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Abstract 15 

Lake Water Surface Area (WSA) plays a vital role in environmental preservation and future 16 

water resource planning and management. Accurately mapping, monitoring and forecasting Lake 17 

WSA changes are of great importance to regulatory agencies. This study used the MODIS 18 

satellite images to extract a monthly time series of WSA of two lakes located in Iran from 2001 19 

to 2019. Following a consequence of image and time series preprocessing to obtain the 20 

preprocessed lake surface area time series, the outcomes were modeled by the Long-Short-Term 21 

Memory (LSTM) deep learning (DL) method, the stochastic Seasonal Auto-Regressive 22 

Integrated Moving Average (SARIMA) method and hybridization of these two techniques with 23 

the objective of developing WSA forecasts. After separate standardization and normalization of 24 

A
L 

TS and reevaluation of the preprocessed data, the SARIMA (1, 0, 0) (0, 1, 1)12 model 25 

outperformed sole LSTM models with correlation index of (R) 0.819, mean absolute error 26 

(MAE) of 49.425 and mean absolute percentage error (MAPE) of 0.106. On the other hand, the 27 

hybridization (stochastic-DL) enhanced the reproduction of the primal statistical properties of 28 

WSA data and caused better mediation. However, the other accuracy indices did not change 29 

markedly (R 0.819, MAE 49.310, MAPE 0.105). The multi-step preprocessing and reevaluation 30 

also caused all LSTM models to produce their best results by less than 12 inputs.  31 

32 

Keywords: Water resources, stochastic model, SARIMA, Tashk-Bakhtegan Lakes, hybrid 33 

model, forecasting. 34 

35 

36 
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1. Introduction 37 

Accurate mapping of lake Water Surface Areas (WSA) is essential to assess the amount of 38 

surface water available [1–5]. WSA is also helpful in determining the relationship between 39 

climate and water resources [6–9] and for assessing the impacts of changing water surfaces, 40 

which is crucial in water resources management [10-11].  The various methods for the extraction 41 

of water surface from remote sensing data fall into two general categories: single-band and 42 

multi-band techniques. The single-band technique uses a multispectral image band and identifies 43 

other ground-surface phenomena based on a threshold limit for water sources. The multi-band 44 

method helps distinguish the water masses from the differences in the reflectance properties of 45 

different bands [12]. Monitoring the water dynamics with images taken at different times can 46 

show changes in lakes, reservoirs and flood surfaces [13, 14].47 

Google Earth Engine (GEE) comprises a considerable amount of satellite and global data types 48 

worldwide, making it possible to analyze this data for various purposes such as change detection 49 

[15] , mapping [16, 17] and ground level studies [18]. GEE has been widely used in a number of 50 

disciplines including reviewing global forest changes [19], estimating crop production [20], 51 

ground subsidence monitoring [21], coral reef mapping [22], modeling global surface water 52 

change [23, 24], flood risk assessment [25], global urban mapping [26, 27], renewable energy 53 

mapping [28], drought monitoring [29], and the reconstruction of the MODIS global vegetation 54 

index [30]. 55 

Satellite data have been commonly used in hydrological studies [31–35, 36]. Nath and Deb [37] 56 

used satellite images to detect and extract the water body of Puyang China. Abou El-Magd and 57 

Ali [38] studied surface evaporation from Lake Nasser using high-resolution radiometer satellite 58 

images. They demonstrated that robust assessments of lake evaporation can be obtained. Song et 59 



4 

al. [39] studied water level and lake area in the Tibetan Plateau by extracting time series from 60 

Landsat images. Moreira et al. [34] investigated and modelled water balance using satellite 61 

images and the evapotranspiration dataset in South America. Veh [40] developed an algorithm to 62 

detect the glacial lake outburst floods (GLOFs) in the Himalayas. The algorithm uses satellite 63 

images to analyze GLOFs and provide interpretable statistics for risk assessment and hazard 64 

prevention planning.  65 

The pace of artificial intelligence (AI) models' development and their accuracy is rapidly 66 

increasing nowadays. These models are increasingly utilized in various fields of science, 67 

including water engineering and hydrology [41–43], since these models produced acceptable 68 

results in modelling sophisticated time series. Also, developments in AI and the computer 69 

industry played an important role [44] in accelerating this pace. In this field, deep learning 70 

methods produced noticeable results in modelling and forecasting hierarchical data [45-47]. The 71 

most recent deep learning model, LSTM, can utilize the unlimited historical raw data as inputs to 72 

detect the structure of the data and forecast future steps. The LSTM method is widely used in 73 

many fields like natural language understanding and speech recognition [48], image and text 74 

survey [49],  hydrological data modelling such as precipitation and runoff forecasting [42,50], 75 

and modeling climatic and meteorological data [51]. Mohan and Gaitonde [52] used LSTM to 76 

model turbulent flow control and its temporal dynamics. Murad and Pyun [53] employed LSTM 77 

alongside support vector machine (SVM) and k-nearest neighbours (KNN) for human activity 78 

recognition, and they reported a higher performance of the LSTM model compared to other types 79 

of AI models. Sahoo et al. [54] used LSTM recurrent neural networks (LSTM-RNN) to model 80 

low flow hydrological time series. With a 94 percent correlation and low errors, they reported an 81 

acceptable potential of LSTM for modelling hydrological time series.  82 
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Stochastic methods are among the most renowned statistical models. These methods are popular 83 

amongst researchers because of their comprehensible principles and easy application. Seasonal 84 

Auto-Regressive Integrated Moving Average (SARIMA) uses non-seasonal and seasonal 85 

parameters to forecast time series based on historical data linearly [55–58]. Papalaskaris et al. 86 

[59] employed the SARIMA model for short-term basin rainfall forecasting in Kavala City, 87 

Greece. Mombeni et al. [60] used SARIMA for estimating one-year-ahead water demand in Iran. 88 

However, most hydrological time series have complex structures that cannot be efficiently 89 

modeled by linear methods like stochastic models or by AI models. Hence, some researchers 90 

resorted to the integration of AI and linear models to utilize both their capabilities. Hybridization 91 

of AI and linear models is one method that helps catch the complexity in time series and which 92 

has produced more accurate results [35,61–64]. Mishra et al. [65] employed a combination of 93 

stochastic SARIMA model and ANN to predict droughts in the Kansabati River basin in India. 94 

The results indicated that a hybrid model leads to higher accuracy. Shafaei et al. [66] applied 95 

wavelet pre-processing to SARIMA, ANN and hybridization of both and modelled monthly 96 

precipitation in Iran. They indicated that wavelet-SARIMA-ANN produces better results than 97 

wavelet-SARIMA and wavelet-ANN.  98 

A novel methodology based on the integration of remote sensing and deep learning- stochastic 99 

modelling for lake surface area forecasting is proposed in the present work. To the best 100 

knowledge of the authors, no previous studies have attempted to use such hybrid model for 101 

WSA. The satellite images are downloaded, pre-processed and digitized for each time point to 102 

obtain changes in the water area. Then the achieved time series is modelled and forecasted by 103 

three methods. The modelling methods are deep learning LSTM model, stochastic SARIMA and 104 

hybridization SARIMA-LSTM. Prior to modelling, the time series structure is analysed by 105 
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stationarity and normality tests and other statistical and visual tests. If any pre-processing is 106 

needed, a standardization and/or normalization of the series is carried out to obtain the optimized 107 

modelling results. In the end, statistical and visual tools survey the methods presented in the 108 

methodology.  109 

110 

111 

2. Material and Methods 112 

2.1. Case study 113 

The Tashk-Bakhtegan lakes (TB lakes) with a surface area of 540 km2 are Iran's second-largest 114 

inland lakes. These lakes are the most important ecological habitats of Iran at an altitude of 1525 115 

m above sea level and have a catchment area of 25,000 km2. The maximum depth of Tashk-116 

Bakhtaran lake is 2 m, and the maximum depth of Tashk lake is 3.1 m [66, 67]. These lakes are 117 

located between 29° 13'N–29° 48'N and 54° 10'E–53° 23'E. Water inflows to these lakes through 118 

the Kor and Syvand rivers. With the construction of three dams in these rivers' upper basin, the 119 

inflow of water into these lakes has decreased dramatically, causing a large area to dry out [68]. 120 

Fig.1 shows the location of the twin TB lakes in Iran.121 
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122 

Fig. 1. A) Geographic location of the study area, B) Landsat 5 TM satellite image of TB lakes in 123 

false colour composite (7,4,1). 124 

125 

Arid and semi-arid regions cover about one-third of the world's land area.. Population growth in 126 

such areas caused an increase in the harvesting of groundwater [69]. In arid regions, lakes and 127 

wetlands play an indispensable role in the region's ecosystem, including climate change 128 

modification and food resources provision in the area. Due to growing water consumption in arid 129 

regions, water resources such as lakes ground water and other aquatic ecosystems are 130 

increasingly under stress [68]. 131 

TB lakes are under threat of complete drought due to over-harvesting of groundwater and 132 

mismanagement. In the basin of these lakes, two large rivers, Kor and Sivand, flow. Due to the 133 

vast area of TB lakes and moisture and water availability, unique plant and animal habitats exist 134 

in the surroundings [70]. In the past, TB lakes had a more fertile environment than today due to 135 

proper nutrition. At least 220 species of plaants have been identified in the region's environment 136 
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(the third largest from the species number point of view in Iran). More than 100,000 waterfowl 137 

migrate to the region in the winter [71]. There were about 5,000 Marbled Duck in 1990 [71,72]. 138 

Due to the diversity of flora and fauna in the wildlife, a refuge and a national park have been 139 

identified as protected areas. Their location is shown in Fig. 2. Three important dams that have 140 

been built in the upstream area of TB lakes: Sivand dam, Mollasadra dam and Doroodzan 141 

(Dariush) dam. The location of these dams is specified in Fig. 2, and their specifications are 142 

shown in Table 1.143 

144 

145 

Fig. 2. TB lakes watershed and location of ecological areas and distribution of dams in the area. 146 

147 

Table 1. Characteristics of dams located upstream of TB lakes.148 

Dam Type Year3Vol.2 (M.m3)H.1(m)RiverDam

A pebble with an impermeable core1972960 85KorDoroodzan

Reservoir (soil with clay core)200744075KorMollasadra

Soil with clay core2007255 57 SivandSivand
1. Height; 2. Total tank volume (million cubic meters); 3. Year of operation
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149 

In Fig. 3 using MODIS satellite, the land cover changes in 2001 and 2018 are compared. This 150 

figure was provided using the MODIS Land Cover Type Product (MCD12Q1) satellite. The 151 

MCD12Q1 includes a global dataset of land cover types from 2001 to 2018. Its spatial resolution 152 

is 500 meters, and six different classification schemes have been used to produce it. The Global 153 

Earth Coverage Map provides ecological and physical characteristics of the Earth's surface. 154 

In this study, LC_Type 1 band was employed to prepare a land cover map of the areas around 155 

TB lakes. This ground cover is based on the International Geosphere-Biosphere Program (IGBP), 156 

which is dedicated to styding global changes. The annual land cover maps around TB lakes were 157 

extracted from MCD12Q1 data in 2001 and in 2018 and are presented in Fig. 3. The reduction of 158 

agricultural coverage, pastures, and water level of the lake in the catchment area of TB lakes and 159 

the increase of barrier surface are clearly visible. 160 

161 
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162 

Fig. 3. Map of land cover changes between 2001 and 2018 in TB lakes watershed. 163 

164 

Fig. 4 shows the changes in five variables: Open shrublands, Grasslands, Barren, Croplands, and 165 

Water Bodies between 2001 and 2018. It can be observed that the area covered by Open 166 

Shrublands has been relatively stable until 2007, but since 2007, it has been increasing, while 167 

grasslands and croplands have declined with a similar trend. 168 

169 
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170 

Fig. 4. a) Land cover changes in 2001-2018, b) changes in TB lakes area. 171 

172 

Charts seem to indicate the existence of sudden changes around 2006 and 2007, particularly in 173 

the Waterbody area, which has declined since 2007 and reached its lowest surface in 2009. This 174 

reduction has had significant effects on other uses in the region. It should be noted that this 175 

decrease in water bodies in the catchment area of TB lakes has started since the construction of 176 

two dams, Mollasadra dam and Sivand dam, i.e., in 2007, and in 2009. These two dams were 177 

constructed on the two main rivers of the region, which feed the TB lakes, and resulted in the 178 

reduction of these lakes surfaces. Due to the diversity of flora and fauna in the region and 179 

protected areas around the TB lakes, these dams have caused severe damage to these genetic 180 

resources and the uses of the region. TB lakes increase the humidity of the air, and due to the 181 
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high altitude of the surrounding mountains, the resulting moisture remains in the atmosphere of 182 

the same area. This is referred to as artificial irrigation and causes better fruiting of the plants in 183 

this area.  184 

The drought that has been observed in recent years and the significant reduction of TB lakes’ 185 

water have affected the region's uses and caused a water crisis in the region. Croplands and 186 

grasslands have shown a significant decline, with their area shrinking to less than half its original 187 

value. Simultaneously, Shrublands and Barren soils increased, resulting in falling water levels in 188 

the region and the release of agricultural land and land-use change due to the lack of water in the 189 

area.  190 

Considering all this background information, the question is raised on how long will the drought 191 

process of TB lakes continue, and what will be the changes in their surface in the coming years? 192 

To answer this question, we adopt the SARIMA-Long-Short-Term Memory Model to model the 193 

lake's surface changes and provide a practical model for future changes in the lake's surface. 194 

Hence, using this model, an applied plan for water resources management in a variety of uses in 195 

the region can be developed, reducing the water crisis in the region and the abandonment of 196 

agricultural land, which has severe environmental and economic consequences in the region.  197 

2.2. Remote sensing (RS) datasets and pre-processing 198 

The MODIS (Moderate Resolution Imaging Spectroradiometer) tools were launched by Terra 199 

and Aqua satellites in 1999 and 2002. The MODIS sensor captures images 2230 kilometres wide 200 

and generates complete coverage of the earth in 1-2 days. By using Surface Reflectance products 201 

and their various bands (MOD09A1), the spectral reflectance of Earth's surface is estimated. 202 
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Pre-processing is a vital part of the remote sensing process. One of the problems with remote 203 

sensing images is the presence of clouds. Therefore, tools and indices like Google Earth Engine 204 

Environment (GEE) for image classification and the NDWI index are required to obtain 205 

desirable results. The NDWI index is one of the most commonly used indicators in remote 206 

sensing and is calculated from the relationships between bands (equations 1 and 2). Bands are 207 

used to obtain the water in which wavelengths have the highest and lowest spectral reflections. 208 

The NDWI relationship is computed as follows [73]: 209 

G NIR
NDWI

G NIR





(1)  210 

where the G is the green band, and the NIR is the near-infrared band. The modified NDWI 211 

relationship is as follows [12]: 212 

G MIR
MNDWI

G MIR





(2)213 

where MIR is the mid-infrared band (wavelengths 1.2 to 2.2 µm).214 

The resulting image of the MNDWI index has values between -1 and +1. The pixels that indicate 215 

the presence of water have positive values. However, due to the presence of mixed pixels that 216 

cause errors in the detection of water sources, a threshold limit (MNDWI ≥ 0.3) is used to detect 217 

pure pixels with more precision [74,75]. Then, to calculate the area of water bodies in the 218 

images, the number of pure pixels identified in each image is multiplied by the area of land cover 219 

and the exact area of the water surface can be calculated.220 

2.3. Time series and pre-processing  221 
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A series of measurements in equal time intervals is termed time series. Each time series has a 222 

stochastic and a deterministic part. Periodical patterns, trends and jumps are the deterministic 223 

part and can exist in time series simultaneously or solely. The absence of this part in time series 224 

is called stationarity state. For any modeling, the deterministic terms can be removed, and only 225 

the stochastic part is required. Therefore, analysis methods are needed to assess the predictable 226 

pattern in time series and stationarity [76]. Applying tests to time series to extract interpretable 227 

statistics is the analysis of time series. Tests like KPSS, Mann-Whitney, Mann-Kendal, and 228 

Jarque-Berra can be employed to investigate stationarity, jump, trends and normality of time 229 

series, respectively. 230 

In the KPSS [77] test, a regression equation is fitted to the data. If the variance of the 231 

independent variables of the relationship is null the A
L
, then the series is stationary. The KPSS 232 

relationship for trend or level stationarity is as follows: 233 

L t t tA  = r  +  +   (3) 234 

 
n l n

2 2

l t l t t s

t 1 j 1 t j 1

1 2 1
S (t ) e w j, t e e

n n n


   

    (4) 235 

   l lw s, t 1 j / t 1   (5) 236 

 
2N
t

2 2
t 1 l

S1
KPSS

n S t

 
   

 
 (6) 237 

where St = Σ te , lt  is the truncation lag, te  are the residuals. t t-1 ir r u  and tr  is a random walk, 238 

iu  are independent variables with equal distribution with mean zero and variance σ2, t  is the 239 

deterministic term of the trend, and t  the stationarity error. 240 
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In the case of non-stationarity, causing factors are investigated. Trend as a non-stationarity factor 241 

is analyzed by the Mann-Kendal test as follows [78]:  242 

   

   

0.5

0.5

1 var MK 0

stnd ( ) 0 MK 0

1 var MK 0


 




 

    
  

   

(7) 243 

where stnd (MT) is the standard of Mann-Kendall statistic, MK is the Man-Kendall statistic, and 244 

var (MT) is the variance of MT. The MT and var (MT) are defined as: 245 

 
N 1 N

T L, j L,i

i 1 j i 1

M sgn A A


  

  (8) 246 

      
g

3 2

T L, j L, j L, j

j

var M 2N 7N 5N A A 1 2L 5 /18
 

      
 

 (9) 247 

where L, jA and L,iA are the lake area time series at the jth and ith group, g is the number of 248 

identical groups, sgn is the sign function, N is the number of samples and L, jL  is the number of 249 

the observations at the jth group. The following equation is used for seasonal changes over time, 250 

or seasonal trend: 251 

 
k kN 1 N

k L, kj L, ki

i 1 j i 1

S sgn A A


  

   (10) 252 

  
k

ω

S k k

k 1

M S sgn S


  (11) 253 

   
k

1
3 2

S ij k k k

i 1 j i 1 k

var M 2 2N 7N 5N /18
  

  

      (12) 254 
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k k k

0.5

S S Sstnd (M ) M var M


 (13) 255 

where ω represents the seasons, k is the number of months, and σij is the covariance of stationary 256 

test in seasons i and j. A probability corresponding to a test statistic higher than 5% means that 257 

A
L
is trendless.  258 

Jumps, the second non-stationarity factor, represent sudden steps in the time series. The non-259 

parametric Mann-Whitney (MW) test is used to evaluate this factor [79, 80]: 260 

       1N
0.5m1 m1 m2

L, Ordered m1 m2 m1 m2

t 1

N N N 1
MW Dg A / N N N N 1 /12

2

  
    

 
  (14) 261 

where AL, Ordered: series sorted by main series A
L
, Dg (AL, Ordered) the degree of AL, Ordered function, 262 

Nm1 and Nm2 is the number of members of the main sub-series that Nm1 + Nm2 = Ntotal. A 263 

probability related to a test statistic greater than 1% means that A
L
 is jump-less.  264 

Periodicity as the third deterministic factor can be surveyed by a time series graph or the auto 265 

correlation function (ACF) and the partial auto correlation function (PACF) plots. This term 266 

appears as iterative sinusoidal variations in both above graphs. 267 

Seasonal standardization is one of the conventional stationarizing methods in hydrology. This 268 

method also reduces jumps in time series [81]. By removing the seasonal mean and standard 269 

deviation, the A
L

is transferred to a time series with a zero mean and a standard deviation equal 270 

to one as follows: 271 

      L L dstd A t, A / S      (15) 272 
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where, stdω represents the outcome of seasonal standardization,  LA t,  is the sample at tth273 

year and the ωth season,  LA   is the mean of the ωth season and  dS   is the standard 274 

deviation of ωth season.  275 

2.4. Long-Short-Term Memory (LSTM) deep learning model 276 

Deep learning models are subclasses of artificial intelligence (AI) models enhanced for non-277 

linear sequence solving problems. A renowned deep learning model is the Long Short-Term 278 

Memory (LSTM) network. The LSTM architecture is well suited for modelling sequence data 279 

like time series and can learn long-term dependencies in series to forecast future steps. A simple 280 

LSTM memory block is presented in Fig. 5. The LSTM model is constituted of several gates that 281 

control the flow of information and affect the produced results. These gates are the input, the 282 

forget, and the output gates which control the data entering to memory blocks tc , which should 283 

be forgotten, and which are permitted to continue to further processes.  284 

LSTM conducts a mapping [43] from an input sequence x to an output sequence y using the next 285 

equations iteratively from t = 1 to t = τ with initial values C0 = 0 and h0 = 0: 286 

Lt f f, t t 1 ff )A(W U bh     (16)287 

t t t
L,t C C Ct t 1C (W U b )tanh A h   % % %

% (17)288 

where L, tA  is the input of the vector at time t, and t 1h  is the hidden cell state at time t−1. The 289 

weight matrices are U, W for input-to-hidden, and hidden-to-hidden connections, respectively. ft is 290 

a resulting vector with values in the range (0, 1), σ(·) represents the logistic sigmoid function and 291 

fW , fU  and bf define the set of learnable parameters for the forget gate. C
t

% is an update vector 292 
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with (-1, 1) range for the cell state which calculated form AL, t, tanh (*) is the hyperbolic tangent 293 

and 
tC

W% , 
tC

U%  and 
tC

b %  are other sets of learnable parameters.  294 

tt iti ii (W x U b )h    (18) 295 

ti  is the forget gate with range (0,1). iW , iU  and bi are a set of learnable parameters, defined for 296 

the input gate. The results of Eqs. 16 to 18 lead to update the cell state: 297 

t t tt 1tc f Oc t OC  % (19) 298 

where O denotes element-wise multiplication. The output gate, as the last gate, controls the cell 299 

state ct. 300 

t o o t 1 oto W x U h b ) (    (20) 301 

where to  is in the range (0, 1) and oW , oU  and ob  are a set of learnable parameters, defined for 302 

the output gate. th is calculated as follows:  303 

t tth tanh (c ) O o (21) 304 

305 
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306 

Fig. 5. A simple LSTM block. 307 

308 

2.5. Stochastic modelling concepts 309 

Stochastic models are a subgroup of statistical models. These models are widely used in various 310 

fields of science beause of their simplicity of utilization and theory. Seasonal Auto-Regressive 311 

Integrated Moving Average (SARIMA) is a stochastic model with seasonal and non-seasonal 312 

parameters that allows the model to forecast the future by using historical data [82]. 313 

In a SARIMA (p, d, q) (P, D, Q) model, p and q are non-seasonal model parameters; P and Q are 314 

seasonal ones. d and D are the order of non-seasonal and seasonal differencing, respectively [83]. 315 

The simplified extension of the SARIMA equation for one step ahead forecast is as follows:  316 

   
 

2d1 2 p 1 2 P D km

1 2 p 1 2 P L

1 2 q 1 2 2Q

1 2 q 1 2 Q

1 L L ... L  1 L L  L  1 L 1 L A   t

1 L L L  1 L L  L e t

( ) ( ) ( ) ...

( ) ( )

  

 

         

         
 (22) 317 

     d D

L(B) (B  1 L 1 L A t (B (B e t) ( ) ) )      318 
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where ω is seasonality,   and   are auto-regressive (AR) and seasonal AR (SAR) parameters, θ 319 

and Θ are the moving average (MA), L is the differencing operator L (A
L
(t)) = A

L
 (t-1). (1- L) d320 

equals the d-th non-seasonal, and (1- L ω) D equals the D-th seasonal with the lag ω. The L 321 

operator helps in modelling the non-stationary series as it removes correlations in time series and 322 

changes in mean and variance of the series. To improve the model's accuracy, each forecast is 323 

updated with real data, and a 1-step-ahead forecast is carried out. As this model is linear, 324 

deterministic terms must be extracted from the series, and data distribution normalized to 325 

improve accuracy. To evaluate the distribution's normality, the Jarque-Bera test can be applied to 326 

A
L
 time series [84]: 327 

  22

k uJB n S / 6 K -3 / 24  (23) 328 

where uK  is kurtosis kS  is skewness; JB is a chi-square distribution with two degrees of 329 

freedom that can be used to assume that data is normal. As most of the hydrological time series 330 

are non-normal, normalizing transformation should be employed. John-Draper transform is a 331 

normalization approach that can transform A
L
 data. The equation is as follows:  332 

     

   

L

L
Ln

L L

A 1 1
sgn A 0

A

sgn A log A 1 0

       
   

(24) 333 

  L

L

L

1 A 0
sgn A

1 A 0


  

(25) 334 

λ is JD transforming parameters and A
Ln 

is the normalized A
L 

series. 335 

336 
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2.6. Comparison measures 337 

Correlation coefficient (R), Root mean squared error (RMSE), root mean squared relative error 338 

(RMSRE), Mean absolute percentage error (MAPE) and Mean absolute error (MAE) are used to 339 

evaluate the accuracy of models in time series obtained from pre-processing of A
L
data. To 340 

compare the stochastic models, corrected Akaike's Information Criterion (AICc) is used. Theil's 341 

U coefficients are also used [85–87]. The Theil's U indices compare models based on the 342 

simplicity of the model against goodness-of-fit. The lower the index, the better the model results 343 

are. 344 
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L, O,iA and L, P,iA are the ith value of observed data and predicted A
L
 respectively. N is the number 353 

of months,  is the residual's standard deviation, and k is the number of tuned parameters 354 

through the modelling process. IU  is the accuracy of forecasting, and IIU is the forecasting 355 

quality. Checking the stochastic models' residuals for correlations and white noise state is one of 356 

the stochastic modelling steps. For this purpose, the Ljung-Box test can be applied to model 357 

residuals as follows [88]: 358 
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N is the number of samples, hr  is the residual coefficient of the autoregression (εt) in delay h; the 360 

value of m is also equal to ln(N). If the probability related to the Ljung-Box test is greater than 361 

the α-level (in this case Plbq > α = 0.05), the residues series is white noise.362 

In this research, first in the Google Earth Engine environment, the data were selected, and the 363 

necessary pre-processing was performed. MODIS MOD09A1 was used to measure the changes 364 

in the area of TB lakes. Images with a cloud coverage of less than 10% were selected to continue 365 

the process, and then the pixel value was corrected. Due to the area's characteristics, a threshold 366 
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for water identification was considered, and with the MNDWI index, water bodies were 367 

separated from other zones. Higher threshold (MNDWI ≥0.3) was identified as water bodies. The 368 

time series of changes in the extent of the lakes was calculated from 2001 to 2019. Land cover 369 

changes were extracted from MODIS MCD12Q1, and the land cover map was prepared. To 370 

determine land use, the land cover map was used to identify the changes in the area and their 371 

impact on the changes in the lake surface. Then the time series of the WSA data was extracted 372 

from the satellite data. Following, the modelling procedure was undertaken.  373 

Initially, the WSA time series' structural characteristics were investigated by pre-processed by 374 

stationarity and normality tests. If any pre-processing is needed, a standardization and/or 375 

normalization to series is carried out to obtain the optimized modelling results. Then deep 376 

learning LSTM model, stochastic SARIMA and hybridization SARIMA-LSTM are performed.. 377 

The described procedure is depicted in the flowchart of Fig. 6. 378 
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379 

Fig. 6. Flowchart of the analytical procedures of the study. 380 

381 

3. Results and discussion 382 

3.1. RS results 383 
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In this study, MODIS data, MOD09A1 version 6 Surface Reflectance (with a resolution of 500m 384 

and 8-day from 2000 to 2019) were employed to obtain time-series variations of TB lakes water 385 

surface. The MOD09 series is one of the MODIS surface reflection products. This product has 386 

seven bands and estimates the spectral reflectance values for each band in the absence of 387 

atmospheric absorption or diffusion.  388 

389 

Table 2 Specifications of MOD09A1 version 6 

Band name Band desc. wavelength(nm) Spatial resolution (m) 

sur_refl_b01 S.R. Band 1 620-670 500 

sur_refl_b02 S.R. Band 2 841-876 500 

sur_refl_b03 S.R. Band 3 459-479 500 

sur_refl_b04 S.R. Band 4 545-565 500 

sur_refl_b05 S.R. Band 5 1230-1250 500 

sur_refl_b06 S.R. Band 6 1628-1652 500 

sur_refl_b07 S.R. Band 7 2105-2155 500 

Band desc.: Band description; S.R. : Surface Reflectance

390 

The necessary pre-processing, including atmospheric corrections, have been made to this 391 

product. The workflow for extracting the lake area from the MODIS images includes image 392 

preparation, image classification and statistical computation. During the preparation of the 393 

images, the location of the lakes was determined. So, at this point in the GEE Environment, 394 

images with more than 10% cloud were excluded from the lake extraction process. Images with 395 

cloud cover less than 10% were selected, and pixels suitable for classification were identified. 396 

The image classification step was also performed in the GEE environment. Fig. 7 illustrates the 397 

changes of A
L

from 2001 to 2019 for April Month.  398 

399 
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400 

Fig. 7. Changes of A
L
 from 2001 to 2019 for April Month. 401 

402 

By using a function, the MNDWI index was applied to the previous step images. Water has high 403 

reflectance at the wavelength of 0.5 μm (green band) and absorbs electromagnetic waves at 404 

infrared wavelengths and has low reflectance. Therefore, in this study, band 4 (green band) and 405 

band 7 (mid-infrared) of MODIS images were used. After applying the threshold limit, the exact 406 
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area of the water surface was obtained. For better change recognition in the lake surface area, the 407 

area has been separated from the surrounding environment, and the changes in the TB lakes 408 

based on this model are shown in Fig. 8. Based on the calculated areas, the monthly time series 409 

of the TB lakes area was achieved.  410 

411 

Fig. 8. Lake Surface changes per square kilometres from 2001 to 2019 based on MODIS satellite 412 

imagery. 413 
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The results obtained from the annual changes in surface area of TB Lakes are shown in Fig. 9. 414 

Surface area changes have decreased dramatically from 2001 to 2019, reaching 709.487 km2 in 415 

2001. In 2002, the AL reached 975.64 km2, which shows a 37% increase compared to 2001. In 416 

2003, the lake's surface reached 821.55, and in 2004 and 2005, its value reached the highest level 417 

among the study years, occupying 1038.47 km2 and 1088.07 km2, respectively. After that, with a 418 

steep slope, the lake's surface shows a decrease until 2010 and this year it has reached 481.1 km2. 419 

This indicates that between 2005 and 2010, the average level of lake decline was 11.16% per 420 

year. In 2011, there was an increase of 74.74 km2 in the lake's water level and it fluctuated in the 421 

same range until 2013, and in 2014, it decreased by 132.192 km2 compared to 2013, reaching 422 

425,238 km2. With an increase and cache, it reached 389.245 km2 in 2016, which is the lowest 423 

number of observations among the study years. In 2017, the AL shows an increase of 34.26%, 424 

and in 2018 and 2019, it has reached 379,158 and 480,937 km2, respectively. 425 

426 

Fig. 9. Annual changes in the surface area of TB lakes (2000-2019)427 
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Differences in the AL between the study years confirm the information provided in the case study 428 

and can be considered as the main factor in reducing the water level of TB Lakes and changes in 429 

the region's ecosystem. Therefore, it is necessary to provide practical and correct solutions in the 430 

region to control the ecosystem and prevent further destruction of water resources in the region. 431 

Using applied models, the water level of TB Lakes can be modeled for better management in the 432 

future.433 

434 

3.2. Obtained AL time series attributes and pre-processing 435 

The obtained A
L

time-series statistical characteristics were investigated and the results are 436 

presented in Fig. 10. To survey the characteristics of the series and model it, the A
L

series is 437 

divided into train and test parts with 70-30% ratio. From the 224 obtained data points, 157 (from 438 

Dec 2000 to Jul Dec 2013) and 67 (from Jan 2014 to Jul 2019) were considered as train and test 439 

parts, respectively (Fig. 10a). Regarding the information provided in Table 3 the statistical 440 

features of the intervals differ considerably, which can lead to poor modelling results.  441 

442 
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443 

Fig. 10. (a) A
L
 time series plot and (b) pre-processed data. 444 

According to the information provided in Table 3, the highest AL lakes is 1292.32 km2 which is 445 

related to Jan 2005 and the lowest value is related to 246.4 which is related to Jul 2018. The 446 

minimum values for train and test data are 342.52 km2 and 246.4 km2, respectively, and the 447 

maximum values for these two are 1292.32 km2 and 733.39 km2. The average value obtained for 448 

224 data is 662.81 km2 and in the train and test stage it is 757.44 and 441.08 km2, respectively, 449 

and all data have positive skewness. 450 

Table 3. Statistical attributes of Lakes Area (A
L
) data

Nbr. 
Min 

(km2)
Max 

(km2)
1st Q 

(km2)
Median 

 (km2)
3rd Q 

(km2)
Mean 

(km2)
σ (n) γ1 γ2

Total 224 246.40 1292.32 455.76 605.36 882.24 662.81 256.94 0.42 -0.91 

Train 157 342.52 1292.32 552.88 735.43 959.65 757.44 241.71 0.08 -1.08 

Test 67 246.40 733.39 340.48 451.91 503.65 441.08 116.90 0.30 -0.58 
Nbr., Number of data; Min. and Max., Minimum and Maximum of data; 1st Q. and 3rd Q., first and third Quarters; σ(n), Standard Deviation; γ1, 

Skewness; γ2, Kurtosis.
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451 

The results of the application of statistical tests to the A
L
 time series are provided in Table 4 and 452 

Fig. 10. According to MW, MK, SMK, KPSS tests results, the series has jumps and trends and is 453 

highly non-stationary. Furthermore, the JB test confirms the non-normality of the data. 454 

Therefore, pre-processing of A
L

time series, prior to AI and stochastic modeling is mandatory. 455 

The ACF and PACF values were calculated and the corresponding results are presented in Fig. 456 

11 and Fig. 12. The plots plainly demonstrate the non-seasonal and seasonal trends and 457 

periodicity with lag 12. The periodicity is also observable in the time series plot (Fig. 10a) as 458 

iterative peaks and lows. This lake area data component was foreseeable as the surface water is 459 

highly impacted by solar energy’s seasonal flux and earth’s revolutions. Though this periodicity 460 

damped after two significant lags, the AL series would be more independent and better results 461 

can be obtained by removing it.  462 

463 

Fig. 11. A
L
 time series ACF and PACF plots. 464 
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For removing non-stationarity factors, the stdω method (stdω (A
L
)) was applied to the series 465 

(Fig. 10b). After modeling, it was observed that this method only reduced the seasonality to one 466 

lag in the series and did not affect other terms. Since the stdω method contained the seasonal 467 

parameters, it was expected that it would affect mostly seasonal components. The JB transform 468 

was subsequently applied (stdωJD (A
L
)). The normalization method was able to decrease the JB 469 

statistic markedly and normalize data. Also, normalization resulted in a reduction of the non-470 

seasonal correlations from 22 to 18 lags. The corresponding results are presented in table 4 and 471 

Fig. 12 for each step. 472 

Table 4 Lakes Area (AL) time-series stationarity and normality tests outcomes 473 

Tests Jump Trend Stationarity Norm. 

PMW PMK PSMK PKPSS JB* 

AL 0 0.01 0.01 0.01 7.72 

stdω(AL) 0.01 0.01 0.01 0.01 10.36 

stdωJD(AL) 0.01 0.01 0.01 0.01 2.15 

Cons. Diff.** 81.21 53.36 37.30 98.02 1.33 
*JB critical :5.99 ; p-value > 5% = acceptable; ** Consecutive 1st order non-seasonal and seasonal differencing

474 

3.3. LSTM Deep learning modelling 475 

Almost all the hydrological time series, regarding their nature, have a complex structure. 476 

Therefore, studying and involving historical events in the modelling process is of high 477 

importance. The LSTM model is an enhanced model produced to cover recurrent neural 478 

networks' deficiencies (RNN). The RNNs were limited in using historical data. However, the 479 

LSTM model unlimitedly can use long-term dependencies in modelling process.  480 

Given the seasonal correlations in time series with lag 12, the LSTM model was used for 481 

modeling pre-processed data with the hidden cell states of h = 12, 60, 144 and 156 [45,89]. A 482 
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piecewise learning rate schedule with Initial learn rate of 0.005 was defined for the model 483 

structure. After determining the maximum epochs of 500 and learn rate drop period and drop 484 

factor of 125 and 0.2, respectively, the single LSTM layer model was defined. Computational 485 

requirements represent an important consideration. In this work, the MATLAB software and a 486 

computer with a configuration of CPU core i7, 2500 MHz and 8G RAM were used. The average 487 

time spent for modeling each input was around 100 seconds. The results of the models are 488 

provided in Table 5. The LSTM model with the seasonal standardized (stdω) data and 12 inputs 489 

produced better results than inputs with higher hidden cell states with the same preprocessing.  490 

Table 5 LSTM results for Lake Area (A
L
) time series 

Method Inputs R RMSE MAE MAPE RMSRE UI UII

stdω h12 0.786 113.227 92.001 0.230 0.289 0.114 0.248 

stdω h60 0.790 144.837 124.816 0.317 0.380 0.140 0.317 

stdω h144 0.769 181.314 164.596 0.418 0.483 0.169 0.397 

stdω h156 0.746 200.116 183.361 0.465 0.532 0.184 0.439 

stdωJD h12 0.806 109.140 91.571 0.229 0.281 0.110 0.239 

stdωJD h60 0.893 116.363 104.381 0.263 0.304 0.115 0.255 

stdωJD h144 0.770 157.532 138.723 0.352 0.416 0.151 0.345 

stdωJD h156 0.852 146.578 132.055 0.331 0.380 0.141 0.321 

h = hidden states no.

491 

In the stdω method, except for h60, where the value of R is improved by 2% and h12 has a better 492 

performance in other statistical parameters, and as the number of inputs increases, the accuracy 493 

of the model is affected. h156 has the highest error values so that the correlation coefficient has 494 

decreased by 5% compared to h12 and the RMSE has increased by 76.7%. RMSRE and MAPE, 495 

have increased by more than 100%. These values for LSTM models demonstrated that the 496 

models' power and quality were higher while 12 inputs were chosen for modeling, compared to 497 

the other models with more inputs. Also, it indicates that the impact of most recent historical data 498 
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is more than the oldest ones. This refers to the capability of the LSTM in modeling dependent 499 

data.  500 

For further investigation, the pre-processed series with stationarization and normalization 501 

(stdωJD) were also modeled. Likewise, the LSTM model with 12 inputs produced the best 502 

results. The LSTMstdωJD (12) indices are as R = 0.806, RMSE = 109.140, MAE = 91.571, MAPE 503 

= 0.229, RMSRE = 0.281, UI = 0.110, UII = 0.239. The Theil’s coefficient also shows slight 504 

improvement in the model's quality and power while using normalization and standardization, 505 

compared to the single standardization.506 

The results show that in stdωJD, as in stdω, the model's accuracy decreases with increasing 507 

inputs. In h156 the value of the correlation coefficient is higher than h12 and h144. However, the 508 

statistical parameters show better performance for h12 compared to stdωJD model with other 509 

hidden cell inputs. As seen in the preprocessed data's correlogram, the seasonal correlation was 510 

damped after one seasonal lag and the dependencies were important up to one seasonal lag and 511 

few more non-seasonal lags. Therefore, the LSTM models with historical data up to previous 12 512 

lags were invistigated. Moreover, the normalization of data distribution enhanced the modeling 513 

results and decreased the errors in comparison to lone standardization. The LSTMstdωJD improved 514 

the results by R = 2.458%, RMSE = 3.610%, MAE = 0.468%, MAPE = 0.451%, RMSRE = 515 

2.720%, UI = 3.428%, UII = 3.610%. This improvement proves the importance of the pre-516 

processing in AI models, regardless of their capability in modeling non-linearity. 517 

The structure of data should be investigated prior to the preprocessing to assess the impacts of 518 

the preprocessing methods. Also, it can be concluded that using more independent inputs causes 519 

more variations that impact the final results of the deep learning method. So, limiting the LSTM 520 

model inputs to the correlated data is important. 521 



35 

522 

Fig. 12. A
L

pre-processed time series ACF plots. 523 

524 

3.4. Stochastic modeling  525 

Stochastic models are among the most conventional modelling methods in hydrology. These 526 

models are noticed for their simple theory and application. As the basis of these models are 527 

statistical concepts, some prerequisites should be considered in modelling process. The 528 

stationarity and normalization of time series are the two necessities of stochastic models. 529 

Concerning the results provided in section 3.2, as the pre-processed data's ACF values are 530 

damped after 18 lags and series is normal, modelling can be carried out, but higher orders of 531 

parameters are needed. Hence, a consecutive non-seasonal and seasonal differencing was applied 532 
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to series, and it was observed that all non-stationarity factors were removed from series and 533 

became stationary. The corresponding results are presented in Table 4 and Fig. 12 for each step.  534 

The correlations in ACF plots after consecutive differencing declines considerably to one lag. 535 

But for further survey of the model’s capability, the orders of the parameters in SARIMA model 536 

are considered as: p = q = P = Q = {0, 1, 2, 3, 4, 5} and d = D = {0, 1} and seasonality ω = 12. 537 

After coding the dynamic model in MATLAB software and considering this parameter selection, 538 

a total number of 2590 models were produced with the same computer configuration used for the 539 

LSTM models. The time spent on stochastic modeling was about two hours. The minimum 540 

values of the indices for forecasted A
L

data in all were R = 0.01, RMSE = 68.70, MAE = 49.42, 541 

MAPE = 0.11, RMSRE = 0.14, AICc = 574.80, UI = 0.08, UII = 0.15 and the maximum values 542 

were R = 0.85, RMSE = 780.61, MAE = 756.47, MAPE = 1.85, RMSRE = 1.98, AICc = 862.04, 543 

UI = 0.47, UII = 1.71. With these specifications and after considering the independence of the 544 

results, simplicity and goodness of the fit of models, the superior model was chosen as SARIMA 545 

(1,0,0)(0,1,1)12. The evaluation results for this model are: R = 0.819, RMSE = 70.217, MAE = 546 

49.425, MAPE = 0.106, RMSRE = 0.143, AICc = 574.82, UI = 0.077, UII = 0.154. The model is 547 

the most parsimonious and adequate SARIMA model compared to the other 2589 models. It is 548 

observed that the model's correlation index is almost in the same range as the LSTM, but other 549 

indices like RMSE, MAPE are almost half. This means the linear model could forecast the 550 

variation of the AL data better than sole LSTMs after triple preprocessing and removing all the 551 

dependencies in the data. However, other model evaluation criteria should be investigated, and 552 

there are still opportunities for enhancements. Another step in the evaluation of stochastic 553 

modelling is checking the independence of the residuals. This criterion is assessed 554 

simultaneously with parsimony and other statistics to obtain a model which is not only precise 555 
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but also has uncorrelated residuals. Therefore, the Ljung-Box test was applied to the stochastic 556 

model's residuals for 60 non-seasonal or five seasonal lags. The test indicated the independence 557 

of the residuals and the adequacy of the model. The results of the independence test for the 558 

superior model are provided in Fig. 12. 559 

560 

Fig.13. Ljung-Box residuals test results. 561 

562 

3.5. Hybrid Deep-learning-Stochastic modelling and disparities 563 

Hybridization of models is one of the methods of utilizing non-linear and linear models’ 564 

characteristics simultaneously. These methods allow researchers to model data and make 565 

predictions by covering the drawbacks of the single models and produce results with lower 566 

errors. For this purpose, the linear model residuals that are independent are used as inputs of the 567 

AI model. This input is assumed to be the non-linear part of the time series as the stochastic 568 

model is also assumed to be able to forecast the linear part [90]. As it can be seen in Fig. 14. The 569 

residuals of the linear model are completely independent, and no correlation remains in the 570 

residuals. However, they have the circumstances to be modeled by the AI model. Since, no 571 

correlation is found in the residuals’ series, the AI model requires less inputs to forecast future 572 

steps. However, the previous steps will be followed to provide comparison circumstances.  573 
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574 

Fig. 14. Stochastic model residuals auto correlation function plot 575 

B integrating SARIMA and LSTM, the superior linear model's residuals were modelled by the 576 

LSTM model with the same inputs considered for modelling in previous sections. The residuals 577 

are denoted as SARIMAs. The results of the models are provided in Table 6. The SARIMAs-578 

LSTM with 12 inputs outperformed other SARIMAs-LSTM hybrid models. As shown in Fig. 14, 579 

the residuals do not have correlations, therefore, the best results with the 12 inputs were 580 

expected. Using hidden cells’ inputs less than 12 could also produce these results. 581 

582 

Table 6 Hybrid models results for Lakes Area (A
L
) time series 

Method Inputs R RMSE MAE MAPE RMSRE UI UII

SARIMAs - LSTM

h12 0.819 70.428 49.310 0.105 0.143 0.077 0.154

h60 0.777 79.138 60.137 0.131 0.165 0.087 0.173

h144 0.754 100.928 82.246 0.198 0.243 0.104 0.221 

h156 0.752 104.037 85.689 0.208 0.252 0.107 0.228 
h = hidden states no.

583 

By comparing the results of the hybrid model and previously presented models, it was observed 584 

that the hybridization improved a few characteristics of the results. Compared to the single 585 

LSTM models, the Hybrid model increases the correlation of the forecast. It improved the 586 

mediation of the data by 0.061 compared to the average of the LSTM models. Also, the error 587 
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indices were almost reduced to half. However, this improvement, compared to the linear model 588 

was less noticeable than lone LSTM models. The hybridization, on the other hand, lowered the 589 

MAPE and MAE indices. 590 

591 

Fig.15. Scatter plots of the modeled A
L
 time series. a: LSTMStdω (h12); b: LSTMStdωJD (h12); c: 592 

SARIMA(1,0,0)(0,1,1)12; d: HybridS (h12). 593 

Since the indices are very close and for better comparison, the scatter plots of the superior 594 

LSTM, SARIMA, and hybrid models are provided in Fig. 15. From the scatter plots, the 595 

dispersion of the modelled data can be observed. The LSTM models predicted data are more 596 

dispersed than SARIMA and hybrid models, respectively (Fig. 15 a and b). The linear model 597 

(Fig. 15c) has densified the data and brought it closer to the 10% range. However, the hybrid 598 

model was more successful than the others in bringing the forecasts closer to the median line and 599 

locating data in the 10% intervals (Fig. 15d). In other words, hybridization caused more 600 

correlation in the forecasted data and better mediation has occurred by utilizing both methods’ 601 
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characteristics. The Box plot of the observed data and superior models are drawn in Fig. 16, and 602 

it can be observed that the SARIMA (1, 0, 0) (0, 1, 1)12 and SARIMAS-LSTM model perfectly 603 

forecasted the interquartile area of the A
L
 time series and even were able to forecast one of the 604 

extreme values of the original series. These methods also predicted the maxima and minima of 605 

the data more accurately than other models. A potent model regenerates the statistical 606 

characteristics of the studied data. Though the linear model and the hybrid indices were slightly 607 

similar, the hybrid SARIMA-LSTM reproduced the primal statistical properties of WSA data 608 

better than sole models [91]. The hybrid model performed better in forecasting the mean and 609 

other statistical characteristics of the observed data slightly better than the SARIMA model. 610 

Therefore, hybridization was not able to produce noticeable results (Tables 5 and 6) but 611 

reproduced the original series statistical attributes. Thus, it can be considered as a superior WSA 612 

modelling methodology.  613 

614 

615 

616 
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617 

Fig. 16. Box plot of the superior models; AL: observed WSA data, Ss: SARIMA (1, 0, 0) (0, 1, 618 

1)12; H: SARIMAS-LSTM; L1: LSTMstdωJD (12), L2: LSTMstdωJD (12); 619 

620 

4. Conclusion 621 

Sustainable management of freshwater inland lakes in an arid region plays a vital role in 622 

environmental preservation and quality of life. Moreover, monitoring changes in the lake's 623 

surface area due to both natural and anthropogenic stressors helps to better plan and manage 624 

water resources. Therefore, the accurate mapping and monitoring of lake surface area, and the 625 
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forecasting of these vital resources future trends are of great importance for planning and 626 

management purposes. In this study, the WSA of the TB lakes is studied. To map the lake's 627 

surface area, the MODIS satellite images were used to extract a time series depicting changes of 628 

the WSA. The images were obtained from MODIS data, MOD09A1 version 6. The pre-629 

processing of the images included image preparation, classification, and statistical computation. 630 

The preparation and classification of the images were undertaken in GEE environment. Using the 631 

MNDWI index, the water mass was separated from the background, and the lake area was 632 

obtained from the chosen images. Finally, by repeating the process for images from 2001 to 2019 633 

a monthly time series of lakes areas (A
L
) was obained. The A

L
 time series was examined by 634 

stationarity and normality tests to investigate the structure of the timeseries. Periods with 12 lag 635 

repetition, trends and jumps with a non-normal distribution were observed in the timeseries. The 636 

timeseries was pre-processed with the conventional seasonal standardization (stdω) method and 637 

normalized with the John-Draper (JD) transform, two-time series were obtained.  638 

These timeseries were modelled with the LSTM model with h = {12, 60, 144, 156} number of 639 

hidden cell states. The single LSTM models, with the two different preprocessing tasks, required 640 

only 12 hidden cell states to obtain the highest accuracy. LSTMstdω (12) with R = 0.786, RMSE = 641 

113.227, MAPE = 0.230 and STMstdωJD (12) with R = 0.806, RMSE = 109.140, MAPE = 0.229 642 

outperformed others. These results indicated that using multiple preprocessing methods and 643 

reevaluating the results of the time series structure tests is necessary since most of the time, the 644 

latter part is neglected in the AI modeling procedure.  645 

A stochastic SARIMA model and hybridization of both deep learning and stochastic models 646 

were carried out for further investigation and surveying the possibilities to enhance the 647 

forecasting results. The superior linear model was chosen as SARIMA with (1, 0, 0) (0, 1, 1)12 648 
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parameters based on goodness of fit and model parsimony. The stochastics models' results were 649 

better than single LSTM models and the errors were reduced by almost half, R = 0.819, MAE = 650 

49.425, MAPE = 0.106.  To utilize both models’ capabilities, residuals of the stochastic model 651 

were modelled by LSTM.  652 

Results indicate that the hybrid model indices were marginally better than others,. The scatter 653 

and Box plots of the models revealed that the hybridization did not produce noticeable better 654 

error indices but improved the statistical characteristics and made them closer to observational 655 

data. The hybrid SARIMA-LSTM reproduced the primal statistical properties of WSA data and 656 

caused better mediation as observed in scatter plots and the Box plot of the data compared to sole 657 

models.   658 

In conclusion, the hybridization can reproduce model forecasts that better preserve the observed 659 

timeseries's statistical attributes compared to single models. Therefore,  it is suggested that the 660 

undertaken methodology of A
L
 time series modelling be applied to other A

L
 time series and other 661 

AI methods like Extreme Learning Machine (ELM), LSTM developments like Genetic 662 

Algorithm (GA)-LSTM and a combination of these models with linear models be investigated. 663 
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