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Abstract— Development of the Canadian Wetland 2 
Inventory Map (CWIM) has thus far proceeded over two 3 
generations, reporting the extent and location of bog, fen, 4 
swamp, marsh, and water wetlands across the country with 5 
increasing accuracy. Each generation of this training 6 
inventory has improved the previous results by including 7 
additional reference wetland data and focusing on processing 8 
at the scale of ecozone, which represent ecologically distinct 9 
regions of Canada. The first and second generations attained 10 
relatively highly accurate results with an average approaching 11 
86% though some over-estimated wetland extents, 12 
particularly of the swamp class. The current research 13 
represents a third refinement of the inventory map. It was 14 
designed to improve the overall accuracy and reduce wetlands 15 
overestimation by modifying test and train data and 16 
integrating additional environmental and remote sensing 17 
datasets, including countrywide coverage of L-band ALOS 18 
PALSAR-2, SRTM, and Arctic digital elevation model, 19 
nighttime light, temperature, and precipitation data. Using a 20 
random forest classification within Google Earth Engine, the 21 
average overall accuracy obtained for the CWIM3 is 90.53%, 22 
an improvement of 4.77% over previous results. All ecozones 23 
experienced an overall accuracy increase of 2% or greater and 24 
individual ecozone overall accuracy results range between 25 
94% at the highest to 84% at the lowest. Visual inspection of 26 
the classification products demonstrates a reduction of 27 
wetland area over-estimation compared to previous inventory 28 
generations. In this study, several classification scenarios were 29 
defined to assess the effect of preprocessing and the benefits of 30 
incorporating multi-source data for large-scale wetland 31 
mapping. In addition, the development of a confidence map 32 
helps visualize where current results are most and least 33 
reliable given the amount of wetland test and train data and 34 
the extent of recent landscape disturbance (fire). The resulting 35 
overall accuracies and wetland areal extent reveal the 36 
importance of multi-source data and adequate test and train 37 
data for wetland classification at a countrywide scale. 38 
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I. INTRODUCTION 42 

NTIL recently, the production of large-scale land 43 

cover maps through the classification of remote 44 

sensing observations required substantial amounts of time, 45 

labor, and complex methodologies. Additionally, the 46 

resolution of these maps tended to be coarse due to the 47 

nature of historically free remote sensing data such as 48 

MODIS (250 m) and Landsat (30 m) [1]. Despite such 49 

difficulties and limitations, large-scale land cover data are 50 

essential for a broad range of applications related to 51 

environmental management, climate change, and the 52 

assessment of major habitats. Examples of such land cover 53 

data in Canada include the 30m Annual Crop Inventory 54 

(ACI) [2], and the 30m Land Cover of Canada (LCC) [3], 55 

the former spanning the agricultural lands of southern 56 

Canada while the latter spanning the entire country [4]. 57 

These datasets provide crucial spatial information related to 58 

the location of numerous anthropogenic and non-59 

anthropogenic land covers, including urban, agriculture, 60 

forest, herbaceous, and barren landscapes [5]. However, 61 

these datasets lack detailed wetland spatial information at 62 

the level of class. Such information that would be helpful 63 

for a multitude of environmental applications, given the 64 

different functions and distribution of wetlands at the class 65 

level [6]. An estimated 16% of Canada is currently covered 66 

in wetlands [7], and given the relatively recent and growing 67 

impacts of climate change (permafrost melt, changes to 68 

temperature and precipitation), wetland spatial data at the 69 

level of wetland class is an increasing necessity [8]. 70 
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Wetlands are habitats characterized by a dominance of 1 

hydrophytic vegetation and saturated soils, though these 2 

characteristics manifest in various visually and ecologically 3 

distinct ways, which are sometimes grouped into different 4 

classes [9], [10]. In Canada, wetland classes can be defined 5 

following the Canadian Wetland Classification System 6 

(CWCS) [11]. The CWCS outlines five wetland classes of 7 

bog, fen, swamp, marsh, and shallow and open water based 8 

on shared broad vegetation and hydrological patterns. To 9 

briefly summarize the CWCS, bog wetlands are 10 

ombrotrophic peatlands dominated by sphagnum moss, fen 11 

wetlands are also peatlands, but are minerotrophic 12 

dominated by both moss and graminoid vegetation, swamp 13 

wetlands are dominated by woody vegetation, and marsh 14 

are wetlands that experience water fluctuations and are 15 

dominated by emergent herbaceous vegetation [12], [13]. 16 

Each class functions somewhat differently and in ways that 17 

benefit humans and other animals across the country and the 18 

globe via habitat provision, carbon storage, flood 19 

mitigation, and food provision, amongst many other 20 

benefits [14]. These five classes  form the basis of wetland 21 

classification in Canada using remote sensing, but the 22 

products and methods are almost always implemented at 23 

small (at least relative to entire provinces and ecozones), 24 

geographical scales, such as that of watersheds, 25 

conservation areas, protected park, wildlife areas, 26 

municipalities, and at the scale of agricultural or industrial 27 

development  [1].  28 

The lack of large geographical scale wetland-class spatial 29 

information is likely the result of several factors, including 30 

limited wetland-related ground-truthing fieldwork, 31 

associated difficulties related to collecting wetland-related 32 

test and train data, difficulties inherent to the discrimination 33 

of wetland classes using remote sensing techniques, 34 

including the lower resolution of free Landsat data, and 35 

ecological characteristics inherent to wetlands [15].  For 36 

example, wetlands of different classes will often share 37 

visually similar vegetation patterns (such as bog and 38 

nutrient-poor fen) and are typically differentiated using 39 

field-validation of indicator species, nutrient quality, or 40 

sub-surface hydrology [11] all of which is not easily 41 

resolved by open remote sensing data [16]. Additionally, 42 

some wetland classes, such as marsh, experience dynamic 43 

changes to vegetation and hydrology over different seasons 44 

and are impacted by weather events such as rain, impacting 45 

spectral signatures captured by remote sensing data over 46 

time [17]. To make matters more difficult, most wetlands 47 

within close distances of roads and easily accessible 48 

locations have been damaged or destroyed. As such, 49 

acquiring wetland ground-truth data requires labor-50 

intensive field campaigns. For all of these reasons, remote 51 

sensing of wetlands is a relatively challenging problem even 52 

at small (less than that of a province or ecozone) 53 

geographical scales [18].  54 

In more recent times, however, there has been increased 55 

interest in wetland-class mapping [1]. This has resulted in a 56 

relatively substantial amount of research dedicated to 57 

mapping wetland classes around the world [19]. 58 

Additionally, there has been a boom in the production of 59 

large-scale remote-sensing thematic datasets, attributed to 60 

recent advancements in computational and software 61 

development, including cloud computing, and an increase 62 

in the amount and availability of multi-sensor remote 63 

sensing data sets. This boom has similarly resulted in more 64 

large-scale wetland thematic data. In China, for example, 65 

[20] produced a national-scale wetland map at the class 66 

level using object-based image analysis, hierarchical 67 

classification, and Landsat-8 imagery, estimating roughly 68 

451,0484 km2 of wetlands, a dominance of inland marsh, 69 

and rarity of coastal swamp wetlands. Similarly, in Canada, 70 

[6] assessed the status of wetlands at the level of treed 71 

wetland and non-treed wetland across forested ecozones of 72 

Canada over 33 years using Landsat imagery composites. 73 

To address the data gap in Canada related to large-scale 74 

wetland spatial information at the class level, [21] 75 

developed the Canadian Wetland Inventory Map (CWIM), 76 

a product that describes wetland class across all of Canada 77 

using advanced remote sensing and cloud computing 78 

techniques. This project has been implemented over several 79 

generations, each improving on the last. The original 80 

CWIM (herein CWIM1) produced a 10m wetland inventory 81 

map of Canada using multi-year and multi-source (Sentinel-82 

1 (S1) and Sentinel-2 (S2)) remote sensing data and an 83 

object-based random forest (RF) methodology within 84 

Google Earth Engine (GEE) [21]. Given the distribution of 85 

testing and training data available to the project at the time, 86 

provincial boundaries were selected as processing units. 87 

Overall accuracies (OA) ranged from 74% to 84%, 88 

depending on the province. 89 

To improve on the results of the CWIM1, soon after, the 90 

second generation of the CWIM (herein CWIM2) was 91 

developed [22]. Changes to the original CWIM1 92 

methodology included integrating a larger pool of wetland 93 

testing and training data, including filling some data gaps in 94 

Northern Canada and processing at the scale of ecozone 95 

rather than province. An ecozone-scale processing unit was 96 

chosen rather than a provincial-scale, given a greater 97 

geographical distribution of test and train data available to 98 

the CWIM2 and the ecologically relevant scale of ecozone 99 

units. Ecozones divide Canada into 15 ecologically distinct 100 

areas and are a more meaningful unit ecologically than 101 

political boundaries [23]. OA results ranged from 76% to 102 

91%, a 7% improvement over the CWIM2. Despite the 103 

improvement, issues remained with an over-estimation of 104 

wetland classes, particularly swamp and lower accuracies in 105 

regions with little ground truth. 106 

The purpose of this study is the implementation of the third 107 

generation of the CWIM (CWIM3), which will integrate 108 

more remote sensing datasets to improve OA and reduce 109 

wetland area over-estimation. Wetland-remote sensing 110 

research over the past 40  years [1] has demonstrated the 111 

value of multi-sensor and multi-feature methods to 112 

discriminate wetland classes better. Generally, in wetland-113 

remote sensing research, higher OA and better class 114 

discrimination are achieved when integrating multiple 115 

features from multiple optical, multiple SAR, and various 116 

other datasets such as elevation, temperature, etc [8]. Such 117 

a multi-feature methodology is challenging to implement at 118 

a large-scale given restriction in data coverage of some 119 

remote sensing datasets (e.g., the Canadian DEM is not 120 
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present in Northern Canada), cost (LiDAR and other higher 1 

spatial resolution data across Canada are limited and costly 2 

to obtain), and difficultly as a result of computation power 3 

and processing. However, with time and through 4 

collaboration, advances in the technical capabilities to 5 

integrate multiple datasets for large-scale classification are 6 

becoming more feasible to be taken advantage of by the 7 

CWIM3. 8 

As such, this research aims to develop the third generation 9 

of the CWIM, which will be developed by integrating a 10 

multitude of new datasets to improve wetland class 11 

discrimination. These datasets include ALOS PALSAR-2, 12 

10m Canada-wide elevation data, city light information, 13 

and climate data (temperature and precipitation). Additional 14 

effort has been dedicated to refining the test and train 15 

datasets within each ecozone across Canada. Specific 16 

objectives are to (1) improve the accuracy of the CWIM3 17 

compared to the CWIM2, (2) reduce wetland class area 18 

overestimation, and (3) improve on the processing time 19 

required to produce a classified wetland map for each 20 

ecozone. Several research questions are also answered by 21 

defining different classification scenarios, which determine 22 

the effect of preprocessing steps, integration of various 23 

sources of remote sensing and non-remote sensing data, and 24 

processing units (i.e., ecozone-by-ecozone vs. the entire 25 

country) on wetland classification accuracy. The results are 26 

then compared to other similar large-scale Canadian 27 

classification datasets.  28 

II. STUDY AREA 29 

The study area encompasses the entire landmass of the 30 

country of Canada, totaling 9.9 million km2. Processing was 31 

implemented at the scale of ecozone. Canada is divided into 32 

15 ecozones, the boundaries of which define an ecologically 33 

distinct area characterized by interacting biotic and abiotic 34 

factors [23]. Ecozones often cross multiple provincial 35 

boundaries and range in size between 117,240 km2 at the 36 

smallest to 1,857,530 km2 at the largest. Table I in [22] 37 

summarizes the general landscape characteristics of each 38 

ecozone. For purposes of this research, we modified some 39 

ecozone boundaries due to limited testing and training data 40 

distribution, leaving 13 ecozone processing units. As was 41 

implemented in the CWIM2, we group the three ecozones 42 

that comprise Northern Canada (Southern Arctic, Northern 43 

Arctic, and the Arctic Cordillera) due to the limited amount 44 

of wetland test and train data available in this part of 45 

Canada. This area is referred to as the Northern Ecozones 46 

herein. For similar reasons we group the Boreal and Taiga 47 

Cordillera into a single unit, named Boreal/Taiga Cordillera 48 

ecozone. Given the size and abundance of training data in 49 

the Boreal Shield ecozone, we split the Boreal Shield down 50 

the middle into the Boreal Shield West and Boreal Shield 51 

East for ease of processing.  See Fig.1 for the distribution 52 

of these ecozones across Canada. 53 

 54 

 55 
 56 

Fig. 1.  Canadian Ecozones, modified for purposes of implementing the CWIM3. Wetland testing and training data are visible in black and red. 57 

III. METHODS 58 

A. Test and Train Data Preparation 59 

Wetland test and train data (the distribution of which can be 60 

seen in Fig. 1) has been sourced from many partners to produce 61 

the CWIM. Because these datasets were collected under 62 

varying circumstances and for differing purposes, an effort was 63 

made to better standardize and improve the cohesiveness of 64 

these wetland datasets before producing the CWIM2 [22]. This 65 

included modifying wetland boundaries, altering class labels, 66 

removing potentially inaccurate polygons, and filtering by size 67 

by removing any polygons smaller than one hectare and greater 68 

than 100 hectares because small polygons would not contain 69 

any helpful spectral information for the classifier and large 70 

polygons had a higher chance of being highly spectrally 71 

heterogeneous [22]. A sample of the testing and training data 72 

polygons can be seen in Fig. 2. 73 
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 1 

  
(a) Bog (b) Fen 

  
(c) Swamp (d) Marsh 

 

(e) Water 
Fig. 2.  Examples of wetland polygons that comprise the testing and training 2 
datasets used in developing the CWIM3 overlaid Sentinel-2 summer imagery. 3 

 4 

To help improve the results of the CWIM3, additional effort 5 

was dedicated to improving the quality and quantity of the non-6 

wetland testing and training data. Non-wetland data helps to 7 

reduce over-classification of wetland areas in remote sensing 8 

supervised classification methods. For example, a dataset with 9 

a representative sample of forest data can help to reduce over-10 

classification of woody wetlands, such as swamp. An issue with 11 

the test and train data applied to the CWIM2 was an excess of 12 

wetland test and train data relative to non-wetland test and train 13 

data. This likely contributed to an over-estimation of wetland 14 

classes in certain ecozones, particularly swamp. [24] suggest 15 

that a quality testing and training dataset represents the general 16 

land cover of the study area. As such, the ratio of wetland and 17 

non-wetland data was modified to ensure a more considerable 18 

amount of non-wetland polygons in most ecozones. The 19 

Hudson Plains ecozone is an exception given its overwhelming 20 

dominance by wetlands. Because there was a limited amount of 21 

non-wetland land cover data provided directly to this project, 22 

non-wetland data was obtained via governmental datasets such 23 

as the 2015 Land Cover [3]. Considered upland classes included 24 

forest, shrubland, grassland, agriculture, urban, and  25 

 26 

 

 

TABLE I 

Wetland and non-wetland test and train polygons per ecozone. Data in bold text highlights ecozones with low amounts of wetland test and train data relative to 

other ecozones. Ecozone abbreviations are as follows: Atlantic Maritime (AM), Boreal and Taiga Cordillera (BCTC), Boreal Plains (BP), Boreal Shield East 
(BSE) and West (BSW), Hudson Plains (HP), Mixedwood Plains (MP), Montane Cordillera (MC), Northern Ecozones (NE), Pacific Maritime (PM), Prairies 

(Pr), Taiga Plains (TP), and Taiga Shield (TS). 

barren/exposed, though these are reported as a single land cover 

class (non-wetland) in the final results. 

The final test and train datasets used to produce the 

classification for each ecozone are outlined in Table I. In total, 

the final dataset is comprised of 8804 wetlands and 15691 non-

wetland polygons. In each ecozone, the dataset was split 70/30 

into training and testing datasets, respectively. Note that due to 

the limited amount of wetland data available in some ecozones, 

the bog class was not considered in the Northern Ecozones, 

Montane Cordillera, and Prairies. However, any occurrence of 

bog in these ecozones will likely be classified as fen. Bog and 

  

Land Cover Classes 

 

Bog Fen Swamp Marsh Water Non-wetland 

Test Train Test Train Test Train Test Train Test Train Test Train 

 

 

 

E

c

o

z

o

n

e

s 

AM 71 30 182 76 163 76 132 45 133 57 1009 425 

BCTC 103 44 92 39 149 64 92 41 148 63 1619 696 

BP 133 56 378 163 108 46 133 59 119 51 1037 442 

BSE 216 99 232 100 167 70 108 53 72 33 923 377 

BSW 118 49 126 54 99 41 73 33 47 19 638 267 

HP 438 185 392 170 130 55 69 30 56 24 334 144 

MP 68 31 149 64 242 104 130 60 42 18 971 420 

MC na na 11 5 25 11 27 9 18 7 350 152 

NE na na 42 20 63 26 23 12 91 35 2241 977 

PM 16 6 31 14 23 10 46 19 20 9 314 144 

Pr na na 29 11 41 15 43 19 69 29 521 227 

TP 43 19 97 39 21 9 44 20 43 18 542 240 

TS 53 20 71 31 55 24 65 27 90 38 477 204 
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fen share many similar ecological features, and it was deemed 

acceptable to consider only the fen class. 

B. Satellite Imagery Processing 

All satellite imagery was processed in the GEE cloud 

computing platform [25]. In this study, the GEE data catalog 

was employed to collect satellite imagery over different 

Canadian ecozones during the summers of 2017-2020 from S1 

and S2 and 2017-2018 to develop an ALOS PALSAR-2 yearly 

mosaic. 

The S1 mission provides data from a dual-polarization C-band 

Synthetic Aperture Radar (SAR) instrument. This collection 

includes the S1 Ground Range Detected (GRD) scenes, 

processed using the S1 Toolbox to generate a calibrated, ortho-

corrected product [26]. The collection is updated daily. New 

assets are ingested to GEE within two days after they become 

available. In this study, a total of 6,222 and 27,102 Level-1 S1 

GRD images were acquired in the HH-HV and VV-VH 

polarization modes, respectively. Different preprocessing steps, 

including thermal noise removal, radiometric calibration, 

terrain correction using SRTM 30 (or ASTER DEM for areas 

greater than 60 degrees latitude, where SRTM is not available) 

were carried out in GEE on each scene of S1 data (i.e., 

interferometric wide (IW) mode with a resolution of 10m). An 

adaptive Lee sigma filter with a pixel size of 7x7 was then 

applied To reduce the speckle noise from S1 data.  Median and 

standard deviation mosaics of the time stacks of S1 imagery 

were then extracted and employed for wetland classification. 

S2 is a wide-swath, high-resolution, multispectral imaging 

mission with a global five-day revisit time. The S2 

Multispectral Instrument (MSI) collects data in 13 spectral 

bands: visible and NIR at 10 meters, red edge, and SWIR at 20 

meters, and atmospheric bands at 60 meters spatial resolution. 

In this study, S2 Surface Reflectance (SR, Level-2A) and Top 

of Atmosphere (TOA, Level-1C) imagery were collected on a 

tri-monthly period, from June to August. This is because 

generating a 10-m cloud-free Sentinel-2 composite for Canada 

over a shorter time was challenging. A total of 115,747 

Sentinel-2 images (with less than 20% cloud cover) from 

summer 2017 to 2020 were queried from the GEE data catalog. 

Novel to the CWIM methodology is an L-band ALOS 

PALSAR-2 mosaic, a seamless SAR dataset created by 

mosaicking ALOS PALSAR-2 SAR imagery strips. In this 

dataset, the strip data were selected through visual inspection of 

the browse mosaics available over the period, with those 

showing minimum response to surface moisture preferentially 

used. Several optical and SAR features were extracted from 

these satellite imagery and were incorporated into the 

classification step (see Table II and Fig. A). 

 
 

TABLE II 

A list of extracted bands, features, indices, and auxiliary data used in this study. 

 

Type 

 

Source 

Spatial 

Resolution 

 

Time-scale 

 

Parameters 

 

 

Spectral 

features 

Sentinel-2 (band reflectance) 10m 2017-2020 Blue, Green, Red, Red Edge1, Red Edge 2, Red 

Edge 3, NIR, Red Edge 4, SWIR 1, and SWIR 

2 

 

Sentinel-2 (Spectral indices) 

 

10m 

 

2017-2020 

Normalized Difference Water Index (NDWI), 

Normalized Difference Vegetation Index 

(NDVI), Green Normalized Difference 

Vegetation Index (GNDVI), Ratio Vegetation 

Index (RVI), Normalized Difference Built-up 

Index (NDBI), Normalized Burn Ratio (NBR), 

Normalized Difference Snow Index (NDSI), 

and Bare Soil Index (BSI). 

 

 

SAR features 

Sentinel-1 (HH+HV) 10m* 2017-2020 HH polarization backscattering coefficient, HV 

polarization backscattering coefficient, Span, 

Ratio 

Sentinel-1 (VV+VH) 10m* 2017-2020 VV polarization backscattering coefficient, VH 

polarization backscattering coefficient, Span, 

Ratio 

ALOS PALSAR-2 25m* 2017-2018 HH polarization backscattering coefficient, HV 

polarization backscattering coefficient, Span, 

Ratio 

 

Topographical 

features 

SRTM DEM 10m  Elevation, Slope, Aspect 

ArcticDEM 10m  Elevation, Slope, Aspect 
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Environmental 

Features 

ERA5 25km 2010-2020 

(year average) 

Temperature, Precipitation 

Nighttime lights Visible Infrared Imaging 

Radiometer Suite (VIIRS) 

10m 2017-2020 Day/Night Band (DNB) 

*These numbers represent the SAR pixel spacing. 

 

C. Auxiliary Data Preparation and Processing 

The use of exclusively spectral classification models for 

large-scale land cover mapping may suffer due to dramatic 

changes in climatic and ecological characteristics across 

geographical gradients such as ecozones and affect the final 

classification accuracy. For example, the ecological 

characteristics of wetland classes such as vegetation 

composition and structure, soil type, and hydrology can vary 

under the ecozones’ climatic and ecological parameters. Thus, 

a fen presented in the Atlantic Maritime and characterized by a 

maritime climate (i.e., cool and moist) may appear spectrally 

different from a fen in the Montane Cordillera ecozone, with 

mainly continental climate (warm and dry). Thus, signatures of 

wetland classes illustrate a possibly wide range of species 

composition, vegetation physiognomy, and land management 

strategy, all of which are combined to represent a single land 

cover class over a large geographic region in the final 

classification product.  

To address such problems associated with large-scale land 

cover mapping, two common strategies have been employed in 

the literature: (a) dividing large-scale study areas into several 

small parts and applying classification models within small 

regions [27] and/or (b) incorporating environmental indices into 

the classification scheme, which allow classification models to 

take into account regional variations within different ecozones 

[28] . Both techniques have been examined in this study to 

identify which method is more effective for improving wetland 

classification results. 

A Canada-wide digital elevation model was introduced to the 

CWIM to improve wetland discrimination. In particular, it is 

expected that adding DEM data will improve swamp class 

discrimination and help to reduce wetland area overestimation. 

The 30 m SRTM data covering southern Canada was resampled 

to 10 m and used alongside the 10 m Arctic DEM covering 

Northern Canada. Slope and aspect were also extracted from 

DEM and added to the classification scheme. Nighttime light 

data was used as another input feature. The Defense 

Meteorological Program (DMSP) Operational Line-Scan 

System (OLS) has a unique capability to detect visible and near-

infrared (VNIR) emission sources at night. In particular, the 

nightlight data is a monthly average radiance composite image 

using nighttime data from the Visible Infrared Imaging 

Radiometer Suite (VIIRS) Day/Night Band (DNB). This 

dataset helps distinguish artificial surfaces from other land 

covers. Finally, climate data, including temperature and 

precipitation, with a resolution of 25 km, were added to our 

analysis from the ERA5 fifth-generation ECMWF atmospheric 

reanalysis of the global climate (Copernicus Climate Change 

Service, 2017). In particular, a 10-year (2010-2020) average 

and standard deviation in monthly precipitation and 

temperature were extracted from the climate data. It is expected 

that long-term precipitation data capture spectral differences 

between wetland classes in ecozones with different climates, 

such as the Atlantic Maritime (maritime climate), the Montane 

Cordillera (continental climate), and parts of the Northern 

Ecozones (the coldest and driest of all ecozones). Long-term 

temperature data also helps to capture the timing of maximum 

vegetation growth within different ecozones. All features 

extracted from satellite imagery and auxiliary data were then 

incorporated into an object-based classification scheme in 

various classification scenarios. A visual illustration of 

auxiliary datasets can be found in the Appendix.  

D. Classification and accuracy assessment 

In this study, an object-based classification scheme 

consisting of a simple non-iterative clustering (SNIC) method 

and an RF algorithm were used. Object-based classification was 

chosen as it produces objects that are more meaningful and 

tends to produce higher overall accuracies when classifying 

wetlands compared to pixel-based classification [1]. SNIC is a 

non-iterative, region-growing approach for generating 

superpixels, wherein centroids of clusters are evolved based on 

online averaging. SNIC uses a priority queue, 4- or 8-connected 

candidate pixels to the currently growing superpixels cluster 

and gives a higher priority to the pixels with the smallest 

distance from the centroid to join the cluster [29]. The algorithm 

takes advantage of both priority queue and online averaging to 

evolve the centroid once each new pixel is added to the given 

cluster. Accordingly, SNIC is faster and demands less memory 

relative to similar clustering algorithms (e.g., Simple Linear 

Iterative Clustering). This is attributed to the introduction of 

connectivity (e.g., 4- or 8-connected pixels) from the beginning 

of the algorithm, resulting in fewer distances during centroid 

evolution. 

The RF algorithm was implemented for classification in this 

study. RF is an ensemble learning method comprised of a group  
 

TABLE III 

Wetland classification scenarios examined in this study. 

Scenario Wetland classification scenarios Features Objective Classification scale 

strategy 

1 Optical top-of-atmosphere data Features extracted from 

Sentinel-2 TOA 

The effect of preprocessing Classification applied 

ecozone-by-ecozone 
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2 Optical surface reflectance data Features extracted from 

Sentinel-2 SR 

The effect of preprocessing, 

the usefulness of optical 

data 

Classification applied 

ecozone-by-ecozone 

3 SAR 

 data 

Features extracted from 

Sentinel-1 and ALOS data 

The usefulness of SAR data Classification applied 

ecozone-by-ecozone 

4 Optical and SAR Features extracted from 

Sentinel-1, ALOS, and 

Sentinel-2 SR data 

The importance of 

combining optical and SAR 

data 

Classification applied 

ecozone-by-ecozone 

5 Optical, SAR, and DEM Features extracted from 

Sentinel-1, ALOS, and 

Sentinel-2 SR data along with 

DEM 

The importance of applying 

DEM and the classification 

scale 

Classification applied 

ecozone-by-ecozone 

6 Optical, SAR, DEM, and 

environmental data 

Features extracted from 

Sentinel-1, ALOS, and 

Sentinel-2 SR data, DEM, 

precipitation, temperature, and 

nighttime data 

The effect of applying 

auxiliary data 

Classification applied 

ecozone-by-ecozone 

7 Optical, SAR, and DEM Features extracted from 

Sentinel-1, ALOS, and 

Sentinel-2 SR data, DEM 

The classification scale Classification applied 

to the entire country 

8 Optical, SAR, DEM, and 

environmental data 

Features extracted from 

Sentinel-1, ALOS, and 

Sentinel-2 SR data, DEM, 

precipitation, temperature, and 

nighttime data 

The effect of applying 

auxiliary data and the 

classification scale 

Classification applied 

to the entire country 

 

of tree classifiers handling high-dimension remote sensing data 

[30]. As such, RF is not prone to overfitting and performs well 

with noisy input data.  Assigning a label to each object is based 

on the majority vote of trees [31]. RF can be tuned by adjusting 

two input parameters, namely the number of trees (Ntree), 

which is generated by randomly selecting samples from the 

training data, and the number of variables (Mtry) used for tree 

node splitting. An automated hyperparameter tuning was 

employed to select the Ntree of 100 and Mtry set to the square 

root of the number of features [32].  

In this study, several classification scenarios were defined to 

assess the effect of preprocessing and the benefits of 

incorporating multi-source data for large-scale wetland 

mapping (see Table III). In particular, both TOA and SR S2 data 

were used to identify the importance of applying atmospheric 

correction on the final classification results. Next, three 

classification scenarios were defined to determine the 

usefulness of combining optical and SAR data for large-scale 

wetland applications [10]. The effect of adding auxiliary data, 

including DEM, environmental data (i.e., precipitation and 

temperature), and nighttime data were also explored. The 

importance of applying classification models at various scales 

(i.e., ecozone-by-ecozone vs the entire country) was determined 

by comparing classification models applied ecozone-by-

ecozone versus the entire country. This also identifies whether 

auxiliary data are more influential to the classification results or 

applying classification models in small ecozones.  

Overall accuracy (OA) and Kappa coefficients were used to 

evaluate the capability of the wetland classification in each 

ecozone. In addition, the average F1-score for wetland and non-

wetland classes were measured. F1-score (range 0–1) is the 

harmonic average of precision and recall and is useful for 

unbalanced validation data.   

IV. RESULTS  

Fig. 3 compares the classification accuracies achieved under 

different wetland classification scenarios outlined in Table III. 

Comparing classification scenarios 1 and 2 reveals that 

atmospheric correction of S2 data is essential, as an 

improvement of about 2.5% was achieved when surface 

reflectance data is used. Overall, the classification accuracy 

obtained from single source SAR data is significantly lower 

than single-source optical data for wetland mapping (see S2 vs. 

S3). However, the inclusion of both types of data (i.e., optical 

and SAR) improved the classification accuracy by about 6% 

compared to single-source optical data (see S2 and S4) and 18% 

relative to exclusive use of SAR data (see S3 vs S4). An 

additional 2% improvement is obtained through the inclusion 

of DEM data. This is attributed in part to the improvement in 

discrimination between the forest and swamp classes. Finally, 

the classification accuracy exceeded 90% when other auxiliary 

data, namely precipitation, temperature, and nighttime data, 

were incorporated in the classification scheme in scenario 6. 

Regarding the classification scale for large-scale 

applications, the results confirmed the necessity for performing   
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TABLE IV 

OA results for the CWIM3 and the CWIM2 for each ecozone. 

  CWIM3 CWIM2 Change 

  F1-score 

Wetland 

F1-score 

Non-wetland 

OA(%) Kappa OA(%) Kappa OA(%) Kappa 

 

 

 

E

c

o

z

o

n

e 

AM 0.83 0.97 94 0.9 88 0.87 6 0.03 

BCTC 0.69 0.93 84 0.8 76 0.73 8 0.07 

BP 0.78 0.95 89 0.87 87 0.86 2 0.01 

BSE 0.79 0.94 91 0.87 86 0.84 5 0.03 

BSW 0.81 0.96 92 0.89 87 0.86 5 0.03 

HP 0.83 0.96 93 0.9 88 0.87 5 0.03 

MP 0.82 0.94 93 0.89 88 0.87 5 0.02 

MC 0.76 0.95 88 0.85 85 0.83 3 0.02 

NE 0.77 0.96 92 0.87 89 0.87 3 0 

PM 0.80 0.94 89 0.86 84 0.82 5 0.04 

Pr 0.84 0.97 94 0.91 91 0.9 3 0.01 

TP 0.75 0.93 86 0.84 82 0.79 4 0.05 

TS 0.81 0.96 92 0.89 84 0.79 8 0.1 

classification models ecozone-by-ecozone rather than the 

entire country. For example, classification scenarios 5 and 7, as 

well as 6 and 8 use the same input features albeit within 

different geographic scales. In both cases, significant 

improvement was achieved for classifications through the 

ecozone-by-ecozone strategy. Although previous studies 

suggested that for large-scale land cover mapping either 

inclusion of auxiliary data or applying different classification 

models within a small area should be sufficient [33]. This does 

not hold for a country like Canada, where ecological and 

climatic features can vary even within a single ecozone.  

 
Fig. 3.  Comparisons between classification accuracies obtained for different classification scenarios outlined in Table III. 

 

Based on the results of classification scenarios, classification 

scenario S6 was selected to produce final classification 

results. S6 produced an average overall accuracy of 90.53% 

and an average Kappa coefficient of 0.87 across all ecozones. 

This is an increase of 4.77% in terms of OA compared to 

CWIM2, which has an average OA of 85.76%. At the level 

of ecozone, OAs range between 94% at the highest (Atlantic 

Maritimes and Prairies) and 84% at the lowest (Boreal and 

Taiga Cordillera). This pattern is similarly reflected in the 

CWIM2, though with lower OA percentages, the highest 

being 91% (Prairies) and the lowest being 76% (Boreal and 

Taiga Cordillera). Table IV further outlines the OA 

percentages across each ecozone for both the CWIM2 and 

the CWIM3. For each ecozone, the OA percentage increased 

by at least 2% and at most 8%. The smallest OA increase 

compared to the CWIM3 occurred in the Boreal Plains 

ecozone, at 2%. The greatest OA increase compared to the 

CWIM2 occurred in the Taiga Shield ecozone at 8%. A 

majority of ecozones (5 out of 13) experienced an OA 

increase of 5%.  

 

Across Canada, the results of the CWIM3 reveal an estimated 

16.69% of wetlands. Fig. 4 displays the distribution of wetlands 

across the country for each class. Spatial patterns of wetland 

classes are well preserved in the map, and the prevalence of 
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wetland classes is clear in the Hudson Plains and Boreal Plains 

ecozones. Wetlands generally follow a central longitudinal 

distribution across the country and are less common in the north 

and the south. Compared to other areas, the water class is less 

prevalent on the west side of the country.  

Table V outlines the percentage of wetlands per ecozone 

according to the CWIM3. The results of the CWIM3 are 

compared with other estimates of Canadian wetland coverage 

per ecozone by other related research investigating wetland 

change detection across Canada’s forested ecozones [6] and 

estimates of wetlands extent by Environment and Climate 

Change Canada [7]. The Hudson Plains ecozone has the 

greatest total area of wetland, followed by the Boreal Plains and 

Taiga Plains. Ecozones with the fewer areas of wetlands are the 

Boreal and Taiga Cordillera ecozone and the Montane 

Cordillera. This pattern is similarly reflected in [3] and [9]. 

Fig. 7 displays the class composition of the total wetland area 

in each of the 13 ecozones. Excluding water, fen and bog are 

the most dominant wetland classes in Canada, followed by 

swamp and marsh. The dominant wetland class (excluding 

water) in the Hudson Plains ecozone is bog, followed by fen, 

then swamp, and marsh. The dominant wetland class in the 

Boreal Plains ecozone is fen, followed by bog, then marsh, and 

 

Table V 

Percent coverage of wetlands per ecozone as reported by the CWIM3, [7] and [6]. 

Ecozone CWIM3 (%) [7] (%) [6] (%) 

AM 9.06 6.30 13.94 

BCTC 3.81 2.40 1.25 

BP 27.30 30.30 14.06 

BSE + BSW 20.83 16.90 15.81 

HP 86.16 78.80 80.88 

MP 9.29 11.10 NA 

MC 4.19 1.86 0.19 

NE 6.21 9.45 NA 

PM 4.71 1.12 4.17 

Pr 5.55 3.10 NA 

TP 24.88 25.00 29.20 

TS 15.00 11.00 13.53 

Total 16.69 16.00 16.95 

swamp. In the Boreal and Taiga Cordillera ecozones, fen and 

swamp cover the greatest wetland areas, followed by bog and 

marsh. In the Montane Cordillera ecozone, the marsh covers 

most of the areas, followed by fen and swamp. Visual 

comparison of ecozones across the CWIM2 and CWIM3 

reveals a substantial reduction in the total amount of 

overestimated wetland area in all ecozones. Visual analysis of 

the Boreal Plains ecozone, for example, seen in Fig. 5, reveals 

a reduction of total wetland areas and a better concentration of 

those wetlands along the northern region of the  

 

Fig. 4. The class composition of the total wetland area in each ecozone. 

ecozone when comparing the CWIM2 to the CWIM3 results. 1 

Classification noise is also reduced between CWIM 2 

generations.  3 

 4 
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Fig. 5. Comparison of the Boreal Plains wetland classification results for 

the CWIM2 (top) and CWIM3 (bottom). Green represents non-water 

wetland, blue represents water, and grey represents non-wetlands. 

 

Similar results can be seen in the Taiga Shield ecozone (Fig. 6), 1 

where wetland areas are better concentrated within areas 2 

characterized by lowlands and plains [34] along the ecozone 3 

boundary on the northeast side. Compared to the CWIM2, there 4 

is much less wetland area in the south and along the south-west 5 

boarder of the boundary that lays along the Mackenzie 6 

Mountain range. Again, there is a reduction in classification 7 

noise between map generations, resulting in a more clear 8 

visualization of areas that contain a high concentration of 9 

wetland area. 10 

 11 

 

 
Fig. 6. Comparison of the Taiga Plains wetland classification results for the 
CWIM2 (top) and CWIM3 (bottom). Green represents wetland, blue 

represents water, and grey represents non-wetlands. 
 12 

Fig. 7 shows the minimal wetland area present in the highly 13 

agricultural Prairies ecozone described by the CWIM2 and 14 

CWIM3. Though changes appear to be broadly minimal 15 

between these generations, wetlands that were not captured 16 
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previously in the CWIM2 have been captured by the CWIM3. 1 

This is particularly the case along the east side of the ecozone 2 

in and around Lake Winnipeg, where there is a higher 3 

concentration of wetlands (particularly peatlands) relative to the 4 

rest of the highly developed area. As is the case with other 5 

ecozones, general wetland noise has been reduced between 6 

generations as well.  7 

 8 

 

 
Fig. 7. Comparison of the Prairies wetland classification results for the 

CWIM2 (top) and CWIM3 (bottom). Green represents non-water wetland, 

blue represents water, and grey represents non-wetlands. 
 9 

Fig. 8 also compares the classification of wetlands at a location 10 

in the Prairies ecozone from various data sources, including the 11 

CWIM3, CWIM2, 2015 LCC, and ACI maps. When compared 12 

to both the CWIM2 and the 2015 LCC, the CWIM3 better 13 

captures the extent of the wetlands as seen on the ground (in the 14 

optical imagery at the bottom of the figure), particularly those 15 

wetland areas that are long and thin in shape. Generally, the 16 

CWIM2 and the 2015 LCC datasets underestimate overall 17 

wetland area at this location in the Prairies ecozone. The 18 

CWIM3 results, at least in terms of wetland extent, is 19 

comparable to that seen in the ACI, however the CWIM3 20 

provides the added benefit of discriminating wetland area at the 21 

level wetland class, rather than only describing wetlands as a 22 

single class, as is the case with the ACI dataset. 23 

 24 

 
Fig. 8. Classification of wetland area in the Prairies ecozone from various 
data sources, including the CWIM3. 

 25 

V. DISCUSSION 26 

The resulting pan-Canadian wetland map here extends on our 27 

previous work focusing on generating high-resolution wetland 28 

data, by which an overall improvement of about 10% and 5% 29 

in accuracy obtained relative to the CWIM1 [21] and CWIM2 30 

[22], respectively. The accuracy of 10m resolution CWIM3 31 

produced here is 90.53% that are comparable with other 32 

Sentinel-based large-scale land cover mapping globally [33], 33 

[35]. However, general land cover classes (e.g., water, bareland, 34 

and cropland) are much easier to be delineated compared to 35 

ecologically similar wetland classes separated in this study. The 36 

results are also comparable with Landsat-based large scale 37 

wetland maps produced in China [20]. For example, a recent 38 

study focusing on national wetland mapping in China reported 39 

an accuracy of 95.1% using Landsat data. This, however, was 40 

obtained with four rounds of manual editing which improved 41 

the accuracy from 80.6% to 95.1% [20]. Although a direct 42 

comparison between the accuracy obtained from the pan-43 

Canadian Sentinel-based wetland maps (i.e., the CWIM 44 

generations) with the Canada-wide Landsat-based map [6] and 45 

wetland maps from other sources [7] is impossible, as the 46 

accuracies have not been reported from the latter studies, there 47 

is a general agreement between areal percentages of wetlands 48 

found in this study with the existing literature. 49 

 50 
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Given the inherent difficulties associated with wetland 1 

classification using automated remote sensing methods [15], 2 

and the variation in the amount of wetland testing and training 3 

data available to the CWIM3, the accuracy of the CWIM3 will 4 

vary across space, and it is likely that in certain areas, the 5 

accuracy will be less than the stated OA. Additional 6 

confounding factors, such as natural disasters like fire, can also 7 

reduce the accuracy of wetlands in disturbed areas. To better 8 

communicate this issue, a confidence map was developed using 9 

testing and training data distribution and the area of recent fires 10 

from 2010 to 2020 [36]. The confidence map is displayed in 11 

Fig. 9 and was developed using a simple multi-criteria analysis. 12 

In this map, the darker colors represent areas with greater 13 

confidence in the results of the wetland map, whereas the lighter 14 

colors represent areas where there is less confidence in the 15 

results of the classified map. Generally, confidence decreases 16 

moving north as a result of a lack of substantial testing and 17 

training data. 18 

 19 

 
Fig. 9. Confidence in the accuracy of the CWIM based on wetland testing 
and training data distribution and location of recent fires. 

 20 

Despite the substantial contribution of wetland training and 21 

testing data from many partners, there remain large expanses 22 

across many ecozones where there is little or no wetland data. 23 

Although [24] suggests that an optimal dataset is well-24 

distributed, this is a difficult challenge to address given the 25 

large size of most of these ecozones and given the substantial 26 

portion of Canada that is generally inaccessible to standard field 27 

campaigns. In Fig. 1, it can be seen that there is a lack of data 28 

in ecozones in northern parts of Canada, particularly in the 29 

Northern Ecozones and Taiga Shield given the large sizes of 30 

these ecozones. There is also a relative lack of testing and 31 

training data in the Pacific Maritime and Montane Cordillera 32 

ecozones in western Canada. 33 

Consideration should also be given to the issue of spatial 34 

autocorrelation, particularly when considering the OA results 35 

per ecozone, and the reliability of the CWIM3 map. Spatial 36 

correlation could result in an overestimation of accuracy when 37 

it is not assessed. Because spatial autocorrelation of the testing 38 

and training data was not considered during this research (nor 39 

during the research to develop the CWIM2), and given that 40 

spatial autocorrelation is inherent to remote sensing data, the 41 

CWIM3 OA results are likely to be higher than what is 42 

represented by the map when compared to real life. Spatial 43 

autocorrelation will certainly contribute to OA results because 44 

our wetland datasets were generally collected via field 45 

campaigns that cover only very small geographical areas, and 46 

were collected not for non-remote sensing purposes. Consider 47 

the Taiga Plains ecozone, where wetland data available to this 48 

research is concentrated in a small area along the south-east, or 49 

the Boreal Shield East ecozone, where wetland data is largely 50 

concentrated in and around some populated areas in 51 

Newfoundland. Future generations of the CWIM should 52 

address or assess the issue of spatial autocorrelation, using 53 

Moran’s I or implementing recent advances by [32].  54 

Comprehensive classification of each ecozone is necessary to 55 

ensure wetlands are not overestimated, thus the need for non-56 

wetland test and train data. For the CWIM3, this information 57 

was obtained from the 2015 LCC [2] dataset available via the 58 

Government of Canada. The accuracy of this dataset is variable 59 

across land cover classes and geographical areas. As such, some 60 

of the non-wetland land cover test and train data used in the 61 

CWIM3 are likely to include mixed land cover signatures. 62 

Future work may dedicate effort to improving the boundaries of 63 

these non-wetland land cover test and train data to include less 64 

land cover mixing, particularly along the polygon boundaries. 65 

This may also require refinement of the number of non-wetland 66 

land cover classes considered. The CWIM3 considered forest, 67 

shrubland, grassland, agriculture, urban, and barren land cover. 68 

However, an increase in the number of non-wetland classes 69 

considered (sub-grassland classes, sub-forest classes, sub-70 

shrubland classes) may help to increase accuracy.  71 

Improvements across the CWIM2 and CWIM3 is a result of 72 

many changes made in the processing and integration of spatial 73 

data across Canada, such as the inclusion of additional 74 

environmental datasets and satellite data. Changes to OA are 75 

also a result of direct modifications made to training and testing 76 

data inputs between the CWIM2 and CWIM3. The CWIM2 was 77 

developed using datasets that were wetland-dominant, 78 

regardless of actual proportion of wetland area in the landscape. 79 

However, based on research by [24], a choice was made to 80 

improve the relative proportions of non-wetland and wetland 81 

training and testing data, based on the general landscape of each 82 

ecozone, while developing the CWIM3. For example, most 83 

ecozones are not dominated by any wetland class, rather are 84 

dominated by forest. Thus, training and testing data in most 85 

ecozones were modified to include a greater proportion of forest 86 

training and testing data relative to wetland. As such, 87 

improvements to OA across CWIM generations is not only due 88 

to integration of new environmental and satellite datasets, but 89 

is likely a result of changes to training and testing datasets.  In 90 

this research, we do not assess how much of the change to OA 91 

in each ecozone is due to the modified training and testing data 92 

set, however it is likely not negligible. 93 

The resolution of the CWIM3 should be taken into 94 

consideration, particularly when examining areas in and around 95 

developed areas. Wetlands in these areas tend to be fragmented, 96 

have modified vegetation patterns, and are often smaller in size 97 

beyond the resolving power of 10m satellite data [16]. As such, 98 

there should be cautious consideration when using the CWIM3 99 

to examine wetlands in and around areas under major influence 100 

of anthropogenic land use. It is recommended that, in those 101 

cases, to apply a classification using higher-resolution datasets. 102 
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The results of the CWIM3 emphasize the importance of 1 

inclusion of climate and ecological information when mapping 2 

natural ecosystems at a scale as large as Canada. The Canadian 3 

landscape is far from uniform, characterized by mountain 4 

ranges, far-reaching plains, forest, and maritime and continental 5 

climate areas. The characteristic landscape morphology and 6 

climate of distinct ecological areas across Canada (defined by 7 

the boundaries of Ecozones) control the formation and 8 

expression of wetland distribution, morphology, and vegetation 9 

expression. Analysis of classification accuracy results with and 10 

without consideration for climate and ecological variation in 11 

ecozone reveals the necessity of such datasets for mapping 12 

Canada’s wetlands. Ecozones can be further broken down into 13 

ecoregions [23], areas of even more significant ecological 14 

similarity. Integration of ecoregion information in future work 15 

may further help to improve wetland accuracy. 16 

Future improvements to the CWIM3 may consider integrating 17 

additional satellite data sets such as Hybrid Compact 18 

Polarimetry (HCP) data from RADARSAT Constellation 19 

Mission (RCM) satellites. Multi-season data has proven to 20 

impact smaller-scale wetland classification research accuracy 21 

positively and may also be possible. However, there will be 22 

some consideration given the difficultly obtaining leaf-off 23 

season optical data across the entirety of Canada given issues 24 

with cloud cover. This will also increase processing 25 

requirements due to a two-fold increase in data inputs. Future 26 

work should also integrate additional topographic variables 27 

proven to effectively detect wetlands and were not used in the 28 

development of the CWIM3, such as the topographic position 29 

index [33] and topographic wetness index [34].  30 

Another consideration should be to utilize time-series 31 

methodologies such as that performed by [9] to produce low-32 

noise and higher consistency satellite data mosaics. Though 33 

perhaps not feasible in the immediate future, an effort to gather 34 

wetland test and train data at the sub-class level (wooded bog, 35 

wooded fen, shrub swamp, and emergent marsh), etc. may help 36 

improve CWIM results. However, most wetland test and train 37 

data available to the CWIM are not provided as such, and most 38 

are categorized at the level of five classes. Additionally, this 39 

will reduce the total number of per-class wetland testing and 40 

training data to ingest into the classification methodology. 41 

Future generation of CWIM maps should also focus on 42 

improving the accuracy of wetland maps through the 43 

application of advanced tools, such as deep learning. Although 44 

this may not be possible very soon, as the performance of deep 45 

learning tools greatly depend on the availability of large amount 46 

of well-distributed training dataset.    47 

 48 

 49 

VI. CONCLUSIONS 50 

 51 

While a problematic endeavor, large-scale wetland 52 

classification has become increasingly simplified due to 53 

advances in remote sensing satellite data availability, deep 54 

learning, and cloud computing. Until recently, Canada has 55 

lacked a nationwide data source describing wetland spatial data 56 

specifically. Other national data products such as the ACI [1] 57 

and the LCC [2] underestimate wetland extent and do not 58 

resolve wetlands to the class level. Several generations of the 59 

CWIM have been developed to address this problem, improving 60 

the results of the previous by integrating new remote sensing 61 

data, more significant quantities and quality of training data, 62 

and improvements to the RF classification methodology.  63 

Improvements to the CWIM methodology made by the CWIM3 64 

are (1) inclusion of additional remote sensing and auxiliary data 65 

including ALOS-2, DEM, nighttime light, climate and 66 

precipitation, and alterations to wetland and non-wetland test 67 

and train ratios. This has resulted in a ~5 percentage increase in 68 

average overall accuracy and reduced wetland class 69 

overestimation across all ecozones. This work compares 70 

favorably to other research dedicated to determining the 71 

wetland extent across Canada [3], [9]. This work demonstrates 72 

the importance of multi-source and multi-thematic datasets for 73 

wetland classification.  74 

OA’s reported by the CWIM3 are higher than that of the 75 

CWIM1 and CWIM2, though these values must be interpreted 76 

conservatively given the limited distribution of wetland test and 77 

training data across certain ecozones, and small number of 78 

individual test and train polygons. Increasing wetland test and 79 

train data in these areas would certainly increase reliability, 80 

though this is not necessarily an attainable goal given funding 81 

availability and the isolated nature of many of these ecozones, 82 

such as the Taiga Shield. Other issues related to spatial 83 

autocorrelation, and the lack of inclusion of topographic 84 

variables may also contrite to sources of error within the 85 

CWIM3. 86 

Climate change has increased the need for large-scale wetland 87 

information, a problem addressed through the development of 88 

the CWIM. The CWIM3 represents the highest accuracy 89 

Canada-wide wetland classification map, at the level of wetland 90 

class, and future research looks to improve these accuracies 91 

even more through careful integration of additional multi-92 

source data, and testing and training information. 93 
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VII. APPENDIX 1 

 2 

 3 

  
(a) (b) 

  

  
(c) (d) 
Fig. A. Auxiliary datasets used in the CWIM3 including a Canada-wide 10m digital elevation model (a), nighttime light data (b), precipitation 

(c), and temperature (d). 
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