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Precision and accuracy of modal analysis methods for clastic 
deposits and rocks: A statistical and numerical modeling approach
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ABSTRACT

Quantifying the proportions of certain com-
ponents in rocks and deposits (modal analysis or 
componentry) is important in earth sciences. Rele-
vant methods for cross-sections (two-​dimensional 
exposures) of clastic rocks include point counts 
or line counts. The accuracy of these methods 
has been supposed to be good in the literature 
but not necessarily verified empirically. Natural 
materials are inappropriate for assessing accuracy 
because the true proportions of each component 
are unknown. The precision of modal analysis 
methods has traditionally been evaluated from 
statistical models (primarily the normal approxima-
tion to the binomial distribution) but again rarely 
verified in practice because it is also extremely dif-
ficult to obtain different slices through the same 
material at outcrop scale. Here we create a set of 
numerical models of red and blue spheres with 
different proportions and sizes and cut 60 slices 
through the models, on which we perform point 
counts and line counts. We show that both of these 
methods are indeed able to retrieve the correct 
volumetric proportions of components, on average, 
when enough fragments are counted or intersected. 
As already known, precision is controlled by com-
ponent abundance and the number of points 
counted or clasts intersected. However, we show 
that other important factors include differences 
between slices, which are relevant for our unequal-​
size models, and the proportion of voids, matrix, 
and/or cement in the rock. We present empirical 
precision charts for clast counts and line counts 

based on our models and make recommendations 
for future field studies.

■■ INTRODUCTION

Importance and Basic Principles of Modal 
Analysis

Quantifying the composition of clastic rocks 
and deposits is of fundamental importance in 
earth sciences. For example, the mineralogical 
composition of a sandstone can indicate its prov-
enance (Dickinson and Suczek, 1979; Ingersoll et 
al., 1984; Weltje, 2002), a microfossil assemblage 
can be used for paleoenvironmental interpretations 
(Patterson and Fishbein, 1989; Fatela and Taborda, 
2002), and the composition of a pyroclastic rock or 
deposit can help in deciphering various eruptive 
processes (Houghton and Smith, 1993; Latutrie and 
Ross, 2020a, 2020b). Various terms are used—​for 
example, “componentry analysis” in volcanology, 

“sandstone composition analysis” or “modal anal-
ysis” in sedimentology. “Modal analysis” will be 
employed in the rest of this article for simplicity.

The ultimate aim of modal analysis measure-
ments is to reliably determine the proportions of 
various types of components such as clasts, min-
erals, or fossils in a volume of rock or a deposit, 
perhaps an entire lithofacies. It is not possible to 
characterize all of the grains individually, so instead, 
one or several smaller—hopefully representative—​
domains are selected, such as a 1 m2 surface in 
a rock face or outcrop, a hand-sized sample, a 

certain size fraction from a sieved deposit, or a 
thin section for analysis. Even then, there are gen-
erally still too many grains to count them all, so 
modal analysis methods such as point counting or 
line counting subsample the chosen material for 
consideration of only a predetermined number of 
grains (Delesse, 1848; Rosiwal, 1898; Fleet, 1926; 
Chayes, 1944, 1945; van der Plas and Tobi, 1965; 
Patterson and Fishbein, 1989). If a cross-​section 
(two-dimensional [2-D] exposure) through the 
material is involved, such as with a rock face or 
a thin section, this implies a change from three 
dimensions (3-D; a volume) to 2-D (a surface). Line 
counting further reduces the dimensions to one, 
and point counting to zero. The Delesse principle 
states that the volume fraction of a component will 
be the same as the area fraction of that component 
on a representative slice, and so on down to the 
proportion of points counted (Higgins, 2006), but 
this applies only if enough particles are considered 
and if the material is homogeneous.

Problem Statement

Getting a reliable modal analysis result there-
fore means counting or measuring enough particles, 
but how much is enough to answer the scientific 
question being asked? Besides, is the studied slice 
representative in the first place? These questions 
have been considered since at least the 1940s, but 
at the moment, various research groups use dif-
ferent count numbers, partly because of different 
applications but also because of different traditions 
within research fields or research groups. Some 
arbitrary numbers are sometimes being employed 
(e.g., 300 clasts or points; Ingersoll et al., 1984; Pat-
terson and Fishbein, 1989).
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Aims of the Current Study

A reexamination of these questions is due, and 
our contribution uses both a statistical approach, 
as in many previous studies (with some improve-
ments), and a novel numerical modeling approach 
that can simultaneously take into account multiple 
sources of variation. We consider two modal analy-
sis methods involving cross-sections: point counts 
and line counts.

The reliability or uncertainty of modal analysis 
measurements has two independent dimensions: 
precision and accuracy. These dimensions need to 
be better studied for modal analysis methods. Pre-
vious studies on this topic have been based largely 
on statistics (e.g., van der Plas and Tobi, 1965; How-
arth, 1998), but such an approach does not typically 
address accuracy. Statistical approaches can pre-
dict some sources of variability between counts, 
but might not include all sources of uncertainty 
that contribute to precision, such as:

•	 Is the cross-section or sample representative?
•	 What is the effect of particles of unequal sizes?
•	 What is the impact of the matrix and cement?
In this paper, we construct a set of numerical 

models of red and blue spheres with different pro-
portions and sizes. The models serve as a basis 
for point counts and line counts using different 
numbers of points and lines. We show that these 
methods can indeed be accurate, and we create 
empirical precision charts for point counts and line 
counts. Recommendations for carefully designing 
modal analysis studies are proposed based on 
those charts.

■■ BACKGROUND

Point Counts

Point counting is normally done with a regu-
lar grid, and particles on this grid are successively 
assigned by an expert to component bins until the 
predetermined total number of points is reached. 
Point counts provide the modal fraction of the com-
ponents within a sample (e.g., van der Plas and Tobi, 
1965; Underwood, 1970; Patterson and Fishbein, 

1989) without needing stereological conversion, 
although some authors have questioned whether 
point counting is appropriate for components of 
unequal sizes (Howard, 1993).

Point counts can be performed in the field (Blatt, 
1992; Ross and White, 2006, 2012; Carrapa and 
DeCelles, 2008; Latutrie and Ross, 2020a, 2020b). 
Field point counts on coarse clastic rocks are com-
monly acquired using string nets of 1 m2 (Fig. 1B; 
Ross and White, 2006, 2012; Latutrie and Ross, 2020a, 
2020b). Different meshes yield different number of 
points, for example 100 points for a 10 cm mesh or 
400 points for a 5 cm mesh over 1 m2. In many stud-
ies, each component greater than or equal to 4 mm 
(in some cases 2 mm in older studies) found below 
a point in the grid is counted into bins (component 
classes), whereas smaller components are called 

“matrix”. There may also be a “cement” category.
Petrographic point counts can be done using 

either images and specialized software (Fig. 1C) 
or mechanical point-counting devices attached to 
petrographic microscopes (Shand, 1916; Chayes, 
1956; Galehouse, 1971; Douce and Johnston, 1991; 
Roduit, 2007; van Otterloo et al., 2013; Stamper et 
al., 2014; Bélanger and Ross, 2018). Petrographic 
point counts are classically used to quantify compo-
nents smaller than 4 mm or 2 mm, so are a natural 
complement to field point counts.

Point counts are used in volcanology (e.g., 
Mastin et al., 2004; Ross and White, 2006, 2012; 
Bélanger and Ross, 2018; Latutrie and Ross, 2020a, 
2020b), petrology (e.g., Giddings, 1986; Douce and 
Johnston, 1991; Stamper et al., 2014), paleontology 
(e.g., Retallack, 1994; Baarli et al., 2014), palynology 
and other paleo-environmental studies (e.g., Clark, 
1982; Patterson et al., 1987; Magyari et al., 2010), 
as well as in sedimentology and soil science (e.g., 
Dickinson and Suczek, 1979; Weltje, 2002; Carrapa 
and DeCelles, 2008; McKinley et al., 2012).

Line Counts

Line counts as defined here have been used in 
volcanology (e.g., Lefebvre, 2013; Lefebvre et al., 
2013; Bélanger and Ross, 2018; Latutrie and Ross, 
2020b) and other disciplines (e.g., Wentworth, 1923; 

Galehouse, 1971; Campbell and Galehouse, 1991). 
In volcanology, line counts have recently been 
employed mainly as a field method on horizontal 
to vertical outcrops of volcaniclastic rocks (Figs. 1D, 
1E; Lefebvre et al., 2013; Bélanger and Ross, 2018; 
Latutrie and Ross, 2020b). A tape measure is placed 
on the outcrop, typically across 1 m, and each clast 
longer than a minimum length is classified and mea-
sured. Specifically, the intersection length of each 
fragment is measured. Some workers have used 
only one 1 m line (Lefebvre et al., 2013; Bélanger and 
Ross, 2018) whereas others recently summed up 
three 1 m lines separated vertically by 50 cm each 
to “cover” an area of 1 m3 (Latutrie and Ross, 2020b). 
In theory, it would be possible to add more lines 
within the square meter and/or use longer lines to 
increase the data quality. The sum of the intersec-
tion lengths of each component divided by the total 
length of the tape gives the proportion of this com-
ponent. As with field point counts, the minimum 
size of clasts is commonly taken as 4 mm because 
smaller components are difficult to classify visually 
(e.g., Lefebvre et al., 2013; Bélanger and Ross, 2018; 
Latutrie and Ross, 2020b). Clasts smaller than 4 mm 
and cement are not explicitly measured, so they fall 
in a “matrix + cement” category, which brings the 
total of each count to 100%. In field line counts, the 
lines are generally parallel to each other, placed in 
one orientation only. This may introduce biases in 
the data if the rock has clasts with a preferred orien-
tation or if the rock is anisotropic in some other way. 
However, this issue is beyond the scope of our study.

Line counts—measuring intersection lengths 
of fragments or minerals along lines—can also 
be done on thin sections, and this is known as 
the Rosiwal or Rosiwal-Shand method (Rosiwal, 
1898). However, use of the Rosiwal-Shand method 
declined in the mid–20th century, when it was pro-
gressively replaced by petrographic point counting 
(Galehouse, 1971).

To our knowledge, no study yet empirically 
confirms that line counts based on intersection 
lengths can accurately quantify a volumetric pro-
portion (modal fraction) without corrections. It is 
also unclear what the precision of this method is, 
depending on the number of lines counted (or the 
number of objects intersected) per site or sample.
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Figure 1. Examples of modal analysis methods used in 
the field and in the laboratory. (A) Particle counting un-
der a binocular microscope considering two categories 
of grains, juvenile (left) and lithic (right) (1φ particles 
from a phreatomagmatic deposit of the Ukinrek east 
maar volcano, Alaska, USA; image courtesy of Pier Paolo 
Comida). (B) Field point count using a grid of 1 m2 with 
10 cm spacing between strings and 10 cm between black 
dots on the strings (100 points). (C) Petrographic point 
count on a high-definition scan of a thin section with 
the JMicroVision 1.2.7 software (Roduit, 2007) (colored 
point locations have been enlarged for better visibil-
ity). (D–E) Field line counts with 1-m-long measuring 
tape. The intersection length of each clast along the 
tape is recorded.
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Other Methods of Modal Analysis

There is a third major modal analysis method in 
use in various research fields, i.e., counting loose 
particles (e.g., Buzas, 1990; Houghton and Smith, 
1993; Rebertus and Buol, 1989; Fatela and Taborda, 
2002; Go et al., 2017), commonly under the bin-
ocular microscope (Fig. 1A) and commonly after 
sieving, but our numerical models are not suited 
to study this application.

A fourth class of methods is component area 
measures, involving image analysis, but this 
requires that components be easily distinguishable 
based on color or grayscale or the use of some 
other automated segmentation methods. Image 
segmentation is commonly difficult to perform on 
complex natural materials. In this paper, we use 
component area measures only for comparison 
with point counting or line counting results.

Accuracy and Precision

When making scientific measurements, accuracy 
is related to systematic errors, whereas precision is 
related to random errors (Taylor, 1997). Valid mea-
surements are both accurate and precise. In simple 
terms, accuracy is the ability of a method to give cor-
rect results on average (Fig. 2A). It can be calculated 

as the difference between the measured value and the 
true value, commonly normalized to the true value, 
i.e., the relative difference, in percent. The more accu-
rate a series of measurements is, the smaller the 
systematic bias. Modal analysis methods are gener-
ally implied to be accurate in the literature, but this 
has been little studied, and we specifically test this 
assumption below for point counts and line counts.

Precision is the variability between different 
measurements on the same material. Precision is 
commonly taken as one or two absolute or relative 
standard deviations of a series of measurements 
(Taylor, 1997). Relative standard deviation is simply 
the standard deviation divided by the mean mea-
surement. In general, if data are normally distributed, 
then about two-thirds of measurements (68.27%) 
should fall within one standard deviation on either 
side of the mean, and 95.45% should fall within two 
standard deviations (e.g., Davis, 2002; Fig. 2A).

Counting Error as a Measure of Precision

In a modal analysis context, there are many 
reasons for different measurements on the same 
material to yield different results. For example, a 
thin section subject to point counting may not be 
representative of the specimen from which it was 
cut, i.e., the material is heterogeneous at this scale. 

Yet traditionally, investigators have assumed that 
the thin section or area investigated is represen-
tative (e.g., van der Plas and Tobi, 1965) and have 
instead focused on the “counting error”. The latter 
is the variability of results due to the fact that modal 
analysis methods do not take into account all of 
the fragments or minerals in the thin section, rock 
surface, or size fraction but only a subset of them to 
save time. Intuitively, this counting error would be 
larger for small numbers of points counted and for 
low-abundance components. If certain assumptions 
are met, counting error can be predicted based on 
statistical theory and models. Supplemental File S11 
reviews the approaches that have been taken so far 
in the literature to predict counting error, encom-
passing topics such as the binomial distribution 
and confidence intervals for a binomial proportion. 
The chart by van der Plas and Tobi (1965) is probably 
the best known (Fig. 2B).

Apart from issues reported in File S1, another 
potential shortcoming of the van der Plas and 
Tobi (1965) chart, when applied to point counts on 
cross-sections, is that it assumes that the cross-sec-
tion being studied (e.g., a 1 m2 area of a rock outcrop 
or a single thin section) is representative of the 
whole volume of material to be characterized. While 
that may be more or less correct for well-sorted 
homogeneous fine-grained sandstones, it may not 
be for, say, poorly sorted volcaniclastic rocks where 
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Supplemental File 1 
 

A REVIEW OF SOME PREVIOUS STUDIES AND 
STATISTICAL CONCEPTS 

 
The Binomial Distribution to Statistically Model Point Counts 
 
Point counts have often been studied using statistics, but we have not seen an equivalent 
treatment for line counts, and we do not attempt one here. In the paper, we only use statistical 
approaches to study point counts.  
 
The binomial distribution describes a Bernoulli process, in which there are two possible 
outcomes for each trial: success or failure. For example, we randomly draw balls from a bag 
which contains blue and red balls, and drawing a blue ball is a ‘success’, with probability p, 
which is of course the proportion of blue balls. The selected ball is placed back in the bag and 
the balls are mixed after each draw, so each draw is independent. The number of trials, N, is 
fixed and known in advance, and the number of successes is discrete. If (i) a rock or deposit 
contains only two components, (ii) the point counting grid is larger than the largest 
component, and (iii) the rock or deposit is homogenous, then point counting is a Bernouilli 
sampling process (Neilson and Brockman, 1977; Weltje, 2002) and the binomial distribution 
applies1. 
 
The binomial distribution is a discrete function, unlike the normal distribution which is 
continuous. The binomial population mean is μ = Np and its population standard deviation is 
σnb = , in terms of the number of successes (Taylor, 1997; Howarth, 1998). For 
example, suppose that we count N = 400 points in a homogeneous thin section which contains 
blue and red particles and the true proportion of blue particles is p = 0.5. If we count these 
400 points once, we will find x blue particles, somewhere close to 200, but probably not 

                                                 
1 In some cases, the binomial distribution may not be a relevant statistical model for point counting, for example 
if the thin section, specimen or area under study is not internally homogeneous, or if the observations are not 
independent from each other, as would be the case if the same grain is counted twice (Weltje, 2002), or if the 
rock has some structure, like in a gneiss. However, the following discussion will assume that the binomial 
distribution applies. A generalized version of the binomial distribution, where more than two components are 
present, is the multinomial distribution (Howarth, 1998; Weltje, 2002). 

1 Supplemental Material. File 1: Review of some previ-
ous studies and statistical concepts. File 2: Figures for 
people with color blindness (color vision deficiency). 
Please visit https://doi​.org​/10.1130​/GEOS​.S​.14448111 
to access the supplemental material, and contact ed-
iting@geosociety​.org with any questions.
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Figure 2. Illustration of some statistical concepts 
and previous “error charts”. (A) There are two 
types of measurement uncertainty: accuracy and 
precision. Accuracy is the ability of a method to 
provide the correct or accepted value, on average. 
Repeating measurements on the same material 
will yield variable results, as shown schemat-
ically by the bell curve. The relative standard 
deviation of this distribution of measurements 
is a measure of precision. The percentage val-
ues are the proportions of measurements that 
should fall in the shaded areas if the data are nor-
mally distributed. The way these concepts are 
illustrated in the rest of the paper, with a dashed 
line (true value), a dot (average measurement), 
and error bars, is shown on the right. (B) Point 
counting “error chart” similar to the one of van 
der Plas and Tobi (1965), plotting two-standard-​
deviation values (absolute or relative [rel.]) as a 
function of the number of clasts counted (N) and 
the proportion of the component of interest (p).
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heterogeneity may be present. In other words, the 
counting error discussed above may not be the only 
source of variation between measurements that we 
wish to capture with precision.

Finally, the van der Plas and Tobi (1965) chart 
assumes that all counted points fall on relevant 
constituents rather than in voids, cement, or irre-
solvable material. If component proportions are 
recalculated on a 100% basis after exclusion of 
the void, cement, or irresolvable proportions, then 
fewer points are actually taken into account than 
the total number of points counted, and the van der 
Plas and Tobi (1965) chart applied to the total count 
would underestimate the variability of the results.

■■ METHODS

Natural materials are inappropriate for verifi-
cation of the accuracy of modal analysis methods 
because the “true” proportions of each component 
are not known. It is also extremely difficult to obtain 
different slices through the same material at out-
crop scale to assess the slicing effect and check the 
precision of different methods. Therefore, we use 
numerical models.

3-D Model Creation

We build >1 m3 cubic packs of spheres of known 
characteristics. Sphere-pack models are generated 
with Yade software, an open-source framework for 
discrete numerical models based on the discrete 
element method (Šmilauer et al., 2015). Sphere 
packs are obtained after mimicking a gravita-
tional depositional process. First, a low-density 
cloud of solid spheres is created inside a vertically 
elongated box, the initial position of the individ-
ual spheres being randomly determined. At this 
stage, the spheres can be thought to be “floating” 
in air. The spheres are then allowed to fall and inter-
act with each other as well as with the faces of 
the box until static equilibrium is nearly reached 
(perfect equilibrium is never reached in practice 
because of finite precision computation). Linear 
elastic-plastic interaction with friction between the 

bodies is allowed (Cundall and Strack, 1979), but 
the sphere and box material are defined as elas-
tic so no permanent deformation occurs in the 
process. Ultimately, the spheres accumulated at 
the bottom of the box constitute a random pack 
much denser than the initial cloud. The size of the 
box and initial number of spheres are chosen so 
that the resulting pack is more or less cubic, with 
dimensions >1 m in all directions. The final 1 m3 
pack is extracted from the center of the deposited 
pack to avoid any edge effects. The modeled vol-
ume is large enough to contain one extra sphere 
on every side of the 1 m3 pack. For example, for 
20-cm-diameter spheres (10 cm radius), the box is 
1.4 m across. The coordinates of the center and the 
radius of each sphere are stored in a Visualization 
Toolkit (VTK) file (Schroeder et al., 2006) for further 
processing and visualization.

In all cases, two populations of spheres are 
included in the models, i.e., red spheres and blue 
spheres, which represent different components. 
In the nine basic “equal-size” models, all spheres 
have a 1 cm radius (2 cm diameter) but the pro-
portion of blue spheres varies from 0.1 to 0.9 (or 
10% to 90%) in 0.1 (or 10%) increments (e.g., Fig. 3; 
File S2 [footnote 1]). We also have a 0.01 (or 1%) 
model to show the effect of very low proportions. 
It should be noted that due to the random nature 
of the model-building process, the proportions of 
blue spheres are not exactly 0.1, 0.2, etc., and vary 
by a small fraction of a percent from the intended 
proportion. For example, the 0.1 model actually 
contains a blue sphere proportion of 0.1003, as fur-
ther explained below.

Components of equal sizes are a special case, so 
we also build unequal-sizes models. Four additional 
unequal-size scenarios are considered involving 
red spheres of 1 cm radius with blue spheres of 
increasing radii: 2 cm, 3 cm, 5 cm, and 10 cm (Fig. 4; 
File S2 [footnote 1]). This is done to check the influ-
ence of components of different average sizes on 
modal analysis results (a natural analogue would 
be a pyroclastic fall deposit with large pumice and 
much smaller dense lithics). For the 2-cm-, 3-cm-, 
and 5-cm-radii cases, the volumetric proportions 
of red and blue spheres vary from 0.1 to 0.9 in 
0.1 increments; we do not have 0.01 models for 

unequal sizes. With spheres of different radii, the 
procedure to create the initial “floating” cloud in 
Yade is based on the curve of the cumulative par-
ticle size distribution, i.e., the relative amount, by 
count, of particles present according to size. To 
build this curve, the volumetric proportion must 
be converted to a relative number of spheres for 
each component (numerical proportion). It can be 
shown, after some algebra, that the numerical pro-
portion of blue spheres, nb, is:

	 n
p

p
v
v

1

1   
1   

 
b

b

b

b

r

( )=
+

−
,	 (1)

where vb and vr are, respectively, the volume of a 
blue sphere and a red sphere, and pb is the volu-
metric proportion of blue spheres. The numerical 
proportion of red spheres is then nr = 1 − nb.

Spheres are generated randomly, and their size 
is determined from the cumulative distribution 
curve. For each sphere, this is achieved by picking 
a value between 0 and 1, projecting this value hor-
izontally from the ordinate axis to the curve, and 
then vertically from the curve to the correspond-
ing size on the abscissa axis (Fig. 5A). It should be 
pointed out that for two-radii models, the theoret-
ical cumulative distribution curve has two steps, 
each step located at the respective radius values. In 
practice, however, the steps must be approximated 
by sharp increases, as shown in Fig. 5A, to avoid 
an infinite slope. A consequence of the finite slope 
is that the actual radius of the spheres is allowed 
to deviate slightly from the target values. This is 
illustrated in Fig. 5B, which shows the radius histo-
grams for all spheres in the case of 1 cm and 2 cm 
radii modeled in this study. It can be seen that the 
radius values are evenly distributed and very close 
to the target values (deviation of <0.5%). In all cases, 
the true value of the radius is stored and used for 
calculating the true proportions of each population 
(detailed below).

Although the cumulative distribution curve 
approach works well for spheres as large as 5 cm, 
we found that for the case of the 1 cm versus 10 cm 
radii, the actual proportions deviate significantly 
from the 0.1–0.9 targets, e.g., by up to 0.07. This is 
likely due to the large ratio vb  ⁄ vr, which causes nb  
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to be very close to 0 and thus nr to be close to 1. 
Given the dimensions of the problem, the overall 
number of blue spheres is too small for the popu-
lation to statistically reflect the distribution curve, 
and numerous tests must be performed to obtain 
a satisfying value. Because the 1 cm versus 10 cm 
case is also quite computationally demanding 
(with each simulation running for more than three 
days on a multi-CPU server), only a single case is 

presented, in which the red and blue spheres are 
of equal volumetric proportion.

Calculating the True Proportions of Each 
Component

For each 3-D model, the exact volumetric pro-
portions of the two populations of spheres inside 

the final 1 m3 cube must be computed to evalu-
ate the accuracy of the point count and line count 
methods. Spheres completely inside the 1 m3 cube 
are separated by color, and the volume v of each 
sphere is added for each group, e.g., the total vol-
ume of blue spheres is V vb b∑= . The proportion of 

blue spheres is then p
V

V V   b
b

b r

=
+

. Spheres crossing 

the faces, edges, and corners of the cube must be 
handled carefully to account only for the portion 
inside the cube. This is achieved by processing 
each sphere individually. If an intersection with a 
face, edge, or corner is detected, a test is performed 
to see if the intersection is happening along a sin-
gle plane, leading to two spherical caps. In such 
a case, the analytical expression of the volume 
of the cap inside the cube is used. If the sphere 
is close to an edge or a corner and is interested 
by two or three planes, the sphere is discretized 
with a tetrahedral mesh and the intersection of 
the sphere with the cube is computed numerically 
with the PyMesh library (Zhou, 2018). Meshes are 
generated with refinement order option equal to 5, 
leading to densely meshed objects. An example of 
a sphere close to an edge of the cube is illustrated 
in Figure 5C. The volume of the resulting mesh is 
then computed and added to the total volume of its 
corresponding group. Obtaining the total volume 
of blue and red spheres allows computing the pro-
portion of voids in the 1 m3 cube, which is simply 
(Vt − Vb − Vr) / Vt , where Vt = 1 m3.

Component Area Measures, Point Counts, 
and Line Counts

Slices are extracted from the 3-D models in 
order to assess the precision and accuracy of the 
point counts and line counts. A total of 30 hori-
zontal and 30 vertical slices are produced for each 
3-D model, and for each slice, a 5000 × 5000 pixel 
RGB-encoded image is saved in a PNG file. The 
scripting capabilities of ParaView are used to gen-
erate the files automatically (Ahrens et al., 2005). 
The background between the particles is assigned 
a pure green color (RGB encoding of [0,1,0]), and 

1 
m

1 cm spheres
50% blue
50% red

1 cm spheres
~90% blue
~10% red

spheres present but not shown

1 cm spheres
~50% blue
~50% red

1 cm spheres
~50% blue
~50% red

A B

C D

Figure 3. Equal-size sphere models with red and blue spheres of 1 cm radius. (A) Three-​dimensional (3-D) model of 1 m3 
comprising 50% red spheres and 50% blue spheres. (B–C) Horizontal and vertical slices through the center of the same 
3-D model. (D) Horizontal slice through the middle of a different model, comprising 10% red spheres and 90% blue 
spheres. A similar figure is available in Supplemental File S2 (footnote 1) with gray backgrounds (for color-blind people).
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the components are either pure red or pure blue 
(RGB encoding of [1,0,0] and [0,0,1] respectively). 
Lighting parameters are set to minimize shadow-
ing in order to easily distinguish between colors. 
Examples of slices can be seen in Figures 3 and 4. 
Component area measures are obtained by simply 
retrieving the number of red and blue pixels on 
each slice, and the blue / (red + blue) ratio is cal-
culated. The proportion of green pixels relative to 
other colors becomes the void fraction.

Point counting and line counting are imple-
mented in Python, and the slices are processed in 
batches, which allows computing the mean pro-
portion of red and blue spheres and the associated 
variance, for each considered scenario. For each 
slice, point counting is performed on a regular 
square grid of points covering a 1 m2 area, with 
templates of 10 × 10, 15 × 15, 20 × 20, 30 × 30, and 
50 × 50 points yielding 100, 225, 400, 900, and 2500 
points, respectively. Note that these numbers of 

points (Ntot) include a percentage of voids between 
the spheres. Line counting is performed with 1, 2, 
3, 5, 7, and 10 lines, yielding different numbers 
of spheres intersected depending on their sizes 
(roughly 50–500 intersected objects for the models 
with red and blue spheres of 1 cm and 1 cm, respec-
tively [notated hereafter as 1 + 1 cm]). Line counting 
is done by counting each pixel along 1-m-long 
parallel lines distributed equally over the slice. For 
example, lines are located at the bottom, middle, 
and top of the image when three lines are consid-
ered, similar to what would be done in the field. 
For both modal analysis methods, the presence of 
a blue sphere, a red sphere, or the background at 
any given pixel in the image is determined by the 
RGB channel with the highest value.

Calculating Accuracy and Precision

Each model has 60 slices. For the purpose of 
calculating accuracy and overall precision, each of 
these slices is point counted once at each grid spac-
ing. For example, for the equal-size model with 30% 
blue spheres and 70% red ones, we have 60 point 
counts (one per slice) done with 100 points each 
(10 × 10 grid), 60 point counts done with 225 points 
each (15 × 15 grid), etc. Accuracy for a given num-
ber of points is calculated by averaging the point 
counted proportion of blue spheres (over the 60 
slices) and comparing that with the true value. Sim-
ilarly, the overall precision of the method for each 
model and for a certain number of points counted 
is the standard deviation of the point counts on the 
60 slices through the model. This overall precision 
includes all sources of variability. The calculations 
are the same for line counts.

Calculating Counting Error for Point Counts

Counting error can be smaller than the total 
random error estimated by the overall precision 
just described. To isolate the counting error for the 
point counting method, we select a single slice 
through each model. We then make 60 repeated 
point counts on each of these unique slices for each 

~50 vol% blue, 10 cm
~50 vol% red, 1 cm

spheres present but not shown

~50 vol% blue, 5 cm
~50 vol% red, 1 cm

~50 vol% blue, 2 cm
~50 vol% red, 1 cm

~50 vol% blue, 3 cm
~50 vol% red, 1 cm

A B

C D

Figure 4. Horizontal slices through the middle of unequal-sphere models containing ~50% red spheres and ~50% blue 
spheres. (A) 1 cm radius red spheres and 2 cm radius blue spheres (1 + 2 cm). (B) 1 + 3 cm. (C) 1 + 5 cm. (D) 1 + 10 cm. 
The same figure is available in Supplemental File S2 (footnote 1) with gray backgrounds (for color-blind people).
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Figure 5. Information about the three-dimensional numerical models. (A) Example of cumulative particle-size distribution curve used to create the sphere populations. The radius 
of each individual sphere is chosen after drawing a number between 0 and 1 from a uniform distribution and projecting this number on the curve. (B) Example of histogram of the 
radius for a population of spheres resulting from the process described in A. (C) Illustration of the slicing of a sphere located on an edge of the cubic volume of interest. The volume 
of the fraction of sphere inside the cube is computed numerically after discretization with a tetrahedral mesh.
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number of points investigated (100, 225, etc.). For 
convenience, the points are randomly placed each 
time on the slice, which should be equivalent to 
shifting the grid slightly each time. No such exer-
cise was done for the line count method.

■■ RESULTS

The different numerical models allow us to 
study the slicing effect and quantify the influence 
of variable component proportions, sphere size, 
and number of points or lines counted (or objects 
intersected) on the accuracy and precision of point 
counts and line counts. The equal-size sphere mod-
els represent the best-case scenario to evaluate the 
performance of these modal analysis methods. In 
nature, the components may have unequal sizes, and 
this could potentially deteriorate the performance of 
the modal analysis methods; this is examined with 
the unequal-size models.

Point Counting Accuracy

We start with the point counting results for the 
equal-size (1 + 1 cm) models (Fig. 6). Recall that 
we average the results over 60 slices in each 3-D 
model. Generally, for Ntot (the total number of points 
including those in voids) between 100 and 2500 and 
p between 0.1 and 0.9, the point count method is 
accurate in this test. This means that the average 
measured proportions of blue spheres (colored dots, 
Fig. 6) are very close to the true volumetric propor-
tion in the models (dashed lines on upper panel of 
Fig. 6 or “zero error” lines in other panels). Average 
absolute errors range from positive to negative and 
are always within 1% or 0.01 (positive or negative) 
for individual models (middle panel of Fig. 6), and 
the average relative error of all models combined 
(p = 0.1–0.9) is ~0.0%, i.e., there is no systematic 
bias (lower panel of Fig. 6). The exception is the p 
= 0.01 model, where the results are very variable in 
relative terms, but counting several thousand points 
would likely generate accurate results.

We now consider the point counting results 
for spheres of unequal sizes, with proportions of 

Figure 6. Point count results for 60 slices of the equal-size (1 + 1 cm) sphere models for 10 proportions of blue spheres, 
from 0.01 (1%, dark blue symbols) to 0.9 (90%, cyan symbols). All 60 slices are counted once. From top to bottom, 
diagrams display the counted proportions of blue spheres, the absolute error, and the relative error as a function of 
the total number of points counted (from 100 to 2500 points). In the upper diagram, the colored dots represent the 
average counted proportion of blue spheres, and the dashed lines represent the true proportion. Error bars are one 
standard deviation (top, middle diagrams) or one relative standard deviation (bottom diagram), giving an indication 
of precision. Refer to the Figure 2A inset for how to interpret precision and accuracy from the results presented.
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~50% blue and 50% red spheres, and the equal-
size (1 + 1 cm) case for comparison (Fig. 7). Note 
that the true proportions of blue spheres are not 
exactly 50% in the unequal-size models because 
of the way the models are generated (see Meth-
ods). Other proportions were calculated but are not 
shown. In this test, the accuracy of point count-
ing is still good even when the spheres are not of 
equal size. For example, for the 1 + 2 cm, 1 + 3 cm, 
and 1 + 5 cm models, regardless of the proportion 
of blue spheres, the average absolute error is still 
mostly within 1% (positive or negative). For each 
of these unequal-sphere series, the average abso-
lute errors of all models combined is also 0.0%, i.e., 
there is no systematic bias. However, the 1 + 10 cm 
model shows average absolute errors between 
0.5% and 1.9% for the ~50% blue–~50% red sce-
narios, depending on the number of points counted. 
This average absolute error is always positive, i.e., 
the much larger blue spheres are slightly overes-
timated. So, in extreme cases of components of 
different sizes coexisting in the same sample, there 
might be a slight systematic bias.

Point Counting Precision

Overall Precision

The overall precision of the method is estimated 
by calculating the standard deviation of our mea-
surements on 60 slices, shown by the error bars in 
Figures 6 and 7. Because we are comparing mea-
surements on many slices here, overall precision 
includes the counting error and any slicing effects, 
as discussed below. As expected, overall precision 
improves when Ntot increases. For a component 
with p = 0.5 in the 1 + 1 cm model, a standard 
deviation better than 5% absolute (10% relative) is 
obtained for Ntot = 225 points and a standard devi-
ation of ~1.5% absolute (~0.5% relative) is obtained 
for Ntot = 2500 points (Fig. 6). For the 1 + 2 cm and 1 
+ 3 cm models, overall precision similarly improves 
with more points counted (Fig. 7). However, the 
standard deviations remain high for models with 
blue spheres of 5 and 10 cm radii, even at Ntot = 
2500 points (Fig. 7).

+
+  
+

+

Figure 7. Comparison of the point count results for the equal-size (1 + 1 cm) and unequal-size sphere models (1 + 2 cm, 
1 + 3 cm, 1 + 5 cm, and 1 + 10 cm) only for ~50% of blue spheres. Other aspects of the diagrams are as in Figure 6.
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Counting Error on One Slice versus Overall 
Precision

We now compare the absolute standard devia-
tion obtained when performing many point counts 
on a single slice through the models, which is the 
counting error (Fig. 8, left), versus the absolute 
standard deviation obtained when acquiring a sin-
gle point count on each of the 60 slices (Fig. 8, right), 
which is our overall precision from Figures 6 and 7.

The colored curves show the effect of changing 
the proportion of blue spheres in our models with 
equal and unequal sizes. When counting 100 points 
in total, the curves are convex, i.e., the absolute 
standard deviation tends to be largest for 50% blue 
spheres. The different models are generally similar 
to each other at 100 points, and there is no major 
difference between repeating measurements on 
one slice (Fig. 8A) versus measuring each of the 
60 slices once (Fig. 8B), although the latter case 
shows less scatter between models and within 
a model as p changes. At 900 points counted in 
total, the standard deviation is much lower for 
the same models and proportions. But here the 
distinction between point counting a single slice 
several times (Fig. 8C) versus point counting 60 
slices once each (Fig. 8D) is much clearer. With 
the 60 slices taken into account, increasing the size 
difference between spheres generally increases the 
standard deviation. Figure 8 is further discussed 
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Numerical models
1+1 cm
1+2 cm
1+3 cm
1+5 cm

Statistical models for 1x1 cm case
Total number of points (N  = 100 or 900)tot

Excluding voids (N  = 60 or 541)eff

Wald (normal approximation)
Wilson score, lower bound
Wilson score, upper bound

Wald (normal approximation)
Wilson score, lower bound
Wilson score, upper bound

N  = 100 points, N  = 60 pointstot eff

N  = 900 points, N  = 541 pointstot eff

Component area measures

N  = 900 points, N  = 541 pointstot eff

N  = 100 points, N  = 60 pointstot eff

60 slices1 slice

BA

C D

EFigure 8. Standard deviation of point counting results for 
numerical models (colored curves) showing a low count 
(100 points total, A and B) and a relatively high count 
(900 points total, C and D) as a function of component 
abundance (percentage of blue spheres). The left column 
(A, C) shows repeat counts on a single slice, whereas the 
right column (B, D) shows one count on each of the 60 
slices through each model. These data are compared with 
68.27% confidence bounds for a binomial proportion (gray 
curves; see Supplemental File S1 [text footnote 1] for de-
tails), based either on the total number of points counted 
(Ntot) or the effective number of points counted in spheres 
for the 1 + 1 cm model, excluding voids (Neff). The bot-
tom-right diagram (E) shows component area measures 
for the numerical models, i.e., counting all red versus blue 
pixels on each slice, for comparison. The horizontal scale is 
linear, except for the addition of a 0.01 proportion to the left.
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below, including the component area measures 
and the statistical models.

Line Counting Accuracy

We now move on to line counting results, 
starting with the 1 + 1 cm models with various pro-
portions of blue spheres (Fig. 9). Again, accuracy is 
judged by comparing the average measurements 
on 60 slices with the true values. Average abso-
lute errors (position of colored dots in the middle 
panel of Fig. 9) are generally within 1% (positive 
or negative) for individual models, although with 
only one line measured, one scenario has an aver-
age absolute error of +2.4%. The average absolute 
error of all models combined (p between 0.1 and 
0.9) is +0.1%, or 0.0% for between three and 10 
lines, which suggests that there is essentially no 
systematic bias, i.e., line counting is accurate for 
the equal-size models with p between 0.1 and 0.9. 
Again, for p = 0.01, the results are quite variable, 
but counting enough lines would likely generate 
accurate results.

Next, we compare the equal- and unequal-size 
models for a proportion of blue spheres ~50% 
(Fig. 10). We also have data for other proportions 
(not shown). For unequal sizes, the accuracy of 
line counts is problematic at low numbers of lines 
(especially one or two lines; Fig. 10), which corre-
spond to small numbers of intersected objects. For 
example, in the 1 + 2 cm models, using only one 
line yields average absolute errors that are always 
positive and range from +1.0% to +7.5%. In contrast, 
still in the 1 + 2 cm models, the average absolute 
error of all models is only +0.5% for three lines 
and goes to 0% when more lines are added. For 
other unequal sizes, the errors are also the worst 
for one or two lines but vary from positive to neg-
ative, and the method becomes accurate for higher 
numbers of lines.

Line Counting Precision

In 1 + 1 cm models, overall precision obviously 
improves with the number of lines counted (Fig. 9). 

Figure 9. Line count results for the equal-size (1 + 1 cm) sphere models for 10 proportions of blue spheres as a func-
tion of the number of lines counted (from one to 10 lines). All 60 model slices are counted once each. Other aspects 
of the diagrams are as in Figure 6.
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For a component with a 50% abundance, a standard 
deviation better than 5% absolute (10% relative) is 
obtained for three lines.

Overall precision is worse when the spheres 
are not of equal size. In fact, for a certain number 
of lines counted, the standard deviation increases 
systematically as the size difference between red 
and blue spheres increases (going from 1 + 1 cm to 
1 + 10 cm) even for 5, 7, or 10 lines (Fig. 10). Figure 11 
highlights the effect of the changing of propor-
tions of blue spheres on the line count method for 
equal- and unequal-size sphere models, taking the 
60 slices into account. Line count curves display 
the same general trend as the point count curves 
(Fig. 8). Increasing the size discrepancy between 
components leads to larger standard deviations. 
Figure 11 is further discussed below, including the 
contribution of the slicing effect to the precision of 
modal analysis methods based on cross-sections.

Void Proportion Accuracy

All the results presented so far show the pro-
portions of red and blue spheres normalized to 
100% spheres, ignoring voids. It is also interest-
ing to check whether the void proportions (which 
in nature would correspond to a matrix and/or a 
cement ± voids) are correctly measured. There 
could be a systematic error on the void proportion 
due to the cut-section effect (Higgins, 2006). This 
is because it is unlikely that a certain sphere would 
be cut exactly at its greatest diameter, as visual-
ized by looking at Figure 4C, where the blue circles 
have a range of sizes on the slice although the blue 
spheres are all essentially the same diameter in 
3-D for this model. This means that for the average 
slice, the 2-D void proportion may be larger than 
the true volumetric proportion of voids. Note that 
this accuracy issue has no influence on the propor-
tion of red versus blue spheres, but only applies to 
the void fraction.

Figure 12A shows that it is indeed the case that 
there is a small systematic bias in the slices for 
the void fraction. In this plot, the vertical axis is 
the relative difference between the measured 2‑D 
void proportion on slices versus the true value in 

+
+  
+

+

Figure 10. Comparison of the line count results for the equal-size (1 + 1 cm) and unequal-size sphere models (1 + 
2 cm, 1 + 3 cm, 1 + 5 cm, and 1 + 10 cm) only for ~50% of blue spheres. All 60 model slices are counted once each. 
Other aspects of the diagrams are as in Figure 6.
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Figure 11. (A–D) Line counting standard deviation and relative standard deviation diagrams for a very low number of 
lines (one line, top) and a relatively high number of lines (seven lines, middle) as a function of component abundance 
(percentage of blue spheres). Both equal size and unequal size sphere models are illustrated. All 60 model slices are 
counted once each. (E–F) Component area measures, i.e., counting all red versus blue pixels on each slice, for comparison.
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3‑D. The horizontal axis is the true void proportion, 
which is maximum in the 1 + 1 cm model and min-
imal in the 1 + 10 cm model because small spheres 
can fit between larger spheres in the unequal-size 
models. When components are the same size 
(1 + 1 cm models) or no more than two times dif-
ferent (1 + 2 cm models), the systematic error due 
to slicing is almost negligible (<1%). The error is 
higher when components are very different in size, 
with the worst systematic error, ~2.5% relative (and 
the highest standard deviation, ~7.5% relative), for 
the 1 + 10 cm sphere model.

In theory, because the slices slightly over
estimate the proportion of voids, the point counts 
and line counts—which are of course based on 
the slices—should also have the same issue. In 
practice, this is only clearly recognizable for 2500 
points counted in total (Fig. 12B), where the pat-
tern of always-positive systematic error, increasing 
with models of unequal sizes, is the same as in the 
slices (Fig. 12A). The magnitude of these systematic 
errors is also the same at 2500 points compared 
to the slices, for example, ~0.7% relative for the 
1 + 1 cm model, or 2.2% relative for the 1 + 10 cm 
model. For most other point counts and line counts, 
the systematic error ranges from positive to nega-
tive without a discernable pattern. And in general, 
this systematic error is insignificant compared 
with the random error represented by the standard 
deviation, so the systematic error on the void pro-
portion can be safely ignored in most cases.

■■ DISCUSSION

Accuracy of Point Counts and Line Counts

Our study shows that point count and line count 
methods are both able to provide the correct pro-
portion of a component, on average, i.e., they are 
both accurate without any corrections if the number 
of points or lines (i.e., objects intersected by lines) 
is high enough (Figs. 6, 7, 9, 10). This is true for both 
equal- and unequal-size models. Point counts are 
even accurate at low N for models featuring equal-
size spheres (Fig. 6). There are situations when the 
accuracy of point counts and line counts decreases 

A

B

C

Figure 12. Relative errors of void quantification for the models with equal proportions of blue versus red spheres. 
(A) Slicing effect highlighted by comparing the average proportion of void (green pixels on slices) on the 60 slices with 
the true value of the void present in the three-dimensional (3-D) models; if there is no difference, the relative error is 
zero. (B) Proportion of void found with the point count method. (C) Proportion of void found with the line count method.
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(low counts or large difference in component 
sizes). However, the main concern is identifying 
the value of N that would achieve the necessary 
precision required to answer the scientific question 
being investigated, which would also require high 
enough counts and would likely take care of any 
accuracy issues. In this discussion, we therefore 
focus on precision, first comparing our numerical 
model-derived point count standard deviations to 
confidence bounds from statistical models. We then 
make recommendations for field modal analysis 
studies based on new precision charts for point 
and line counts.

Point Counting Precision: Numerical Models 
versus Statistics

Figure 8 compares the standard deviation of 
our point counting results on spheres of equal 
and unequal sizes with 68.27% confidence bounds 
based on two statistical models representing 
binomial proportions (see File S1 [footnote 1] for 
details). The first statistical model is the normal 
approximation to the binomial distribution as used 
by van der Plas and Tobi (1965), also known as a 
Wald interval, in which the symmetrical confidence 
bounds correspond with one standard deviation. 
The second estimator is the Wilson score method, 
which gives a lower and an upper bound. These 
are calculated both for the total number of points 
Ntot and the effective number of points Neff where 
voids are excluded, based on the average number 
of points falling on spheres (components) for the 
1 + 1 cm radius models.

Again, the left side of Figure 8 displays repeat 
counts on a single slice, i.e., the counting error. 
This is specifically what the statistical models are 
supposed to represent (e.g., van der Plas and Tobi, 
1965). For 100 points counted in total, the absolute 
standard deviation of the numerical models is as 
much as 0.02 units higher than the width of confi-
dence bounds predicted by statistical models based 
on Ntot but fits well with those based on Neff (Fig. 8A). 
This good correspondence supports the relevance 
of our numerical models and confirms that the 
binomial distribution can be used to theoretically 

predict the variability of point counts in the form of 
“counting error”. However, charts such as those of 
van der Plas and Tobi (1965), or ours shown below, 
should not be used with Ntot but instead with Neff 
(where voids, matrix, and cement are not included 
in N), otherwise the stated counting error would 
be too low.

Now we consider the equal-size (1 + 1 cm) 
models at 900 points total, still for one slice only 
(Fig. 8C). Again, there is a good correspondence 
with the statistically predicted confidence bounds 
using Neff. The unequal-size numerical models are 
not very different from the equal-size models on 
this plot, and the standard deviation of a series of 
counts on a single slice again corresponds with 
the counting error.

However, for the 60 slices at 900 points, the 
standard deviation increases systematically as 
the size of the blue spheres increases relative to 
that of the red spheres, i.e., from the 1 + 2 cm to 
the 1 + 5 cm models, also progressively diverg-
ing more and more from statistical predictions 
(Fig. 8D). Therefore, there is a new source of vari-
ation between counts beyond the counting error. 
According to the Delesse principle, one slice can 
represent the whole volume, but this only works 
if (1) the volume is large relative to the size of the 
clasts, and (2) the distribution of the components is 
homogeneous. Our unequal-size models are meant 
to be homogeneous by design, but the blue spheres 
in the 1 + 10 cm models are 20 cm in diameter, one-
fifth of the length of the side of the square (Fig. 4D). 
Therefore, individual slices through such a model 
are unlikely to contain the same surface proportion 
of red versus blue spheres as the volumetric pro-
portion in the overall model. In other words, there 
are important modal variations between slices, 
as illustrated by the component area measures 
(Fig. 8E). Counting even a very large number of 
points on a single slice (in nature, an outcrop or a 
thin section) would not remove this effect, if pres-
ent. For example, with the 1 + 5 cm models (green 
lines), when counting Ntot = 900 points, once per 
slice on 60 slices, the standard deviation is largely 
explained by the difference between slices (Fig. 8D). 
In contrast, when counting only Ntot =100 points, the 
standard deviation is much larger and dominated 

by the effect of the low number of points counted 
(counting error) (Fig. 8B).

Our choice of a 1 m3 numerical model with such 
large blue spheres is justified by our observations 
of maar-diatreme volcanoes, where we have con-
ducted point counting and line counting within 1 m2 
areas of lapilli tuff and tuff breccia, i.e., very coarse 
heterogeneous volcaniclastic rocks, commonly 
with outsized clasts (Latutrie and Ross, 2020b). It 
is sometimes impossible to find a truly representa-
tive area to place the 1 m2 net on such an outcrop. 
For example, in the photo of Figure 1B, moving the 
net upward or to the right by 0.5 m would increase 
the proportion of large orange clasts significantly. A 
reasonable solution here would be to study an area 
much larger than 1 m2 by progressively moving the 
same net over adjacent areas, as discussed in the 
next section; this is partly similar to studying sev-
eral slices through our numerical models instead 
of just one. In short, natural geological materials 
can be even more heterogeneous than our 1 + 
10 cm models in terms of average component size 
and also in terms of compositional variability in 
3-D. This would increase the variability of modal 
analysis measurements even for relatively large 
numbers of points counted or objects intersected 
within a 1 m2 area, and we capture this effect at 
least partly with our unequal-size models. When 
heterogeneity is suspected, practitioners will want 
to add data for different sites or samples, and Ver-
meesch (2018) discusses statistical methods to 
distinguish the effects of counting error versus 
true compositional variability in a series of samples.

Practical Recommendations: Point Counting

We use the numerical models to construct new 
simple-to-use “error charts” that show the overall 
precision, i.e., the combined counting error and 
heterogeneity effect (when present). We show one 
standard deviation (absolute or relative) for the 
equal-size (1 + 1 cm) end member on the left and 
the 1 + 5 cm unequal size end member on the right 
(Fig. 13). Note that the van der Plas and Tobi (1965) 
charts were using 2σ precision instead, represent-
ing only the counting error, because they assumed 
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a homogeneous material. The horizontal axis is Neff, 
the number of points within components excluding 
voids. This is more relevant than Ntot, the total num-
ber of points counted, which is model specific (or 
sample specific) and a function of the proportion of 
voids, matrix, and cement. Dash-dotted horizontal 
lines represent variability between slices, as repre-
sented by the standard deviation of the component 
area measures: at high-enough numbers of points, 
the variability of results is entirely explained by 
the slicing effect, especially in the 1 + 5 cm mod-
els, and counting more points would not improve 
overall precision.

To use these error charts in the field or labora-
tory, geologists should first visually estimate the 
proportion of the different components present in 
the deposit or rock, and whether the components 
have different average sizes (or are somewhat het-
erogeneously distributed). Then the error charts 
will provide the Neff required to reach a certain 
overall precision. The required level of precision 
depends on the scientific question being asked.

If the abundance of a geologically important 
component is low, more points need to be counted 
to achieve the same precision. For example, based 
on the 1 + 1 cm models, the quantification of a 
component with a proportion of 0.1 (or 10%) would 
require a Neff of ~1000 to obtain results with a rela-
tive standard deviation of ~10%. At the other end of 
the spectrum, components with abundances of 50% 
or more only need a Neff of 100 to reach the same 
precision (Fig. 13, bottom left). Acquiring more than 
1000 points within components per site would be 
extremely time consuming in the field, requiring, 
for example, at least 10 juxtaposed 1 m2 nets with a 
10 cm spacing between strings. Therefore, a relative 
standard deviation larger than 10% must proba-
bly be tolerated for low-abundance components 
in field applications. For the 1 + 5 cm models, it is 
clear that if components have very unequal sizes 
on average, a relative standard deviation of 10% is 
unattainable if the larger-sized component propor-
tion is 30% or less.

Taking everything into account, for field cases 
where the main components of interest are rel-
atively abundant, a Neff between 200 and 300 is 
a reasonable compromise between time and 

precision. If the proportion of voids, matrix, and 
cement in the materials investigated is similar to 
that of our models, this corresponds to a Ntot of 
~400 points. This could be acquired using a 1 m2 net 
with a 5 cm spacing at one place, or using a 1 m2 
net with a 10 cm mesh at four contiguous places 
(to cover 4 m2), depending on grain size and het-
erogeneity. Although a Ntot of ~400 points is much 

higher than used in many previous field studies, 
users should remember that quantification with low 
precision can help confirm visual impressions and 
give a general idea of proportions, but not much 
more. If different lithofacies are to be compared, the 
quantitative data should be of sufficient precision 
and representativeness to allow statistical testing 
of hypotheses (see Davis, 2002). If the proportion 

Average number of counted clasts (Neff) Average number of counted clasts (Neff)

Figure 13. Point counting “error chart” based on the equal-size (1 + 1 cm) sphere models (left) and the 1 + 5 cm models 
(right). This shows the overall precision, which incorporates both the counting error and the slicing effect Ntot and Neff 
are the total and effective number of points counted, respectively. Numbers from 0.01 to 0.9 are the proportion of blue 
spheres in the models, or in nature, the proportion of the component of interest. The dash-dot lines represent variability 
between slices, as represented by the standard deviation of the component area measures.
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of voids, matrix, and cement is much more than 
40%, for example, when point counting some lapilli 
tuffs in the field, then Ntot would need to increase 
to obtain the same Neff.

For petrographic point counting, the traditional 
guideline of counting 300–400 points still seems 
relevant for high-abundance components, but this 
should be for points within components (Neff), not 
total points including voids, matrix, and cement 
(Ntot). If low-abundance components are of interest, 
a Neff of 1000 or more may be needed to achieve 
reasonable precision. In nature, rocks are made 
of many components, not just two. Therefore, the 
way to use Figure 13 for petrographic point count-
ing would be to visually estimate the proportion of 
the least-abundant component of interest, select 
an acceptable absolute or relative standard devi-
ation, and read Neff from the horizontal axis. For 
example, suppose that an equigranular crystalline 
rock is made up of abundant olivine, clinopyrox-
ene, plagioclase, and ~1% oxides (with no voids, 
groundmass, matrix, or cement), and we are very 
interested in quantifying these oxides. We use the 
0.01 curve for the 1x1 cm models, and from the bot-
tom left plot in Figure 13, we can see that counting 
a Neff of 1000 points would yield a relative standard 
deviation slightly greater than 30%. If this is too 
high, we could use 1500 points.

Practical Recommendations: Line Counting

Similar error charts are presented for line 
counts, again for the 1 + 1 cm and 1 + 5 cm cases 
with the number of intersected objects displayed 
in the horizontal axis (instead of the number of 
lines) (Fig. 14). Counting three lines, as has been 
done by some authors in the field recently (Latutrie 
and Ross, 2020b), is obviously an improvement to 
counting one line only, but it still implies intersect-
ing only ~150 clasts if the natural material under 
study looks like the 1 + 1 cm models, and commonly 
less than 100 clasts in a material similar to the 1 
+ 5 cm models. Intersecting 200–300 clasts as per 
the suggestion for point counting above requires 
approximately five lines in the 1 + 1 cm models. In 
the 1 + 5 cm models, intersecting over 200 clasts 

requires between five and >10 lines depending on 
the proportion of the component of interest, and 
this may not be practical.

Line counts and point counts can potentially 
achieve the same precision if the same number 
of clasts are counted or intersected. Further, line 
counts are convenient on vertical rock faces where 
it may be easier to steadily hold a 1-m-long tape 

measure than a large string net. However, in the 
presence of large clasts or in poorly sorted deposits 
that may contain significant matrix and/or cement, 
it takes many lines to reach a high enough num-
ber of intersected clasts, especially if they are of 
unequal size. A further practical issue with field line 
counts is that each clast intersection length must 
be measured and then the lengths totaled, which is 

Average number of intersected clasts Average number of intersected clasts

Figure 14. Line counting error chart based on the equal-size (1 + 1 cm) sphere models (left) and the 1 + 5 cm models 
(right). This shows the overall precision, which incorporates both the counting error and the slicing effect. Numbers 
from 0.01 to 0.9 are the proportion of blue spheres in the models, or in nature, the proportion of the component of 
interest. The dash-dot lines represent variability between slices, as represented by the standard deviation of the com-
ponent area measures.
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a time-consuming exercise. It is therefore faster to 
achieve a given precision with point counts.

■■ CONCLUSIONS

In this paper, we have considered two major 
modal analysis methods performed on cross-sec-
tions: point counts and line counts. Our numerical 
modeling based on different proportions and sizes 
of blue spheres versus red spheres demonstrates 
that both point and line counts can be accurate. 
They are both potentially able to provide the correct 
abundance of a component, on average, without 
any corrections, if the number of points or lines (i.e., 
objects intersected by lines) is high enough, even 
if components are of unequal size. To our knowl-
edge, this had not been empirically demonstrated 
before for line counts, or for both methods using 
components of unequal sizes. One implication is 
that if enough data of sufficient quality are acquired 
by both methods on the same outcrops or other 
types of surfaces, the average results should be 
the same, therefore data from both methods can 
be directly compared (there is no systematic bias).

In practice, the main preoccupation of the sci-
entist is likely to control the precision of modal 
analysis data, which would also require high 
enough counts and should take care of any accu-
racy issues. Previously published “error” (precision) 
charts for the point count method were based on 
statistical theory (including the normal approxima-
tion to the bimodal distribution) and ignored the 
effects of voids, matrix, and cement, the effects 
of components of unequal sizes, as well as vari-
ability between slices. New error charts showing 
all sources of variation have been proposed for 
point counts and line counts and can be used to 
design field or laboratory modal analysis studies. 
Achieving a given overall precision, expressed as 
the relative standard deviation, is more difficult for 
low-abundance components. Therefore, in practice, 
the effective number of points counted or the num-
ber of objects intersected by lines should be chosen 
as a function of the least abundant component of 
interest, but not necessarily the least abundant 
component overall, because modal analysis data 

should be fit for purpose. Although point counts 
and line counts can achieve comparable precision 
if the same number of objects are counted or inter-
sected, in practice this takes more time to achieve 
with line counts.

Our models so far are all based on spheres, 
each component having a single (unimodal) size 
or nearly so. Follow-up studies should examine the 
effects, on the accuracy and precision of point and 
line count methods, of factors such as:

•	 the morphology of components (e.g., spheres, 
cubes, ellipsoids);

•	 any anisotropy in the deposit;
•	 the size distribution of each component;
•	 the grid spacing relative to particle size; and
•	 adding extra components.
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