follows.

• The Tactile Internet is one of the most interesting low-latency applications for creating novel

immersive experiences. The first objective of the thesis is to investigate the HITL-centric de-
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sign principles that add a new dimension to the human-to-machine interaction via the Internet

and set the Tactile Internet aside from the more machine-centric IoT. Another objective of

the thesis is to explore how we can make sure that the potential of the Tactile Internet be

unleashed for a race with (rather than against) machines.

• For realizing successful deployment of immersive Tactile Internet applications, it is crucial to

identify the salient features and unique characteristics of haptic traffic. Despite growing inter-

est in the Tactile Internet, there is still limited understanding of real haptic traffic. As future

access networks will be highly integrative, designing suitable MAC solutions for coexistent

H2H, M2M, and H2R traffic classes requires proper stochastic models that closely describe

the packet arrival and packet size of the Tactile Internet traffic. One of the main objectives

of this thesis is to understand the Tactile Internet traffic in terms of packet rate, packet size,

packet interarrival time, and sample autocorrelation.

• The crucial roadblock toward successful deployment of Tactile Internet teleoperation is end-

to-end latency, which is either imposed by speed of light –also known as propagation delay–

or intermediate queue(s), if any. Designing proper MAC solutions at access networks as well

as bringing the teleoperation points of interaction closer to each other may partly reduce the

latter delay component. Nevertheless, the propagation delay still poses strong limitations on

the extent to which transparent and stable teleoperation can be realized. Towards designing

responsive, ultra-low latency, and highly reliable Tactile Internet teleoperation and in order to

fully unleash the potential of FiWi enhanced networks, the role of edge-intelligence, deployed

at MEC servers in close proximity to end-users, needs careful investigation. An important

objective of the thesis is to provide insights into leveraging machine learning to compensate

for delayed haptic samples via a human-centric design approach.

• With the advent of safe collaborative robots, their seamless integration into human teams as

teammates is starting to gain steam as part of the vision of the emerging Tactile Internet.

While necessary, low task execution time and ultra-reliable human-robot connectivity are

not sufficient to unleash the full potential of the resultant HART applications. One of the

objectives of the thesis is to inquire into possibilities to further extend the capabilities of FiWi

enhanced LTE-A HetNets, paying particular attention to the dichotomy between automation

and augmentation (i.e., extension of capabilities) of the human through the Tactile Internet.
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• An interesting example of human+machine hybrid activities is semiautonomous robotic sys-

tems. Unlike their fully-autonomous counterparts, semiautonomous robotic systems rely on

human assistance from time to time via teleoperation and/or telepresence when domain ex-

pertise is needed to accomplish a specific task. As these robots will need to request human

assistance via teleoperation/presence, mapping these requests to the human operators them-

selves stands as a difficult optimization problem. One of the objectives of the thesis is to

design an algorithmic solution to solve the problem of joint scheduling and assignment of

teleoperation tasks to human operators while taking into account economic considerations.

• In addition to economic considerations and URLLC requirements, another important aspect

of the 5G vision is decentralization. An important objective of the thesis is therefore to

investigate the role of cooperative MEC in a hierarchical cloud-, edge-, and local computing

scenario. This thesis aims to design proper offloading strategies to decentralize the computing

across the edge servers as well as the mobile users by leveraging self-organization for realizing

suitable energy-delay trade-offs for mobile users.

1.4 Research Methodology

The research methodology applied in this thesis includes traffic modeling, network architecture

design, mechanism design, and performance analysis, as summarized in Fig. 1.3 and briefly described

in the following.

• Traffic Modeling: A statistical, trace-driven modeling of teleoperation traffic is conducted,

which investigates the role of deadband coding to reduce the haptic packet rate. The specific

characteristics of Tactile Internet traffic are identified by studying two sets of haptic traces

obtained from real-world teleoperation experiments with a different number of DoF. The

presented haptic traffic characterization aims to model the size as well as the arrival process

of haptic packets in both command and feedback paths, taking TORs with different DoF and

perceptual coding into account. In addition, correlation patterns within the feedback samples

are identified and modeled in terms of sample autocorrelation.

• Network architecture: Novel FiWi-based network architectures are developed to enable emerg-

ing immersive low-latency Tactile Internet applications. In particular, the developed architec-
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Figure 1.3 – Research methodology.

tures include AI-embedded MEC over FiWi enhanced HetNets, which allows for forecasting

haptic samples. Further, hierarchical edge computing architecture is developed to enable co-

operative computational offloading to help mobile users accelerate task execution while saving

energy.

• Mechanism design: Novel algorithmic solutions are presented throughout the thesis to ad-

dress the above mentioned objectives. These algorithms/mechanisms include AI-based haptic

sample forecasting, context- and self-aware task coordination, prioritized scheduling and as-

signment of teleoperation tasks, and cooperative computational offloading strategy.

• Performance analysis: In the thesis, queueing theory, probability theory, multi-objective op-

timization, and machine learning have been leveraged to develop the analytical frameworks

and conduct performance evaluations. In particular, a comprehensive analytical framework

based on probability theory and queueing theory is developed. By means of comprehensive
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analysis and simulations the performance of the proposed algorithmic solutions is investigated

for a variety of network and robot configurations.

1.5 Contributions of the Thesis

This thesis is a compilation of ten publications (six journal articles and four book chapters), which

are published or accepted for publication in high-calibre IEEE and OSA journals as well as renowned

book publishers (e.g., Wiley and CRC). The key contributions of the thesis are briefly discussed in

the following.

1.5.1 Immersive Tactile Internet Experiences via Edge Intelligence

The outcome of this research has been published in the following journals/book chapters and the

main contributions of this work are summarized below:

[J1] M. Maier and A. Ebrahimzadeh. Towards Immersive Tactile Internet Experiences: Low-

Latency FiWi Enhanced Mobile Networks With Edge Intelligence [Invited]. IEEE/OSA Jour-

nal of Optical Communications and Networking, Special Issue on Latency in Edge Optical

Networks, vol. 11, no. 4, pp. B10-B25, Apr. 2019.

[J2] M. Maier, A. Ebrahimzadeh, and M. Chowdhury. The Tactile Internet: Automation or Aug-

mentation of the Human?. IEEE Access, vol. 6, pp. 41607-41618, 2018.

[BC1] A. Ebrahimzadeh, M. Chowdhury, and M. Maier. The Tactile Internet over 5G FiWi Ar-

chitectures. John Wiley & Sons: Optical and Wireless Convergence for 5G Networks, pp.

197-223, Aug. 2019.

[BC2] A. Ebrahimzadeh and M. Maier. Toward HITL-Centric Edge Computing: MEC in Fiber-

Wireless Tactile Internet Infrastructures. IET : Edge Computing: Models, Technologies and

Applications, accepted for publication.

This part of the thesis focuses on the emerging Tactile Internet as one of the most interesting low-

latency applications enabling novel immersive experiences. After describing the Tactile Internet’s
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human-in-the-loop-centric design principles and haptic communications models, the development

of decentralized cooperative dynamic bandwidth allocation algorithms are elaborated on for end-

to-end resource coordination in FiWi access networks. Further, a thorough haptic trace-driven,

statistical characterization of teleoperation traffic is conducted, which gives insights into modeling

the Tactile Internet traffic in terms of packet rate, packet size, packet arrival process, and sample

autocorrelation. Machine learning is then employed in the context of FiWi enhanced heterogeneous

networks to decouple haptic feedback from the impact of extensive propagation delays. This enables

humans to perceive remote task environments in time at a 1-ms granularity [46], [47], [48], and [49].

We note that machine learning is just one of the several techniques under consideration, e.g., haptic

data compression via deadband coding, etc.

1.5.2 Context- and Self-Awareness for Task Coordination

The outcome of this research has been published in the following journal article and the main

contributions of this work are summarized below:

[J3] A. Ebrahimzadeh, M. Chowdhury, and M. Maier. Human-Agent-Robot Task Coordination

in FiWi-based Tactile Internet Infrastructures Using Context- and Self-Awareness. IEEE

Transactions on Network and Service Management, vol. 16, no. 3, pp. 1127-1142, Sept. 2019.

Context-awareness is used to develop a HART-centric task coordination algorithm that mini-

mizes the completion time of physical/digital tasks as well as average operational expenditure (OPEX)

by spreading ownership of robots across mobile users. In addition, self-awareness is capitalized on

to improve the performance of a given robot by identifying its capabilities as well as the objective

requirements by means of optimal motion planning to minimize its energy consumption as well as

traverse time. The proposed self- and context-aware HART-centric allocation scheme for both phys-

ical and digital tasks is used to coordinate the automation and augmentation of mutually beneficial

human-machine coactivities across a FiWi based Tactile Internet infrastructure [50].
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1.5.3 Scheduling and Assignment of Delay-Constrained Teleoperation Tasks

The outcome of this research has been published in the following journal and book chapter and the

main contributions of this work are summarized below:

[J4] A. Ebrahimzadeh and M. Maier. Delay-Constrained Teleoperation Task Scheduling and As-

signment for Human+Machine Hybrid Activities over FiWi Enhanced Networks. IEEE Trans-

actions on Network and Service Management, accepted for publication.

[BC3] A. Ebrahimzadeh and M. Maier. Tactile Internet over FiWi enhanced LTE-A Het-Nets via

Artificial Intelligence Embedded Multi-Access Edge-Computing. CRC Press: 5G-Enabled

Internet of Things, accepted for publication.

After elaborating on the envisioned bimodal FiWi network infrastructure and its role in realizing

teleoperation in the Tactile Internet, the problem of joint prioritized scheduling and assignment

of delay-constrained teleoperation tasks to human operators is formulated and solved with the

objective to minimize the average weighted task completion time, maximum tardiness, and OPEX

per task. Further, the end-to-end packet delay of both local and non-local teleoperation over FiWi

enhanced networks is estimated. The presented analysis flexibly allows for the coexistence of both

conventional H2H and haptic H2M traffic, while focusing on the human operators and teleoperator

robots involved in either local or non-local teleoperation [51] [52].

1.5.4 Cooperative Computation Offloading for FiWi Enhanced 4G HetNets

The outcome of this research has been published in the following journals and book chapter and

the main contributions of this work are summarized below:

[J5] A. Ebrahimzadeh and M. Maier. Distributed Cooperative Computation Offloading in Multi-

Access Edge Computing Fiber-Wireless Networks (Invited paper). Elsevier Optics Communi-

cations Special Issue on Photonics for 5G Mobile Networks and Beyond, vol. 452, pp. 130-139,

Dec. 2019.
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[J6] A. Ebrahimzadeh and M. Maier. Cooperative Computation Offloading in FiWi Enhanced

4G HetNets Using Self-Organizing MEC. IEEE Transactions on Wireless Communications,

in revision.

[BC4] A. Ebrahimzadeh and M. Maier. Next Generation Multi-Access Edge-Computing Fiber-

Wireless Enhanced HetNets for Low-Latency Immersive Applications. IGI Global : Design,

Implementation, and Analysis of Next Generation Optical Networks, accepted for publication.

The performance gains of cooperative computation offloading are investigated for MEC enabled

FiWi enhanced HetNets with capacity-limited backhaul links. After presenting the envisioned two-

tier MEC architecture for a FiWi based networking infrastructure, a simple but efficient offloading

strategy is proposed, which relies on the flexible trilateral cooperation between end-devices, edge

servers, and the remote cloud. An analytical framework is then presented to estimate the average

response time and energy consumption of mobile users for various offloading scenarios with differ-

ent wireless access modes (i.e., WiFi and 4G LTE-A). The presented analysis flexibly allows for

incorporating both offloaded and conventional H2H traffic of mobile users as well as fixed (wired)

subscribers. Finally, a self-organization based mechanism is proposed, which enables mobile users

to make suitable energy-delay trade-offs by jointly minimizing the local task execution time and

energy consumption, using only their local information [53], [54], [55].

1.6 List of Publications

Publications included in this thesis

In summary, this thesis includes materials extracted from the following publications:

Journals

[J1] M. Maier and A. Ebrahimzadeh. Towards Immersive Tactile Internet Experiences: Low-

Latency FiWi Enhanced Mobile Networks With Edge Intelligence [Invited]. IEEE/OSA Jour-

nal of Optical Communications and Networking, Special Issue on Latency in Edge Optical

Networks, vol. 11, no. 4, pp. B10-B25, Apr. 2019.
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[J2] M. Maier, A. Ebrahimzadeh, and M. Chowdhury. The Tactile Internet: Automation or Aug-

mentation of the Human?. IEEE Access, vol. 6, pp. 41607-41618, 2018.

[J3] A. Ebrahimzadeh, M. Chowdhury, and M. Maier. Human-Agent-Robot Task Coordination

in FiWi-based Tactile Internet Infrastructures Using Context- and Self-Awareness. IEEE

Transactions on Network and Service Management, vol. 16, no. 3, pp. 1127-1142, Sept. 2019.

[J4] A. Ebrahimzadeh and M. Maier. Delay-Constrained Teleoperation Task Scheduling and As-

signment for Human+Machine Hybrid Activities over FiWi Enhanced Networks. IEEE Trans-

actions on Network and Service Management, IEEE Xplore Early Access.

[J5] A. Ebrahimzadeh and M. Maier. Distributed Cooperative Computation Offloading in Multi-

Access Edge Computing Fiber-Wireless Networks (Invited paper). Elsevier Optics Communi-

cations Special Issue on Photonics for 5G Mobile Networks and Beyond, vol. 452, pp. 130-139,

Dec. 2019.

[J6] A. Ebrahimzadeh and M. Maier. Cooperative Computation Offloading in FiWi Enhanced

4G HetNets Using Self-Organizing MEC. IEEE Transactions on Wireless Communications,

in revision.

Book Chapters

[BC1] A. Ebrahimzadeh, M. Chowdhury, and M. Maier. The Tactile Internet over 5G FiWi Ar-

chitectures. John Wiley & Sons: Optical and Wireless Convergence for 5G Networks, pp.

197-223, Aug. 2019.

[BC2] A. Ebrahimzadeh and M. Maier. Human-In-The-Loop Models for Multi-Access Edge Com-

puting. IET Press: Edge Computing: Models, Technologies and Applications, accepted for

publication.

[BC3] A. Ebrahimzadeh and M. Maier. Tactile Internet over FiWi enhanced LTE-A Het-Nets via

Artificial Intelligence Embedded Multi-Access Edge-Computing. CRC Press: 5G-Enabled

Internet of Things, accepted for publication.

[BC4] A. Ebrahimzadeh and M. Maier. Next Generation Multi-Access Edge-Computing Fiber-

Wireless Enhanced HetNets for Low-Latency Immersive Applications. IGI Global : Design,

Implementation, and Analysis of Next Generation Optical Networks, pp. 40-68, July 2019.
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Publications not included in this thesis

For completeness, we mention that the following publications have also been published or sub-

mitted during my doctoral studies, though their content is not included in this thesis.

Book

[B1] A.Ebrahimzadeh and M. Maier. Toward 6G: A New Era of Convergence. Wiley-IEEE, ac-

cepted proposal, in preparation.

Journals

[J7] A. Beniiche, A. Ebrahimzadeh, and M. Maier. The Way of The DAO: Towards Decentralizing

the Tactile Internet. IEEE Communications Magazine, in revision.

[J8] M. Maier and A. Ebrahimzadeh. Toward the Internet of No Things: The Role of O2O

Communications and Extended Reality. Submitted to IEEE Communications Magazine.

Book Chapter

[BC5] A. Beniiche, A. Ebrahimzadeh, and M. Maier. From Blockchain Internet of Things (B-IoT)

Towards Decentralizing the Tactile Internet. CRC Press: Blockchain-enabled Fog and Edge

Computing: Concepts, Architectures and Applications, accepted for publication.

Conferences

[C1] A. Ebrahimzadeh and M. Maier. Coordination of Robotic Teams over Tactile Internet FiWi

Enhanced Mobile Networks. Submitted to IEEE INFOCOM 2020.

[C2] G. O. Pérez, A. Ebrahimzadeh, M. Maier, J. A. Hernández, D. Larrabeiti, M. F. Veiga.

Decentralized Coordination in MEC-Enabled FiWi Enhanced H-CRAN Tactile Internet In-

frastructures. Submitted to IEEE INFOCOM 2020.
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1.7 Thesis Outline

The thesis is organized into six chapters to present a consistent overview of the research conducted

during the doctoral studies. The remainder of this thesis is structured as follows.

Chapter 2 aims to explore the HITL-centric design principles and haptic communications models

of the Tactile Internet. In an effort to understand the unique characteristics of the Tactile Internet

traffic, a statistical, trace-driven modeling of teleoperation traffic is conducted. Machine learning is

then employed in the context of FiWi enhanced heterogeneous networks to decouple haptic feedback

from the impact of extensive communication induced delays.

Chapter 3 presents a context- and self-aware HART-centric allocation scheme for both physical

and digital tasks to coordinate the automation and augmentation of mutually beneficial human-

machine coactivities while spreading ownership of robots across users over integrated FiWi Tactile

Internet infrastructures. In addition to realizing collective context-awareness via HART-centric

task coordination, this chapter aims to exploit local self-awareness in order to improve the energy-

delay performance of robots. Further, an analytical framework is developed to estimate the packet

transmission delay and human-robot connection reliability.

Chapter 4 studies the problem of joint prioritized scheduling and assignment of delay-constrained

teleoperation tasks to human operators with the objective to minimize the average weighted task

completion time, maximum tardiness, and average OPEX per task. After presenting the moti-

vation and an illustrative case example, this chapter presents an efficient algorithm to solve the

aforementioned problem and develops an analytical framework to estimate the H2R delay.

Chapter 5 investigates the performance gains obtained by cooperative computation offloading

for MEC enabled FiWi enhanced HetNets with capacity-limited backhaul links. After presenting

the envisioned two-tier MEC architecture for a FiWi based networking infrastructure, this chapter

proposes a simple but efficient offloading strategy, which relies on the flexible trilateral cooperation

between end-devices, edge servers, and the remote cloud. Further, an analytical framework is

presented to estimate the average response time and energy consumption of mobile users for various

offloading scenarios with different wireless access networks. Further, the chapter presents a self-

organization based mechanism, which enables mobile users to make suitable energy-delay trade-offs
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by jointly minimizing the local task execution time and energy consumption, using only their local

information.

Finally, Chapter 6 concludes the thesis by discussing the major findings of the thesis and briefly

outlines potential avenues for future research that may build upon this work.



Chapter 2

Immersive Tactile Internet

Experiences via Edge Intelligence

This chapter contains material extracted from the following publications:

[46] M. Maier and A. Ebrahimzadeh. Towards Immersive Tactile Internet Experiences: Low-

Latency FiWi Enhanced Mobile Networks With Edge Intelligence [Invited]. IEEE/OSA Jour-

nal of Optical Communications and Networking, Special Issue on Latency in Edge Optical

Networks, vol. 11, no. 4, pp. B10-B25, Apr. 2019.

[47] M. Maier, A. Ebrahimzadeh, and M. Chowdhury. The Tactile Internet: Automation or Aug-

mentation of the Human? IEEE Access, vol. 6, pp. 41607-41618, 2018.

[48] A. Ebrahimzadeh, M. Chowdhury, and M. Maier. The Tactile Internet over 5G FiWi Ar-

chitectures. John Wiley & Sons: Optical and Wireless Convergence for 5G Networks, pp.

197-223, Aug. 2019.

[49] A. Ebrahimzadeh and M. Maier. Human-In-The-Loop Models for Multi-Access Edge Com-

puting. IET Press: Edge Computing: Models, Technologies, and Applications, accepted for

publication.

In the following, my key contributions in each of the aforementioned publications are explained

in greater detail.
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[46] (1) I conducted the trace-driven characterization of haptic traffic in Section II.B, (2) I de-

veloped the delay analysis in Appendix B, (3) I proposed the idea of AI-embedded MEC,

developed the algorithms, and implemented/verified the AI-based edge sample forecasting

scheme in Section IV.B and Appendix A, (4) I ran the simulations in MATLAB, and (5) I

was involved in writing the manuscript.

[47] (1) I contributed to Section III, (2) I contributed to Section IV.A, (3) I partially contributed

to Section IV.B, (4) I ran the simulations in MATLAB, and (5) I was involved in writing the

manuscript.

[48] (1) I largely contributed to writing the whole manuscript, including in particular Sections I-IV

and (2) I ran the simulations of the algorithm presented in Section IV.

[49] (1) I conducted the trace-driven characterization of haptic traffic in Section 3, (2) I developed

the algorithms in Section 3, (3) I ran all the simulations in MATLAB, and (4) I was involved

in writing the manuscript.

2.1 Introduction

Beside conventional audiovisual and data traffic, the emerging Tactile Internet envisions the real-

time transmission of haptic information (i.e., touch and actuation) for the remote control of physical

and/or virtual objects through the Internet [2]. The Tactile Internet holds promise to provide a

paradigm shift in how skills and labor are digitally delivered globally, thereby converting today’s

content-delivery networks into skillset/labor-delivery networks [56]. The Tactile Internet is expected

to have a profound socio-economic impact on a broad array of applications in our everyday life,

ranging from industry automation and transport systems to healthcare, telesurgery, and education.

Towards this end, at the core of the design of the Tactile Internet is realizing the so-called <10ms-

challenge (i.e., achieving a round-trip latency of <10 millisecond) with carrier-grade reliability.

The term Tactile Internet was first coined by G. P. Fettweis in 2014. In his seminal paper [1],

the Tactile Internet was defined as a breakthrough enabling unprecedented mobile application for

tactile steering and control of real and virtual objects by requiring a round-trip latency of 1-10

milliseconds. Later in 2014, ITU-T published a Technology Watch Report on the Tactile Internet,

which emphasized that scaling up research in the area of wired and wireless access networks will be
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essential, ushering in new ideas and concepts to boost access networks’ redundancy and diversity

to meet the stringent latency as well as carrier-grade reliability requirements of Tactile Internet

applications [7].

To give it a more 5G-centric flavor, the Tactile Internet has been more recently also referred to

as the 5G-enabled Tactile Internet [56, 57]. Unlike the previous four cellular generations, future 5G

networks will lead to an increasing integration of cellular and WiFi technologies and standards [58].

Furthermore, the importance of the so-called backhaul bottleneck needs to be recognized as well,

calling for an end-to-end design approach leveraging both wireless front-end and wired backhaul

technologies. Or, as eloquently put by J. G. Andrews, the lead author of [58], “placing base stations

all over the place is great for providing the mobile stations high-speed access, but does this not just

pass the buck to the base stations, which must now somehow get this data to and from the wired

core network?” [59].

This mandatory end-to-end design approach is fully reflected in the key principles of the reference

architecture within the emerging IEEE P1918.1 standards working group (formed in March 2016),

which aims to define a framework for the Tactile Internet [60]. Among others, the key principles

envision to (i) develop a generic Tactile Internet reference architecture, (ii) support local area

as well as wide area connectivity through wireless (e.g., cellular, WiFi) or hybrid wireless/wired

networking, and (iii) leverage computing resources from cloud variants at the edge of the network.

The working group defines the Tactile Internet as follows: “A network, or a network of networks,

for remotely accessing, perceiving, manipulating or controlling real and virtual objects or processes

in perceived real-time.” Some of the key use cases considered in IEEE P1918.1 include teleoperation,

haptic communications, immersive virtual reality, and automotive control.

Clearly, the Tactile Internet opens up a plethora of exciting research directions towards adding

a new dimension to the human-to-machine interaction via the Internet. According to the aforemen-

tioned ITU-T Technology Watch Report, the Tactile Internet is supposed to be the next leap in

the evolution of today’s IoT, though there is a significant overlap among 5G, IoT, and the Tactile

Internet. Despite their differences, all three share an intersecting set of design goals [3]:

• Very low latency on the order of < 10 milliseconds

• Ultra-high reliability with an almost guaranteed availability of 99.999 percent
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Figure 2.1 – Edge sample forecast (ESF) module at the edge of a general communication network with
arbitrary propagation delays.

• H2H/M2M coexistence

• Integration of data-centric technologies with a particular focus on WiFi

• Security

For illustration, Fig. 2.1 depicts a typical teleoperation system based on bidirectional haptic

communications between an HO and a TOR. Note that the number of independent coordinates

required to completely specify and control/steer the position, orientation, and velocity of the TOR

is defined by its DoF.1 Further, a local HSI device is used to display haptic interaction with the

remote TOR to the HO. The local control loops on both ends of the teleoperation system ensure

the tracking performance and stability of the HSI and TOR.

In [3], the authors elaborated on the subtle differences between the Tactile Internet and the IoT

and 5G visions, which may be best expressed in terms of underlying communications paradigms

and enabling end-devices. Importantly, the Tactile Internet involves the inherent HITL nature of

human-to-machine interaction, as opposed to the emerging IoT without any human involvement

in its underlying M2M communications. While M2M communications is useful for the automation

of industrial and other machine-centric processes, the Tactile Internet will be centered around

H2M/R communication and thus allows for a human-centric design approach towards creating

novel immersive experiences and extending the capabilities of the human through the Internet, i.e.,

augmentation rather than automation of the human [47].

In this chapter, we pay attention to bilateral teleoperation as an example of HITL applications

and present an in-depth study of haptic traffic characterization and modeling in terms of packet

1Currently available teleoperation systems range from 1-DoF to >20-DoF TORs. For instance, a 6-DoF TOR
allows for both translational motion (in 3D space) via force and rotational motion (pitch, yaw, and roll) via torque.
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arrival and sample autocorrelation. We develop new models of describing packet interarrival times

as well as three-dimensional sample autocorrelation. We then explore how MEC in general and

edge intelligence in particular may be leveraged to help realize an immersive, reliable teleoperation

experience over FiWi-based networking infrastructures. More specifically, we focus on the com-

munication network in Fig. 2.1 and its role in realizing the Tactile Internet vision, thereby paying

particular attention to the unique characteristics of haptic traffic. According to [11], even minor

communication-induced time delays and packet losses may destabilize the haptic communications

system. Emphasizing on its HILT-centric aspect, the Tactile Internet allows for a human-centric

design approach by exploiting the properties of human haptic perception via advanced perceptual

coding techniques in order to substantially reduce the haptic packet rate, as explained in technically

greater detail shortly. The contributions of this chapter are threefold:

(i) First, we model Tactile Internet traffic by means of extensive haptic traces, taking TORs with

different DoF and perceptual coding into account. As shown in Fig. 2.1, in a typical teleoperation

system the position-orientation/velocity samples are transmitted from the HO through the HSI

in the command path, whereas the force-torque samples are sent back to the HO in the feedback

path. In teleoperation, haptic feedback plays a crucial role in providing the HO with transparency,

immersion, and togetherness with the remote environment [11]. Note, however, that despite growing

interest in the Tactile Internet, there is still limited understanding of the characteristics of real

haptic traffic, especially at the packet level. For simplicity and analytical tractability, Tactile

Internet traffic has been assumed to be Pareto or Poisson distributed in recent studies, e.g., [23].

Our Tactile Internet traffic models reveal which haptic packet interarrival time distributions best

fit different types of teleoperation systems, while the assumption of Poisson traffic is found valid

only for a very special case.

(ii) Second, we build on the recently proposed concept of so-called FiWi enhanced LTE-Advanced

(LTE-A) HetNets [13], which were shown to achieve the 5G and Tactile Internet key requirements

of very low latency and ultra-high reliability by unifying coverage-centric 4G mobile networks and

capacity-centric FiWi broadband access networks based on data-centric Ethernet technologies. By

means of probabilistic analysis and verifying simulations based on recent and comprehensive smart-

phone traces the authors of [13] showed that an average end-to-end latency of 1 millisecond can

be achieved for a wide range of traffic loads and that mobile users can be provided with highly

fault-tolerant FiWi connectivity for reliable low-latency fiber backhaul sharing and WiFi offload-
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ing. Note, however, that only conventional H2H communications was considered in [13]. In this

chapter, we investigate the coexistence of mobile users and HOs/TORs and explore HITL-centric

teleoperation techniques that achieve the aforementioned Tactile Internet target of 1 millisecond

under different haptic traffic scenarios.

(iii) Third, for enhanced Tactile Internet reliability performance we present our proposed edge

sample forecast (ESF) module, which is inserted at the edge of our communication network in close

proximity to the HO, as shown in Fig. 2.1. According to [61], edge computing is a new paradigm,

in which computing and storage resources—variously referred to as cloudlets, micro datacenters,

or fog nodes—are placed at the Internet’s edge in proximity to wireless end devices in order to

achieve low end-to-end latency, low jitter, and scalability. A similar concept, originally known

as mobile edge computing, has been standardized by ETSI for 5G networks. Note that since

September 2016, ETSI has dropped the ‘mobile’ out of MEC and renamed it multi-access edge

computing (MEC) in order to broaden its applicability to heterogeneous networks, including WiFi

and fixed access technologies (e.g., fiber) [62]. Our proposed ESF module leverages MEC servers

with embedded artificial intelligence (AI) capabilities that are placed at the optical-wireless interface

of FiWi enhanced LTE-A HetNets to compensate for delayed haptic samples in the feedback path

by means of multiple-sample-ahead-of-time forecasting. In doing so, the response time of the HO

can be kept small, resulting in a tighter togetherness with and thereby an improved safety in the

remote TOR environment.

The remainder of the chapter is structured as follows. Section 2.2 derives Tactile Internet traffic

models from haptic traces by studying teleoperation as an example of an immersive Tactile Internet

experience. Section 2.3 introduces the concept of low-latency FiWi enhanced LTE-A HetNets using

advanced MEC with embedded AI capabilities. In Section 2.4 we develop our analytical framework

to estimate end-to-end delay in teleoperation over FiWi networks. Section 2.5 presents analytical

latency results verified by haptic trace driven simulations. In Section 2.6, we elaborate on the

potential benefits and limitations of the proposed scheme. Finally, Section 2.7 concludes the chapter.
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2.2 Trace-Based Haptic Traffic Characterization

An interesting example of a Tactile Internet experience that allows for remote immersion is the

HITL-centric use case of teleoperation based on haptic communications. As mentioned earlier, the

Tactile Internet envisions the real-time transmission of haptic information for the remote control of

physical and/or virtual objects through the Internet [63]. Recall from Chapter 1 that in a typical

bilateral teleoperation system, the HO interfaces with the communication network (to be described

in greater detail in Section 2.3) via the HSI device, which is used to display haptic interaction with

the remote TOR to the HO. The controllers on both ends of the teleoperation system ensure the

tracking performance and stability of the HSI and TOR (see Fig 1.2). A perceptual deadband-based

(i.e., zero output if changes in consecutive samples are minimal) data reduction may be deployed

as a lossy compression mechanism by exploiting the fact that human end-users are not able to

discriminate arbitrarily small differences in haptic stimuli. The human perception of haptics can

be exploited to reduce the haptic packet rate. Specifically, the well-known Weber’s law determines

the just noticeable difference (JND), i.e., the minimum change in the magnitude of a stimulus that

can be detected by humans [64]. Weber’s law gives rise to the so-called deadband coding technique,

whereby a haptic sample is transmitted only if its change with respect to the previously transmitted

haptic sample exceeds a given deadband parameter d ≥ 0 (given in percent) [11].

In the following, we take a closer look at the specific characteristics of Tactile Internet traffic by

studying the use case of teleoperation. Specifically, we study two sets of haptic traces obtained from

teleoperation experiments involving TORs with different DoF. The two considered teleoperation

experiments involve TORs with 1 and 6 DoF. Furthermore, our haptic traces comprise measurements

with different values of deadband parameter d.

2.2.1 Teleoperation Experiments

(a) 6-DoF Teleoperation without Deadband Coding The first set of our traces for a haptics-

enabled telesurgery system were provided by the authors of [65] from the Centre National de la

Recherche Scientifique (CNRS) at IRISA, Rennes, France. Note that telesurgery represents a well-

known type of teleoperation in the healthcare sector. The system consists of a 6-DoF haptic interface

at the HO side, a 6-DoF manipulator, and a six-axes force/torque sensor at the TOR side. Update
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samples containing the position and orientation signals from the HO are transmitted at every refresh

time instant. Similarly, the HO receives force-torque feedback samples from the remote TOR. The

local HO and remote TOR environment were put back-to-back during the experiments, i.e., there

were no communication-induced artifacts such as latency. Note that deadband coding was not

applied in this 6-DoF telesurgery experiment, i.e., d = 0.

(b) 1-DoF Teleoperation with Deadband Coding The second set of haptic traces were

obtained from the 1-DoF teleoperation experiments at the Technical University of Munich, Ger-

many [66]. Two Phantom Omni2 devices were used as master (i.e., HO) and slave (i.e., TOR) devices

to create a 1-DoF bilateral teleoperation scenario. The communication channel between HO and

TOR was emulated by using a variable queueing system to generate constant or time-varying delays.

The velocity signal at the HO side was sampled before being transmitted to the TOR, which in turn

fed the force signal back to the HOR. The experiments were run with different deadband values set

to d ∈ {0, 5%, 10%, 15%, 20%} in both the command and feedback paths.

(c) Packetization Typically, haptic samples are packetized and transmitted immediately once

new sensor readings are available to help minimize the end-to-end delay, implying a real-time trans-

port protocol (RTP), user datagram protocol (UDP), and Internet protocol (IP) header of 12, 8,

and 20 bytes, respectively [11]. Additionally, for each DoF the haptic sample of the aforementioned

experimental sensor readings comprises 8 bytes. Note that NDoF haptic samples are encapsulated

into one RTP/UDP/IP packet, where NDoF denotes the number of DoF in either experiment (i.e.,

6 or 1 in our case). Thus, the packet size is equal to 40 + 8 ∙NDoF bytes.

2.2.2 Packet Interarrival Times

We begin by investigating the packet interarrival times of both teleoperation traces. For a given

deadband parameter d, let λc(dc) and λf (df ) denote the mean packet rate at which packets arrive

at the MAC layer of the wireless interface in the command path and feedback path, respectively.

In the following, we discuss both teleoperation traces separately, first without deadband coding

(d = 0) and then with deadband coding (d > 0).

2Phantom Omni is a widely used HSI device that enables HOs to interact with and manipulate objects by adding
3D navigation to a broad range of applications, e.g., games, entertainment, visualization, among others.
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(a) (b)

Figure 2.2 – Histogram of experimental 6-DoF teleoperation packet interarrival times: (a) command
path and (b) feedback path.

Note that in our 1-DoF teleoperation traces without deadband, packet interarrival times are

deterministic with a constant packet arrival rate of λc(dc)|dc=0 = λf (df )|df=0 = 1000 packets/sec

in both command and feedback paths due to the fixed haptic sampling rate of 1 kHz. Conversely,

in our 6-DoF teleoperation traces without any deadband coding, haptic samples are immediately

packetized and transmitted at varying (i.e., non-deterministic) refresh time instants. In the follow-

ing, we examine the command and feedback paths of our 6-DoF teleoperation traces separately and

try to find the best fitting distribution for the respective packet interarrival times.

First, let us focus on the position and orientation samples in the command path (from HO to

TOR), which are measured as a triplet and quaternion (i.e., quadruple) at each refresh time instant,

respectively. Let COMDi denote the resultant position-orientation sample i, which is transmitted

as packet in the command path at time instant T (c)
i . Thus, the corresponding packet interarrival

times I(c)i = T (c)
i −T

(c)
i−1, i = 2, 3, . . ., represent realizations of the random variable I(c). Figure 2.2(a)

depicts the histogram of the packet interarrival times I(c) in the command path obtained from the 6-

DoF teleoperation traces, with the most frequent packet interarrival time expectedly being centered

at 1 ms due to the default haptic sampling rate of 1 kHz.

The histogram of the packet interarrival times I(f) in the feedback path (from TOR to HO)

is shown in Fig. 2.2(b). Interestingly, the feedback path differs from the command path in that

it exhibits two peaks at approximately 0.75 ms and another one at 1.25 ms. Upon examining the

force/torque traces stemming from the TOR side, we found that the two peaks exist because the
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Table 2.1 – Summary of the estimated parameters of fitted PDFs using MLE method.

Exponential

fI (x) = 1
μ
e
− x
μ , x ≥ 0

Generalized Pareto

fI (x) = 1
σ

(
1 + k x−θ

σ

)−1− 1
k , x ≥ θ

Gamma

fI (x) = ra

Γ(a)
xa e

−rx
x
, x ≥ 0

d (%) μ D∗ k σ θ D∗ a r D∗

6-DoF
(Command Path)

0 0.0010 0.47 -0.065 1.0× 10−3 3.7× 10−6 0.46 27 27620 0.14
0.05 0.0028 0.23 0.12 2.4× 10−3 4.7× 10−6 0.17 1.51 540 0.19
0.10 0.0047 0.16 0.16 3.8× 10−3 9.6× 10−6 0.14 1.29 270 0.19
0.20 0.0087 0.18 0.19 6.6× 10−3 7.15× 10−6 0.13 0.65 27 0.15

6-DoF
(Feedback Path)

0 0.001 0.45 -0.064 1.0× 10−3 2.6× 10−6 0.45 12 12166 0.10
5 0.0012 0.41 -0.02 1.2× 10−3 2.8× 10−6 0.40 4.85 4121 0.19
10 0.0014 0.36 0.05 1.3× 10−3 4.1× 10−6 0.37 2.56 1877 0.23
20 0.0017 0.21 0.13 1.3× 10−3 2.8× 10−6 0.27 1.54 931 0.31

1-DoF
(Command Path)

5 0.0022 0.36 0.63 5.7× 10−4 7.3× 10−4 0.34 1.46 663 0.38
10 0.0027 0.38 0.81 4.9× 10−4 7.5× 10−4 0.34 1.04 386 0.39
15 0.0038 0.41 0.88 7.8× 10−4 6.4× 10−4 0.32 0.79 208 0.36

1-DoF
(Feedback Path)

5 0.0075 0.16 0.46 3.7× 10−3 5.8× 10−4 0.10 0.91 120 0.14
10 0.0024 0.20 0.57 11.5× 10−3 3.4× 10−4 0.05 0.69 28 0.13
15 0.0036 0.12 0.32 24.2× 10−3 11.2× 10−4 0.04 0.91 25 0.10

force and torque sensors of the TOR operate at two slightly different sampling rates above and

below 1 kHz.

In an effort to find a probability distribution function (PDF) that best fits the experimental

packet interarrival times in Fig. 2.2(a), we considered a variety of well-known distributions. Our

preliminary evaluations narrowed our choice down to three candidate PDFs, namely, exponential,

generalized Pareto (GP), and gamma distributions. Our method of selecting the best fitting PDF

comprised the following three steps. First, we used the maximum likelihood estimation (MLE)

method to estimate the parameters of each PDF. Second, the estimates of the first step were verified

by computing the complementary cumulative distribution function (CCDF) FI(c)(ζ) = P (I(c) > ζ).

Third, to compare the goodness-of-fit among the three PDFs under consideration, we used the

maximum difference D∗ between the fitted and experimental CCDFs, which is given by

D∗ = sup
ζ

∣
∣
∣F̂I(c)(ζ)− FI(c)(ζ)

∣
∣
∣ , (2.1)

whereby F̂I(c)(ζ) denotes the experimental CCDF. The estimated parameters as well as the calcu-

lated D∗ of the fitting PDFs are listed in Table 2.1, where we observe that the gamma distribution

matches the experimental data reasonably well, as opposed to the exponential and GP distributions.

Next, we proceed by fitting the best PDF to the 6-DoF experimental packet interarrival times in

the feedback path. Similar to the command path, we observe from Table 2.1 that in the feedback

path, the gamma distribution again fits the experimental data best.
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(a) (b)

Figure 2.3 – CCDF of fitted PDFs and experimental 6-DoF teleoperation packet interarrival times:
(a) command path and (b) feedback path.

Figure 2.3b(a) shows the CCDF of the three fitted PDFs and experimental 6-DoF teleoperation

packet interarrival times in the command path. We observe from the figure that the gamma dis-

tribution matches the experimental data reasonably well, as opposed to the exponential and GP

distributions. Similar to the command path, we observe from Fig. 2.3b(b) and Table 2.1 that for

the CCDF in the feedback path, FI(f)(ζ) = P (I(f) > ζ), the gamma distribution again best fits the

experimental data.

Next, we study the 1-DoF teleoperation experiment, which included deadband coding unlike

its 6-DoF counterpart. For fair comparison of the two sets of haptic traces, we post-processed the

original 6-DoF traces and applied deadband coding for a variety of different deadband parameter

values in the command path (dc) and feedback path (df ), as explained in the following. To begin

with, we model the position signal with a 3D vector-valued function of time denoted by p(t).

Further, let o(t) denote the orientation signal, which is modeled by a quaternion3. Similar to the

position signal in the command path, we model the force and torque signals in the feedback path

by 3D vector-valued function f(t) and t(t), respectively. We apply the deadband coding as follows.

In the command path of 6-DoF teleoperation with deadband coding a position-orientation sample

comd(t) is transmitted only if the proportional change with respect to the previously transmitted

sample COMDi−1 exceeds a given dc, i.e., COMDi = comd(t) only if

max {Δp,Δo} > dc,

3Quaternion representation of orientation is characterized by v̂ = (v̂x, v̂y, v̂z) and θ̂, where θ̂ is the angle of rotation
and v̂ is the unit vector about which rotation is performed, i.e., the axis of rotation.
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(a) command path (b) feedback path

Figure 2.4 – Mean packet rate (in packets/second) vs. d for 6-DoF teleoperation.

where Δp = ‖p(t)−pi−1‖
‖pi−1‖

and Δo = max
{
Δv̂,Δθ̂

}
, whereby Δv̂ = ‖v̂(t)−v̂i−1‖

‖v̂i−1‖
and Δθ̂ = ‖

θ̂(t)−θ̂i−1‖
‖θ̂i−1‖

.

Note that ‖∙‖ denotes the Euclidean norm function. In the feedback path of 6-DoF teleoperation,

an update force-torque sample is transmitted, only if max {Δf ,Δt} > df , where Δf = ‖f(t)−fi−1‖
‖fi−1‖

and Δt = ‖t(t)−ti−1‖
‖ti−1‖

.

Figure 2.4 illustrates the beneficial impact of deadband coding on reducing the haptic packet

rate in the feedback path and in particular the command path. More specifically, note that in the

command path a deadband parameter of only dc = 0.02% decreases the mean packet rate λc(dc)

to roughly 600 packets/second, translating into a haptic packet rate reduction of 39.5% compared

to the case without deadband (i.e., dc = 0). As shown in Fig. 2.4(a), λc(dc) further decreases for

increasing dc and levels off for dc > 0.1%. We observe from Fig. 2.4(b) that deadband coding is less

effective in the feedback path, where a deadband parameter of as high as df = 20% (compared to

dc = 0.02% above) is needed to reduce the mean packet rate λf (df ) to roughly 600 packets/second.

We again determined the best fitting PDFs for the packet interarrival times with the different

deadband parameter values by following the same approach as described above. Table 2.1 compre-

hensively summarizes our findings on the different best fitting packet interarrival time distributions

for command and feedback paths with and without deadband coding in both teleoperation scenarios

under consideration. Note that in Table 2.1, the goodness-of-fit of the best fitting PDF for each

teleoperation scenario is shown in bold. For completeness, Fig. 2.5 comprehensively summarizes our

findings on the different best fitting packet interarrival time distributions for command and feedback

paths with and without deadband coding in both of the teleoperation scenarios. We observe that in

general command and feedback paths can be jointly modeled by the GP, gamma, or deterministic
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Figure 2.5 – Summary of best fitting packet interarrival time distributions for command and feedback
paths with and without deadband coding: (a) 6-DoF teleoperation and (b) 1-DoF teleoperation.

packet interarrival time distribution, depending on the given value of deadband parameters dc and

df , as shown in Fig. 2.5.

Importantly, our haptic trace analysis indicates that the assumption made in recent studies that

Tactile Internet traffic is Pareto distributed is not valid for the analyzed traffic. Furthermore, the

assumption of Poisson traffic (e.g., [23]) with exponentially distributed packet interarrival times was

found valid only for 6-DoF teleoperation in the feedback path with deadband parameter values of

df ≥ 15%. We note that our trace analysis provides important yet preliminary insights into the

statistics of Tactile Internet traffic. Clearly, a more systematic approach looking at additional haptic

traces of different types of teleoperation experiments will be instrumental in accurately validating

the packet interarrival time distributions reported above.

2.2.3 Sample Autocorrelation

After modeling haptic traffic arrival, we take a closer look at our available traces in the feedback

path to identify possible correlation patterns in haptic samples. Such correlation patterns can be

useful in developing sample forecasting techniques, leveraging AI capabilities at the network edge

to compensate for delayed feedback samples by making accurate forecasts [46], to be discussed in

technically great detail later on. In the following, we are going to answer the following questions:

(i) how deep the feedback samples are correlated with their own lagged samples? and (ii) what is

the impact of deadband coding on the autocorrelation of the feedback samples?
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(a) force samples in 6-DoF teleop-
eration

(b) torque samples in 6-DoF tele-
operation

(c) force samples in 1-DoF teleop-
eration

Figure 2.6 – Estimation of the autocorrelation of the haptic samples in the feedback path of 1- and
6-DoF teleoperation.

To answer these questions, we devise the autocorrelation function. We note, however, that haptic

packets transmitted in a typical teleoperation system contain the samples taken from continuous

signals, which are either 1D (i.e., force signal in 1-DoF teleoperation) or 3D (i.e., force/torque

signal in 6-DoF teleoperation) vector-valued functions of time. Unlike 1D signals, estimating the

autocorrelation function of a multi-dimensional vector-valued function is not straightforward. We

thus present our method of estimating autocorrelation function of a given multi-dimensional discrete

vector-valued function. For the sake of argument, let us consider x(t) as a 3D vector-valued function

evaluated at time t, which is characterized by x(t) = x1(t)i + x2(t)j + x3(t)k, where x1(t), x2(t),

and x3(t) are the corresponding x−, y−, and z−coordinates of x(t), respectively. Note that i,

j, and k are unit vectors representing the axes of the Cartesian coordinate system. We estimate

the sample mean x̄ ∈ R3 of a given vector-valued function x(t) by 1
Ns

∑Ns
i=1 x(iT̄s), where Ns and

T̄s denote the total number of samples and inter-sample time, respectively. We then estimate the

sample variance σ2
x ∈ R

+ ∪ {0} by 1
Ns−1

∑Ns
i=1

∥
∥
∥x(iT̄s)− x̄

∥
∥
∥

2
, which can be generalized to estimate

the autocorrelation function R̂x(h) by C(h)/σ2
x, where C(h), ∀h� Ns, is given by

C(h) =
1

Ns − 1

Ns−h∑

i=1

� (x(iT̄s)− x̄) ∙ (x((i+ h)T̄s)− x̄)�, (2.2)

where � ∙ � denotes the inner product4.

Figure 2.6 depicts the autocorrelation function of the force/torque feedback samples of both

available sets of traces for different teleoperation scenarios with and without deadband coding. To

4Note that our defined autocorrelation function is based on the notion of the inner product of vectors x1 and x2,
which is given by ‖x1‖ ∙ ‖x2‖ ∙ cos θ, where θ is the angle between x1 and x2 in a multi-dimensional space. As θ
deviates from zero, the two vectors are less correlated and vice versa.
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cope with irregular sampling intervals, which occur after performing deadband coding, we have

used a zero-order hold interpolator at the rate of 1 kHz. We observe that the force/torque samples

represent a quite deep correlation with their own lagged samples. Let correlation depth h∗α denote

the maximum time lag such that, for h < h∗α , force/torque sample autocorrelation R̂(h) is greater

than α%. Note that deadband coding, in general, decreases the autocorrelation of feedback samples

for a given time lag h, thus decreasing the correlation depth, see Fig. 2.6(a)-(c). For instance,

the force feedback signal in 6-DoF teleoperation without deadband coding exhibits a correlation

depth h∗90% of 202. Deadband coding, in turn, reduces the correlation depth to 142, 116, and 98

for d = 5%, d = 10%, and d = 15%, respectively. Further, we find that the torque samples show a

slightly higher autocorrelation compared with that of the force samples in 6-DoF teleoperation. Also

note that the 1-DoF force samples with deadband coding are associated with less autocorrelation,

compared to the 6-DoF forece samples. This is mainly due to the fact that in 6-DoF teleoperation,

3D force samples are transmitted, as opposed to 1-DoF teleoperation, where only one dimensional

force samples are fed back, thus being more susceptible to deadband coding.

2.3 Low-latency FiWi Enhanced LTE-A HetNets with Edge Intel-

ligence

Recall from Section 2.1 that FiWi access networks provide a promising approach to offload mo-

bile data from cellular networks by means of WiFi offloading. Recent backhaul-aware 4G studies

have begun to investigate the performance-limiting impact of backhaul links in small-cell networks,

though most of them did not take fiber link failures into account and assumed the reliability of the

backhaul to be ideal (i.e., offering an availability of v100%).

To meet the URLLC requirements of 5G networks, the authors of [13] recently explored the

performance gains obtained from enhancing coverage-centric 4G LTE-A HetNets with capacity-

centric FiWi access networks based on low-cost, data-centric Ethernet NG-PON and Gigabit-class

WLAN technologies. Clearly, by unifying LTE-A HetNets and FiWi access networks, low-cost

high-speed mobile data offloading is achievable via high-capacity fiber backhaul (e.g., IEEE 802.3av

10G-EPON) and Gigabit-class WLAN that has been able to consistently provide data rates 100

times higher than cellular networks [67], thus helping reach the envisioned 1000-fold gains in area

capacity and 10 Gb/s peak data rates of 5G.
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Figure 2.7 – Local and non-local teleoperation in FiWi enhanced LTE-A HetNets with AI-based MEC
capabilities.

In the following, we extend the concept of FiWi enhanced LTE-A HetNets in order to enable

both local and non-local teleoperation by exploiting AI-based MEC capabilities. Note that neither

teleoperation nor edge intelligence were addressed in [13].

2.3.1 Low-Latency FiWi Enhanced LTE-A HetNets

Figure 2.7 depicts the generic network architecture of FiWi enhanced LTE-A HetNets. The fiber

backhaul consists of a time/wavelength division multiplexing (TDM/WDM) IEEE 802.3ah/av 1/10

Gb/s EPON with a typical fiber range of 20 km between the central OLT and remote ONUs. The

EPON may comprise multiple stages, each stage separated by a wavelength-broadcasting split-

ter/combiner or wavelength multiplexer/demultiplexer. There are three different subsets of ONUs.

An ONU may either serve fixed (wired) subscribers. Alternatively, an ONU may connect to either

a cellular network base station (BS) or an IEEE 802.11n/ac/s WLAN mesh portal point (MPP),

giving rise to a collocated ONU-BS or ONU-MPP, respectively. Depending on positioning, a mobile

user (MU) may communicate through the cellular network and/or WLAN mesh front-end, which

consists of ONU-MPPs, intermediate mesh points (MPs), and mesh access points (MAPs). Note
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that connecting these three different sets of ONUs via a common shared EPON fiber backhaul

infrastructure helps achieve the important goal of fixed-mobile convergence gain of today’s network

operator strategy, as discussed in Section 2.1.

In [13], various advanced fiber-lean backhaul redundancy strategies (not shown in Fig. 2.7),

were proposed, which can be used to realize a local Fx fronthaul (Fx-FH) with direct inter-ONU

communication. Specifically, the following three strategies can be considered: (i) interconnection

fiber links between pairs of neighboring ONUs, (ii) small-scale fiber protection rings among multiple

nearby ONUs, and (iii) wireless bypassing of backhaul fiber faults via the WLAN front-end. The

results showed that the localized protection techniques proposed in [13] are instrumental in providing

fixed wired and mobile users with highly fault-tolerant FiWi connectivity. Recall from Section 2.1

that Fx-FH solutions also help reduce latency by forming local clusters of ONUs as well as ONU-

MPPs, thereby increasing the diversity of network connections. Our analytical results verified by

recent comprehensive smartphone traces showed that the presented interconnection fiber, protection

ring, and wireless protection techniques are able to keep the FiWi connectivity probability of MUs

essentially flat for a wide range of EPON fiber-link failure probabilities while decreasing the average

end-to-end delay to 1 millisecond for a wide range of traffic loads.

To better understand the reason behind the low delay performance of FiWi enhanced LTE-A

HetNets, we note that LTE systems themselves cannot guarantee low latency due to the fact that

the transmission time interval is 1 millisecond. Thus, both uplink and downlink transmissions take

at least 1 millisecond, translating into an end-to-end delay being lower bounded by 2 milliseconds.

In real-world deployment scenarios, the latency in LTE networks may increase by an order of mag-

nitude. On the other hand, low-latency WiFi technology can bring 5G level of service today if

the network is properly set up to mitigate interference, given that distributed coordination func-

tion (DCF) per se does not impose inherent latency limitations in that it allows users to immediately

access (after a short DIFS of 50 μs) the idle wireless channel in a decentralized manner.5

In this work, unlike [13] which studied only conventional H2H communication between MUs, we

investigate the potential and limits of coexistent teleoperation in FiWi enhanced LTE-A HetNets.

Given the typical WiFi-only operation of state-of-the-art robots [3], HOs and TORs are assumed

to communicate only via WLAN, as opposed to MUs who use dual-mode 4G/WiFi smartphones.

Teleoperation is done either locally or non-locally, depending on the proximity of the involved

5Aptilo Networks, “Why wait for 5G? Carrier Wi-Fi is here today,” Dec. 22, 2016. Online: www.wifinowevents.com
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Figure 2.8 – Generic architecture of an MLP-ANN model with L inputs and one output.

HO and TOR, as illustrated in Fig. 2.7. In local teleoperation, the HO and corresponding TOR

are associated with the same MAP and exchange their command and feedback samples through

this MAP without traversing the fiber backhaul. Conversely, if HO and TOR are associated with

different MAPs, non-local teleoperation is generally done by communicating via the backhaul EPON

and central OLT. For simplicity, in this work we focus on the generic network architecture of FiWi

enhanced LTE-A HetNets, shown in Fig. 2.7, without leveraging direct inter-ONU communication.

2.3.2 Edge Intelligence

Despite recent interest in exploiting machine learning for optical communications and networking,

edge intelligence for enabling an immersive and transparent teleoperation experience for human

operators has not been explored yet. In the following, we introduce machine learning at the edge

of our considered communication network for realizing immersive and frictionless Tactile Internet

experiences.

To realize edge intelligence, selected ONU-BSs/MPPs are equipped with AI-enhanced MEC

servers. These servers rely on the computational capabilities of cloudlets collocated at the optical-

wireless interface (see Fig. 2.7) to forecast delayed haptic samples in the feedback path. Towards

this end, we deploy a type of parameterized artificial neural network (ANN) known as multi-layer

perceptron (MLP), which is capable of approximating any linear/non-linear function to an arbitrary

degree of accuracy [68]. Figure 2.8 illustrates the generic architecture of an MLP-ANN model.

Note that an MLP with Nh hidden neurons represents a linear combination of Nh parameterized
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non-linear functions called neurons. Furthermore, note that a neuron is a nonlinear function G(∙) of

a linear combination of its input variables. In this work, the ANN is an MLP with L input variables

and one output variable. More specifically, Ξ denotes the set of L ∙ Nh + Nh + 1 weights of the

model, i.e., Ξ = {ci,j : i = 1, . . . , Nh, j = 1, . . . , L} ∪ {c
′

j : j = 0, 1, . . . , Nh}, which are estimated

during the training phase. The MLP yields the following output:

Ψ (A ,Ξ) =
Nh∑

j=1

c
′

jG

(
L∑

i=1

ci,jA(i)

)

+ c
′

0, (2.3)

whereA ∈ RL represents the input vector (see Fig. 2.8). We note that the weights Ξ of the ANN are

computed by the corresponding MEC server and are subsequently sent to the HO in close proximity.

Recall from Section 2.2.2 that deadband coding is less effective in the feedback path (see also

Fig. 2.3b(b)). In this section, leveraging the notable amount of correlation between the haptic

samples, as observed in our teleoperation traces in Section 2.2.3, we elaborate on our proposed

ESF module as an interesting alternative to deadband coding in the feedback path, using the

MLP described above instead. To do so, we present an ESF module based on the aforementioned

MLP to compensate for delayed haptic feedback samples by means of multiple-sample-ahead-of-

time forecasting. As a result, the response time of the HO can be kept small, which in turn leads

to a tighter togetherness with the remote TOR and an enhanced immersion. In a nutshell, our

developed MLP based ESF module forecasts the force samples in the feedback path in real-time.

More specifically, instead of waiting for the force samples that are delayed by more than a given

waiting deadline Tthr, the module locally generates and delivers the forecast feedback samples to

the HO. Let us refer to the feedback signal to be forecast as the target signal X(∙), i.e., the force

feedback samples in our case. Our objective is to generate at any time instant t a forecast sample

denoted by θ∗ for time instant t0 = t − Tthr, whereby Tthr is the maximum period of time that

the HO can wait until receiving the actual sample θ = X(t0). More precisely, at any time t, if the

sample for time instant t0 is not received, a forecast sample is generated and immediately delivered

to the HO. This procedure is repeated every 1 millisecond, which equals the typical intersample

time of teleoperation systems. Note that the proposed MLP predicts θ from the past observations of

the target signal. A technically more detailed description of our proposed ESF module is presented

in the following.
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Algorithm 1 Edge Sample Forecast

Input: T ,S, t0,Ξ
Output: θ∗

1: δ = 1/Fs
2: T δ,Sδ = SAMPLE_ALIGNER(T ,S, δ)

3: Δ←
⌈
t0−T δ(L)
δ

⌉

4: A0 ←
(
sδ1, ..., s

δ
L

)
∈ RL

5: for i = 1 to Δ do
6: t∗i ← t

δ
L + i× δ

7: θi = Ψ (Ai−1,Ξ)
8: Ai = (Ai−1(2),Ai−1(3), ...,Ai−1(L), θi)
9: end for

10: θ∗ ← θΔ−θΔ−1
t∗Δ−t

∗
Δ−1

(
t0 − t∗Δ−1

)
+ θΔ−1

11: return θ∗

Algorithm 2 SAMPLE_ALIGNER()

Input: T ,S, δ
Output: T δ,Sδ

1: L←
⌈
tK−t1
δ

⌉

2: for i = 1 to L do
3: tδi ← t1 + (i− 1)δ
4: end for
5: sδ1 ← s1
6: for i = 2 to L do
7: sδi ←

sj−sj−1
tj−tj−1

(
tδi − tj−1

)
+ sj−1, ∀j : tj−1 < t

δ
i < tj

8: end for
9: return T δ,Sδ

Our objective is to generate at any time t a forecast sample θ∗ for time instant t0 = t−Tthr, where

Tthr is the waiting threshold until which the HO can wait to receive the actual sample θ = X(t0).

Let S,T ∈ RK denote the last K samples {s1, s2, . . . , sK} at time stamps {t1, t2, . . . , tK}. Note

that S,T are used to forecast sample θ∗ at any time instant t0 > tK . The feedback sample is

forecast by Algorithm 1 with input S,T , t0,Ξ and output θ∗. We define δ as the intersample time

step in our sample forecaster and set it to 1/Fs, where Fs denotes the sampling frequency of 1 kHz

(line 1 in Algorithm 1). To align the received samples in time, we call the SAMPLE_ALIGNER()

procedure (Algorithm 2) with input S ∈ RK ,T ∈ RK , and δ and output consisting of the aligned

sample set Sδ ∈ RL and time stamp set T δ ∈ RL.

Next, we calculate the forecast horizon Δ at time t, which denotes the estimated number of

samples during time interval T δ(L) between the last observed sample and target time t0 (line 3
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Figure 2.9 – Mean squared error vs. epoch for both train and validation data sets.

in Algorithm 1). Our objective is to forecast sample set Θ = {θ1, θ2, . . . , θΔ} for time stamp

set
{
t∗1, t
∗
2, . . . , t

∗
Δ

}
to finally estimate sample θ∗ at time t0. Specifically, sample θi ∈ Θ is fore-

cast by feeding our MLP with input vector Ai−1 ∈ RL, where A0 =
(
sδ1, . . . , s

δ
L

)
∈ RL and

Ai = (Ai−1(2),Ai−1(3), . . . ,Ai−1(L), θi), i.e., each sample is forecast based on the preceding L

samples. To further improve the forecasting accuracy, we estimate θ∗ by performing a 2-point linear

interpolation between (t∗Δ−1, θΔ−1)T and (t∗Δ, θΔ)T (line 10 in Algorithm 1).

To create our training dataset, we used the available 6-DoF teleoperation traces. We used

MATLAB to build and train a one-hidden-layer ANN. Our training data set comprised 59,710

force feedback samples with the waiting deadline set to Tthr = 1 millisecond. We used the so-

called Levenberg-Marquardt training method for adjusting the weights until a desired input/output

relationship was obtained. Prior to simulations, we applied brute force for determining the optimal

value of the number of neurons in the hidden layer, which led us to set it to 5. Note that a so-called

method of early stopping was applied to avoid overfitting. Overfitting happens when an ANN is

highly specialized to the training data, while lacking the capability of generalizing to the validation

data. For completeness, Fig. 2.9 illustrates the mean squared error vs. epoch for our training phase,

which specifies how the underlying method of early stopping can avoid overfitting by detecting the

epoch beyond which the training error still decreases while the validation error starts to increase.

More specifically, according to Fig. 2.9, the training is stopped at epoch 66 where the validation

mean squared error becomes 4.44 × 10−6, thus avoiding the ANN from overfitting. After training,

we used a new data set comprising 1,000 samples (different from the training data set) to evaluate
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the performance of our proposed sample forecaster in terms of mean squared error between the

actual and forecast samples. It is worthwhile to mention that once the training was complete, the

ANN was run on the HO side to provide the HO with forecast samples. Moreover, we note that the

processing/running delay of the developed ANN on the order of microseconds was relatively small

compared to the communication induced packet delays.

For completeness, we note that a one-hidden-layer MLP is also known as universal approximator.

We decided to use a one-hidden-layer MLP since it is simple (i.e., easy to implement and train) yet

achieves an accuracy that is good enough to approximate a wide variety of linear and/or non-linear

functions. Beside longer training times, note that increasing the number of hidden layers in our

considered one-hidden-layer MLP may result in over-fitting, which in turn may have a detrimental

impact on its forecasting accuracy.

Note that in our considered FiWi enhanced LTE-A HetNets architecture in Fig. 2.7, all HOs

and TORs are connected through a shared fiber backhaul, whose fiber reach does not exceed the

typical 20 km of an IEEE 802.3ah EPON or up to 100 km in case of long-reach PONs. The limited

fiber reach keeps the propagation delay below 0.1 millisecond and 0.5 millisecond, respectively.

Thus, in a conventional EPON and in long-reach PONs the fiber propagation delay does not pose

a challenge to meeting the 1 millisecond latency requirement of the Tactile Internet. However, an

interesting question is how the 1-millisecond challenge of the Tactile Internet can be addressed for

significantly larger geographical distances, e.g., connecting HOs in North America with TORs in

Europe and/or Asia. This is where our proposed ESF module offers a potentially promising solution

in that it decouples haptic feedback from the impact of extensive propagation delays, as typically

encountered in wide area optical fiber networks. To see this, Fig. 2.1 illustrates our ESF module for

the general case of a communication network with arbitrary propagation delays. The ESF module

may be inserted at the edge of the communication network in close proximity to the HO. Rather

than waiting for delayed haptic feedback samples that exceed the waiting deadline of 1 millisecond,

the ESF module generates forecast samples and delivers them to the HO. Hence, the HO is enabled

to perceive the remote task environment in real-time at a 1-millisecond granularity, resulting in a

tighter togetherness, improved safety control, and increased reliability of the teleoperation systems.

It should be noted, however, that a more rigorous experimental investigation would be needed to

validate the viability of our proposed ESF module for real-word deployment scenarios with various

wide area network propagation delays.
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Clearly, the capability of our proposed ESF module to enable HOs to perceive the remote

task environment in real-time at a 1-millisecond granularity requires a sufficiently high forecasting

accuracy of haptic feedback samples, as discussed in more detail later on.

2.4 Delay Analysis

In this section, we develop our analytical framework to compute the average end-to-end delay and

its distribution for local and non-local teleoperation with coexistent H2H traffic.

2.4.1 Assumptions

In our analysis, we make the following assumptions:

• Single-hop WLAN: MUs, HOs, and TORs are directly associated with an ONU-AP via a

wireless single hop, whereby ONU-MPPs serve as ONU-APs (i.e., no MPs).

•WiFi channel access: Similar to [13], [69], [70], [71], [72], [73], [74], and [75], the WiFi channel

access time governed by the IEEE 802.11 DCF is assumed to be exponentially distributed. This is

justified by the DCF channel access mechanism, which includes carrier sensing, binary exponential

back-off(s), and reattempts (if any) due to collisions and erroneous transmissions.

• WiFi connectivity and WiFi offloading: The WiFi connection and interconnection times of

MUs are assumed to fit a truncated Pareto distribution, as validated via recent smartphone traces

in [13]. The probability PMUtemporal that an MU is temporarily connected to an ONU-AP is estimated

as T̄on/(T̄on+ T̄off ), whereby T̄on and T̄off denote the average WiFi connection and interconnection

time, respectively. In this chapter, we assume that T̄on � T̄off based on the fact that the recent

smartphone traces reported in [13] indicate that the ratio T̄on/(T̄on + T̄off ) has been constantly

increasing. Hence, we assume that PMUtemporal ≈ 1 for MUs as well as HOs and TORs. Further, we

assume that MUs offload their mobile traffic onto WiFi within the coverage area of an ONU-AP.

• Traffic model: MUs generate background Poisson traffic at mean packet rate λBKGD (in

packets/second). Background traffic coming from ONUs with attached fixed (wired) subscribers

is set to αPON ∙ λBKGD, where αPON ≥ 1 is a traffic scaling factor for fixed subscribers that are
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directly connected to the backhaul EPON. Note that HOs and TORs generate traffic according to

the different best fitting packet interarrival time distributions in Fig. 2.5.

2.4.2 Local Teleoperation

For notational convenience, let us use the term ‘WiFi user’ for all MUs, HOs, and TORs within

the coverage area of an ONU-AP. We model each WiFi user as a GI/M/1 queue to account for the

different packet interarrival time distributions under consideration. Let random variable D denote

the delay experienced by any packet generated by a WiFi user, where D comprises queueing delay

DQ and service time DS .

Suppose that packets arrive at rate λ at time instants T1, T2, . . ., and assume that the interarrival

times Tk+1 − Tk, k = 0, 1, . . ., are mutually independent, identically distributed random variables

with distribution function G(t) = P (Tk+1 − Tk ≤ t). Let Nk denote the number of packets in the

system (i.e., queue and server) just prior to the arrival of packet k. By applying the theorem of

total probability, we have

P (Nk+1 = j) =
∞∑

i=0

P (Nk+1 = j | Nk = i )P (Nk = i) , j = 0, 1, 2, . . . ; k = 0, 1, 2, . . . (2.4)

We define πj as the probability that an arriving packet finds j packets in the system. A unique

stationary distribution πj = limk→∞ P (Nk = j), j = 0, 1, 2, . . ., exists if and only if ρ = λ
μ < 1,

where μ denotes the service rate, which is equal to 1/E[DS ]. By taking limits on both sides of

Eq. (2.4) we obtain

πj =
∞∑

i=0

pijπi ; j = 0, 1, 2, . . . , (2.5)

where pij = P (Nk+1 = j | Nk = i ) represent the state transition probabilities and
∑∞
j=0 πj = 1.

Clearly, we have pij = 0, ∀j > i + 1, because an arriving packet can find at most one more packet

in the system than was found by the preceding packet. The remaining state transition probabilities

can be computed by considering the following three cases:

Case 1: The server is busy between Tk and Tk+1, i.e., i ≥ 0 and 1 ≤ j ≤ i+ 1. The probability

that arriving packet k+1 finds exactly j packets, given that the preceding packet k found i packets,

is equal to the probability that exactly i + 1 − j packets depart during interarrival time x. Thus,
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we have

P (Nk+1 = j | Nk = i, Tk+1 − Tk = x ) =
(μx)i+1−j

(i+ 1− j)!
e−μx, i ≥ 0, 1 ≤ j ≤ i+ 1. (2.6)

Using interarrival time distribution function G(x), we obtain

pij =
∫ ∞

0

(μx)i+1−j

(i+ 1− j)!
e−μxdG(x), i ≥ 0, 1 ≤ j ≤ i+ 1. (2.7)

Case 2: The server becomes idle between two consecutive arrivals and arriving packet k+ 1 and

preceding packet k find the system empty, i.e., i = j = 0. This occurs if the service time of packet

k is smaller than Tk+1 − Tk. Hence, we have

p00 =
∫ ∞

0

(
1− e−μx

)
dG(x). (2.8)

Case 3: This case is like case 2 except that preceding packet k found i ≥ 1 packets. The time

y, Tk < y < Tk+1, until (i + 1 − s)th service completion leaving one packet in the system has an

Erlang distribution with density function f(y) = (μy )i−s

(i−s)! e
−μyμ. For y < x, the probability of service

completion during the remaining interarrival time interval of length x−y equals 1−e−μ(x−y). Thus,

we have

pi0 =
∫ ∞

0

∫ x

0

(
1− e−μ(x−y)

) (μy )i−1

(i− 1)!
e−μyμdydG(x), i = 1, 2, . . . (2.9)

Lemma 2.1: The stationary state probabilities πj have a geometric distribution given by

πj = (1− ω )ωj . (2.10)

Proof. Let us consider the equilibrium probability state equations in Eq. (2.5) for j ≥ 1. Substitut-

ing Eqs. (2.7) and (2.10) into Eq. (2.5) yields ω =
∫∞

0 e
−(1−ω)μxdG(x), which can be rewritten as

ω = Φ (z) |z=(1−ω)μ, (2.11)

where Φ (z) is the Laplace-Stieltjes transform of G(x). The equation has a unique root in (0, 1) if

the queue is stable, i.e., ρ < λ/μ. Substituting Eqs. (2.8)-(2.10) into Eq. (2.5) verifies Eq. (2.10) for

j = 0.
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Next, we compute the distribution of DQ. Given N packets currently in the system, the proba-

bility P (DQ > t) is equal to
∑∞
i=1 πiP (DQ > t | N = i), which can be rewritten as

∞∑

j=0

(1− ω)ωj+1P (DQ > t | N = j + 1) .

The probability that a packet waits for longer than t in the queue given that N = j+1 is equivalent

to the probability that the number of departures during time interval t is smaller than or equal to

j, which is given by

P (DQ > t | N = j + 1) =
j∑

i=0

(μt)i

i!
e−μt. (2.12)

Thus, we have

P (DQ > t) = (1− ω)ω
∞∑

j=0

ωj
j∑

i=0

(μt)i

i!
e−μt, (2.13)

which reduces to P (DQ > t) = ωe−(1−ω)μt. The cumulative distribution function (CDF) of DQ is

then given by

FDQ(t) = P (DQ ≤ t) = 1− ωe−(1−ω)μt. (2.14)

Next, let us consider DS , whose CDF is given by

FDS (t) = P (DS ≤ t) = 1− e−μt. (2.15)

To compute the service rate μ in Eq. (2.15), we defined the two-dimensional Markov process

(s(t), b(t)) shown in Fig. 2.10 under unsaturated non-Poisson traffic conditions and estimated the

average service time E(DS) in a WLAN using the IEEE 802.11 DCF for access control, whereby b(t)

and s(t) denote the random backoff counter and size of contention window at time t, respectively.

Let Pf and Wi denote the probability of a failed transmission attempt (i.e., collision or erroneous

transmission) and contention window size at the back-off stage i, respectively. Note that the back-off

stage i is incremented after each failed attempt up to the maximum value m, while the contention

window is doubled at each stage, i.e., Wi = 2iW0.

A WiFi user is in idle state if: (i) a successfully transmitted packet leaves the system without

any waiting packet in the queue, and (ii) no packet arrives during the current time slot given that

the user was in idle state in the preceding time slot. We note that for non-Poisson arrival, these two
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Figure 2.10 – Two-dimensional Markov process.

events are not identical and should be calculated separately. Define π∗j and π̂j as the probability that

a departing packet leaves j packets in the queue (i.e., from the viewpoint of the departing packet),

and the fraction of time during which j packets are present in the queue (i.e., from the viewpoint of

an outside observer), respectively. According to Fig. 2.10, 1− q1 is equal to the probability that a

departing packet leaves the queue without any waiting packet, thus 1−q1 = π∗0 . On the other hand,

q2 is the probability that at least one packet arrives during the current time slot given that the user

was in idle state in the preceding time slot. This, however, does depend on the time interval during

which the system has been in idle state so far. Nevertheless, for a slot duration being much smaller

than the mean interarrival time, it is reasonable to estimate q2 by 1− π̂0 ≈ λμ . Note that, according

to Burke’s theorem, π∗j = πj holds for any arrival model, whereas π̂j = πj is valid only for Poisson

arrival.

After finding the stationary distributions

bi,k = lim
k→∞
P (s(t) = i, b(t) = k) , ∀k ∈ [0,Wi − 1], i ∈ [0,m],
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the probability τ that a WiFi user attempts to transmit in a given time slot is obtained as

τ =
m∑

i=0

bi,0 =

2(1−2Pf)q2
2(1−q1)(1−Pf )(1−2Pf )

q2[(W0+1)(1−2Pf )+W0Peq(1−(2Pf )m)]
2(1−q1)(1−Pf )(1−2Pf ) + 1

. (2.16)

The probability of a failed transmission attempt Pf,i by WiFi user i is given by

1− Pf,i = (1− pe,i) (1− pc,i) , (2.17)

where pe,i and pc,i denote the probability of an erroneous transmission and the probability of a

collision, respectively. Note that WiFi subscriber i does not experience a collision if the remaining

users don’t attempt to transmit, thus 1 − pc,i =
∏
v:v 6=i (1− τv ). Moreover, pe,i is estimated by

1 − (1− pb)
L̄i , where L̄i and pb is the average length of a packet transmitted by WiFi user i and

the bit error probability, respectively.

The probability of a collision-free packet transmission Ps given that there is at least one trans-

mission attempt is given by 1
Ptr

(∑
i τi
∏
v,v 6=i (1− τv )

)
, whereby the probability Ptr that there is

at least one transmission attempt is equal to 1−
∏
i (1− τi ). The average slot duration Es is then

obtained as

Es = (1− Ptr) ε+ Ptr (1− Ps)Tc + PtrPsPeTe + PtrPs (1− Pe)Ts, (2.18)

where Tc, Te, and Ts are given in [75]. We then obtain E(DS) as

E(DS) =
1
μ

=
∞∑

k=0

pke (1− pe)

[
∞∑

j=0

pjc (1− pc) ∙








k+j∑

b=0

2min(b,m)W0 − 1
2

Es



+ jTc + kTe + Ts





]

.

(2.19)

In order to obtain the steady-state values of q1, q2, Pf , τ, and μ, we numerically solve the system

of non-linear equations (2.19), (2.17), (2.16), and (2.10).

The CDFs of DQ (2.14) and DS (2.15) are used to calculate the CDF of D = DQ + DS at a

WiFi user as follows

FD(t) = P (D ≤ t) =
∫ t

0
FDS (t− u)dFDQ(u). (2.20)
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The end-to-end delay of local teleoperation DE2E
LT (i→j) between WiFi users i and j communicating

via ONU-APz is obtained as Di→ONU−APz +DONU−APz→j , whose CDF is given by

FDE2E
LT (i→j)

(t) = P (DE2E
LT (i→j) ≤ t) =

∫ t

0
FDi→ONU−APz

(t− ζ)dFDONU−APz→j
(ζ), (2.21)

where the CDFs FDi→ONU−APz
(t) and FDONU−APz→j

(t) are calculated similar to Eq. (2.20).

2.4.3 Non-Local Teleoperation

The average end-to-end delay of non-local teleoperation between WiFi user i and WiFi user j

associated with ONU-APm and ONU-APn, respectively, is given by

D̄E2E
NLT (i→j) = D̄i→ONU−APm + D̄uPON + D̄dPON + D̄ONU−APn→j , (2.22)

where D̄i→ONU−APm and D̄ONU−APn→j denote the expected values of Di→ONU−APm andDONU−APn→j ,

respectively. Both expected values can be obtained from Eq. (2.20). Note that D̄uPON and D̄dPON

denote the average delay of the backhaul EPON in the upstream and downstream direction, respec-

tively, which are given by Φ
(
ρu, L̄, ς2L , cPON

)
+L̄/cPON+2τPON

2−ρu

1−ρu−B
u and Φ

(
ρd, L̄, ς2L , cPON

)
+

L̄/cPON + τPON − Bd, respectively; whereas ρu is the traffic intensity in upstream, ρd is the traf-

fic intensity in downstream, τPON is the propagation delay between ONUs and OLT, cPON is the

EPON data rate, Φ(∙) denotes the well-known Pollaczek-Khintchine formula, and Bu and Bd are

obtained as Φ
(

L̄
ΛcPON

∑O
i=1

∑O
q=1 ΓPONiq , L̄, ς2L , cPON

)
, where O is the number of ONUs and ΓPONiq

is the traffic emanating from ONUi to ONUq, and Λ denotes the number of wavelengths in the

WDM PON [13].

2.5 Results

In this section, we present the trace-driven simulation results along with the numerical results

derived from the analysis. Note that the obtained simulation results include confidence intervals at

95% confidence level. The following results were obtained by using the FiWi network parameter

settings listed in Table 2.2. We assume that MUs, HOs, and TORs are directly connected to their

associated MPPs, i.e., MPPs serve as conventional WLAN APs. By default, let us consider 4
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Table 2.2 – FiWi network parameters & Default values

Parameter Value

Minimum contention window W0 16

Maximum back-off stage H 6

Empty slot duration ε 9 μs

DIFS 34 μs

SIFS 16 μs

PHY Header 20 μs

MAC Header 36 bytes

RTS 20 bytes

CTS 14 bytes

ACK 14 bytes

Line rate r in wireless fronthaul 600 Mbps

Uplink and Downlink data rate rPON in PON 1 Gbps

Propagation delay δp in WMN 3.33 μs

lBKGD 1500 Bytes

pb 10−6

NDoF 6

lPON 20 km

ONU-APs, each with 4 associated MUs, whereby two MUs communicate with each other via their

associated ONU-AP using an IEEE 802.11n WLAN (i.e., local H2H communications) while the

two remaining MUs communicate with two uniformly randomly selected MUs associated with a

different ONU-AP by using a backhaul IEEE 802.3ah 1Gb/s EPON with a typical fiber range of 20

km (i.e., non-local H2H communications). Furthermore, let us consider four conventional ONUs,

serving fixed (wired) subscribers that are all involved in non-local H2H communications among each

other. The MUs and fixed subscribers generate background traffic at a mean rate of λBKGD and

αPON ∙λBKGD, respectively. Note that αPON ≥ 1 is a traffic scaling factor for fixed subscribers that

are directly connected to the backhaul EPON. Figure 2.11 depicts the average end-to-end delay of

MUs vs. mean background traffic rate λBKGD with different αPON ∈ {1, 50, 100} for both local

and non-local H2H communications in FiWi enhanced LTE-A HetNets. The figure shows that an

average end-to-end delay of 100 = 1 ms can be achieved for non-local H2H communications for a

wide range of background traffic loads.

Next, we include teleoperation and investigate the interplay between Tactile Internet traffic and

the above H2H background traffic. Towards this end, we consider the above scenario and replace

two MUs with a pair of HO and TOR in the coverage area of each ONU-AP for local teleoperation
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Figure 2.11 – Average end-to-end delay of mobile users (MUs) vs. mean background traffic rate λBKGD
(packets/second) for local and non-local H2H communications with different αPON ∈ {1, 50, 100}.

Figure 2.12 – Average end-to-end delay of human operators (HOs) vs. mean background traffic rate
λBKGD (packets/second) for local teleoperation with and without deadband coding in the command
path for different dc ∈ {0, 0.01%, 0.02%, 0.05%} (αPON = 100 fixed).

with and without deadband coding in the command path. Specifically, we consider our findings

on 6-DoF teleoperation in Fig. 2.5(a) and accordingly assume gamma and GP distributed haptic

packet arrivals for dc ∈ {0, 0.01%, 0.02%} and dc = 0.05%, respectively. Fig. 2.12 depicts the
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Figure 2.13 – End-to-end delay CDF FDE2E
LT (i→j)

(t) of local teleoperation.

average end-to-end delay of HOs vs. mean background traffic rate λBKGD along with verifying

trace-driven simulations based on our 6-DoF haptic traces and packetization procedure described

in Section 2.2.1. We observe from Fig. 2.12 that without deadband coding (dc = 0) the minimum

achievable average end-to-end delay experienced by HOs equals 4.62 ms, thus missing the Tactile

Internet target of 1 ms. However, note that this target can be achieved with deadband coding for

increasing dc. For illustration, Figure 2.12 shows that we achieve a minimum average end-to-end

delay of 1.18 ms for dc = 0.05%. In addition to decreasing the latency of HOs, note that deadband

coding also has a beneficial impact on the admissible background traffic load of MUs due to the

reduced haptic packet rates. To see this, let us define the coding gain Gcoding as the difference

between the maximum admissible throughput of MUs in teleoperation with and without deadband

coding, while not violating a certain upper average end-to-end delay limit. For instance, for a

given upper limit of 4.8 ms a coding gain of Gcoding = 1.42 Mbps per MU can be achieved in

our teleoperation scenario by increasing dc from 0 to 0.01%, as depicted in Fig. 2.12. Note that

overall the presented analytical results and verifying trace-driven simulation results (shown with

95% confidence interval) match very well.

Figure 2.13 provides useful insights into the upper end-to-end delay bounds by showing its CDF

FDE2E
LT (i→j)

(t) for the scenario of Fig. 2.12. Notably, we observe that for dc = 0.05% and a high
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Figure 2.14 – Average end-to-end delay of human operators (HOs) vs. backhaul traffic scale factor
αPON of fixed subscribers (λBKGD = 20 packets/second fixed) for non-local teleoperation across different
NG-PON backhaul infrastructures.

background traffic rate of λBKGD = 20 packets/second (top curve), the end-to-end delay stays

below 2 ms with a probability as high as 0.8.

To provide insights into the impact of different NG-PON backhaul infrastructures in the case

of non-local teleoperation, Fig. 2.14 depicts the average end-to-end delay performance of HOs vs.

backhaul traffic scale factor αPON of fixed subscribers with the mean background traffic rate set to

λBKGD = 20 packets/second. For comparison, we consider a conventional 1 Gbps EPON, a high-

speed 10 Gbps EPON, and a WDM PON with Λ = 2 wavelength channels, each operating at 1 Gb/s.

Note that for all three considered NG-PONs we include a conventional fiber reach of lPON = 20

km as well as its respective long-reach counterpart with an extended fiber reach of lPON = 100

km. We observe from Fig. 2.14 that the use of deadband coding (dc = 0.05%) is instrumental

in lowering the average end-to-end delay below 10 ms for all NG-PON backhaul infrastructures

under consideration. The figure also confirms previous findings (see Section 2.1) that 10G PON and

WDM technologies represent cost-effective solutions to support 5G low-latency applications over a

wide range of backhaul traffic loads by sharing a common optical transport platform among fixed

subscribers, MUs, and HOs.
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Figure 2.15 – Comparison of forecasting accuracy between proposed MLP based and naive ESF schemes
for local and non-local teleoperation without deadband coding in the feedback path (df = 0).

We have seen in the results above that deadband coding is effective in decreasing the average

end-to-end delay by reducing the haptic packet rate. Nevertheless, some haptic packets may still

experience an instantaneous delay that exceeds the desired waiting deadline on the order of 1 mil-

lisecond until their reception due to varying traffic conditions and MAC layer queueing times. To

ensure that the HO receives expected haptic packets before the deadline, our proposed MLP based

ESF module may be used as a complementary technique to deadband coding in the feedback path.

Figure 2.15 compares the forecasting accuracy of our proposed MLP based ESF scheme with a naive

ESF scheme, where the forecast sample is simply set to the last received sample. In our simulation,

we used our 6-DoF teleoperation traces to train a one-hidden-layer MLP by using 59,710 force feed-

back samples with the waiting deadline set to Tthr = 1 ms. Figure 2.15 clearly shows the superior

forecasting accuracy of our proposed MLP based ESF scheme in terms of mean squared error over

a wide range of λBKGD for both local and non-local teleoperation scenarios, whereby a low mean

squared error is achievable in the former scenario. Specifically, for non-local teleoperation, our MLP

based ESF scheme decreases the mean squared error from roughly 0.9 to 0.65, translating into an

improvement of 27.8%. For local teleoperation, it is able to keep the mean squared error close to

zero between 0.006 and 0.007 ×10−3 at low to medium background traffic load λBKGD. Note that

the observed performance improvement is due to the relatively high autocorrelation in the haptic
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feedback samples that allows our proposed MLP based ESF module to achieve a more accurate

forecast compared to that of the naive ESF scheme.

2.6 Discussion

Motivated by the notable amount of correlation depth seen within the haptic samples in the feedback

path of our available traces, the proposed multiple-sample-ahead-of-time forecasting scheme was

shown to be capable of providing accurate forecast samples, to be delivered to the HO immediately.

We note, however, that our available traces are restricted to only 1-DoF teleoperation and 6-DoF

telesurgery systems under consideration, thus posing limitations to our reported results above due

to being application- and/or device-specific, especially given that the emerging advanced robotic

teleoperation systems with relatively larger number of DoF may rely on the exchange of a wider

variety of haptic feedback samples, rather than simply 6-DoF force-torque samples. We note that

this study may be considered as a starting point to suggest methods of investigating the haptic traffic

characteristics by means of a more comprehensive trace-driven study. Hence, in order to validate our

findings, it is necessary to look into a more diverse set of traces gathered from various teleoperation

systems. Moreover, further investigations are needed to generalize the proposed ANN-based ESF

module to other deployment scenarios apart from the studied 1- and 6-DoF teleoperation use cases.

Toward this end, the applicability of more sophisticated machine learning models such as deep neural

networks and/or long-short-term-memory neural networks may be further investigated for detecting

the patterns within highly complicated multi-dimensional data, thus providing the HO with more

accurate forecasts. Last but not least, we note that although achieving a very low-latency on the

order of < 10 ms and providing the HO with accurate forecasting capabilities may be necessary

to realize immersive Tactile Internet experiences, they are not sufficient to guarantee a desired

QoE. This suggests for conducting subjective and objective studies to allow for both qualitative and

quantitative measuring of how closely an HO is coupled with the involved experience.

2.7 Conclusions

We have seen that there is a significant overlap among 5G, IoT, and the Tactile Internet in that

they share various important design goals, including very low latency, ultra-high reliability, and
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integration of data-centric technologies. This chapter described how FiWi enhanced LTE-A Het-

Nets leveraging low-cost data-centric EPON and WiFi technologies for fiber backhaul sharing and

WiFi offloading may help realize not only the aforementioned shared design goals but also the key

attributes of end-to-end co-DBA of both PON and wireless network resources, decentralization, and

edge intelligence in support of future 5G low-latency applications over a common optical transport

platform.

Our focus was on the emerging Tactile Internet as one of the most interesting 5G low-latency

applications for creating novel immersive experiences. We reviewed the HITL-centric design prin-

ciples that add a new dimension to the human-to-machine interaction via the Internet and set

the Tactile Internet aside from the more machine-centric IoT. Exploiting the human perception of

haptics to reduce the haptic packet rate by means of deadband coding, we derived haptic traffic

models from teleoperation experiments. Our haptic trace analysis showed that assuming Tactile

Internet traffic to be Pareto distributed was not valid for the analyzed traffic, while assuming it

to be Poisson traffic was valid only in a special case. In general, we observed that command and

feedback paths of teleoperation systems can be jointly modeled by generalized Pareto, gamma, or

deterministic packet interarrival time distributions, depending on the given value of the respective

deadband parameters.

We elaborated on the importance of the decentralized nature of WLAN’s access protocol DCF to

realize low-latency FiWi enhanced LTE-A HetNets. Furthermore, by exploiting their inherent dis-

tributed processing and storage capabilities, we investigated the potential of enabling immersive tele-

operation experiences for human operators by introducing machine learning at the optical-wireless

interface of FiWi enhanced LTE-A HetNets. Our proposed MLP based ESF module compensates

for delayed haptic feedback samples by means of multiple-sample-ahead-of-time forecasting for a

tighter togetherness, improved safety control, and increased reliability.



Chapter 3

Context- and Self-Awareness for

Human-Agent-Robot Task

Coordination

This chapter contains material extracted from the following publication:

[[50]] A. Ebrahimzadeh, M. Chowdhury, and M. Maier. Human-Agent-Robot Task Coordination

in FiWi-based Tactile Internet Infrastructures Using Context- and Self-Awareness. IEEE

Transactions on Network and Service Management, vol. 16, no. 3, pp. 1127-1142, Sept. 2019.

In the following, my key contributions in the aforementioned publication are explained in greater

detail: (1) I largely contributed to writing the whole manuscript, (2) I developed the analytical

framework, (3) I conducted the algorithmic work, and (4) I ran the simulations.

3.1 Introduction

Today’s telecommunication networks enable us to connect devices and people for an unprecedented

exchange of audiovisual and data content. With the advent of commercially available haptic/tactile

sensory and display devices, conventional triple-play (i.e., audio, video, and data) content commu-

nication now extends to encompass the real-time exchange of haptic information (i.e., touch and
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actuation) for the remote control of physical and/or virtual objects through the Internet. This

paves the way towards realizing the so-called Tactile Internet [3], whereby human-machine interac-

tions will convert today’s content-delivery networks into skillset/labor delivery networks [56]. The

Tactile Internet holds great promise to have a profound socio-economic impact on a broad array

of applications in our everyday life, ranging from industry automation and transport systems to

healthcare, telesurgery, and education [46].

Beside the design of low-latency/jitter and highly reliable networking infrastructures, a key

challenge little discussed in the existent Tactile Internet literature is how we can make sure that the

potential of the Tactile Internet be unleashed for a race with (rather than against) machines. The

overarching goal of the Tactile Internet should be the production of new goods and services by means

of empowering rather than automating machines that complement humans rather than substitute

for them. In the future, coworking with robots will require human expertise in the coordination

of the human-robot symbiosis. A promising approach toward achieving advanced human-machine

coordination by means of a superior process for fluidly orchestrating human and machine coactivity

may be found in the still young field of human-agent-robot-teamwork (HART) research [76]. In

HART, the dynamic allocation of functions and tasks between humans and machines, which may

vary over time or be unpredictable in different situations, plays a central role. In particular, with the

rise of increasingly smarter machines, the historical humans-are-better-at/machines-are-better-at

(HABA/MABA) approach to decide which tasks are best performed by people or machines rather

than working in concert has become obsolete [77]. In addition, we note that any technological

advance can be labor-saving or capital-saving. In either case, regardless of the speed with which

robots approach or even exceed human skill sets, the key to the effect of the new technologies

on human society is who owns the technologies. We would lose our jobs if other persons owned

our replacement technologies. By contrast, if users owned them, humans would have their current

earnings and their time freed from labor to explore other productive activities [78].

In this chapter, we leverage on our recently proposed concept of FiWi enhanced LTE-A HetNets,

which were shown to achieve the 5G and Tactile Internet key requirements of very low latency on the

order of 1-10 milliseconds and ultra-high reliability by unifying coverage-centric 4G mobile networks

and capacity-centric FiWi broadband access networks based on low-cost, data-centric Ethernet NG-

PON and Gigabit-class WLAN technologies [13]. While necessary, though, the design of reliable
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low-latency converged communication network infrastructures is not sufficient to realize the full

potential of the Tactile Internet.

Depending on the context-awareness of future Tactile Internet applications, tasks may be classi-

fied into three different categories: (i) location-dependent physical-only tasks (e.g., lifting an object),

(ii) location-independent digital-only tasks (e.g., object classification from a captured image, which

might be offloaded for computation at a remote cloud or nearby cloudlet), or (iii) location-dependent

physical/digital tasks that include both types of tasks (e.g., assemblage followed by a unit test). As

users will need to request robot assistance from time to time, mapping these requests to the robots

stands as an optimization problem, whose objective is to minimize not only the task completion

time but also the OPEX and robot energy consumption. The difficulty of solving such a problem

lies in the following reasons. First, it is clear that we are dealing with different conflicting objec-

tives, which makes it challenging to obtain a satisfactory result, especially for large-sized problems.

Second, in real-world scenarios, there is no a priori knowledge of the task arrival times, making it

almost impossible to obtain the optimal solution. Third, and more importantly, to minimize the

energy consumption of mobile robots, the task coordinator requires global knowledge of the all sys-

tem parameters, including in particular the local parameters of the mobile robots, which may not

be willing to share such private information. In this chapter, we use context-awareness to develop a

HART-centric task coordination algorithm that minimizes the completion time of physical/digital

tasks as well as the OPEX by spreading ownership of robots across mobile users. In addition, we

capitalize on self-awareness to improve the performance of a given robot by identifying its capa-

bilities as well as the objective requirements by means of optimal motion planning to minimize its

energy consumption as well as traverse time. Our proposed self- and context-aware HART-centric

allocation scheme for both physical and digital tasks is used to coordinate the automation and aug-

mentation of mutually beneficial human-machine coactivities across a FiWi based Tactile Internet

infrastructure. In particular, the contributions of this chapter are as follows:

• We formulate a multi-objective optimization problem to minimize the task completion time,

energy consumption, and OPEX for multi-robot task allocation in the Tactile Internet over

FiWi enhanced networks.
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• We develop a context-aware HART-centric task coordination algorithm that minimizes the

completion time of physical/digital tasks, while paying particular attention to reducing OPEX

by spreading ownership of robots across mobile users.

• We propose a self-aware optimal motion planning algorithm, which runs locally at the mobile

robots, with the objective to find the best trade-off between traverse time and energy con-

sumption by leveraging on local self-awareness of the mobile robots to identify their respective

limitations and capabilities as well as objective requirements for accomplishing the allocated

tasks.

• We provide an analytical framework to calculate the average packet transmission delay and

human-robot connection reliability, two key attributes of the Tactile Internet.

The remainder of the chapter is structured as follows. Section 3.2 describes our considered

FiWi based Tactile Internet infrastructures for HART-centric task coordination in greater detail,

followed by motion and energy consumption models for mobile robots. In Section 3.4, we present

our self-aware optimal motion planning algorithm. In Section 3.3, we develop our multi-objective

optimization problem considering characteristics and key parameters of mobile robots and tasks,

which is subsequently solved by our proposed HART-centric context-aware multi-robot task coor-

dination algorithm. Our delay and reliability analysis is presented in Section 3.5. In Section 3.6,

we report on our obtained results and findings. Section 3.7 concludes the chapter.

3.2 System Model

3.2.1 Network Architecture

Figure 3.1 illustrates the generic network architecture of our considered FiWi enhanced LTE-A

HetNets. The optical backhaul consists of a TDM/WDM IEEE 802.3ah/av 1/10 Gb/s EPON with

a typical fiber length of 20 km between the central OLT and remote ONUs. The EPON may

comprise multiple stages, each stage separated by a wavelength-broadcasting splitter/combiner or

a wavelength multiplexer/demultiplexer. There are three different subsets of ONUs. An ONU may

either serve fixed (wired) subscribers. Alternatively, it may connect to a cellular network BS or

an IEEE 802.11n/ac/s WLAN MPP, giving rise to collocated ONU-BS or ONU-MPP, respectively.
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Figure 3.1 – Generic architecture of FiWi based Tactile Internet network infrastructure for multi-robot
task coordination.

Depending on her trajectory, an MU may communicate through the cellular network and/or WLAN

mesh front-end, which consists of ONU-MPPs, intermediate MPs, and MAPs.

Note that tasks arrive at random time instants at the MUs, which act as the demand points.

The MUs then send their demands upstream to the task coordinator agent, which is co-located

with the OLT (see also Fig. 3.1), via the wireless front-end and EPON backhaul until they reach

the OLT. The task coordinator agent is responsible for allocating the incoming tasks to mobile

robots (MRs), which may be owned by either the users or the network operator. After receiving the

task allocation from the OLT, the selected MR moves toward the demand point and collaboratively

executes the physical and/or digital tasks. After successfully executing the tasks, the MR transmits

the results/output of the physical and/or digital task to the task demand point (i.e., MU).

3.2.2 Energy and Motion Models of Mobile Robots

For an MR with forward translational velocity powered by a direct current (DC) motor, we use the

detailed model presented in [79]. Specifically, let v(t) and a(t) denote the velocity and acceleration

profile of the MR, respectively. The energy consumption of the brushed DC motor deployed at the
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Figure 3.2 – Trapezoidal velocity profile of MRs.

MR is given by

E =
∫ t3

0
e(t)i(t).dt =

∫ t3

0

[
c1a

2(t) + c2v
2(t) + c3v(t) + c4 + c5a(t) + c6v(t)a(t)

]
.dt, (3.1)

where i(t) and e(t) denote the instantaneous current and voltage of the DC motor, respectively,

while the constants {ci}6i=1, given in [79], are combinations of the motor parameters and depend on

the design of the motor and surface on which the robot traverses.

Next, let us consider the trapezoidal velocity profile of the MR, shown in Fig. 3.2. The profile

indicates that along a given path the MR accelerates from rest during Tacc, traverses with constant

velocity vmax during Tcst, and then decelerates during Tdec until it returns to rest. Based on the

considered velocity profile, the distance Δd traversed by the MR is given by

Δd =
∫ Ttrav

0
v(t).dt = (Tacc + 2Tcst + Tdec)

vmax
2
, (3.2)

which yields

Tacc + Tcst =
Δd
vmax

(3.3)

by assuming aacc = −adec. Having

Tcst = ωd
Δd
vmax
, (3.4a)

Tacc = Tdec = (1− ωd)
Δd
vmax
, (3.4b)
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the traverse time Ttrav is then equal to

Ttrav = (1− ωd)
Δd
vmax

+ ωd
Δd
vmax

+ (1− ωd)
Δd
vmax

= (2− ωd)
Δd
vmax
,

(3.5)

with ωd ∈ [0, 1). Clearly, Ttrav is a monotonically decreasing function of ωd with the upper and

lower bounds given by

TUtrav = lim
ωd→0
Ttrav = 2

Δd
vmax
, (3.6a)

TLtrav = lim
ωd→1
Ttrav =

Δd
vmax
. (3.6b)

Lemma 3.1: For the velocity profile shown in Fig. 3.2, the energy consumption Etrav of the

MR to traverse a given distance Δd is given by

Etrav = E(ωd) =
2c1v3max

(1− ωd)Δd
+
c2
3

(ωd + 2)vmaxΔd+ c3Δd+ (2− ωd)
c4Δd
vmax
. (3.7)

Proof. See Appendix A.1.

Note that E(ωd) is a convex function of ωd, as
∂2E(ωd)
∂ω2
d

= 4c1v3
max

Δd(1−ωd)3 > 0 for ωd ∈ [0, 1).

Lemma 3.2: E(ωd) has a local minimum in interval (0, 1) if and only if

vmax <

√√
√
√
√
√
−c2 +

√

c22 − 4
(

6c1
Δd2

)
(−3c4)

2
(

6c1
Δd2

) ; (3.8)

otherwise, E(ωd) is a monotonically increasing function of ωd with a minimum at ωd = 0.

Proof. See Appendix A.2.

3.3 Context-Aware Multi-Robot Task Coordination

In this section, we study the problem of task allocation to MRs in multi-robot FiWi-based infras-

tructures in greater detail. We note that the automation of various physical and digital tasks with
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Figure 3.3 – An illustrative case study demonstrating the trade-off between delay, OPEX, and energy
performance of the multi-robot task allocation problem at a given task arrival time instant.

context-aware requirements is doable by state-of-the-art agents and robots. We start by presenting

an illustrative use case as a simplified example of our optimization problem of interest. Next, we

develop the multi-objective formulation of our problem. We then develop a context-aware allocation

algorithm of physical/digital tasks for the HART-centric multi-robot task coordination based on

the shared use of user- and network-owned robots.

3.3.1 Illustrative case study

For illustration, we present a case study to better understand the impact of different coordination

strategies on the delay/cost/energy performance from the viewpoint of both users and network

operator. Let us consider 2 user- and 3 network-owned MRs (i.e., a 40% user ownership), as shown

in Fig. 3.3, where a task has arrived at the demand point to be allocated to one of the MRs. The

next available time of each MR is also shown. Assume that receiving service from a user- and

network-owned MR is subject to an incurred OPEX of 0.2 and 1 USD per second, respectively.

The outcome of the allocation of the given task to each of the MRs is shown in Fig. 3.3, which

demonstrates the trade-off between task completion time, OPEX, and energy consumption. The
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results indicate that allocating the task to MR2, MR4, or MR5 is a Pareto optimal solution with

respect to the three objectives of task completion time, OPEX, and energy consumption, i.e., one

cannot find any other solution whose performance in terms of all the three objectives is better than

MR2, MR4, or MR5. Note that any allocation decision made for a given task updates the next

available time of the allocated MR, thus having a direct impact on the performance results for

upcoming tasks, whose arrival time instants are not known in advance.

3.3.2 Problem formulation

We assume that HART members are self-aware about their respective goals, application needs,

capabilities, and constraints, to be elaborated on in Section 3.4. Further, through communication

they establish a collective context-awareness with the objective of minimizing the completion time

of tasks by MRs, which may be either user-owned or network-owned. Let the ownership spreading

factor γO denote the percentage of robots that are jointly owned by MUs, whereas the remaining

robots are owned by the network operator. More specifically, our multi-robot task coordination

algorithm aims to minimize the task completion time along with the energy consumption and

OPEX of physical/digital task execution by MRs. In the following, after introducing the decision

variables and parameters, we develop a multi-objective formulation of the dynamic task allocation

problem.

Given:

• Ji: Task i, (i = 1, 2, ...).

• tai : Arrival time of task demand i.

• W pi : Physical workload (in Joules) generated by Ji.

• W di : Digital workload (in required CPU cycles) generated by Ji.

• ltaski : Demand location of task Ji.

• RN : Set of network-owned MRs.

• RU : Set of user-owned MRs.

• RAU : Set of available user-owned MRs.
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• RBU : Set of busy user-owned MRs.

• RAN : Set of available user-owned MRs.

• RBN : Set of busy network-owned MRs.

• R: Set of all user- or network-owned MRs.

• N : Total number of MRs.

• lrj : Location of MRj .

• tavj : Next available time of MRj .

• vjmax: Maximum speed of robot MRj .

• amax,jacc : Maximum acceleration of robot MRj .

• Cpj : Physical task processing capacity (in Watts) of MRj .

• Cdj : Digital task processing capacity (in CPU cycles per time unit) of MRj .

• D: Maximum scheduling deadline.

• d(lrj , l
task
i ): Euclidean distance between the demand location of task Ji and MRj .

Parameters:

• ϕU : Operational cost per time unit of user-owned MRs.

• ϕN : Operational cost per time unit of network-owned MRs.

• εd: Energy (in Joules) per CPU cycle.

Decision variables:

• Xji : A binary variable set to 1 if task Ji is assigned to MRj .

Objectives:

• T (X): Task completion time.
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• C(X): Operational expenditures (OPEX).

• E(X): Energy consumption.

Multi-objective formulation:

minimize
X

T (X), C(X), E(X), ∀i = 1, 2, 3, ...,

subject to
∑

j∈RU

max{tavj − t
a
i , 0}X

j
i < D,

N∑

j=1

Xji = 1,

Xji ∈ {0, 1}, ∀j = 1, 2, ..., N,

(P1)

where T (X), C(X), and E(X) are obtained as follows. The total task completion time comprises

the following delay components: (i) transmission delay T dmdtrs of allocation demand from a given

MU to the OLT, (ii) scheduling delay T i,jsch, which is the elapsed time between arrival time taj of

task Ji until MRj becomes available, (iii) transmission delay T alctrs of allocation from the OLT to the

allocated MR, (iv) traverse time T i,jtrav, which is the amount of time that takes MRj to traverse to

the demand location of task Ji, (v) execution time T i,jexc, which is the amount of time that takes MRj

to execute physical/digital task Ji, and (vi) transmission delay T otrs to transmit the output/result

of digital/physical task from the MR to the MU. T (X) is then given by

T (X) =
N∑

j=1

Xji (T
dmd
trs + T i,jsch + T alctrs

+ T i,jtrav + T i,jexc + T otrs), ∀i = 1, 2, ...,

(3.9)

where the scheduling delay T i,jsch is obtained as

T i,jsch = max{tavj − t
a
i , 0}, ∀i = 1, 2, . . . , ∀j = 1, 2, . . . , N. (3.10)

We note that after rearranging and considering
∑j=1
N X

j
i = 1, ∀i = 1, 2, . . ., Eq. (3.9) reduces to

T (X) = T dmdtrs + T alctrs + T otrs +
N∑

j=1

Xji (T
j
sch + T jtrav + T jexc), ∀i = 1, 2, . . . (3.11)
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Before estimating the task execution time, let incoming task Ji consist of both physical and digital

workloads denoted by W pi (in Joules) and W di (in required CPU cycles), respectively. We then

estimate the task execution time T i,jexc by

T i,jexc =
W pi
Cpj
︸︷︷︸

physical sub-task

+
W di
Cdj
︸︷︷︸

digital sub-task

, ∀i = 1, 2, . . .
(3.12)

The traverse time T i,jtrav is given in Eq. (3.5), whereas the other delay components that are related

to packet transmission delay will be computed shortly in Section 3.5.1.

Next, we estimate the OPEX of task execution by user- and/or network-owned MRs. To do so,

we assume a flat-rate pricing policy that charges MUs from the time instant when the MR becomes

available and is allocated to the task until it successfully accomplishes task execution. Let ϕU and

ϕN denote the operating cost per time unit for user- and network-owned MRs, respectively, whereby

ϕU
ϕN
≤ 1. We then estimate the OPEX, C(X), of task execution as follows:

C(X) =
∑

j∈SU

ϕUX
i
j

(
T i,jtrav + T i,jexc

)
+
∑

j∈SN

ϕNX
i
j

(
T i,jtrav + T i,jexc

)
, ∀i = 1, 2, . . . (3.13)

Next, let us calculate the total energy consumption. We note that the energy consumed to trans-

mit the task demand/allocation/output/result is negligible compared to the energy consumption

of an MR to traverse and execute the task. Therefore, we consider only the energy consumption

of MRs to traverse to the demand location and execute the physical/digital task. Accordingly, we

model the total energy consumption, E(X), as follows:

E(X) =
N∑

j=1

X ij

(
Ei,jtrav + Eiexc

)
, (3.14)

where Ei,jtrav is given in Eq. (A.1) and execution energy Eiexc of task Ji (which is independent of the

MR selection) is given by

Eiexc = W pi︸︷︷︸
physical sub-task

+ εdW
d
i︸ ︷︷ ︸

digital sub-task

, ∀i = 1, 2, . . . , (3.15)
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where εd denotes the energy (in Joules) per CPU cycle. Note that Ei,jtrav depends on the MR

selection, while Eiexc does not. Thus, Eq. (3.14) reduces to

E(X) = Eiexc +
N∑

j=1

X ijE
i,j
trav, ∀i = 1, 2, . . . (3.16)

3.3.3 The proposed algorithm

Clearly, T (X), C(X), and E(X) may be conflicting objectives, as minimizing T (X) and E(X) may

not necessarily minimize C(X) (see Fig. 3.3). The reason for this is that for some tasks select-

ing network-owned MRs can significantly reduce the task completion time, resulting in increased

OPEX due to higher pricing of network-owned MRs compared to that of user-owned ones. We also

note that the energy consumption of an MR is a function of its local parameters, e.g., motor and

motion parameters, among others, which may preferably not be shared by the MRs, as they are

considered private information. Furthermore, the task coordinator has to make decisions without

a priori knowledge of the arrival time instants of upcoming tasks, thus making it impossible to ex-

ploit conventional optimization methods to obtain the optimal solution of the problem of interest.

Therefore, in order to make a suitable trade-off between the three objectives and achieve a satisfac-

tory solution, we prioritize the objectives of the problem in descending order of T (X), C(X), and

E(X). More specifically, we decouple the problem into two subproblems namely multi-robot task

coordination and motion planning, where the former aims to minimize T (X) and C(X), whereas

the latter minimizes E(X) (to be discussed in Section 3.4).

As shown in Algorithm 3, our proposed context-aware dynamic multi-robot task coordination

(CADMRTC) algorithm assigns the given task to the nearest available user-owned MR, if there

is any (see line 2 of Alg. 3). Otherwise, it tries to find the earliest available user-owned MR up

to a given maximum scheduling deadline D ≥ 0 seconds before falling back onto network-owned

MRs (see lines 6-15 of Alg. 3). In this case, the task is assigned to the nearest available network-

owned MR (see line 10 of Alg. 3) or the earliest available one, if there is not any (see line 12 of

Alg. 3). Note that our context-aware scheme gives priority to user-owned MRs, thus substantially

reducing OPEX. It is worthwhile to mention that we aim at minimizing the energy consumption

of the assigned MR by using our proposed self-aware motion planning (see line 19 of Alg. 3), to be

elaborated on in technically greater detail in Section 3.4.
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Algorithm 3 CADMRTC Algorithm

Input: Ji, tai ,R
A
U ,R

B
U ,R

A
N ,R

B
N ,R, l

r
j , t
av
j , D

Output: Xji , t
av
j , l
r
j , ∀j = 1, 2, ..., N

1: if RAU 6= ∅ then

2: j∗ ← argmin
j∈RAU

d
(
lrj , l
task
i

)

3: else
4: if RBU 6= ∅ then
5: Wmin ← minj∈RBU (tavj − t

a
i )

6: if Wmin < D then
7: j∗ ← argmin

j∈RBU

(tavj − t
a
i )

8: else
9: if RAN 6= ∅ then

10: j∗ ← argmin
j∈RAN

d
(
lrj , l
task
i

)

11: else
12: j∗ ← argmin

j∈S
(tavj − t

a
i )

13: end if
14: end if
15: end if
16: end if
17: Xj

∗

i ← 1

18: Δd← d
(
lrj∗ , l

task
i

)

19: (T i,j
∗

trav, E
i,j∗

trav)=SAOMP (Δd, j∗) (call Algorithm 4)
20: tavj∗ ← t

av
j∗ + T i,j

∗

trav + T i,j
∗

exc

21: return Xji , t
av
j , l
r
j , ∀j = 1, 2, ..., N

Next, we present a complexity analysis of our proposed CADMRTC algorithm. We note

that the best and worst case time complexity of our proposed algorithm are O(
∣
∣
∣RAU

∣
∣
∣ + n) and

O
(∣∣
∣RAU

∣
∣
∣+

∣
∣
∣RBU

∣
∣
∣+

∣
∣
∣RAN

∣
∣
∣+

∣
∣
∣RBN

∣
∣
∣+ n

)
, respectively, where n is the number of operations performed

by the self-aware SAOMP algorithm (see Alg. 4). We note that n is a constant number that

depends on the number of local parameters of a given robot and doesn’t scale with growing

numbers of MR. This suggests that the total time complexity of our CADMRTC algorithm is

O
(∣∣
∣RAU

∣
∣
∣+

∣
∣
∣RBU

∣
∣
∣+

∣
∣
∣RAN

∣
∣
∣+

∣
∣
∣RBN

∣
∣
∣
)
.
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3.4 Self-Aware Optimal Motion Planning

Battery-powered MRs typically operate for long periods of time. Therefore, it is necessary to

optimize their motion by minimizing not only their traverse time but also their energy consumption.

In this section, we aim to find the energy-optimal velocity profile of an MR for a given path to

traverse.

So far, we have derived traverse time Ttrav of an MR for a given distance Δd and velocity profile

v(t). We have shown that an increasing ωd decreases traverse time Ttrav. Moreover, our derived

closed-form formula for energy consumption of the MR demonstrates that under certain conditions,

there exists an ω∗d ∈ (0, 1) for which the energy consumption is minimized. Otherwise, the energy

consumption increases for increasing ωd. Nevertheless, we note that the choice of ωd is constrained

by the maximum achievable acceleration, which in turn depends on the physical design of the motor

deployed at the MR. Hence, aacc is given by

aacc = −adec =
vmax
Tacc

=
vmax

(1− ωd) Δd
vmax

, (3.17)

which implies that aacc is a monotonically increasing function of ωd with lower and upper bounds

given by v
2
max
Δd

and ∞, which are reached for ωd → 0 and ωd → 1, respectively. Thus, for a given

maximum achievable acceleration amaxacc the feasible range for ωd is obtained as

vmax

(1− ωd) Δd
vmax

≤ amaxacc ⇒ ωd ≤

ωmd︷ ︸︸ ︷

1−
v2max
amaxacc Δd

.
(3.18)

Next, we aim to minimize both traverse time Ttrav and E(ωd), which under certain conditions

may become conflicting objectives. Therefore, to find a compromise between these two conflicting

objectives, we aim to solve the following multi-objective optimization problem:

min
ωd

f(ωd) =
E(ωd)
Em

+
Ttrav(ωd)
TUtrav

(3.19a)

s.t. ωd ≤ ω
m
d , (3.19b)

0 ≤ ωd < 1, (3.19c)
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Figure 3.4 – Different MR operational regions represented by A1, A2, and A3 on Δd−vmax plane, which
the proposed self-aware optimal motion planning strategy relies on (amaxacc = 2 m/s2 fixed).

where TUtrav is given in Eq. (3.6a) and Em, the upper bound of E(ωd), is equal to

Em = max{E(0), E(ωmd )}. (3.20)

We note that f(ωd) is a convex function of ωd, as it is the sum of two convex functions. For now, we

relax the constraint (5.28b) and then solve the relaxed optimization problem by letting ∂f(ωd)∂ωd
= 0

for the following two cases.

Case 1: In this case, E(ωd) does not have a local minimum for ωd ∈ (0, 1), i.e., (Δd, vmax) /∈ A1 in

Fig. 3.4. Since E(ωd) is a monotonically increasing function of ωd, its upper bound, Em, is obtained

for ωd = 1− v2
max

amaxacc Δd . Thus, we have

Em = 2c1vmaxa
max
acc +

c2
3

(

3vmaxΔd−
v3max
amaxacc

)

+ c3Δd+

(

1 +
v2max
amaxacc Δd

)
c4Δd
vmax
. (3.21)

By substituting Eqs. (3.21) and (3.6a) into Eq. (5.28a), we obtain f(ωd) as

f(ωd) =
1
Em
E(ωd) +

2− ωd
2
. (3.22)
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Let ω∗d denote the optimal value of ωd ∈ (0, 1), for which f(ωd) is minimized. We then obtain ω∗d

by solving ∂f(ωd)∂ωd
= 0, where ∂f(ωd)∂ωd

is given by

∂f(ωd)
∂ωd

=
1
Em

∂E(ωd)
∂ωd

−
1
2
. (3.23)

By substituting Eq. (A.6) into Eq. (3.23), we obtain

∂f(ωd)
∂ωd

=
vmaxc2Δd

3Em
+

2c1v3max
ΔdEm(1− ωd)2 −

c4Δd
vmaxEm

−
1
2
. (3.24)

Solving ∂f(ωd)∂ωd
= 0 gives us ω∗d as

ω∗d = 1±
√
K ′, (3.25)

where

K ′ =
2c1v3max

Δd
(

Δdc4
vmax

− Δdvmaxc2
3 + Em

2

) . (3.26)

We note that for K ′ > 0 we have 1 +
√
K ′ /∈ (0, 1) and thus it is not acceptable. Whereas 1−

√
K ′

lies in interval (0, 1) for a particular range of vmax, as specified in the following Lemma.

Lemma 3.3: ω∗d lies in interval (0, 1) if and only if the following inequality holds:

vmax <

v2︷ ︸︸ ︷
max

Z′i>0:Im[Z′i]=0
{Z ′i}, (3.27)

where {Z ′i}
4
i=1 are the roots of the quartic equation given by

(A1Δd− 2c1) v4max + (ΔdB1) v2max + ΔdC1vmax + ΔdD1 = 0, (3.28)

where
A1 = −

c2
3amaxacc

,

B1 =
(

2c2
3

+ c1a
max
acc +

c4
amaxacc

)

,

C1 =
c3Δd

2
,

D1 =
3Δdc4

2
.

(3.29)

Proof: See Appendix A.3.
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Algorithm 4 SAOMP Algorithm

Input: vmax,Δd, amaxacc , c1, c2, c3, c4
Output: Etrav, Ttrav
1: Use v1 and v2 given by Eq. (A.10) and (3.27), respectively, to determine A1, A2, and A3

2: ωmd ← 1− v
2
max
amaxacc

3: if (Δd, vmax) ∈ A1 ∪A2 then
4: ω∗d ← 1−

√
K ′, where K ′ is given by Eq. (3.26)

5: if ω∗d < ω
m
d then

6: Ttrav ← (2− ω∗d)
Δd
vmax

7: Etrav ← E(ω∗d) given by Eq. (3.7)
8: Update the MR velocity profile using Eqs. (3.4) and (3.17)
9: else

10: Ttrav ← (2− ωmd ) Δd
vmax

11: Etrav ← E(ωmd ) given by Eq. (3.7)
12: Update the MR velocity profile using Eqs. (3.4) and (3.17)
13: end if
14: end if
15: if (Δd, vmax) ∈ A3 then
16: Ttrav ← 2Δd

vmax
17: Etrav ← E(0) given by Eq. (3.7)
18: Update the MR velocity profile using Eqs. (3.4) and (3.17)
19: end if
20: return Etrav, Ttrav

We conclude that for v1 < vmax < v2 (i.e., (Δd, vmax) ∈ A2 shown in Fig. 3.4), the optimal

value of optimization problem (3.19) is obtained as

f∗ =






f(ω∗d) = f(1−
√
K ′), 0 < ωd < ωmd

f(ωcd), otherwise.
(3.30)

For vmax > v2 (i.e., (Δd, vmax) ∈ A3 shown in Fig. 3.4), on the other hand, g(ωd) = 0 does not have

any root in interval (0, 1). Since f(ωd) > 0 and ∂
2f(ωd)
∂ω2
d

> 0 for ωd ∈ [0, 1), and limωd→1 g(ωd) = +∞,

the optimal value f∗ of optimization problem (3.19) is equal to f (0).

Case 2: In this case, which is illustrated by (Δd, vmax) ∈ A1 in Fig. 3.4, both f(ωd) and E(ωd)

have a local minimum for ωd ∈ (0, 1). Similarly to Case 1, the optimal value of optimization problem

(3.19) is obtained by using Eq. (3.30).

In summary, Algorithm 4 shows the pseudo-code of our proposed self-aware optimal robot motion

planning (SAOMP) algorithm, which runs locally in the MRs. Given the local parameters of vmax,
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Δd, amaxacc , c1, c2, c3, and c4 of the assigned MR, our proposed self-aware algorithm makes a trade-off

between the traversing time Ttrav and energy consumption Etrav by means of optimally planning

its motion.

3.5 Delay and Reliability Analysis

In this section, we develop our analytical framework to calculate the average packet transmission de-

lay as well as the human-robot connection reliability in FiWi based Tactile Internet infrastructures.

In our analysis, we make the following assumptions:

• Single-hop WLAN : MUs and MRs are directly associated with an ONU-AP via a wireless

single hop, whereby ONU-MPPs serve as ONU-APs.

• WiFi connectivity and WiFi offloading : The WiFi connection and interconnection times of

MUs are assumed to fit a truncated Pareto distribution, as validated via recent real-world

smartphone traces in [13]. The probability PMUtemporal that an MU is temporarily connected to

an ONU-AP is estimated as T̄on/(T̄on+ T̄off ), whereby T̄on and T̄off denote the average WiFi

connection and interconnection time, respectively.

• Task arrival model : MUs act as service demand points, where tasks arrive at random time

instants following a Poisson distribution.

• Traffic model : The background traffic rate generated by ONUs with attached fixed (wired)

subscribers that are directly connected to the backhaul EPON is set to λONU .

3.5.1 Delay Analysis

Recall from Section 3.3 that we estimated the scheduling, traversing, and execution delay com-

ponents of the total task completion time. In this section, we proceed to develop an analytical

framework to estimate the packet transmission related delay components of multi-robot task exe-

cution over FiWi-based Tactile Internet infrastructures.
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We build on the analytical frameworks presented in [13] and [75]. We first define the backhaul

downstream traffic intensity ρu and ρd for a TDM PON (Λ = 1) and a WDM PON (Λ > 1) as

ρu =
L̄

Λ.cPON

O∑

q=1

O∑

i=0

ΓPONqi < 1, (3.31a)

ρd =
L̄

Λ.cPON

O∑

q=0

O∑

i=1

ΓPONqi < 1, (3.31b)

where cPON denotes the PON data rate, O denotes the number of ONUs, and ΓPONqi represents the

traffic rate (in packet/second) between PON nodes q and i (with q = 0 denoting the OLT).

Similar to [75], upstream delay, DuPON , and downstream delay, DdPON , of both TDM and WDM

PONs are obtained as

DuPON = Φ(ρu, L̄, ς2, cPON ) +
L̄

cPON
+ 2τPON

2− ρu

1− ρu
−Bu, (3.32)

DdPON = Φ(ρu, L̄, ς2, cPON ) +
L̄

cPON
+ τPON −B

u, (3.33)

where τPON denotes the average propagation delay between ONUs and OLT, Φ(∙) is the average

queueing delay of an M/G/1 queue characterized by the Pollaczek-Khintchine formula as

Φ(ρ, L̄, ς2, c) =
ρ

2c(1− ρ)

(
ς2

L̄
+ L̄

)

, (3.34)

and

Bd = Bu = Φ



 L̄

Λ.cPON

O∑

q=1

O∑

i=1

ΓPONqi , L̄, ς
2, cPON



 . (3.35)

Next, we calculate the average delay experienced by an arriving packet at wireless subscribers.

Let De2ez,i denote the average packet delay of wireless subscriber i that resides within the coverage

area of ONU−APz. The set of MUs, UMUz , and MRs, UMRz , along with their associated ONU-APz

constitute Uz = UMUz ∪ UMRz ∪ {0} with i = 0 representing ONU−APz. We then obtain De2ez,i as

De2ez,i =
1

1
Δz,i
− σz,i

, Δz,iσz,i < 1, ∀i ∈ Uz, z = 1, 2, ..., NAP , (3.36)
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Figure 3.5 – Delay components of average channel access delay in IEEE 802.11 DCF with random
back-offs.

where Δz,i and σz,i denote the average channel access delay and traffic rate, respectively, and NAP

is the total number of ONU-APs. Note that Eq. (3.36) accounts for both queueing delay as well

as channel access (service) delay of wireless subscriber i ∈ Uz. We also note that the average

access delay Δz,i consists of time delays due to carrier sensing, exponential back-offs, collided

and erroneous (if any) attempts, successful transmission, and acknowledgement transmission, as

illustrated in Fig. 3.5.

To compute the average channel access delay, we define a two-dimensional Markov process

(s(t), b(t)) under unsaturated conditions (see Fig. 2.10) and estimate the average service time Δz,i

in a WLAN using IEEE 802.11 DCF for access control, whereby b(t) and s(t) denote the random

back-off counter and size of the contention window at time t, respectively. We note that Δz,i is

obtained as

Δz,i =
∞∑

k=0

pke,i (1− pe,i)

[
∞∑

j=0

pjc,i (1− pc,i)








k+j∑

b=0

2min(b,m)W0 − 1
2

Es



+ jTc,i + kTe,i + Ts,i





]

,

∀i ∈ Uz, z = 1, 2, ..., NAP .
(3.37)

In the following, we proceed to evaluate transmission delay T dmdtrs from a given MU to the OLT,

transmission delay T alctrs from the OLT to the allocated MR, and transmission delay T otrs from the

MR to the MU.

Transmission Delay from MU to OLT

The routing path of an allocation demand transmitted by an MU consists of a single wireless hop

and subsequent upstream transmission across the backhaul EPON. Therefore, the average packet
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transmission delay T dmdtrs of an MU to the OLT is estimated as

T dmdtrs = E
(
De2ez,i

)

︸ ︷︷ ︸
MU to ONU-AP

+ DuPON︸ ︷︷ ︸
ONU-AP to OLT

,
(3.38)

where E
(
De2ez,i

)
is computed for ∀i ∈ UMUz , z = 1, 2, ..., NAP .

Transmission Delay from OLT to MR

After scheduling, the task coordinator collocated at the OLT transmits the task allocation to the

selected MR. Therefore, the average transmission delay T alctrs from the OLT to an MR is given by

T alctrs = DdPON︸ ︷︷ ︸
OLT to ONU-AP

+ E
(
De2ez,i

)

︸ ︷︷ ︸
ONU-AP to MR

,
(3.39)

where E
(
De2ez,i

)
is computed for ∀i = 0, z = 1, 2, ..., NAP .

End-to-End Delay from MR to MU

After successfully accomplishing the task, the MR transmits the task output/result to the corre-

sponding MU via the associated ONU-AP. The average transmission delay T otrs from an MR to an

MU is then obtained as
T alctrs = E

(
De2ez,i

)

︸ ︷︷ ︸
MR to ONU-AP

+ E
(
De2ez,i

)

︸ ︷︷ ︸
ONU-AP to MU

,
(3.40)

where the first term is averaged over ∀i ∈ UMRz , z = 1, 2, ..., NAP , whereas the second term is

averaged over ∀i = 0, z = 1, 2, ..., NAP .

3.5.2 Reliability Analysis

Recall from above that according to recent real-world smartphone traces, WiFi connection and

interconnection times follow a truncated Pareto distribution [13]. The stationary probability that



Chapter 3. Context- and Self-Awareness for Human-Agent-Robot Task Coordination 81

an MU/MR temporarily resides within the coverage area of an ONU-AP is given by

Ptemp =
T̄on

T̄on + T̄off
=
T̄on/T̄off

1 + T̄on/T̄off
. (3.41)

In order for an MR to successfully perform the task requested by an MU, both MU and MR have

to be connected to the associated ONU-AP. Let us define the human-to-robot (HR) connectivity

probability PHR as the probability that both MU and MR are connected to the associated ONU-

APs, which is given by

PHR = PMUtemp ∙ (1− P
drop
MU→AP ) ∙ (1− P dropAP→MR) ∙ PMRtemp ∙ (1− P

drop
MR→AP ) ∙ (1− P dropAP→MU ), (3.42)

where P drop denotes the packet dropping probability.

Furthermore, let us define the HR connection reliability function, RHR(t), as the probability

that the HR connection time lasts longer than t seconds. First, let random variables TMU and TMR

denote the WiFi connection lifetime of the MU and MR, respectively. Recall that according to our

mobility model, TMU and TMR follow a truncated Pareto distribution, whose PDF is given by

f(t) =
αγα

1−
(γ
ν

)α t
−(α+1), 0 < γ ≤ t ≤ ν. (3.43)

For notational convenience, we use subscripts H and R to denote the MU and MR, respectively.

Note that HR connection time THR can be computed as

THR = min{TMU , TMR}. (3.44)

The probability that the HR connection time THR is greater than t translates to the joint probability

P (TMU > t, TMR > t) ,

which in turn gives HR connection reliability RHR(t) as follows:

RHR(t) = P (TMU > t) ∙ P (TMR > t). (3.45)

We note that this is due the fact that TMU and TMR are two independent random variables since

the mobility of an MU does not depend on that of an MR, thus rendering the MU-AP and MR-AP
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connections completely independent from each other. Consequently, Eq. (3.45) is then equal to

RHR(t) =








1−
∫ t

0
fH(t).dt

︸ ︷︷ ︸
P (TH)<t















1−
∫ t

0
fR(t).dt

︸ ︷︷ ︸
P (TR)<t








Eq. (3.43)
=

(

1−
1− (γHt )αH

1− (γHνH )αH

)(

1−
1− (γRt )αR

1− (γRνR )αR

)

.

(3.46)

Next, we proceed to estimate the conditional probability of an HR connection failure during

time interval [t, t+ ξ], given that MU and MR have been connected for the last t seconds:

P (t < THR < t+ ξ | THR > t) =
P (connection failure happens in [t, t+ ξ])

P (THR > t)
. (3.47)

As ξ → 0, Eq. (3.47) reduces to

P (t < THR < t+ ξ | THR > t) =
dFTHR(t)

1− FTHR(t)
. (3.48)

The right-hand side of Eq. (3.48), which is commonly referred to as failure rate function (FRF)

denoted by hHR(t), represents the conditional probability intensity that an HR connection fails,

given that it has lasted up to time t [80]. Hence, hHR(t) is then obtained as

hHR(t) =
∂
∂t(1−RHR(t))

RHR(t)
. (3.49)

Substituting Eq. (3.46) into Eq. (3.49) and then differentiating with respect to t finally yields

hHR(t) =

αHγ
αH
H

1−
(
γH
νH

)αH t
−(αH+1)

1−(
γH
t

)αH

1−(
γH
νH

)αH

+

αRγ
αR
R

1−
(
γR
νR

)αR t
−(αR+1)

1−(
γR
t

)αR

1−(
γR
νR

)αR

. (3.50)

Note that FTHR(t) is an increasing/decreasing failure rate (IFR/DFR) distribution, if hHR(t) is

an increasing/decreasing function of t. We can easily verify that hHR(t) in Eq. (3.50) is a convex

function of t. Thus, there exists a t∗ > 0 such that ∂∂thHR(t) |t∗= 0 , whereby ∂∂thHR(t) is negative

for t < t∗ (i.e., DFR) and positive for t > t∗ (i.e., IFR). We note that IFR renders an intuitive

concept in that the probability of an HR connection failure increases over time. DFR, on the other

hand, implies that the probability of losing an HR connection decreases over time, which happens

for t < t∗.
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Table 3.1 – MR and FiWi Network Parameters & Default Values

Parameter Value Parameter Value
c1 17.75 DIFS 34 μsec
c2 1.16 SIFS 16 μsec
c3 10.46 PHY Header 20 μsec
c4 4.70 W0 16 slots
γ0 [0, 25, 50, 75, 100]% H 6
vmax 2 m/s ε 9 μsec
aaccmax 2 m/s2 RTS 20 bytes
E(tai ) 8 s CTS 14 bytes
W pi 1-10 KJ ACK 14 bytes
W di 100-500 MHz (cycles/s) r in WMN 300 Mbps
N 4 cPON in PON 10 Gbps
NMU 8 lPON 20 km
Cp 1 KW L̄ 1500 bytes
Cd 100-500 GHz (cycles/s) ς2L 0
εd 10× 10−10 J ONU-AP radius 10

√
2 m

3.6 Results

In this section, we investigate the performance of our proposed task allocation scheme. For con-

venience, we have summarized the key parameters and their assigned default values in Table 3.1,

which lists the parameter values of the considered FiWi network taken from [13], those of the mobile

robots in compliance with [79], and those of the physical and digital tasks in consistency with [81]

and [77]1. We consider 4 ONU-APs as well as 4 ONUs serving fixed wired subscribers. Associated

with each ONU-AP are 2 MUs along with an MR, with a total of 8 MUs and 4 MRs. We use a

Poisson point process to generate the random locations of MUs and MRs in an 80 × 80 m2 area.

We assume that task demands arrive at the task coordinator with exponential interarrival times.

Fig. 3.6 depicts the average OPEX per task vs. user- to network-ownership cost ratio, rU2N =

ϕU
ϕN
≤ 1. Interestingly, we observe that while full user-ownership (i.e., γO = 100%) is always bene-

ficial for MUs in terms of OPEX savings, partial user-ownership (i.e., γO < 100%) isn’t necessarily

so. From Fig. 3.6 we observe that a user-ownership of γO = 25% is less costly than full network

ownership (i.e., γO = 0%) only for rU2N < 0.39. For rU2N > 0.39, on the other hand, MUs face lower

OPEX per task with full network-ownership (γO = 0%) compared with a partial user-ownership of

γO = 25%. The reason for this is that for γO = 0%, our task coordination algorithm allocates tasks

1It is worthwhile to mention that these parameters are either based on real-world experiments/measurements or
in compliance with well-known standards (e.g., IEEE 802.11n/ac and IEEE 802.3ah).
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Figure 3.6 – Average cost, C̄, per executed task vs. user- to network-owned OPEX ratio rU2N (D = 0
fixed).

Figure 3.7 – Average OPEX, C̄, per executed task vs. waiting deadline D (rU2N = 0.2 fixed).

to the preferred user-owned MR(s), which are responsible for giving service to all MUs in the area.

This, in turn, increases the average distance traversed by user-owned MRs, thus increasing average

traverse time and energy consumption. As ϕUϕN becomes greater than 0.39, full network-ownership

therefore proves less costly. Further, note that in order for a partial user-ownership of γO = 50%

and γO = 75% to be less costly than full network-ownership (γO = 0%), rU2N must not exceed

0.58 and 0.73, respectively (see also Fig. 3.6). Moreover, we observe that as ϕUϕN → 0, the beneficial

impact of user-ownership on OPEX savings is more pronounced, whereas for ϕUϕN → 1, the average
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Figure 3.8 – θ vs. waiting deadline D (rU2N = 0.2 fixed).

OPEX C̄rU2N per task for different values of γO converge to that of γO = 100%. This is because as

ϕU
ϕN
→ 1 we have ϕU ≈ ϕN , thus user-ownership does not reveal a notable OPEX gain compared

with full network-ownership.

Next, we explore the impact of increasing waiting deadline2 D on OPEX savings in Fig. 3.7,

which depicts the average OPEX, C̄ per executed task, vs. waiting deadline D. We find that an

increasing D reduces C̄ only for partial user-ownership (i.e., γO = 25, 50, and 75%). To better

understand this, let θ denote the ratio of the number of executed tasks by user-owned MRs to the

total number of tasks. Fig. 3.8 depicts θ vs. waiting deadline D for the same fixed rU2N = 0.2.

We observe that an increasing D has no impact on γO = 0% and 100%, whereas it increases θ for

γO = 25, 50, and 75%. This is due to the fact that for increasing D more tasks are executed by

user-owned MRs rather than their network-owned counterparts, resulting in a decreased C̄ (see also

Fig. 3.7).

Next, we plot the average task completion time vs. waiting deadline in Fig. 3.9. The figure shows

that for γ0 the average task completion time increases linearly with D. We note that Fig. 3.9 along

with Figs. 3.7 and 3.8 demonstrate that for γO = 0%, setting D = 0 achieves the best performance

in terms of not only OPEX but also average task completion time. For γ0 = 25, 50, and 75%, on

the other hand, the average task completion time increases for increasing D until it hits a plateau.

2We note that by setting D = 0 for γ0 = 0% and 100%, our proposed CADMRTC algorithm may be viewed as the
nearest available robot allocation scheme, which stands as a baseline for fair comparison.
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Figure 3.9 – Average task completion time vs. waiting deadline D.

Figure 3.10 – 2-D Pareto-front of our proposed CADMRTC algorithm for different values of ownership
spreading factor γ0 (waiting deadline D increases along the arrow shown on each curve).

The values of D above, with the average task completion time remaining constant, are obtained as

105, 2× 104, and 100 seconds for γ0 = 25, 50, and 75%, respectively.

The obtained 2-D Pareto front results of our proposed CADMRTC algorithm are depicted in

Fig. 3.10, which characterizes the trade-off between the average OPEX per task and average task

completion time. Fig. 3.10 reveals that none of the obtained results for a given γ0 is dominant,

thus the decision maker can yield a flexible trade-off between the two objectives of the problem by

appropriately setting the waiting deadline D. Fig. 3.11 depicts the average task completion time vs.
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Figure 3.11 – Average task completion time vs. ownership spreading factor.

ownership spreading factor γO for different deadline D ∈ {0, 2, 5, 10} (given in seconds). Generally,

we observe a trend of decreasing average task completion time for increasing ownership spreading

factor, whereby the impact of varying D becomes negligible for an ownership spreading factor of

75% and higher. Note that the lowest average task completion time of roughly 16 seconds can be

achieved for D = 0 with either 0% or 100% ownership spreading. This is due to the fact that in

both cases all MRs are eligible for immediate task allocation. More interestingly, for D = 0 and to

a lesser extent also for D = 2 seconds the average task completion time increases for an ownership

spreading factor of up to 50%, as opposed to the aforementioned general trend. This observation

stems from the unbalanced task allocation between a few over-utilized user-owned MRs and the rest

of under-utilized network-owned MRs (see also Fig. 3.8).

Figure. 3.12 illustrates the probability of HR connectivity vs. T̄MUon /T̄
MU
off for different values

of T̄MRon /T̄
MR
off . For T̄on/T̄off = 2.73, which is obtained from real-world measurements in [13], we

achieve a maximum of 53.57% H2R connectivity probability. Note that for an increasing T̄MUon /T̄
MU
off

of up to 30, PHR increases until it it levels off. Conversely, for T̄MUon /T̄
MU
off > 30, PHR highly depends

on the temporal availability of MR, PMRtemp.

Finally, Fig. 3.13 shows the HR connection reliability function RHR(t) and HR connection failure

rate hHR(t). Note that for t < 615.4 minutes, the reliability function is DFR, whereas it is IFR for

t > 615.4. This implies that the connection failure rate hHR(t) decreases as time t increases up to
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Figure 3.12 – HR connectivity probability vs. T̄MUon /T̄
MU
off for different values of T̄MRon /T̄

MR
off .

Figure 3.13 – HR connection reliability function RHR(t) and failure rate function hHR(t) vs. time.

t∗ = 615 minute, given that it has not failed by time t. At t = t∗, the minimum value of 0.0044 is

achieved. For t > t∗, on the other hand, the HR connection failure rate increases up to roughly 120

per minute (i.e., average inter-failure time becomes 500 ms).

3.7 Conclusions

We investigated the performance of our proposed context- and self-aware HART centric multi-robot

task allocation over FiWi based Tactile Internet infrastructures. We shed light on when, how, and

under which circumstances user-ownership of mobile robots (MRs) becomes beneficial in terms of
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OPEX per executed task. Further, we evaluated the performance of our proposed CADMRTC

algorithm in terms of average task completion time, OPEX per executed task, and ratio of the

number of executed tasks by user-owned MRs and the total number of tasks. By leveraging on

the low-latency and reliable fiber backhaul and distributed WiFi-based fronthaul, we showed that a

human-robot connectivity probability of > 90% is achievable for T̄MRon /T̄
MR
off > 10. In addition, our

obtained results show that our proposed self-aware scheme plays a key role in minimizing the traverse

time as well as energy consumption of MRs in a distributed manner, whereas our context-aware

task coordination is instrumental in minimizing the task completion time, while paying particular

attention to reducing OPEX of user-/network-ownership of MRs.

Importantly, our obtained results show that from a performance perspective (in terms of av-

erage task completion time) almost no deterioration occurs if the ownership is shifted entirely

from network operators to mobile end-users (D = 0), though such a shift in ownership of robots

has significant implications on sharing the profits and collaborative business opportunities arising

from the emerging Tactile Internet in a more equitable fashion. As a result, this may open up

new opportunities for synergies between humans and machines/robots, while spurring the symbi-

otic human-machine/robot development envisaged by early-day Internet pioneers and imagining

entirely new categories of abundance for a low entry cost economy. Among others, one future re-

search direction is to further explore the synergies between the aforementioned HART membership

and the complementary strengths of robots to facilitate local human-machine coactivity clusters

by decentralizing the Tactile Internet. Another interesting open research problem is how human

crowdsourcing can help decrease task completion time in the event of unreliable connectivity and/or

network failures. Note that our presented spreading ownership of robots across mobile users may be

an important stepping stone to collaborative business relationships that function more like localized

share-economy ecosystems than markets.





Chapter 4

Delay-Constrained Teleoperation Task

Scheduling and Assignment

This chapter contains material extracted from the following publication:

[51] A. Ebrahimzadeh and M. Maier. Delay-Constrained Teleoperation Task Scheduling and As-

signment for Human+Machine Hybrid Activities over FiWi Enhanced Networks. IEEE Trans-

actions on Network and Service Management, IEEE Xplore Early Access.

[52] A. Ebrahimzadeh and M. Maier. Tactile Internet over FiWi enhanced LTE-A Het-Nets via

Artificial Intelligence Embedded Multi-Access Edge-Computing. CRC Press: 5G-Enabled

Internet of Things, accepted for publication.

In the following, my key contributions in both of the aforementioned publications are explained

in greater detail: (1) I largely contributed to writing the whole manuscript, (2) I developed the

analytical framework, (3) I conducted the algorithmic work, and (4) I ran the simulations.

4.1 Introduction

A popular misinterpretation about robotics is that intelligent systems, ranging from advanced robots

to digital bots, will gradually substitute humans in one job after another. This argument may be
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true for some jobs, but we note that even though advanced robotics can be deployed to automate

certain jobs, its greater potential, yet to be unleashed, is to complement and augment human capa-

bilities. The cutting-edge jobs and innovative businesses that arise from human-machine symbiosis

are happening in the so-called missing middle that refers to the new ways that have to bridge the

gap between human-only and machine-only activities. This gives way to the so-called third wave of

business transformation, which will be centred around human+machine hybrid activities [8]. Key

toward developing the missing middle is to understand the ways humans help machines and the

ways machines help humans. An interesting example of recognizing the relative strengths of hu-

mans and machines and leveraging on them to fill the missing middle can be found at automobile

manufacturer Audi. Having deployed a fleet of audi robotic telepresence (ART) systems, Audi has

set forth toward employee augmentation that not only helps train technicians in diagnostics and

repair, but also accelerates delivery of service to customers [9].

The advent of semi-autonomous robotic assistance systems is becoming a part of the vision of

the Tactile Internet. An early example is the European research project Robot-Era, which recently

concluded the world’s largest real-life trial of robot aids for the ageing population. With their small-

stage deployment proven successful, robotic helpers will need to request human assistance every

now and then, as stated recently by automobile manufacturer Nissan to augment their autonomous

vehicle technology with a crew of on-call remote human operators acting as “mobility managers”,

who can remotely take control in unexpected situations [82].

While the Tactile Internet has been more recently also referred to as the 5G-enabled Tactile

Internet, the importance of the so-called backhaul bottleneck needs to be recognized as well, calling

for an end-to-end design approach leveraging both wireless frontend and wired backhaul technolo-

gies [46]. This mandatory end-to-end design approach is fully reflected in the key principles of the

reference architecture within the emerging IEEE P1918.1 standards working group (formed in March

2016), which aims to define a framework for the Tactile Internet [60]. These key principles aim to

develop a generic Tactile Internet reference architecture, supporting local area as well as wide area

connectivity through wireless (e.g., cellular, WiFi) or hybrid wireless/wired networking. The impor-

tance of such design approach is more highlighted for the Tactile Internet applications that may not

always require mobility, e.g., remote healthcare. With the wide deployment of PONs providing high

capacity and reliability and wireless networks offering ubiquitous and flexible connectivity, interest

has been growing in bimodal FiWi networks that leverage the complementary benefits of optical
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fiber and wireless technologies (see [83] for a detailed survey of network architectures, algorithms,

and standardization). FiWi enhanced LTE-A HetNets represent a compelling solution to enable 4G

cellular networks to meet the key requirements of low-latency and high-availability [84]. Recently,

the authors of [13] have evaluated the maximum aggregate throughput, offloading efficiency, and

delay performance of FiWi enhanced LTE-A HetNets and have shown that via WiFi offloading

and fiber backhaul sharing, an ultra-low latency of 1-10 millisecond and highly reliable network

connectivity can be achieved for a wide range of traffic loads.

Unlike their fully-autonomous counterparts, semi-autonomous robotic systems rely on human

assistance from time to time via teleoperation and/or telepresence when domain expertise is needed

to accomplish a specific task, thus allowing for an HITL centric design approach. As these robots will

need to request human assistance via teleoperation/presence, mapping these requests to the human

operators themselves stands as a difficult multicriteria optimization problem with the objectives of

minimizing the average weighted task completion time, maximum tardiness, and average OPEX

per task. The difficulty of solving such a problem lies in the following reasons. First, it is clear

that we are dealing with different conflicting objectives, which makes it challenging to obtain a

satisfactory result, especially for large-sized problem instants. Second, the assignment of a given

task to a human operator is subject to strict end-to-end packet delay constraints, thus calling for a

cross-layer approach, taking into account the delay experienced by packets in both command and

feedback paths (to be discussed later on).

In this chapter, after elaborating on our envisioned bimodal FiWi network infrastructure and its

role in realizing teleoperation in the Tactile Internet, we formulate and solve the problem of joint

prioritized scheduling and assignment of delay-constrained teleoperation tasks to human operators

so as to minimize the average weighted task completion time, maximum tardiness, and average

OPEX per task. In particular, the contributions of this chapter are as follows:

• We elaborate on the role of FiWi enhanced networks as the underlying communications in-

frastructure for enabling emerging delay-sensitive Tactile Internet applications. In particular,

trying to build on our findings in [13] and [46], we aim to realize local and/or non-local tele-

operation over FiWi enhanced networks, leveraging on low-cost data-centric (optical fiber and

wireless) Ethernet technologies in both fronthaul and backhaul.
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• We define the problem of joint prioritized scheduling and assignment of delay-constrained tele-

operation tasks onto available skilled human operators. After formulating our multi-objective

optimization problem, we propose our so-called context-aware prioritized scheduling and task

assignment (CAPSTA) algorithm to achieve satisfactory results by making suitable trade-offs

between the contradicting objectives of the problem.

• We develop our analytical framework to estimate the end-to-end packet delay of both local

and non-local teleoperation over FiWi enhanced networks. Our analysis flexibly allows for the

coexistence of both conventional H2H and haptic H2M traffic, while focusing on the human

operators and teleoperator robots involved in either local or non-local teleoperation. The

results of our delay analysis are then fed into the proposed CAPSTA algorithm.

The remainder of the chapter is structured as follows. Section 4.2 describes FiWi based Tactile

Internet infrastructures for HITL-centric teleoperation-based task coordination. In Section 4.3, we

present our problem formulation, which is then solved by proposing our context-aware task coordi-

nation algorithm in Section 4.4. Our end-to-end packet delay analysis is presented in Section 4.5. In

Section 4.6, we present our obtained results and findings. In section 4.7, we present a complemen-

tary discussion on our findings and point to some interesting future research avenues. Section 4.8

concludes the chapter.

4.2 System Model

4.2.1 Teleoperation

Figure 4.1 depicts a typical bilateral teleoperation system based on bidirectional haptic commu-

nications between an HO and a TOR, which are both connected via a communication network.

In a typical teleoperation system, the position-orientation samples are transmitted from the HO

through the HSI in the command path, whereas the force-torque samples are fed back to the HO

in the feedback path. By interfacing with the HSI, the HO commands the motion of the TOR in

the remote environment. This couples the HO closely with the remote environment and thereby

creates a more realistic feeling of remote presence.
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Figure 4.1 – Bilateral teleoperation system based on bidirectional haptic communications between HO
and TOR.

Figure 4.2 – Generic architecture of FiWi based Tactile Internet network infrastructure for teleoper-
ation task coordination.

We let NDoF denote the number of DoFs in the teleoperation system in use. Typically, NDoF

haptic samples coming from the application layer are encapsulated in a single segment with a

prepended RTP/UDP/IP header. Each DoF haptic sample typically consists of 8 bytes, thus

translating into a total of 8NDoF bytes of payload. The haptic samples are packetized using RTP,

UDP, and IP with a header size of 12, 8, and 20 bytes, respectively. Hence, the size of the resultant

packet at the MAC layer SAP is equal to 8NDoF + 40 bytes.

4.2.2 Network architecture

Figure 4.2 illustrates the generic network architecture of our considered FiWi enhanced LTE-A

HetNets. The optical backhaul consists of a TDM/WDM IEEE 802.3ah/av 1/10 Gb/s EPON
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with a typical fiber length of 20 km between the central OLT and remote ONUs, which may be

extended up to 100 km to account for the long-reach PON deployment scenarios. The EPON may

comprise multiple stages, each stage separated by a wavelength-broadcasting splitter/combiner or

a wavelength multiplexer/demultiplexer. There are three different subsets of ONUs. An ONU may

either serve fixed (wired) subscribers. Alternatively, it may connect to a cellular network BS or

an IEEE 802.11n/ac/s WLAN MPP, giving rise to collocated ONU-BS or ONU-MPP, respectively.

Depending on her trajectory, an MU may communicate through the cellular network and/or WLAN

mesh front-end, which consists of ONU-MPPs, intermediate MPs, and mesh access points MAPs.

As shown in Fig. 4.2, selected MUs are equipped with TORs, which are capable of performing

physical tasks (simply referred to as tasks hereafter) by establishing haptic communications with

HOs. The MUs that are collocated with the TORs act as task demand points. Typically, the

number of task demands is greater than that of available skilled HOs. This necessitates a suitable

mapping of tasks to the available HOs. Given the set of tasks and available skilled HOs, the task

coordinator agent is responsible for the assignment of tasks and scheduling them on the HOs (see

Fig. 4.2). Note that teleoperation-based tasks arrive at the demand points. The corresponding MUs

then send their demands upstream to the task coordinator agent, which is collocated with the OLT

(see Fig. 4.2), via the wireless front-end and EPON backhaul until they reach the OLT. The task

coordinator agent then transmits the schedule to the HOs as well as demand points. According to

the schedule received from the task coordinator agent, an HO may be involved in either local or

non-local teleoperation with the corresponding TOR, depending on the proximity of the involved

HO and TOR, as illustrated in Fig. 4.2. In local teleoperation, the HO and corresponding TOR

are associated with the same MAP and exchange their command and feedback samples through

this MAP without traversing the fiber backhaul. Conversely, if HO and TOR are associated with

different MAPs, non-local teleoperation is generally done by communicating via the backhaul EPON

and central OLT.

4.3 Problem Statement

We consider the problem of joint assignment and scheduling of N delay-constrained teleoperation

tasks on any fixed numberM of HOs as follows. LetM = {O1, O2, ..., OM} and J = {J1, J2, ..., JN}

denote the set of M available HOs and N given tasks, respectively. Let Tj denote the operation



Chapter 4. Delay-Constrained Teleoperation Task Scheduling and Assignment 97

time of task Jj ∈ J . Note that operation time Tj is given by

Tj = sj + wj , (4.1)

where sj and wj is the teleoperation session setup time and workload (both in seconds) of task

Jj , respectively. Each task Jj ∈ J has a due time Dj and is associated with weight Ωj . Larger

weights correspond to higher priority levels. Although the tasks are expected to be accomplished

by the given due time, any incurred tardiness is subject to a cost penalty (to be elaborated on in

technically greater detail shortly).

We consider an offline scheduling scenario, where all tasks are available at time zero and remain

available continuously thereafter. Each task can be operated by only one human operator at a time

and each human operator can operate only one task at a time. We also assume that preemption is not

allowed, meaning that tasks cannot be split. This is because if tasks were divided and scheduled in

noncontinuous time periods, preemption would incur extra reconfiguration/setup overhead, which

is significant when the setup time is non-negligible. For simplicity, we assume, without loss of

generality, that operation times, due times, and priority weights are all integers. Further, we assume

N � M . For task Jj , the start and completion times are denoted by Sj and Cj , respectively. A

feasible assignment/schedule specifies when and by which human operator a given task is operated.

Given a feasible schedule, one can compute the tardiness of task Jj as max{0, Cj −Dj}. The goal

is to assign the tasks to the HOs such that the following constraints are satisfied: (1) no more than

one task is assigned to an HO at a time, (2) no task is assigned to more than one HO, (3) tasks are

not preempted, and (4) the average end-to-end packet delay of a scheduled teleoperation doesn’t

exceed a given delay threshold.

4.3.1 Problem formulation

We formulate our mixed integer programming (MIP) problem of joint prioritized scheduling and

assignment of delay-constrained teleoperation tasks onto HOs as follows:

Given:

• J : Set of tasks

• M: Set of available human operators
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• Jj : Task j, j = 1, 2, ..., N

• Tj : Operation time of task Jj , j = 1, 2, ..., N

• Ωj : Weight of task Jj , j = 1, 2, ..., N

• Dj : Due time of task Jj , j = 1, 2, ..., N

• Ok: Human operator k, k = 1, 2, ...,M

• Dc: Average end-to-end packet delay matrix of teleoperation pairs in the command path

• Df : Average end-to-end packet delay matrix of teleoperation pairs in the feedback path

Parameters:

• εh: Operational cost per time unit of tardiness

• εm: Operational cost of activating a teleoperation session

• εk: Operational cost per time unit of performing a teleoperation task by human operator Ok

Decision variables:

• δij : A binary variable, which equals 0 unless task Ji precedes task Jj

• zjk: A binary variable, which equals 0 unless task Jj is assigned to human operator Ok

• yij : A binary variable, which equals 0 unless tasks Ji and Jj are not assigned to the same

human operator

• Sj : Operation start time associated with task Jj , j = 1, 2, ..., N

• Cj : Operation completion time associated with task Jj , j = 1, 2, ..., N

• X: Set of total decision variables of the problem represented by ({δij}, {yij}, {zjk}, {Sj}, {Cj})

Objective functions:

• L (X): Average weighted task completion time
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• T (X): Maximum tardiness

• C (X): Operational expenditure

Multi-objective formulation:

minimize
X

L(X), T (X), C(X) (4.2)

subject to

δij + δji + yij = 1; i, j ∈ J , i < j (4.3a)

δij + δjl + δlj ≤ 2; i, j, l ∈ J , i < j < l (4.3b)

zik + zjk + yij ≤ 2; i, j ∈ J , i < j, k ∈M (4.3c)

M∑

k=1

zjk = 1; ∀j ∈ J (4.3d)

Cj ≥ Tjzjk; j ∈ J , i < j, k ∈M (4.3e)

Cj ≥ Ci + Tj(δij + zik + zjk − 2)−K(1− δij);

i, j ∈ J , k ∈M
(4.3f)

∑

k∈M

Dckjzjk ≤ D0; j ∈ J (4.3g)

∑

k∈M

Dfjkzjk ≤ D0; j ∈ J (4.3h)

δij , δji, yij , zjk ∈ {0, 1} i, j ∈ J , k ∈M (4.3i)

Cj ∈ R
+, j ∈ J (4.3j)

where L(X), T (X), C(X) are given as follows. Our first objective is to minimize the average

weighted task completion time L(X), which is given by

L(X) =
1
N

∑

j∈J

ΩjCj . (4.4)

The second objective is to minimize the maximum tardiness T (X), which is given by

T (X) = max
j∈J

tardiness of task j
︷ ︸︸ ︷
max{Cj −Dj , 0},

(4.5)
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which stands as a non-linear objective function of the decision variables. The third objective is to

minimize OPEX, C(X), which is estimated as

C(X) =M ∙ εm +
∑

j∈J

εhΩj max{Cj −Dj , 0}

+
∑

k∈M

∑

j∈J

zjkεkTj ,
(4.6)

where the first term represents the cost of activating M teleoperation sessions, the second term

penalizes the tardy tasks according to their priority levels, i.e., the tardy tasks with higher priorities

are subject to higher incurred cost penalty, and the third term models the total cost of performing

tasks by HOs. The aforementioned definitions clearly indicate that these objectives are independent

and often conflicting optimization targets.

In our aforementioned MIP formulation, constraint set (4.3a) ensures that if tasks Ji and Jj are

assigned to the same HO (i.e., yij = 0), one of them should precede the other, thus either δij or

δji must equal 1. On the other hand, if the tasks are assigned to different HOs (i.e., yij = 1), both

δij and δji must equal zero. Constraint (4.3b) ensures a linear ordering of the tasks. According to

constraint (4.3c), when tasks Ji and Jj are assigned to human operator Ok, then yij must equal

zero. Constraint (4.3d) ensures that each task is assigned to one of the available HOs. Constraints

(4.3e) and (4.3f) represent the completion time of the scheduled tasks. We note that in constraint

set (4.3f), K is a relatively large number, which is set to
∑N
j=1 Tj in our problem. Constraints (4.3g)

and (4.3h) ensure that the average end-to-end packet delay of any scheduled teleoperation pair HO-

TOR in both command and feedback paths is kept below a given threshold D0. To be more specific,

among all the possible HO assignments, the teleoperation pairs that are incurred with an excessive

amount of connection latency are excluded from the feasible set.

Note that the average end-to-end packet delays of any possible HO-TOR pair are characterized

by two matrixes, one of which represents the command path whereas the other accounts for the

feedback path. More specifically, the command delay matrix Dc is given by

Dc =












Dc11 Dc12 . . . Dc1N

Dc21 Dc22 . . . Dc2N
...

. . .
...

DcM1 D
c
M2 . . . D

c
MN












M×N

, (4.7)
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where element Dckj in row k (k = 1, ...,M ) and column j (j = 1, ..., N ) denotes the average end-to-

end packet delay between human operator k and teleoperator robot j. Similarly, the feedback delay

matrix Df is given by

Df =












Df11 Df12 . . . Df1M

Df21 Df22 . . . Df2M
...

. . .
...

DfN1 D
f
N2 . . . D

f
NM












N×M

, (4.8)

where element Dfjk in row j (j = 1, ..., N ) and column k (k = 1, ...,M ) denotes the average end-to-

end packet delay between teleoperator robot j and human operator k. Note that the elements of

the delay matrixes Dc and Df , which depend on the state of the underlying network, are estimated

by using our delay analysis presented in Section 4.5.

4.3.2 Model scalability

Recall from above that the problem of assigning and scheduling of tasks to the human operators is

subject to strict end-to-end packet delay constraints, which limits the feasible set. If we consider a

special case where there are tasks to be mapped to human operators without any end-to-end packet

delay constraint and with only one objective of minimizing the average weighted task completion

time, then the problem reduces to parallel machine scheduling problem, which is known to be

NP-hard [36]. Given that the single-criterion parallel machine scheduling without any end-to-

end delay constraint is a special case of the multi-criteria delay-constrained teleoperation task

scheduling and assignment, this makes the latter also NP-hard by restriction. Given a set of N

tasks and M human operators, the developed formulation has 2N2 + 2N + N ∙M variables and
N(N−1)

2 +N(N−1)(N−2)
6 + 2N ∙M(N−1)

2 +2N2+N ∙M+4N constraints, which, along with the conflicting

objectives, drastically restrict the scalability of the model even for small-sized problems, therefore

calling for algorithmic solutions.
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Figure 4.3 – An illustrative case study of the delay/cost performance of two different task coordination
strategies.

4.4 Algorithmic Solution

4.4.1 Illustrative case study

For illustration, we present a case study in order to better understand the impact of different priori-

tized and non-prioritized coordination strategies on the delay/cost performance from the viewpoint

of both users and network operator. Let us consider two human operators and five tasks, as shown

in Fig. 4.3, where the task parameters (i.e., operation times, due times, and weights1) as well as the

command/feedback delay matrixes (in millisecond) are illustrated.

Strategy A, regardless of task weights, assigns the tasks to the nearest HO that resides within

the coverage area of the same access point, thus giving preference to realize local teleoperation

sessions. Therefore, in strategy A, among the feasible solutions that meet the delay constraints

specified by Eqs. (4.3g) and (4.3h), tasks J1, J2, and J5 are assigned to O1, whereas J3 and J4

are assigned to O2. In contrast, Strategy B relies on giving preference to high-priority tasks with

shorter due times, thus J5, J3, and J1 are assigned to O1 whereas J2 and J4 are assigned to O2. The

results indicate that strategy B yields a lower average weighted task completion time and smaller

OPEX compared to strategy A. We note, however, that such superior performance is achieved at

the expense of a 20% increase in maximum tardiness (see also Fig. 4.3).

1Weight is usually related to the importance, while due time is associated with the urgency of a given task and a
prioritized scheduler must prepare a sequence able to first perform high-priority tasks.
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4.4.2 Proposed task coordination algorithm

We note that while the first objective function, L(X), aims to minimize the average weighted task

completion time without considering the due times, the second and third objective functions (i.e.,

T (X) and C(X)) deal with the tardiness incurred by overdue completion of tasks, thus they do

consider the task due times. Also note that the second objective, T (X), represents the maximum

task tardiness, which is preferred to be minimized from a user standpoint. In addition, the third

objective, C(X), which addresses the operator revenue, tries to push the task completion times

towards minimizing the incurred OPEX, thus implicitly minimizing the average weighted tardiness.

This justifies the selection of the three different objectives in our problem formulation.

Clearly, a so-called optimum with respect to one objective may perform extremely bad with re-

spect to other criteria (see example in Fig. 4.3). Therefore, a non-optimal solution with satisfactory

performance in terms of other measures might be considered a better alternative by the decision

maker. For large-sized problem instants of the developed formulation, the computational difficulties

associated with finding a satisfactory solution increase dramatically. Therefore, in order to find a

suitable trade-off between the conflicting objectives, we propose our so-called context-aware prior-

itized scheduling and task assignment (CAPSTA) algorithm, which is illustrated in Algorithm 5.

The suitable performance of the proposed algorithm relies on an accurate estimation of the context

parameters (e.g., task parameters, delay matrixes in both command and feedback paths, location

of MUs/HOs/TORs, incoming H2H/H2M traffic pattern). In the design of the proposed CAPSTA

algorithm, we adopt two sorting policies (to be elaborated on shortly), in both assignment and

scheduling phases, in order to perform in favor of high-priority tasks with shorter due times.

As a first step, the proposed CAPSTA algorithm aims to partition the given task set J into M

subsets. Towards this end, our sorting policy indicates that the given tasks are sorted in a decreasing

order of Ωj
Tj

(see line 1 in Algorithm 5). Next, the tasks are selected from the sorted set and then

are assigned to the HOs in a round-robin fashion (see lines 3-15 in Algorithm 5). We note, however,

that the assignment of task Jn to the human operator Om is valid only if the estimated average

end-to-end delays in both command and feedback paths satisfy the delay constraints in Eqs. (4.3g)

and (4.3h). Otherwise, we select the HO that corresponds to the minimum average end-to-end

delay with task Jn in both command and feedback paths (see lines 7-14 in Algorithm 5). This

solves the assignment sub-problem. Next, the proposed CAPSTA algorithm tackles the scheduling
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Algorithm 5 CAPSTA Algorithm

Input: J ,M, Tj , Ωj , Dj ; ∀j ∈ J , Dc, Df
Output: Sj , Cj , zjk; ∀j ∈ J , ∀k ∈M

1: Sort J in a decreasing order of Ωj
Tj
, ∀j ∈ J

2: k ← 0
3: for j = 1 to N do
4: k ← k + 1

5: k∗ ←

{
mod(k,M) if mod(k,M) 6= 0

M otherwise
6: Dck∗j ← Use Eq. (4.7) to estimate the average end-to-end packet delay in the command path

7: Dfjk∗ ← Use Eq. (4.8) to estimate the average end-to-end packet delay in the feedback path

8: if max{Dck∗j , D
f
jk∗} ≤ D0 then

9: zjk∗ ← 1
10: Sk∗ ← Sk∗ ∪ {Jj}
11: else
12: k∗ ← argmin

Ok∈M

{
max{Dckj , D

f
jk}|k = 1, 2, ...,M

}

13: zjk∗ ← 1
14: Sk∗ ← Sk∗ ∪ {Jj}
15: end if
16: end for
17: for k = 1 to M do
18: t← 0
19: while Sk 6= ∅ do
20: Jj∗ = argmin

Jj∈Sk

{
Dj
Ωj

}

21: Sj∗ ← t
22: Cj∗ ← Sj∗ + Tj∗
23: t← Cj∗
24: Sk ← Sk \ {Jj∗}
25: end while
26: end for
27: return Sj , Cj , zjk, ∀j = 1, ..., N , k = 1, ...,M

sub-problem to HOs. Toward this end, among unscheduled tasks, we first select the task with the

minimum amount of DjΩi
and then schedule it when the HO first becomes available (see lines 16-25

in Algorithm 5). This, as a result, gives preference to the tasks with larger weights and shorter due

times.

4.4.3 Complexity analysis

In the proposed CAPSTA algorithm, partitioning the given task set J into M subset returns a

solution with complexity O(N logN) +O(N) = O(N logN). Next, CAPSTA solves the scheduling
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sub-problem with time complexity O(
⌈
N
M

⌉
log

⌈
N
M

⌉
)+O(N.M). The overall time complexity is thus

calculated as O(N logN) +O(M.N), which reduces to O(N logN) +O(N2) since M � N .

4.5 Delay Analysis

Recall from above that in order to ensure the quality-of-control of local/non-local teleoperation

loops, the average end-to-end delay of HO-TOR pairs should not exceed a given threshold. Thus, in

order to ensure the proper performance of our proposed CAPSTA algorithm, it is of vital importance

to estimate the connection delay between any given TOR and the available HOs in both command

and feedback paths. Toward this end, we develop our analytical framework to estimate the av-

erage end-to-end packet delay of local and non-local teleoperation in FiWi-based Tactile Internet

infrastructures. In our analysis, we make the following assumptions:

• Single-hop WLAN : MUs, HOs, and TORs are directly associated with an ONU-AP via a

wireless single hop, whereby ONU-MPPs serve as ONU-APs.

• Haptic traffic model : In both command and feedback paths, HOs and TORs transmit their

update packets at a rate of 1000 packets/second with fixed deterministic interarrival times set

to 1 ms [11].

• Background traffic model : MUs generate background Poisson traffic with mean packet rate

λB (in packets/second). In addition, the background traffic rate generated by ONUs with

attached fixed (wired) subscribers that are directly connected to the backhaul EPON is set

to λONU = αPONλB , where αPON is a traffic scale factor.

For notational convenience, let us use the term “WiFi user” for all MUs, HOs, and TORs

within the coverage area of an ONU-AP. We model each WiFi user as a GI/G/1 queue to account

for the different packet interarrival time distributions under consideration (i.e., Poisson for back-

ground traffic and deterministic for haptic traffic). While the GI/G/1 queueing model requires the

fewest assumptions among other models, it yields quite conservative results in that we can obtain

only an upper bound for the average delay experienced by any packet. An accurate analysis of

GI/G/1 queues can be done by solving the Lindley’s integral equation in [85]. Closed-form solu-
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tions, however, are difficult to obtain, except for some known distributions. Therefore, we use the

approximation method presented in [86] to estimate the upper bound of the average packet delay.

Let the delay experienced by any packet generated by a WiFi user be denoted by random variable

D, which is the sum of the queueing delay DQ and service time (channel access delay) DS . To begin

with, let the number of packets in the system (i.e., queue and server) be denoted by Nt, which is

approximated as

E(Nt) ≈

(
ρ2
(
1 + C2

s

)

1 + ρ2C2
s

)(
C2
a + ρ2C2

s

2(1− ρ)

)

+ ρ, (4.9)

where Cs and Ca denote the coefficient of variation of service and interarrival times, and ρ denotes

the server utilization. According to Little’s law, the average delay experienced by an arbitrary

packet since the time it arrives in the queue until it successfully departs service is then calculated

as

E(D) =
E(Nt)
λ

=

average queueing delay E(DQ)
︷ ︸︸ ︷
1
λ

(
ρ2
(
1 + C2

s

)

1 + ρ2C2
s

)(
C2
a + ρ2C2

s

2(1− ρ)

)

+E(DS).
(4.10)

Clearly, in order to obtain E(D), we need to calculate the mean service time and coefficient of

variation of service time. This requires to obtain the first and second moments of service time DS .

To compute the first and second moments of channel access delay DS in Eq. (4.10), we defined

the two-dimensional Markov chain (s(t), b(t)) shown in Fig. 2.10 under unsaturated traffic conditions

and estimated the average service time E(DS) and service time variance VAR(DS) in a WLAN using

IEEE 802.11 DCF for access control (see Chapter 2 for further details).

We then obtain the first and second moments of the packet delay as follows:

E(DS) =
∞∑

k=0

pke ∙ (1− pe) ∙

[
∞∑

j=0

pjc (1− pc)








k+j∑

b=0

2min(b,m)W0 − 1
2

Es



+ jTc + kTe + Ts





]

,

VAR(DS) =
∞∑

k=0

pke (1− pe)
∞∑

j=0

pjc (1− pc)Q
2(j, k)− E2(DS),

with

Q(j, k) =




k+j∑

b=0

2min(b,m)W0 − 1
2

Es



+ jTc + kTe + Ts. (4.11)

After finding E(DS) and VAR(DS) and given the incoming traffic rate λ, we can now compute the

average delay experienced by any packet for a given WiFi subscriber using Eq. (4.10).
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Next, we calculate the average delay experienced by an arriving packet at the EPON backhaul.

In doing so, we build on the analytical frameworks presented in [13] and [75]. We first define the

backhaul downstream traffic intensity ρu and ρd for a TDM PON (Λ = 1) and a WDM PON (Λ > 1)

as

ρu =
L̄

Λ ∙ cPON

O∑

q=1

O∑

i=0

ΓPONqi < 1, (4.12a)

ρd =
L̄

Λ ∙ cPON

O∑

q=0

O∑

i=1

ΓPONqi < 1, (4.12b)

where cPON denotes the PON data rate, O denotes the number of ONUs, and ΓPONqi represents the

traffic rate (in packets/second) between PON nodes q and i (with q = 0 denoting the OLT).

Similar to [75], the upstream delay, DuPON , and downstream delay, DdPON , of both TDM and

WDM PONs are obtained as

DuPON = Φ(ρu, L̄, ς2, cPON ) +
L̄

cPON
+ 2τPON

2− ρu

1− ρu
−Bu, (4.13)

DdPON = Φ(ρu, L̄, ς2, cPON ) +
L̄

cPON
+ τPON −B

u, (4.14)

where τPON denotes the average propagation delay between ONUs and OLT, Φ(∙) is the average

queueing delay of an M/G/1 queue characterized by the Pollaczek-Khintchine formula as

Φ(ρ, L̄, ς2, c) =
ρ

2c(1− ρ)

(
ς2

L̄
+ L̄

)

, (4.15)

and

Bd = Bu = Φ



 L̄

Λ ∙ cPON

O∑

q=1

O∑

i=1

ΓPONqi , L̄, ς
2, cPON



 . (4.16)

In the following, we proceed to estimate the elements of the command delay matrix Dc and

feedback delay matrix Df , accounting for both local and non-local teleoperation scenarios.

Local teleoperation: If human operator Ok and the teleoperator robot that is collocated with

task Jj are both associated with the same ONU-AP, the average end-to-end packet delay Dckj ,
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∀k = 1, 2, ...,M and j = 1, 2, ..., N , in the command path is estimated as

Dckj = E(DOk) + E(DONU−APn), (4.17)

where E(DX) for a given WiFi subscriber X is obtained from Eq. (4.10) and ONU−APn denotes

the ONU-AP, which human operator k and teleoperator robot j are connected to.

The average end-to-end packet delay Dfjk, ∀j = 1, 2, ..., N and k = 1, 2, ...,M , in the feedback

path is then estimated as

Dfjk = E(DTORj ) + E(DONU−APn). (4.18)

Note that in local teleoperation, the average end-to-end delay in command and feedback paths

may, in general, be different due to different traffic patterns/rates, bit error probabilities, and MAC

settings, among others.

Non-local teleoperation: Unlike local teleoperation, non-local teleoperation is carried out, if

human operator Ok and the teleoperator robot that is collocated with task Jj are associated with

different ONU-APs. The average end-to-end packet delay Dckj , ∀k = 1, 2, ...,M and j = 1, 2, ..., N ,

in the command path is therefore estimated as

Dckj = E(DOk) +DuPON +DdPON + E(DONU−APn′ ), (4.19)

which accounts for the average upstream delay DuPON and downstream delay DuPON in the backhaul

EPON given in Eqs. (4.13) and (4.14), respectively. Also note that ONU−APn′ denotes the ONU-

AP with which human operator Ok is associated.

The average end-to-end packet delay Dfjk, ∀j = 1, 2, ..., N and k = 1, 2, ...,M , in the feedback

path is then estimated as

Dfjk = E(DTORj ) +DuPON +DdPON + E(DONU−APn′ ). (4.20)
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Figure 4.4 – Average weighted completion time of tasks vs. total number of available human operators
M (α = 1 fixed).

4.6 Results

In this section, we examine our proposed CAPSTA. In our simulations, the task operation time Tj is

sampled from a discrete uniform distribution over the range of [10, 30] seconds. The delay threshold

D0 is set to 10 ms. The weight Ωj is randomly chosen from {1, 2, 3, 4} (i.e., four different classes).

The due times are randomly chosen from α ∙ [1, d 1
M

∑N
j=1 Tje], where dxe denotes the smallest

integer greater than or equal to x. Each point shown in the following results is averaged over 50

randomly generated problem instants and falls within the 95% confidence interval. We compare

the performance of our proposed CAPSTA algorithm with a benchmark random assignment and

scheduling (RAS) algorithm, where for a given task a human operator is randomly selected from

the pool of available ones [36].

First, we present the average weighted completion time (AWCT) and maximum tardiness vs.

total number of available human operators M in Figs. 4.4 and 4.5, respectively. We observe from

Fig. 4.4 that increasing M results in an exponential decrease of AWCT in both RAS and proposed

CAPSTA algorithms. Specifically, in the proposed CAPSTA algorithm, increasing M from 1 to

3 results in a 67% reduction, whereas increasing M from 3 to 5 results in only 41% reduction of

AWTC. Further, we note that the proposed CAPSTA algorithm achieves a 15-27% reduction of

AWTC compared to the RAS algorithm. Although achieving a lower AWCT, the beneficial impact
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Figure 4.5 – Maximum tardiness of tasks vs. total number of available human operators M (α = 1
fixed).

of the proposed CAPSTA algorithm compared to the RAS algorithm is more pronounced in terms

of the maximum tardiness, as shown in Fig. 4.5. We observe that the proposed CAPSTA algorithm

achieves a 49-56% reduction of maximum tardiness. Specifically, for N = 300, in order to keep

the maximum tardiness below 25 minutes, a total number of 5 human operators is needed in the

RAS algorithm, whereas in the proposed CAPSTA algorithm, only 2 human operators are sufficient

to achieve the same performance level. Further, if the decision maker likes keep the maximum

tardiness below 10 minutes, then the number of required human operators is 5 and 12 in the

proposed CAPSTA and RAS algorithms, respectively, thus achieving a notable saving in OPEX, to

be examined shortly.

Next, we investigate the impact of increasing due time on the portion of the total tasks of

different classes that are subject to tardiness. Toward this end, let us define RΩ as the rate of

tardy tasks with weight Ω to the total number of tasks in the same class. We have considered four

different priority classes A, B, C, and D, which are associated with weight W equal to 1, 2, 3,

and 4, respectively. The results of RΩ vs. α are shown in Fig. 4.6. First, for small average task

due times, 94% of class D tasks cannot be accomplished within the expected due times, thus most

of the tasks are regarded as tardy tasks. This figure is >98% for class A-C tasks. Nevertheless,

as the average given due time increases, the portion of class D tasks that are subject to tardiness

decreases exponentially. Specifically, for α = 1, RΩ drops below 2%. Second, we find that the
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Figure 4.6 – Rate RΩ of tardy tasks vs. α for different task classes (N = 300 and M = 5 fixed).

Figure 4.7 – Average OPEX per task vs. total number of available human operators M (εh = 1,
εm = 5000, and α = 1 fixed).

proposed CAPSTA algorithm schedules the tasks in favor of high-priority ones, especially for α

greater than 0.5, as shown in Fig. 4.6. We note that for α equal to 2, RΩ converges to < 2% for

classes B-D, whereas 36% of class A tasks (i.e., low-priority tasks) are still subject to tardiness.

Fig. 4.7 depicts the average OPEX per task vs. total number of available human operators M

for both the proposed CAPSTA and benchmark RAS algorithms. Overall, the proposed CAPSTA

algorithm outperforms the RAS algorithm in terms of average OPEX per task, especially when the
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number of tasks is large, i.e., N = 300. For M = 1, comparing the performance of the proposed

CAPSTA algorithm with the benchmark RAS algorithm, we observe a 75.3% and 78.9% reduction of

average OPEX per task for N = 100 and N = 300, respectively. As M increases, the OPEX savings

of the CAPSTA algorithm with respect to RAS algorithm decreases until both curves converge. The

reason for this is that when the total number of available human operators M is small, the incurred

OPEX is mainly due to tardy tasks, which are penalized proportional to the weighted amount of

tardiness. Fig. 4.7 demonstrates that the efficient scheduling of the proposed CAPSTA algorithm

reduces the number of high-priority task that are subject to tardiness, thus achieving a significant

reduction of the average OPEX per task, compared to that of the benchmark RAS algorithm.

More importantly, Fig. 4.7 gives us further insights into selecting an optimal number of human

operators, which should be, on one hand, large enough to reduce the number of high-priority tardy

tasks, and, on the other hand, small enough to avoid incurring excessive OPEX due to activating

new teleoperation sessions. For the proposed CAPSTA algorithm, the optimal number of available

human operators M? that minimizes C(X) is 2 and 5 for N = 100 and N = 300, respectively.

We note that for the proposed CAPSTA algorithm with M < 3, the average OPEX per task for

N = 100 is less compared to that of N = 300. Both curves meet at M = 4 and then the OPEX

per task for N = 100 grows larger than that of N = 300. The reason for this is that for N = 100,

while increasing M doesn’t result in a further decrease of tardiness, it does result in an excessive

increase of OPEX due to the incurred activation costs of new teleoperation sessions. In contrast,

for N = 300, a large portion of the tasks are subject to tardiness, thus increasing M reduces the

incurred OPEX due to tardiness, which in turn partly compensates for the incurred OPEX due to

activating teleoperation sessions.

The average OPEX per task vs. M for different α ∈ {0.1, 0.5, 1, 2} for a fixed N = 100 is

illustrated in Fig. 4.8, where we examine the impact of increasing average task due times on the

OPEX performance of our proposed CAPSTA algorithm. We find that for α = 0.1, 0.5 and 1,

the average OPEX, C(X), is a convex function of M , having a minimum at M? = 6, 4, and

2, respectively, compared to that of α = 2, where C(X) increases linearly for increasing M , as

explained above. We note that for relatively relaxed due times (i.e., α = 2), the contribution of

the incurred penalty due to task tardiness is negligible compared to that of activating excessive

teleoperation sessions. Hence, the average OPEX grows linearly as M increases. Therefore, when
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Figure 4.8 – Average OPEX per task vs. total number of available human operators M (εh = 1,
εm = 5000, and N = 100 fixed).

Figure 4.9 – Average OPEX per task vs. εh for different number of available human operators M ∈
{1, 2, 5, 10} (α = 0.5, εm = 5000, and N = 100 fixed).

the average due time is large, it is beneficial to perform the teleoperation tasks by only one human

operator, provided that proper scheduling is fulfilled (see Fig. 4.8).

Next, the average OPEX vs. operational cost, εh, per time unit of tardiness is shown in Fig. 4.9,

which renders the following interesting insights. First, Fig. 4.9 specifies the range of εh for which

the proposed CAPSTA algorithm achieves more beneficial results in terms of OPEX for two given

M = M1 and M = M2. For instance, while M = 2 always leads to a smaller OPEX per task
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Figure 4.10 – Average OPEX per task vs. α for different number of available human operators M ∈
{1, 2, 5, 10} (εh = 1, εm = 5000, and N = 100 fixed).

compared with that of M = 1, decreasing the number of HOs from M = 5 to M = 2 does not

achieve such reduction. To be more specific, M = 5 is more OPEX-beneficial than M = 2 only if εh

is greater than 0.5. This, however, is a quite counterintuitive observation whether or not increasing

M results in OPEX savings depends not only on the average task due times (as explained before)

but also the operational cost, εh, per time unit of tardiness, as increasing M from 2 to 10 only

incurs an additional OPEX due to activating new teleoperation sessions. Further, we also note that

for M = 10, the rate at which C(X) increases degrades as εh grows. This is due to the fact that

for a large M (e.g., M = 10) OPEX is less likely due to task tardiness, thus increasing εh does not

increase C(X) significantly, as opposed to small values of M (e.g., M = 1), where increasing εh

results in a significant increase of C(X). As a result, Fig. 4.9 together with Fig. 4.8 are instrumental

in helping optimize OPEX for a given set of system parameter values.

Next, we examine the impact of average task due times on the OPEX performance of the

proposed CAPSTA algorithm. Fig. 4.10 presents the average OPEX per task vs. α, which reflects

the amount of average task due time. For M = 1, 2, and 5, the average OPEX per task decreases for

increasing α and levels off for α > 1. This is due to the fact that for smaller values of M , OPEX is

mainly due to penalizing the tardy tasks. Therefore, increasing α translates into a reduced average

tardiness, thus alleviating the average OPEX per task. On the other hand, for large values of M
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Figure 4.11 – Average end-to-end packet delay of local teleoperation vs. background traffic rate λB
for different NMU ∈ {2, 3, 4, 5, 10}.

(e.g., M = 10), the contribution of the first term of Eq. (4.6) to OPEX is greater than the second

term. For this reason, we do not observe a notable decrease of the OPEX as α increases.

Finally, we evaluate the end-to-end delay performance of local and non-local teleoperation. We

apply the same default parameter settings of IEEE 802.11n DCF as listed in Table I in [13]. We

consider four ONU-APs and four conventional ONUs, each serving fixed (wired) subscribers that

are all involved in non-local H2H communications among each other. MUs and fixed subscribers

generate background traffic at a mean rate of λB and αPON ∙ λB , respectively, whereas HOs and

TORs generate haptic traffic at a fixed rate of 1000 packets/second. We consider 6-DoF TORs.

Figure 4.11 depicts the average end-to-end packet delay of local teleoperation vs. mean back-

ground traffic λB for different NMU ∈ {2, 3, 4, 5, 10}, where NMU denotes the number of MUs that

reside within the coverage of each ONU-AP. We find that an average end-to-end delay of 2.5 ms

is achievable for local teleoperation involved HO-TOR pairs. It is worthwhile to mention that the

amount of time waited by packets in the second hop (i.e., MAC queue of the ONU-AP) is notably

larger than that of the first hop (i.e., MAC queue of the HO/TOR), which is a direct consequence

of the high incoming packet rate at the ONU-AP. Second, we observe that for NMU ∈ {2, 3, 4, 5},

the average end-to-end delay remains under 10 ms for a wide range of background traffic rate λB .
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Figure 4.12 – Average end-to-end packet delay of non-local teleoperation vs. background traffic rate
λB for different αPON ∈ {100, 200, 500} (NMU = 2 fixed).

Figure 4.12 illustrates the average end-to-end packet delay of non-local teleoperation vs. back-

ground traffic rate λB for different values of αPON ∈ {100, 200, 500} and NMU = 2. In non-local

teleoperation, the obtained end-to-end delay is as low as 2.8 ms and 4.5 ms for lPON =20 and 100 km

(compared to 2.5 ms in local teleoperation). Further, we observe that for a given background traffic

load, say λB = 10 packets/second, increasing lPON from 20 km to 10 km results in a 1.6 ms increase

of the end-to-end delay from 3.5 ms to 5.1 ms. This is counterintuitive in that the 80 km increase

of backhaul fiber length accounts for only 267 μs in propagation delay, which is much smaller than

1.6 ms. The reason for this lies in the impact of increasing lPON on the delay performance of the

multi-point control protocol (MPCP) protocol used in the backhaul EPON.

4.7 Discussion

4.7.1 SDN/NFV: Potential and Benefits

As the Tactile Internet emerges, the flows generated by different applications become more di-

verse, each requiring a different QoS/E. To overcome the issues arising from traditional network

management models, including limited reconfigurability and complex per-flow traffic management,

SDN/NFV is a promising solution, where a clear distinction is made between the control and data
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planes. This as a result can provide the task coordinator with a logically centralized overview of

the whole network, gather application-dependent requirements (teleoperation in our studied sce-

nario), and reconfigure network parameters to achieve the desired QoS/E. In this context, NFV is

a promising technique, which can be used not only to further reduce the CAPEX and OPEX issues

of teleoperation over FiWi networks, but also to support a wider variety of HSI and TOR types

(see Fig. 1). More importantly, given that FiWi networks have to cope with seamless integration of

both optical and wireless sub-networks, the role of SDN is even more pronounced in alleviating the

difficulties of network design, control, and management, especially with the co-existence of different

types of traffic [83]. In this context, [87] presents a thorough review of the studies that examine the

SDN paradigm in optical networks, also referred to as software-defined optical networks (SDONs).

While the concept of sotfwarization of network protocols realized via SDN enables the study of new

ideas and optimization models, thereby significantly reducing the deployment costs and speeding

up the upgrade process, virtualization facilitates service migration, thus allowing for location-aware

service provisioning in a cost-efficient manner [88].

4.7.2 Deployment Considerations

Recall from Section II that an immersive bilateral teleoperation experience relies on the low-latency,

reliable communication between HO and TOR (see Fig. 4.1). In the presence of communication-

induced artifacts such as latency and jitter, the role of local control loops becomes more important,

especially given that excessive latencies, which may occur in non-local teleoperation, may decouple

the HO from the remote environment. Further, the predictive bandwidth allocation proposed in [23]

may be used to reduce the average end-to-end latency of haptic traffic. Complementary to [23],

the multi-sample-ahead-of-time forecasting scheme proposed in [46] may also be leveraged to ensure

the reliable delivery of feedback samples at a 1-ms granularity, thus helping the HO maintain

connectivity with the remote environment.

4.8 Conclusions

We investigated the performance of our proposed CAPSTA algorithm in solving the prioritized

assignment and scheduling of delay-constrained teleoperation tasks in FiWi enhanced Tactile In-
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ternet network infrastructures. The obtained results show that the proposed algorithm reduces

the average weighted task completion time, maximum tardiness, and average OPEX, compared to

the benchmark RSA algorithm. Specifically, the proposed CAPSTA algorithm achieves a 15-27%

reduction of average weighted task completion time and a 49-56% reduction of maximum tardiness.

In addition, compared to the benchmark RAS algorithm, the proposed CAPSTA algorithm achieves

a 75.3% and 78.9% reduction of average OPEX per task for N = 100 and N = 300, respectively.

Our results also give insights into finding the optimal number of HOs to minimize the average

OPEX per completed task for different deployment scenarios. More precisely, we have shown that

for the proposed CAPSTA algorithm, the optimal number of available human operators M? that

minimizes OPEX is 2 and 5 for N = 100 and N = 300, respectively. Finally, we have shown

that the considered solution is able to achieve an average end-to-end packet delay of < 10 ms for

both local and non-local teleoperation for a wide range of background traffic rates. An interesting

future research avenue is to investigate the role of virtualization in FiWi networks to eliminate the

physical layer interaction of the often heterogenous Tactile Internet applications, thus realizing a

infrastructure/technology independent architecture.
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5.1 Introduction

To address the contradiction between the rapid increase of computation-intensive, delay-sensitive

applications (e.g., Tactile Internet, AR/VR, and interactive gaming) and resource-limited smart mo-

bile devices, MCC has emerged to reduce the computational burden of mobile devices and broaden

their capabilities by extending the concept of cloud computing to the mobile environment via full

and/or partial computation offloading. Even though MCC allows mobile devices to benefit from

powerful computing resources to save battery power and accelerating task execution, it raises sev-

eral technical challenges due to additional communication overhead and poor reliability that remote

computation offloading may introduce. To overcome these limitations, mobile edge computing has

recently emerged to provide cloud computing capabilities in the edge of access networks, leveraging

the physical proximity of edge servers and mobile users to achieve a reduced communication latency

and increased reliability [89]. More recently, the ETSI has dropped the word “mobile” and intro-

duced the term multi-access edge computing in order to broaden its applicability to heterogeneous

networks, including WiFi and fixed access technologies (e.g., fiber) [14].

While a conventional (remote) cloud provides high storage and computational capabilities, it

may pose large latency due to communications, as it is usually physically distant from the mobile

users. On the other hand, MEC may offer a reduced communication-induced latency, but it may

pose an excessive processing latency due to limited computational capabilities. In a broader vision,

remote cloud and MEC servers can thus coexist and be complementary to each other, giving rise to

cooperative computation offloading. The ultimate goal of MEC, in fact, is to achieve an ultra-low

response time, which is defined as the time interval between the time instant at which a task is

released from a mobile device until it is processed (either locally or remotely) and the result is

received by the device. This time interval may include the waiting (queueing) and processing times

in either the local central processing unit (CPU) or edge/remote server as well as the communication

latency between the mobile device and edge/remote cloud. Given the additional communication

overhead that offloading introduces, a key technical challenge is to find a tradeoff between the cost

of computation and communication to enhance user experience in terms of lower latency and energy

consumption. In this chapter, motivated by [90], we focus on the QoE of mobile users measured

by the average response time that can be influenced by the queueing/processing and transmission
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delay components, including those between mobile users and MEC servers and also between MEC

servers and the remote cloud.

To achieve the desired energy-delay performance, the so-called dynamic voltage scaling (DVS) is

a promising technique that varies the supply voltage and clock frequency based on the computation

load to achieve a suitable tradeoff between task execution time and energy consumption [42]. While

computation offloading mainly relies on the computational capabilities of the edge/remote servers,

the DVS technique enables the mobile users to adaptively adjust their computational speed to reduce

energy consumption or shorten task execution time. Therefore, incorporating the DVS technique

into computation offloading offers more flexibility at the device side, enabling mobile users to achieve

self-awareness via a design approach commonly known as self-organization to further improve their

QoE under different scenarios [91].

It is evident that future 5G mobile networks will lead to an increasing integration of cellular

and WiFi technologies and standards, giving rise to so-called HetNets, which mandates the need

for addressing the backhaul bottleneck challenge [46]. Recently, we have explored the performance

gains obtained from unifying coverage-centric 4G LTE-A HetNets and capacity-centric FiWi access

networks based on data-centric Ethernet technologies with resulting fiber backhaul sharing andWiFi

offloading capabilities towards realizing future 5G networks [13]. By means of probabilistic analysis

and verifying simulations based on recent and comprehensive smartphone traces, we showed that

an average end-to-end latency of < 10 ms can be achieved for a wide range of traffic loads and that

mobile users can be provided with highly fault-tolerant FiWi connectivity for reliable low-latency

fiber backhaul sharing and WiFi offloading. Note, however, that only data offloading was considered

in [13] without any computation offloading via MEC. Furthermore, the feasibility of implementing

conventional cloud and MEC in FiWi access networks was investigated in [92], where the main

objective was to design a unified resource management scheme to integrate offloading activities

with the underlying FiWi operations. While much of the effort in these papers has been devoted

to the management of networking resources, cooperation between mobile devices, MEC servers, the

remote cloud and the problem of offloading decision making have not been investigated. In [93],

a scalable online algorithm for task scheduling in an edge-cloud system was proposed, which was

verified by simulations using real-world traces from Google. A hierarchical MEC-based architecture

was presented in [94] with a focus on the workload placement problem. In [95], an optimization

framework was presented for solving the problem of joint offloading decision and allocation of
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computation and communication resources with the aim of minimizing a weighted sum of the costs

of energy, cost of computation, and the delay for all users. More recently, the authors of [90] studied

the computation offloading problem for cooperative fog computing networks and investigated the

fundamental tradeoff between QoE of mobile users and power efficiency of fog nodes. In [96],

a collaborative computation offloading scheme for MEC over FiWi networks was presented. All

mentioned papers, however, mainly focused on the management of computing resources without

further investigating the impact of the capacity-limited backhaul.

In this chapter, we examine the performance gains obtained by cooperative computation of-

floading in MEC enabled FiWi enhanced HetNets, which relies on not only the computational

capabilities of edge/cloud servers but also the limited local computing resources at the device side.

More specifically, we aim to design a two-tier MEC enabled FiWi enhanced HetNet architecture,

where the mobile devices as well as the edge servers cooperatively offload their computation tasks

towards achieving a reduced average response time. We take into account both crucial aspects of

limitations stemming from communications and computation in our design approach via accurate

modeling of the fronthaul/backhaul as well as edge/cloud servers, while paying particular attention

to offloading decision making between mobile users and edge servers as well as edge servers and the

remote cloud. Another important aspect of MEC is to cope with the additional complexity that

may arise in such a scenario by relying, fully or partially, on the limited local computing resources

of mobile users when they are most needed. The inherent time-varying nature of FiWi enhanced

HetNets, which is a direct consequence of user mobility, entails exploiting a function that contin-

uously tune the local computational capabilities of mobile devices in order to ensure an improved

QoE. This can be achieved via adaptive reconfiguration of a mobile user given its goals, capabili-

ties, and constraints via a design approach commonly known as self-awareness. Contributing to this

effort, we leverage on the self-awareness of mobile users by applying the DVS technique for making

appropriate energy-delay tradeoffs subject to given energy and delay constraints. In particular, the

contributions of this chapter are as follows:

• We design a two-tier hierarchical MEC enabled FiWi enhanced HetNet-based architecture

for computation offloading, which leverages both local and nonlocal computing resources to

achieve low response time and energy consumption for mobile users. We also propose a simple

but efficient offloading orchestration mechanism to achieve an improved QoE for mobile users.
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• We develop an analytical framework to examine the performance of our proposed FiWi based

cooperative offloading scheme coexistent with conventional H2H traffic (i.e., voice, video, and

data) in terms of average response time as well as energy consumption of mobile users. In our

analysis, we develop detailed models of both communication and computation, incorporating

WiFi/LTE-A wireless access and capacity-limited backhaul fiber links as well as resource-

limited edge/remote cloud servers.

• Given the additional complexity incurred by integrating the cooperative computation offload-

ing strategy in a FiWi enhanced HetNet architecture, any deviation from optimal delay per-

formance is inevitable. To cope with this and in order to allow mobile users to flexibly rely on

their local computing resources by means of reconfiguration, we propose a self-organization

framework to allow mobile devices to adaptively tune their offloading probability as well as

computational capabilities via the DVS technology. The proposed self-organizing design re-

sults in a Pareto frontier characterization of the tradeoff between average task execution time

and energy consumption.

The remainder of the chapter is structured as follows. In Section 5.2, we present our proposed

architecture of MEC enabled FiWi enhanced HetNets and cooperative offloading mechanism. In

Section 5.3, we present our analytical framework for estimating the energy-delay performance of our

proposed cooperative task offloading scheme. The proposed self-organization scheme is presented

in Section 5.4. Section 5.5 presents numerical results. Finally, Section 5.6 concludes the chapter.

5.2 Network Architecture and System Model

Figure 5.1 depicts the generic architecture of the considered FiWi enhanced LTE-A HetNets. The

fiber backhaul consists of a TDM/WDM IEEE 802.3ah/av 1/10 Gbps EPON with a typical fiber

range of 20 km between the central OLT and remote ONUs. The EPON may comprise multi-

ple stages, each separated by a wavelength broadcasting splitter/combiner or a wavelength multi-

plexer/demultiplexer. There are three different subsets of ONUs. An ONU may either serve fixed

(wired) subscribers. Alternatively, it may connect to a cellular network BS or an IEEE 802.11n/ac/s

WLAN MPP, giving rise to a collocated ONU-BS or ONU-MPP, respectively. Depending on her
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Figure 5.1 – Generic MEC-enabled FiWi enhanced LTE-A HetNets architecture.

Figure 5.2 – Schematic of task scheduler and queueing system for MU i, which includes two disjoint
queues served by local CPU and WiFi/LTE-A wireless interface.

trajectory, an MU may communicate through the cellular network and/or WLAN mesh front-end,

which consists of ONU-MPPs, intermediate MPs, and MAPs.

We equip selected ONU-BSs/MPPs with MEC servers (or simply called edge servers hereafter)

collocated at the optical-wireless interface. MUs may offload fully or portion of their incoming

computational tasks to nearby edge servers. In addition to edge servers, the OLT is equipped with

cloud computing facilities, which consist of multiple servers dedicated to processing mobile tasks.

Each MU uses a task scheduler that decides whether to offload a task to an edge server or execute

it locally in its local CPU. We model the task scheduler in each MU by a queuing system, as
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illustrated in Fig. 5.2. We assume that in each mobile device there are two servers, namely, the

CPU and the wireless interface (i.e., WiFi or LTE-A). The former server is used to model the local

task execution at the MU’s CPU, whereas the latter is responsible for offloading tasks to an edge

server in proximity. We assume MUs generate background Poisson traffic at mean packet rate λB

(in packets/second) (see Fig. 5.2). We also assume that tasks arrive at MU i’s scheduler at rate

λMUi . The task scheduler at MU i makes its decision based on the value of the so-called offloading

probability, βi, which is defined as the probability that an incoming task is offloaded to the edge

server. Tasks generated by MU i are characterized by Bli and D
l
i, which denote the average size of

computation input data (e.g., program codes and input parameters) and average number of CPU

cycles required, respectively. Computation tasks are assumed to be atomic and thus cannot be

divided into sub-tasks. We also assume that each edge server is equipped with a task scheduler,

which decides whether to execute an incoming task or further offload it to the remote cloud. Similar

to MUs, a task arriving at edge server j is further offloaded to the remote cloud with probability

αj or executed locally with probability (1− αj).

5.3 Energy-Delay Analysis of the Proposed Cooperative Offload-

ing

In this section, we analyze the performance of our proposed cooperative MEC enabled FiWi en-

hanced LTE-A HetNets in terms of average response time and energy consumption for task offloading

coexistent with conventional H2H traffic. Many related recent studies (e.g., [90], [89], [37]-[41]) as-

sumed a Poisson task arrival model and an exponentially distributed number of required CPU cycles

for task execution. In this chapter, we follow the same research line and build our analysis on these

assumptions. Further, tasks are assumed to be computationally intensive, mutually independent,

and can be executed either locally or remotely on an edge server or the remote cloud via compu-

tation offloading. Each edge server has a limited computational capability and can serve a single

task at a time [90][37]. Besides, the remote cloud comprises a limited number of high-performance

computing servers, each of which can serve a single task at a time.
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5.3.1 Average response time

In the proposed cooperative offloading scheme, both computation and communication induced laten-

cies may contribute to the resultant average response time experienced by MUs. First, we estimate

the latencies due to computation for both local and nonlocal computing. For a given MU i, who

is involved in task offloading, assuming i.i.d exponentially distributed task interarrival times and

given the offloading probability βi, the tasks arriving at the CPU queue for local computing follow

a Poisson process with rate (1− βi) ∙ λMUi , whereas the offloaded tasks arriving at the wireless

interface queue follow a Poisson process with rate βi ∙ λMUi . This is because thinning a Poisson

process with a fixed probability results in another Poisson process. Let Dli be the average number

of required CPU cycles to execute a task arriving at MU i. The average local task execution time

τ li at MU i is given by

D(fi) = τ li =
Dli
fi
, (5.1)

where fi is the clock frequency (in CPU cycles per second) of MU i. Assuming that the number

of required CPU cycles per task follows an exponential distribution, we can model the local CPU

server of MU i as an M/M/1 queue with mean arrival rate (1− βi)λMUi and mean task execution

time τ li . The average delay ΔMUi of local task execution (which includes both queueing and service

times) at MU i’s CPU is then given by

ΔMUi =
1

μli − (1− βi)λMUi
, (5.2)

where μli, which is equal to 1/τ li , is the rate at which the executed tasks depart from MU i’s CPU.

We note that Eq. (5.2) is valid only if (1− βi)λMUiτ
l
i < 1.

Let Rj denote the set of MUs that are served by edge server j. Further, let λe0,j be the mean

arrival rate and De0,j denote the required number of CPU cycles of offloaded tasks from the fixed

(wired) subscribers, if any, which may be directly connected to edge server j. Given the offloading

probabilities βi, ∀MUi ∈ Rj , the mean arrival rate λMECj at the task scheduler of edge server j is

computed as follows:

λMECj = λe0,j +
∑

MUi∈Rj

βi ∙ λMUi . (5.3)
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Let τ ej denote the average task execution time at edge server j. For estimating τ ej , we compute the

average number D̄ej of CPU cycles required to execute a task at edge sever j as follows:

D̄ej =
λe0,jD

e
0,j +

∑
MUi∈Rj βi ∙ λMUi ∙D

l
i

λe0,j +
∑

MUi∈Rj βi ∙ λMUi
, (5.4)

which is then used to calculate τ ej , which is given by

τ ej =
D̄ej
f ej
, (5.5)

where f ej is the computational capability (in CPU cycles per second) of edge server j. Modeling

edge server j as an M/M/1 queue with mean arrival rate (1− αj)λMECj and mean service time τ ej ,

the average delay ΔMECj of task execution at edge server j is calculated as follows1:

ΔMECj =
1

μej − (1− αj)λMECj
, (5.6)

whereby μej = 1/τ ej . Substituting Eq. (5.3) in Eq. (5.6) provides the following expression:

ΔMECj =
1

μej − (1− αj) ∙
(
λe0,j +

∑
MUi∈Rj βi ∙ λMUi

) , (5.7)

which is valid only if

τ ej ∙ (1− αj) ∙



λe0,j +
∑

MUi∈Rj

βi ∙ λMUi



 < 1.

Next, we proceed to estimate the task execution delay at the remote cloud. Let R denote the

set of edge servers that are connected to the remote cloud. The mean arrival rate λc at the remote

cloud is obtained as follows:

λc = λc0 +
∑

MECj∈R

αj ∙ λMECj . (5.8)

Let λc0 and Dc0 denote the arrival rate and number of CPU cycles required to execute the background

tasks2 at the remote cloud, respectively.

1Although an edge server may comprise a number of physical and/or virtual machines to process the incoming
tasks, we are focusing on a coarse-grained scenario, thus modeling an edge server as a single entity, as in many related
works, e.g., [90], [37], and [38].

2Some of the fixed subscribers may not be connected to any edge server in proximity and thus offload their tasks
directly to the remote cloud via the backhaul EPON. We refer to such tasks as cloud background tasks.
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Further, let τc denote the average task execution time at the remote cloud. In order to estimate

τc, we first calculate the average number D̄c of CPU cycles required to execute a task at the remote

cloud, which is given by

D̄c =
λc0D

c
0 +

∑
MECj∈R αj ∙ λMECj ∙ D̄

e
j

λc0 +
∑

MECj∈R αj ∙ λMECj
, (5.9)

which is then used to estimate τc as follows:

τc =
D̄c
f c
, (5.10)

where f c is the computational capability of each of the s homogeneous servers deployed at the

remote cloud. We can thus model the remote cloud as an M/M/s queue with mean arrival rate

λc (given by Eq. (5.8)) and mean service time τc (given by Eq. (5.10)). The average delay Δc

experienced by an arbitrary task in the remote cloud is then estimated by the well-known Erlang-C

formula:

Δc =
C(s, a) ∙ τc
s− a

+ τc, (5.11)

where the carried load a is equal to λc ∙ τc and C(s, a) is given by

C(s, a) =
as∙s
s!(s−a)

∑s−1
k=0

ak

k! + as∙s
s!(s−a)

, (5.12)

which is the probability that an arriving task finds all the s servers busy. Note that Eq. (5.12) is

valid only if the carried load does not exceed the number of servers (i.e., λc ∙ τc < s).

Next, we turn our attention to calculating the communication induced latency in our cooperative

task offloading scheme. Recall from above that the offloaded tasks arrive at the wireless interface

of MU i with rate βi ∙ λMUi . With Lm denoting the maximum payload size of a single packet, the

number of packets per task is equal to
⌈
Bli
Lm

⌉

. We can then estimate the rate ΓMUi at which packets

arrive at the wireless interface of MU i as follows:

ΓMUi = λB +

⌈
Bli
Lm

⌉

∙ βi ∙ λMUi , (5.13)

where λB denotes the background H2H traffic (see also Fig. 5.2).
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Delay analysis of WiFi users

First, we calculate the average packet delay ΘWiFi
i in the uplink for MU i, who is associated with

an ONU-AP through WiFi. For a given set of network model parameters, we can estimate ΘWiFi
i

as in [75]:

ΘWiFi
i =

1
1

Δi
− ΓMUi

; Δi ∙ ΓMUi < 1, (5.14)

where Δi denotes the average channel access delay and ΓMUi is given by Eq. (5.13). Note that

Eq. (5.14) accounts for both queueing and channel access (service) delay3.

Lemma 5.1: The average channel access delay Δi of MU i is obtained as follows

Δi =
∞∑

k=0

pke,i (1− pe,i)

[
∞∑

j=0

pjc,i (1− pc,i)








k+j∑

b=0

2min(b,m)W0 − 1
2

Es



+ jTc,i + kTe,i + Ts,i





]

,

(5.15)

where pe,i is the probability of an erroneous transmission, pc,i is the probability of a collision, W0

is the initial contention window size, Es is the expected time-slot duration, and Tc,i, Te,i, and

Ts,i denote the average duration of a collided, erroneous, and successful transmission of MU i,

respectively.

Proof: See Appendix A.4.

We note that the average access delay Δi consists of time delays due to carrier sensing, expo-

nential back-offs, collided and erroneous (if any) attempts, successful transmission, and acknowl-

edgement. It is also worthwhile to mention that the presence of interfering users may increase the

collision probability, pc,i, of MU i, thus increasing its average channel access delay (see Eq. (5.15)

above).

Delay analysis of 4G LTE-A users

Next, we assume a 4G LTE-A cellular network and estimate its uplink delay. Let ptxi denote the

transmission power of MU i. We use the Shannon-Hartley Theorem to estimate the uplink data

3Similar to [13], [75], [97], [98], [99], [100], and [101], the WiFi channel access time governed by the IEEE 802.11 DCF
is assumed to be exponentially distributed. This is justified by the DCF channel access mechanism, which includes
carrier sensing, binary exponential back-off(s), and reattempts (if any) due to collisions and erroneous transmissions.
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rate rLTE
i of MU i transmitting to BS k via 4G LTE-A cellular network as follows:

rLTE
i = ω log2

(

1 +
ptx
i
Gi,k

ω̄2
0 +

∑
j 6=i p

tx
j Gj,k

)

, (5.16)

where ω and ω̄2
0 are the channel bandwidth and background noise power, respectively; Gi,k denotes

the channel gain between MU i and BS k. We use [13, Eq. (37)] to estimate the uplink delay of

LTE-A users, which is given by

ΘLTE
i =

ρuBS
2rLTE
i (1− ρuBS)

(
ς2L
L̄

+ L̄

)

+
L̄

rLTE
i

+DupRA +Dsetup + τBS , (5.17)

where DupRA is the initial random access delay (given by [13, Eq. (38)]), Dsetup denotes the connection

setup delay after passing the random access process successfully, ρuBS denotes the uplink traffic

intensity, τBS is the propagation delay in the cellular network, and L̄ and ς2L denote the mean

and variance of the packet length, respectively. We note that, according to Eqs. (5.16)-(5.17), the

achievable uplink data rate for MU i is decreased as a larger number of users is connected to the

cellular BS, thereby increasing the packet delay experienced by MU i.

Each MU is directly associated with an ONU-AP or a cellular BS via a wireless single hop,

whereby ONU-MPPs serve as ONU-APs. The WiFi connection and interconnection times of MUs

are assumed to fit a truncated Pareto distribution, as validated via recent smartphone traces

in [13]. The probability PMU
temp that an MU is temporarily connected to an ONU-AP is estimated as

T̄on/(T̄on + T̄off ), whereby T̄on and T̄off denote the average WiFi connection and interconnection

time, respectively. In this chapter, we assume that T̄on = 28.1 minute and T̄off = 10.3 minute,

which are consistent with the measurements of PhoneLab traces (see [13] for further details). With

these considerations, MU i is either connected to an ONU-AP through WiFi with probability PMU
temp

or an ONU-BS through cellular network with probability (1−PMU
temp). The average task transmission

delay ΘUL
i in the uplink is then computed as follows:

ΘUL
i =

(
PMU
temp ∙Θ

WiFi
i + (1− PMU

temp) ∙Θ
LTE
i

)
⌈
Bli
Lm

⌉

. (5.18)
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Delay analysis of backhaul EPON

Let DuPON denote the average packet delay in the backhaul EPON in the upstream direction. The

average task transmission delay ΘPON in the backhaul is then equal to DuPON ∙
⌈
Bli
Lm

⌉

, where DuPON

is given by [13]:

DuPON =Φ
(
ρu, L̄, ς2L , cPON

)
+
L̄

cPON
+ 2τPON

2− ρu

1− ρu
−Bu, (5.19)

whereby ρu is the upstream traffic intensity, τPON is the propagation delay between ONUs and

OLT, cPON is the EPON data rate, Φ(∙) denotes the well-known Pollaczek-Khintchine formula, and

Bu is obtained as Φ
(

L̄
ΛcPON

∑O
i=1

∑O
q=1 ΓPONiq , L̄, ς2L , cPON

)
, where O is the number of ONUs and

ΓPONiq is the traffic coming from ONUi to ONUq, and Λ denotes the number of wavelengths in the

WDM PON.

After calculating the computation and communication delay components, we proceed to compute

the total average response time Υi of MU i as follows4:

Υi = (1− βi) ∙

local response time DrL,i
︷ ︸︸ ︷
ΔMUi +βi ∙

non-local response time DrNL,i
︷ ︸︸ ︷(
ΘUL
i + (1− αj) ΔMECj + αj

(
ΘPON + Δc

))
,

(5.20)

where the terms denoted by Δ and Θ represent the latency components of computation and commu-

nication, respectively. Note that the communication-induced latency terms ΘUL
i and ΘPON depend

on the offloading probabilities βi and αj , respectively. More specifically, if MUs decide to offload

a large portion of their incoming tasks to the edge servers, the average task transmission delay in

the uplink as well as the waiting times in the edge server may increase significantly. On the other

hand, if the edge servers also decide to further offload a large portion of their tasks arriving from

MUs and fixed subscribers to the remote cloud, the backhaul upstream delay as well as waiting

delay at the cloud servers may increase as a result. Therefore, in order for the MUs to benefit from

the powerful computational capabilities of the edge/remote servers and experience a low response

time, it is important for both device and edge-server schedulers to optimally adjust their offloading

probabilities.

4Similar to [89], [96], [39], and [45] we neglect the time overhead for sending the computation result back to the
mobile users due to the fact that for many applications (e.g., face/object recognition) the size of the computation
result is generally smaller than that of the computation input data.
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5.3.2 Average energy consumption per task

Similar to [90], we model the power consumption of MU i’s CPU as κf3
i , where κ is the effective

switched capacitance related to the chip architecture [42]. The energy consumption per CPU cycle

is thus equal to κf2
i , as fi represents the number of CPU cycles per second. The average energy

consumption Eli for local execution of a task at MU i is then given by

Eli = κ ∙ f2
i ∙D

l
i. (5.21)

Recall from above that an incoming task at MU i is either executed locally with probability

(1− βi) or it is offloaded for nonlocal execution with probability βi. The energy consumption, Eoi ,

of MU i for offloading an incoming task is given by

Eoi = EUL
i + EDL

i , (5.22)

where EUL
i and EDL

i are the average energy consumptions of MU i to offload an incoming task in

the uplink direction and receive its output in the downlink direction, respectively. In the uplink,

EUL
i is calculated as follows:

EUL
i =

(
ktx1 + ktx2 ∙ p

tx
i

)
∙ΘUL
i , (5.23)

whereby ktx1 represents the static power consumption for having the radio frequency (RF) trans-

mission circuitries switched on and ktx2 measures the linear increase of the transmitter power con-

sumption with radiated power ptxi . In the downlink, EDL
i of MU i is estimated by

EDL
i =

(
krx1 + krx2 ∙ r

DL
i

)
∙ΘDL
i , (5.24)

where krx1 represents the extra power consumption for having the receiver circuit switched on, krx2

(measured in W/Mbps) is the power consumption per Mbps in the downlink direction, and rDLi is

the downlink rate, which is given by

rDL
i = PMU

temp ∙ r
WiFi + (1− PMU

temp) ∙ r
LTE, (5.25)

where rWiFi and rLTE are the average transmission rates of the WiFi access point and LTE BS,

respectively. Further, we note that the transmission time, ΘDL
i , of the task output in the downlink
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direction is estimated by Boi /r
DL
i , where Boi is the task output size. Note that unlike ΘUL

i , ΘDL
i

does not depend on the offloading probability βi. The average energy consumption Ei (for either

executing a task locally or transmitting its input data to an edge server) of MU i is then estimated

as

Ei = (1− βi)E
l
i + βiE

o
i . (5.26)

By substituting Eqs. (5.21) and (5.22) into Eq. (5.26), we have

Ei = (1− βi)
(
κ ∙ f2

i ∙D
l
i

)
+ βi[

(
ktx1 + ktx2 ∙ p

tx
i

)
∙ΘUL
i +

(
krx1 + krx2 ∙ r

DL
i

)
∙ΘDL
i ]. (5.27)

5.4 Energy-delay Trade-off via Self-organization

According to our analysis above, an improved QoE is only achieved when an optimal setting of

the offloading probabilities is done at both device and edge server sides. Any deviation from this

optimal setting may result in performance deterioration. Due to the inherent time-varying nature

of the network state, which is a direct consequence of user mobility and traffic fluctuation, such

an optimal setting may not be obtained and maintained easily. To cope with this issue, we enable

mobile users with self-awareness such that they can rely on their local computing resources, when

needed.

In the following, we develop a bicriteria optimization framework to enable MUs to use their local

information and minimize the response time as well as their energy consumption by dynamically

adjusting their offloading probability as well as CPU clock frequency using the aforementioned DVS

technique. For notational simplicity, we consider a tagged user and drop the subscript i hereafter.

Similar to [42] and [45], we assume that the CPU clock frequency f of the tagged MU is restricted

to a continuous interval of [fmin, fmax]. We formulate the bicriteria energy-delay self-organization

problem as follows:
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(P1) : min
f,β

Υ(f, β), E(f, β) (5.28a)

s.t. fmin ≤ f ≤ fmax, (5.28b)

0 ≤ β ≤ 1, (5.28c)

where Υ and E are given in Eqs. (5.20) and (5.27), respectively. To assess the developed model and

characterize the tradeoff between the two objectives of the formulation above, we apply the Pareto

front analysis. To obtain the Pareto front solutions, a common approach is to transform the original

problem into an optimization problem by transferring one of the objectives into the constraints and

solving it iteratively. In doing so, the problem (P1) is transformed into a single-objective nonlinear

optimization problem as follows:

(P2) : min
f,β

Υ(f, β) (5.29a)

s.t. fmin ≤ f ≤ fmax, (5.29b)

0 ≤ β ≤ 1, (5.29c)

E(β, f) ≤ Ethr, (5.29d)

where Ethr denotes the given energy budget.

Lemma 5.2: Problem (5.29) is a convex optimization problem.

Proof. Υ(β, f) is a continuous twice-differentiable convex function of f and β, which can be verified

by the fact that its Hessian matrix is positive definite. Besides, constraints (5.29b) and (5.29d) are

affine functions of f and β, respectively; and constraint (5.29d) is a convex function of f and β.

Therefore, the feasible set of the problem is a convex set.

Lemma 5.3: Necessary condition for optimality: The optimal solution (f∗, β∗) of problem (P2)

satisfies the following equation :

f∗ = L(β∗) = min{G(β), fmax}, ∀β ∈ [0, βmax], (5.30)
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where

G(β) =

√
Ethr − β[(ktx1 + ktx2 pt)ΘUL + (krx1 + krx2 rDL) ΘDL]

(1− β)κDl
, (5.31)

and βmax is obtained by solving the following equation :

G(β)− fmin = 0. (5.32)

Proof. First, we show that f = L(β) (given by Eq. (5.30)) determines the upper limit of CPU clock

frequency f for a given β. In doing so, we take the energy constraint given by Constraint (5.29d)

and calculate f as a function of β for a fixed Ethr as follows:

f ≤ G(β). (5.33)

Taking into account constraint (5.29b), inequality (5.33) becomes:

f ≤

L(β)
︷ ︸︸ ︷
min{G(β), fmax} .

(5.34)

Clearly, f = L(β) gives the upper limit of f for a given β (see Fig. 5.3).

Next, we prove Lemma 5.3 by contradiction. Let (β1, f1) satisfy f1 = L(β1). Assume (β1, f2),

∀f2 < f1, achieves a smaller response time, thus:

Υ(β1, f2) < Υ(β1, f1). (5.35)

Obviously, since f = L(β) gives the upper limit of the CPU clock frequency f for a given (fixed)

offloading probability β, an MU can experience a smaller response time by increasing its CPU clock

frequency from f2 to f1. This happens in light of the fact that for a fixed offloading probability β1,

as CPU clock frequency f increases, the first term on the right-hand side of Eq. (5.20) decreases,

whereas the second term remains unchanged. Hence, Υ(β1, f1) < Υ(β1, f2), which is in contradiction

with (5.35). We also note that for a given energy budget Ethr, the maximum offloading probability

βmax is obtained by solving fmin = G(β), as illustrated in Fig. 5.3. Therefore, the optimal solution

(f∗, β∗) of problem (P2) satisfies Eq. (5.30). This completes the proof.
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Figure 5.3 – Illustration of the search space for problem (P2) for different values of Ethr.

Algorithm 6 Joint Offloading and DVS Procedure ()

Input: Ethr, fmin, fmax, energy and task parameters
Output: β∗ and f∗

1: Initialize: β0 ← 0 and f0 ← L(0)
2: Solve Eq. (5.32) and obtain βmax
3: Δ ← M
4: while (Δ > ε1) & (β0 ≤ βmax) do
5: β1 ← β0 + ε2
6: f1 ← L(β1) using Eq. (5.30)
7: Δ← Υ(f0, β0)−Υ(f1, β1) using Eq. (5.20)
8: if Δ > 0 then
9: β∗ ← β1 and f∗ ← f1

10: else
11: β∗ ← β0 and f∗ ← f0
12: end if
13: β0 ← β1

14: end while
15: return β∗, f∗

Since Lemma 2 and Lemma 3 hold, we use a standard constrained convex optimization ap-

proach and obtain the optimal solution (f∗, β∗) of problem (P2) for a given MU using only its local

information/parameters, as described in Algorithm 6, where ε2 is the minimum step size for search-

ing the optimal solution (β∗, f∗), M is a big number, and ε1 is a small number. In Algorithm 6,

the optimal offloading probability β∗ is obtained via a one-dimensional search method, whereas

the optimal CPU clock frequency f∗ is calculated accordingly using the closed-form relation given

by Eq. (5.30). It is worthwhile to mention that the non-local processing latency term, DrNL, in
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Table 5.1 – MEC-enabled FiWi enhanced HetNet Parameters & Default Values

Parameter Value Parameter Value

Traffic Model Parameters

Lm 1500 Bytes λB 30 packet/s

αPON 100 L̄, ς2L 1500 Bytes, 0

Backhaul EPON

lPON 20 km cPON 10 Gbps

NONU {12, 16, 20, 24} Λ 1

WiFi Parameters

DIFS 34 μsec SIFS 16 μsec

PHY Header 20 μsec W0, H 16 slots, 6

ε 9 μsec RTS 20 bytes

CTS 14 bytes ACK 14 bytes

r in WMN 300 Mbps ONU-AP radius 15 m

LTE-A Parameters

ptx 100 mW ω 5 MHz

ω̄2
0 -100 dBm ktx1 0.4 W

ktx2 18 ONU-BS radius 50 m

prx 200 mW krx1 0.4 W

krx2 2.86 W/Mbps

Task and Edge/Cloud Server Parameters

λMU 25 task/min fi [150, 450] MHz

λe0 30 task/min fej 1.44 GHz

λc0 240 task/min s 6

f c 1.44 GHz Bl 66 KB

Dl, De0, D
c
0 300 Mcycles κ 10−26

ε1, ε2 10−3 M 102

Bo 1 KB

Eq. (5.20) can be calculated using only local information as follows:

DrNL =
Υ̂− (1− β) ∙DrL − β ∙ Θ̂

UL

β
, (5.36)

where Υ̂ and Θ̂UL can be obtained via measurements. Given that the number of arithmetic op-

erations within each iteration is upper-bounded, the complexity of Algorithm 6 is O(K), where

K = βmax
ε2

is the number of iterations for searching the optimal solution.
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(a) (b)

Figure 5.4 – (a) Average response time vs. MU offloading probability β for different values of ζ (α = 0
and fi=150 MHz); (b) average energy per task vs. MU offloading probability β for different values of
local clock frequency fi (ζ = 20%).

5.5 Results

The following numerical results were obtained by using the LTE-A and FiWi network and traffic

parameter settings listed in Table 5.1, which are consistent with those in [13], [75], [42], [45], [44],

and [102]. In our considered scenario, 50 MUs are scattered randomly within the range of 50 m

from each ONU-BS. Besides, we consider four MUs within the coverage area of each ONU-AP. In

the cellular access mode, we set the channel gain to Gi,k = d−ξi,k between MU i and BS k, where

di,k is the distance between MU i and BS k, and ξ = 4 is the path loss factor. Further, we set

βi = β (∀i = 1, 2, ...) and αj = α (∀j = 1, 2, ...). A portion ζ of the number of MUs that reside

within the coverage area of an ONU-AP or cellular BS is involved in task offloading, while the

remaining portion (1 − ζ) generates the conventional Poisson H2H traffic at mean packet rate λB .

Background traffic coming from ONUs with attached fixed (wired) subscribers is set to αPON ∙ λB ,

where αPON ≥ 1 is a traffic scaling factor for fixed subscribers that are directly connected to

the backhaul EPON. Also, the user mobility parameters in our simulations are tuned such that the

WiFi connection and interconnection times fit a truncated Pareto distribution with PMU
temp = 73.18%,

which is compliant with the measurements in [13].

First, we consider the edge computing-only scenario with α being set to zero. Figures 5.4a and

5.4b depict the energy-delay performance of MEC-assisted partial offloading. The average response

time vs. offloading probability β for different values of ζ is shown in Fig. 5.4a. The results indicate
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Figure 5.5 – Comparison of average response time performance of edge-only, cloud-only, and cooper-
ative computing (ζ = 20%).

that the average response time is a convex function of β. For ζ = 20%, setting β = 0.66 leads to

an 82% reduction of the average response time compared to the fully local computing scheme (i.e.,

β = 0). We note that the optimal value of β largely depends on ζ. More specifically, as ζ increases,

the optimal value of β decreases, as shown in Fig. 5.4a. Figure 5.4b depicts the average energy

consumption per task vs. β for different values of fi. The bottom curves in Figs. 5.4a and 5.4b

highlight the trade-off an MU can make between the average response time and energy per task for

ζ = 20%. We also observe from Fig. 5.4b that for larger values of fi, partial offloading not only

reduces the average response time but it also helps MUs reduce their energy consumption.

Next, we examine the performance gains obtained from our proposed trilateral device-edge-cloud

cooperative computing. Figure 5.5 depicts the average response time vs. β for the following three

different scenarios: (i) edge-only (α = 0), (ii) cloud-only (α = 1), and (iii) cooperative computing

(α = α∗), where α∗ denotes the optimal value of α set by the network operator to minimize the

average task execution time experienced by the edge servers. Figure 5.5 shows that the proposed

cooperative computing scheme yields a better delay performance compared to either the edge-only

or cloud-only scheme, especially for β > 0.64. While the edge- and cloud-only schemes may both

pose a longer response time due to an excessive queueing delay for large values of β, the trilateral

cooperation between the CPU, edge server, and remote cloud yields a reduced response time by

setting β and α to their optimal values (see bottom curve in Fig. 5.5).
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Figure 5.6 – Average response time vs. edge-server offloading probability α for different values of β
and fi (ζ = 20%).

Figure 5.7 – Average response time vs. edge-server offloading probability α for different values of ζ
(NONU = 12 and β = β∗).

Figure 5.6 shows the impact of edge server offloading probability α on the delay performance

of our cooperative computing scheme. For fi = 250 MHz, when MUs operate in the full offloading

mode (i.e., β = 1), the delay of the cooperative computing scheme equals 2.28 s by setting α = 0.68,

compared to ∼ 12 s of the edge- or cloud-only schemes, which translates into an 81% reduction of

the average response time. More interestingly, the reduction is achieved by appropriately setting

the edge server offloading probability α and without incurring any additional energy per task, which

remains unchanged for a given β. We note that the average response time as well as the energy
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Figure 5.8 – Energy per task vs. ζ for different values of local clock frequency fi and number NONU of
ONUs (α = α∗ and β = β∗).

per task can be further reduced by setting β = 0.5. Moreover, for fi = 350 MHz, the minimum

response time is achieved by setting β = 0.5 and α = 0.86. In doing so, setting β = 0.5 also yields

a near-optimal energy performance according to Fig. 5.4b. We proceed by discussing the results of

the average response time vs. α for different values of ζ in Fig. 5.7. We observe that the beneficial

impact of edge-cloud cooperation through the backhaul on the average response time becomes even

more pronounced for larger values of ζ. Specifically, we observe that the average response time

decreases from 5.89 s for α = 0 to 3.48 s for α = α∗ = 0.5 and ζ = 100%, as opposed to only a

slight decrease from 2.25 s for α = 0 to 1.87 s for α = α∗ = 0.7 and ζ = 20%.

Next, we examine the energy performance of our proposed cooperative offloading scheme in

Fig. 5.8, where α and β are set to their optimal values of α∗ and β∗. For a given fi and an

increasing ζ or NONU , we observe a generally decreasing trend in the energy consumption. This

occurs because for a larger ζ or NONU , the optimal delay performance is achieved by relying more on

local rather than nonlocal computing resources by setting β to smaller values, which in turn results

in a reduced energy consumption (see Fig. 5.4b). Importantly, we also observe that while increasing

the local clock frequency fi always leads to a decreased average response time (see Fig. 5.6), it

may not necessarily increase the energy consumption. For instance, we observe that the energy

consumption for fi = 250 MHz, unexpectedly, is lower than that of fi = 150 MHz, provided that

ζ < 45%. This is because the delay-optimal setting β∗ in the former is smaller than that of the latter,
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Figure 5.9 – CDF of response time for different values of ζ (α = α∗ and β = β∗).

Figure 5.10 – Average response time vs. edge server offloading probability α for different values of
NONU (β = β∗, ζ = 20%).

thus revealing a better energy performance (see also Fig. 5.4b). Note, however, that for ζ > 45%,

setting fi = 150 MHz can achieve an energy saving of up to 38% compared to fi = 250 MHz.

Next, we present the cumulative distribution function (CDF), FΥi(t), of the response time Υi

(i.e., Pr (Υi ≤ t)) in Fig. 5.9 for different values of ζ. We find that our proposed cooperative

computing scheme ensures a lower bound probability of 80% that an incoming task is executed

(either locally or nonlocally) and returned to the MU within 5.5 s. The average response time vs.

α for different values of NONU is depicted in Fig. 5.10, where we evaluate the delay performance of
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Figure 5.11 – Pareto front solutions of self-organization problem (P2) for Dl ∈ [100, 200, 300] Mcycles
(the value of energy constraint Ethr increases along the arrow shown on each curve).

(a) (b)

Figure 5.12 – (a) Optimal offloading probability β∗ vs. energy constraint Ethr and (b) optimal CPU
clock frequency f∗ vs. energy constraint Ethr for different values of Dl = [100, 200, 300] Mcycles.

our proposed edge-cloud cooperation through the backhaul. Interestingly, we find that by doubling

the number NONU of ONUs from 12 to 24, the average response time of MUs only increases from

1.88 s to 1.95 s, provided that an optimal setting of both α and β is carried out.

Finally, Fig. 5.11 illustrates the Pareto frontier characterization of the energy-delay trade-off

an MU can make via dynamic reconfiguration by using our proposed self-organization scheme for

different values of Dl. For a given energy constraint Ethr, which is determined by the decision maker

according to a given energy budget of the battery as well as delay requirement of incoming tasks,
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an MU can optimally adjust its offloading probability and CPU clock frequency using only its local

information to achieve the desired energy-delay performance. For instance, Fig. 5.11 shows that for

Dl = 300 Mcycles, by increasing Ethr from 0.7 J to 1.8 J a 84% reduction of the average response

time is achieved. We also observe from Fig. 5.11 that any further increase of the energy budget

may not lead to a significant reduction of the average response time, especially for Dl = 100 and

200 Mcycles. Moreover, the results of the optimal offloading probability β∗ and CPU clock frequency

f∗ vs. the energy constraint Ethr for different values of Dl are shown in Fig. 5.12. Interestingly,

Figs. 5.12a and 5.12b, along with Fig. 5.11, illustrate the impact of increasing Dl and Ethr on the

optimal decision made by the MU. For instance, we observe that for Dl = 100 Mcycles, offloading

doesn’t have any benefit in terms of the average response time, thus β∗ = 0, ∀Ethr ∈ [0.7, 3] J (see

Fig. 5.12a). Instead, MUs can reduce their response time by increasing f (see Fig. 5.12b).

5.6 Conclusions

This chapter studied the cooperative computation offloading in MEC enabled FiWi enhanced Het-

Nets from both network architecture and offlading mechanism design perspectives. Beside the

design of reliable low-latency MEC enabled FiWi enhanced LTE-A HetNets, we presented a simple

but efficient offloading strategy that leverages trilateral cooperation among device, edge server, and

remote cloud. We developed an analytical framework to estimate the average response time and

energy consumption of mobile users in a FiWi based MEC enabled network infrastructure. Our

results demonstrate the superior performance of the proposed cooperative computing scheme com-

pared to edge- or cloud-only schemes. Further, we showed that by optimally setting the offloading

probabilities, MUs can achieve a reduction of the average response time of up to 81%. In order to

cope with the incurred complexity, we also designed a self-organization based mechanism, which

enables an MU, using local information, to make suitable energy-delay trade-offs and jointly mini-

mize the average execution time and energy consumption by dynamically adjusting the offloading

probability and its local CPU clock frequency using the DVS technique.
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Conclusions

This chapter summarizes the important contributions of the dissertation and outlines possible di-

rections for future work.

6.1 Summary

The Internet has constantly evolved from the mobile Internet dominated by H2H traffic to the emerg-

ing IoT with its underlying M2M communications. The advent of advanced robotics, along with

the emerging ultra responsive networking infrastructures, will allow for transmitting the modality

of touch (also known as haptic sensation) in addition to the traditional triple-play traffic (i.e., voice,

video, and data) under the commonly known term Tactile Internet. The IoT without any human

involvement in its underlying M2M communications is useful for the automation of industrial and

other machine-centric processes while keeping the human largely out of the loop. In contrast, the

Tactile Internet allows for the tactile steering and control of not only virtual but also real objects

via teleoperated robots, and will be centered around H2R/M communications, thus calling for a

human-centric design approach.

This doctoral thesis is built on FiWi enhanced LTE-A HetNets as promising underlying network-

ing infrastructures on which the emerging Tactile Internet is envisioned to rely. In particular, we

studied different aspects of the emerging Tactile Internet and presented in-depth technical insights

into realizing HITL-centric teleoperation Tactile Internet over FiWi enhanced networks, including
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trace-based haptic traffic modeling, perceptual deadband coding, haptic sample forecasting, task

coordination via context- and self-awareness, teleoperation task allocation, and cooperative compu-

tation offloading. In the following, a more detailed summary of each chapter is presented.

We have seen that there is a significant overlap among 5G, IoT, and the Tactile Internet in that

they share various important design goals, including very low latency, ultra-high reliability, and

integration of data-centric technologies. In Chapter 2, we described how FiWi enhanced LTE-A

HetNets leveraging low-cost data-centric EPON and WiFi technologies for fiber backhaul sharing

and WiFi offloading may help realize not only the aforementioned shared design goals but also the

key attributes of end-to-end co-DBA of both PON and wireless network resources, decentralization,

and edge intelligence in support of future low-latency applications over a common optical transport

platform.

Our focus was on the emerging Tactile Internet as one of the most interesting low-latency appli-

cations for creating novel immersive experiences. We reviewed the HITL-centric design principles

that add a new dimension to the human-to-machine interaction via the Internet and set the Tactile

Internet aside from the more machine-centric IoT. Exploiting the human perception of haptics to

reduce the haptic packet rate by means of deadband coding, we derived haptic traffic models from

teleoperation experiments. Our haptic trace analysis showed that assuming Tactile Internet traffic

to be Pareto distributed was not valid for the analyzed traffic, while assuming it to be Poisson

traffic was valid only in a special case. In general, we observed that command and feedback paths

of teleoperation systems can be jointly modeled by generalized Pareto, gamma, or deterministic

packet interarrival time distributions, depending on the given value of the respective deadband pa-

rameters. We then used machine learning to implement an MLP-based multi-sample-ahead-of-time

sample forecaster, which is capable of decoupling haptic feedback from the impact of extensive

propagation delays. This enables humans to perceive remote task environments in time at a 1-ms

granularity.

In Chapter 3, we investigated the performance of our proposed context- and self-aware HART

centric multi-robot task allocation over FiWi based Tactile Internet infrastructures. We shed light

on when, how, and under which circumstances user-ownership of MRs becomes beneficial in terms

of OPEX per executed task. Further, we evaluated the performance of our proposed CADMRTC

algorithm in terms of average task completion time, OPEX per executed task, and ratio of the
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number of executed tasks by user-owned MRs and the total number of tasks. By leveraging on

the low-latency and reliable fiber backhaul and distributed WiFi-based fronthaul, we showed that a

human-robot connectivity probability of > 90% is achievable for T̄MRon /T̄
MR
off > 10. In addition, our

obtained results show that our proposed self-aware scheme plays a key role in minimizing the traverse

time as well as energy consumption of MRs in a distributed manner, whereas our context-aware

task coordination is instrumental in minimizing the task completion time, while paying particular

attention to reducing OPEX of user-/network-ownership of MRs.

In Chapter 4, we investigated the performance of our proposed CAPSTA algorithm in solving

the prioritized assignment and scheduling of delay-constrained teleoperation tasks in FiWi enhanced

Tactile Internet network infrastructures. The obtained results show that the proposed algorithm

reduces the average weighted task completion time, maximum tardiness, and average OPEX, com-

pared to the benchmark RSA algorithm. Specifically, the proposed CAPSTA algorithm achieves a

15-27% reduction of average weighted task completion time and a 49-56% reduction of maximum

tardiness. In addition, compared to the benchmark RAS algorithm, the proposed CAPSTA algo-

rithm achieves a 75.3% and 78.9% reduction of average OPEX per task for N = 100 and N = 300,

respectively. Our results also give insights into finding the optimal number of HOs to minimize

the average OPEX per completed task for different deployment scenarios. More precisely, we have

shown that for the proposed CAPSTA algorithm, the optimal number of available human operators

M? that minimizes OPEX is 2 and 5 for N = 100 and N = 300, respectively. Finally, we have

shown that the considered solution is able to achieve an average end-to-end packet delay of < 10

ms for both local and non-local teleoperation for a wide range of background traffic rates.

In Chapter 5, we studied the cooperative computation offloading in MEC enabled FiWi enhanced

HetNets from both network architecture and offlading mechanism design perspectives. Beside the

design of reliable low-latency MEC enabled FiWi enhanced LTE-A HetNets, we presented a simple

but efficient offloading strategy that leverages trilateral cooperation among device, edge server, and

remote cloud. We developed an analytical framework to estimate the average response time and

energy consumption of mobile users in a FiWi based MEC enabled network infrastructure. Our

results demonstrate the superior performance of the proposed cooperative computing scheme com-

pared to edge- or cloud-only schemes. Further, we showed that by optimally setting the offloading

probabilities, MUs can achieve a reduction of the average response time of up to 81%. In order to

cope with the incurred complexity, we also designed a self-organization based mechanism, which
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enables an MU, using local information, to make suitable energy-delay trade-offs and jointly mini-

mize the average execution time and energy consumption by dynamically adjusting the offloading

probability and its local CPU clock frequency using the DVS technique.

6.2 Future Work

In Chapter 2, we elaborated on the importance of the decentralized nature of WLAN’s access pro-

tocol DCF to realize low-latency FiWi enhanced LTEA HetNets. Furthermore, by exploiting their

inherent distributed processing and storage capabilities, we investigated the potential of enabling

immersive teleoperation experiences for human operators by introducing machine learning at the

optical-wireless interface of FiWi enhanced LTE-A HetNets. Our proposed MLP-based ESF mod-

ule compensates for delayed haptic feedback samples by means of multiple-sample-ahead-of-time

forecasting for a tighter togetherness, improved safety control, and increased reliability. Future

work will investigate the applicability of this technique in networks with arbitrary delays using

sophisticated deep learning models.

Our obtained results in Chapter 3 show that from a performance perspective (in terms of average

task completion time) almost no deterioration occurs if the ownership is shifted entirely from network

operators to mobile end-users, though such a shift in ownership of robots has significant implications

on sharing the profits and collaborative business opportunities arising from the emerging Tactile

Internet in a more equitable fashion. As a result, this may open up new opportunities for synergies

between humans and machines/robots, while spurring the symbiotic human-machine/robot develop-

ment envisaged by early-day Internet pioneers and imagining entirely new categories of abundance

for a low entry cost economy. Among others, one future research direction is to further explore

the synergies between the aforementioned HART membership and the complementary strengths of

robots to facilitate local human-machine coactivity clusters by decentralizing the Tactile Internet.

Another interesting open research problem is how human crowdsourcing can help decrease task

completion time in the event of unreliable connectivity and/or network failures. Note that our

presented spreading ownership of robots across mobile users may be an important stepping stone

to collaborative business relationships that function more like localized share-economy ecosystems

than markets.
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Last but not least, an interesting future research avenue is to investigate the role of virtualiza-

tion in FiWi networks to eliminate the physical layer interaction of the often heterogenous Tactile

Internet applications, thus realizing an infrastructure/technology independent architecture.
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A.1 Proof of Lemma 3.1

Proof. Using Eq. (3.1) along with the velocity profile shown in Fig. 3.2, the energy consumption
Etrav of the MR to traverse a given distance Δd is calculated as follows:

Etrav = E(ωd) =
∫ Ttrav

0
c1a

2(t).dt
︸ ︷︷ ︸

E1

+
∫ Ttrav

0
c2v

2(t).dt
︸ ︷︷ ︸

E2

+
∫ Ttrav

0
c3v(t).dt

︸ ︷︷ ︸
E3

+
∫ Ttrav

0
c4.dt

︸ ︷︷ ︸
E4

.
(A.1)

Note that for the considered velocity profile v(t) in Fig. 3.2, the contributions of both fifth and sixth
terms in Eq. (3.1) are equal to zero, as

∫ Ttrav
0 a(t).dt = 0 and

∫ Ttrav
0 v(t)a(t).dt = 0. We obtain E1,

E2, E3, and E4 as follows:

E1 = c1

(∫ t1

0
a2acc.dt+ 0 +

∫ t3

t2
a2dec.dt

)

= c1

(∫ Tacc

0
(
vmax
Tacc

)2.dt+
∫ Ttrav

Tacc+Tcst
(−
vmax
Tdec

)2.dt

)

Eq. (3.4)
= 2c1(1− ωd)

Δd
vmax

(
v2max

(1− ωd) Δd

)2

=
2c1v3max

(1− ωd)Δd
,

(A.2)

E2 = c2(
∫ t1

0

(
vmax
Tacc
t

)2

.dt+
∫ t2

t1
(vmax)

2 .dt+
∫ t3

t2

(

−
vmax
Tacc

(t− Ttrav)
)2

.dt)

Eq. (3.4)
= c2

(
2
3

(1− ωd)vmaxΔd+ ωdvmaxΔd
)

,

(A.3)

E3 = c3

∫ Ttrav

0
v(t).dt

Eq. (3.3)
= c3Δd, (A.4)

E4 = c4

∫ Ttrav

0
1.dt

Eq. (3.5)
= c4(2− ωd)

Δd
vmax
. (A.5)

Substituting Eqs. (A.2)-(A.5) into Eq. (A.1), completes the proof.
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A.2 Proof of Lemma 3.2

Proof. Given ∂
2E(ωd)
∂ω2
d

> 0 for ωd ∈ (0, 1), in order for E(ωd) to have a local minimum in interval

(0, 1), ∂E(ωd)
∂ωd

has to be zero. Therefore, we have

∂E(ωd)
∂ωd

=
vmaxc2Δd

3
+

2c1v3max
Δd(1− ωd)2 −

c4Δd
vmax

= 0, (A.6)

which gives ω̂d as follows:

ω̂d = 1−

√√
√
√
√
√

6c1v4
max

Δd2

3c4 − v2maxc2︸ ︷︷ ︸
M ′

. (A.7)

We note that ω̂d has to lie in interval (0, 1), thus implying that

0 < M ′ < 1. (A.8)

The left-hand inequality holds for vmax < v′1, where v
′
1 =

√
3c4
c2

. Whereas the right-hand inequality
translates into

QE(vmax)
︷ ︸︸ ︷
6c1
Δd
v4max + c2v

2
max − 3c4 < 0.

(A.9)

To evaluate the range of vmax, for which inequality QE(vmax) < 0 holds, we first determine the
roots of QE(vmax) = 0. In doing so, we develop the auxiliary equation Q′E(vmax) = 0 by replacing
v′max = v2max. We note that as the discriminant of equation Q′E(vmax) = 0 is equal to 72c1c4/Δd2,
which is greater than zero for Δd, Q′E(vmax) = 0 has two distinct roots, one of which is positive
and the other one is negative. Clearly, as vmax = ±

√
v′max, the negative root does not give a valid

real value for vmax, whereas the positive one does. Therefore, QE(vmax) has only one positive root.
Note that QE(vmax) < 0 holds for vmax < v′2, where v

′
2 is the positive root of QE(vmax) = 0. The

reason for this is that QE(0) < 0 and ∂
2QE(vmax)
∂v2
max

> 0, thus implying that QE(0) is negative for

0 < vmax < v′2.Therefore, inequality (A.9) holds if

vmax <

v′2︷ ︸︸ ︷√√
√
√
√
√
−c2 +

√

c22 − 4
(

6c1
Δd2

)
(−3c4)

2
(

6c1
Δd2

) .
(A.10)

Subsequently, in order to satisfy Eq. (A.8), we have

vmax <

v1︷ ︸︸ ︷
min{v′1, v

′
2},

(A.11)

for which the right-hand is equal to v′2 because it is straightforward to show that v′2 < v
′
1 for Δd > 0

given the experiment-driven values of {ci}6i=1 taken from [79]. For illustration, A1 ∈ R2
+ depicts the

region that satisfies inequality (A.11), thus representing the values of (Δd, vmax), for which E(ωd)
has a local minimum ∀ωd ∈ (0, 1) (see Fig. 3.4).
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A.3 Proof of Lemma 3.3

Proof. g(ωd) = ∂f(ωd)
∂ωd

is a continuous function of ω∗d, thereby having a root in interval (0,1) if and
only if g(0)g(1) < 0, which implies that

(1−K ′)K ′ < 0⇒ 0 < K ′ < 1. (A.12)

The left-hand inequality, 0 < K ′, reduces to

Q1(vmax)
︷ ︸︸ ︷
A1v

4
max +B1v

2
max + C1vmax +D1 > 0,

(A.13)

where A1, B1, C1, and D1 are given in Eq. (3.29). Note that in order to evaluate the range of vmax
for which inequality (A.12) holds, we have to determine the location of the roots (i.e., zeros) of
equation Q1(vmax) = 0. We also note that Q1(vmax) = 0 is a quartic equation that has four roots,
two of which are real while the other two are complex, as its discriminant is negative. Further, as
Q1(0) > 0 holds and limvmax→+∞Q1(vmax) = −∞, we conclude that one of the real roots is positive
while the other one is negative. Therefore, inequality (A.12) holds for vmax < zm, where zm is the
(only) positive root of Q1(vmax) = 0.

Next, we turn our attention to the right-hand side inequality, K ′ < 1, which reduces to

2c1v
3
max < Δd

(
Δdc4
vmax

−
Δdvmaxc2

3
+
Em
2

)

vmax>0⇒

Q2(vmax)
︷ ︸︸ ︷
A2v

4
max +B2v

2
max + C2vmax +D2 > 0,

(A.14)

where
A2 = A1Δd− 2c1,

B2 = B1Δd,

C2 = C1Δd,

D2 = D1Δd.

(A.15)

We note that Q2(vmax) is greater than zero only for vmax < z′m, where z
′
m is the (only) positive root

of Q2(vmax) = 0. The reason for this is that as Q2(vmax) = 0 has two real roots, one of which is
positive and the other one is negative, and Q2(0) > 0, Q2(vmax) is greater than zero for vmax < z′m.
Clearly, in order for both right- and left-hand inequalities in (A.12) to hold, vmax has to be smaller
than min{zm, z′m}. We note that for Δd > 0 we have z′m < zm, therefore min{zm, z′m} = z′m.
Standing as the only positive root of Q2(vmax), z′m is maxZ′i>0:Im[Z′i]=0{Z

′
i}. Then, g(ωd) = 0 has a

root ω∗d in interval (0, 1) if and only if vmax < maxZ′i>0:Im[Z′i]=0{Z
′
i}, ∀Δd > 0.

A.4 Proof of Lemma 5.1

Proof. To compute the average channel access delay, we define a two-dimensional Markov process
(s(t), b(t)) shown in Fig. A.1 under unsaturated conditions and estimate the average service time
Δi of MU i in a WLAN using the IEEE 802.11 distributed coordination function (DCF) for access
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Figure A.1 – Two-dimensional Markov chain for DCF contention model under unsaturated traffic
conditions.

control, whereby b(t) and s(t) denote the random back-off counter and size of the contention window
at time t, respectively. Without loss of generality, let us focus on a tagged user and drop the subscript
i for now. Let Pf and Ws denote the probability of a failed transmission attempt (i.e., collision or
erroneous transmission) and contention window size at back-off stage s, respectively. Note that the
back-off stage s is incremented after each failed attempt up to the maximum value m, while the
contention window is doubled at each stage, i.e., Ws = 2sW0.

From the viewpoint of a WiFi user, collisions may occur with probability pc on transmitted
packets, while erroneous transmission attempts may happen with probability pe. Assuming that
the collided and erroneous transmission events are statistically independent, a packet is successfully
transmitted after a collision-free attempt followed by an error-free transmission. The probability
of a successful transmission is therefore equal to (1 − pe)(1 − pc), from which we infer that the
probability Pf of a failed transmission attempt is computed as follows:

Pf = 1− (1− pc) (1− pe) . (A.16)

A WiFi user is in idle state, if (i) a successfully transmitted packet leaves the system without any
waiting packet in the queue and (ii) no packet arrives during the current time slot given that the
user was in idle state in the preceding time slot. We note that for Poisson arrival these two events
are identical and equal to 1− q.
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With these considerations, we move on to analyze the Markov model in Fig. A.1, where m+ 1
different back-off stages are considered. The maximum contention window size is 2mW0. Trans-
missions are attempted only in (s, 0) states (s = 0, 1, ...,m). Upon a failed transmission attempt
in state (s, 0), there will be a transition to new state (s+ 1, k), where k is uniformly selected from
[0,Ws+1]. From state (s, 0), we enter the initial back-off stage, again given that the transmission is
successful and the buffer is still nonempty; otherwise, we transit in the idle state I and wait for an
incoming packet.

The transition probabilities of the two-dimensional Markov chain in Fig. A.1 are computed as
follows:

P(s,k)|(s,k+1) = 1; ∀k ∈ [0,Ws − 2], s ∈ [0,m] (A.17a)

P(0,k)|(s,0) =
q(1− Pf )
W0

; ∀k ∈ [0,W0 − 1], s ∈ [0,m] (A.17b)

P(s,k)|(s−1,0) =
Pf
Ws

; ∀k ∈ [0,W0 − 1], s ∈ [1,m] (A.17c)

P(m,k)|(m,0) =
Pf
Wm

; ∀k ∈ [0,Wm − 1] (A.17d)

PI|(s,0) = (1− q) (1− Pf ) ; ∀s ∈ [0,m] (A.17e)

P(0,k)|I =
q

W0
; ∀k ∈ [0,W0 − 1] (A.17f)

PI|I = 1− q, (A.17g)

where P(a,b)|(c,d) denotes the transition probability from state (s(t) = c, b(t) = d) at time t to state
(s(t+ 1) = a, b(t+ 1) = b) at time t+ 1.

In order to find the stationary distributions

bs,k = lim
k→∞
P (s(t) = s, b(t) = k) , ∀k ∈ [0,Ws − 1], s ∈ [0,m],

we consider Eqs. (A.17) together with the normalization equation

bI +
∑

s

∑

k

bs,k = 1,

where bI denote the stationary probability that the WiFi user is in idle state. After finding the
stationary distributions, the probability τ that a WiFi user attempts to transmit in a given time
slot is then obtained as

τ =
m∑

s=0

bs,0 =
1

W0+1
2 +

W0Pf(1−(2Pf)
m)

2(1−2Pf)q
+

(1−q)(1−Pf)
q

. (A.18)

From a system point of view, WiFi subscriber i does not experience a collision if the remaining
users do not attempt to transmit, thus 1 − pci =

∏
v:v 6=i (1− τv ). Moreover, pe,i is estimated by
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1− (1− pb)
L̄i , where L̄i and pb is the average length of a packet transmitted by WiFi user i and bit

error probability, respectively.

The probability of a collision-free packet transmission Ps provided that there is at least one
transmission attempt is given by 1

Ptr

(∑
i τi
∏
v,v 6=i (1− τv )

)
, whereby the probability Ptr that

there is at least one transmission attempt is equal to 1−
∏
i (1− τi ). The average slot duration Es

is then obtained as

Es = (1− Ptr) ε+ Ptr (1− Ps)Tc + PtrPsPeTe + PtrPs (1− Pe)Ts, (A.19)

where Tc, Te, and Ts are given in [75]. We also note that q can be approximated as follows

q = 1− e−λEs , (A.20)

whereby Es is given in Eq. (A.19). In order to obtain the steady-state values of q, Pf , τ, and Es,
and Δi, we numerically solve the system of non-linear equations (5.15), (A.18), (A.19), and (A.20).
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