1	A heat-health watch and warning system
2	with extended season and evolving
3	thresholds
4	
5	Mahamat Abdelkerim Issa ^{1*} , Fateh Chebana ¹ , Pierre Masselot ¹ , Céline
6	Campagna ^{1,2} , Éric Lavigne ³ , Pierre Gosselin ^{1,2} , Taha B.M.J. Ouarda ¹
7	¹ Instiut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, Québec, Canada ;
8	² Institut National de Santé Publique du Québec, Québec, Canada ;
9	³ School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada;
10	*Corresponding Author: Mahamat Abdelkerim.Issa@ete.inrs.ca
11	
12	
13	
14	July 2020

15 Abstract

16 Background

Many countries have developed heat-health watch and warning systems (HHWWS) or early-17 warning systems in an attempt to mitigate the health consequences of extreme heat events. 18 19 HHWWS usually focus on the four hottest months of the year and impose the same threshold 20 over these months. However, according to climate projections, hot season is expected to extend 21 and/or shift. Some studies demonstrated that health impacts of heat waves are more severe when 22 the human body is not acclimatized to heat. In order to adapt those systems to potential heat 23 waves occurring outside the hottest months of the season, this study proposes specific health-24 based monthly heat indicators and thresholds over an extended season from April to October in 25 the northern hemisphere.

26 Methods

The proposed approach, an extension of the HHWWS methodology currently adopted in the province of Quebec, Canada, was developed in the Greater Montreal area (current population 4.3 million) based on historical health and meteorological data over the years. This approach consists of determining excess mortality episodes and then choosing indicators and thresholds that may involve excess mortality.

32 **Results**

We obtain thresholds for the maximum and minimum temperature couple (in °C) that range from (23 and 12, respectively) in April, to (32 and 21) in July and back to (25 and 13) in October. The resulting HHWWS is flexible, with health-related thresholds taking into account the seasonality as well as the monthly variability of temperatures in the threshold definition process for an extended summer season.

38 **Conclusions**

This adaptive system has the potential to prevent, by data-driven health alerts, heat-related mortality outside the typical July-August months of heat waves. The proposed methodology is general and can be applied or adapted to other regions and situations.

42 Keywords: Warning systems, heat wave, seasonality, health, climate, thresholds, methods,
43 mortality.

44 **1 Background**

Heat waves are considered among the deadliest extreme weather events around the world (e.g. 45 Mora, Dousset [1]). A significant number of deadly heat waves has been observed over the last 46 47 three decades. The ones of Chicago and Pakistan in July 1995 generated a mortality toll estimated respectively at 670 and 523 deaths [2]. One of the most famed heat waves touched 48 several European countries in August 2003, causing an excess close to 45,000 deaths in 12 49 European countries [4]. The one of Russia in July 2010 resulted in an increase of 11,000 deaths 50 more than the previous year [5, 6]. In Quebec, during the five-day heat wave of July 2010, the 51 52 excess daily mortality reached around 33% in the Greater Montreal area and four other public 53 health regions [7]. In early July 2018, a six-day heat wave caused 30% excess mortality in the 54 same geographical region, and 23% excess ambulance transportation [8].

The increase in the number and severity of heat wave events led several countries to establish their own heat-health watch and warning systems (HHWWS) or early warning systems [9]. These systems are usually based on meteorological indicators (generally maximum, minimum or mean temperatures, and in some cases the humidity level) or on air masses (in case of the synoptic systems), and a threshold above which a significant increase in mortality is expected [2, 10, 11]. As it is the case for the definition of heat waves, there is no universal threshold for

3

warning systems, since they reflect local weather/climate conditions, as well as specificities of
the local population [2]. Moreover, many of these thresholds are still not evidence-based on
human heat-related health mortality or morbidity data [2].

In most developed countries, the existing HHWWSs are established with a single threshold for 64 the whole summer season, usually the four or five hottest months [9, 11-16]. Spain is an 65 66 exception with thresholds that vary in time throughout the year [9]. On the other hand, according to climate projections and due to climate change, the probability of heat waves occurring early or 67 late in the season should increase [17, 18]). Ouarda and Charron [19] studied over 50 years of 68 heat waves in six stations distributed across the Province of Québec and found a non-negligible 69 70 trend of the intensity, magnitude, and duration of these events. Another study reported that the 71 number of heat-wave days could increase by up to 13 days in the period 2021 to 2050 and even by up to 40 days in the period 2071 to 2100 in the Iberian Peninsula and the Mediterranean 72 73 region [20]. Acclimatization is an essential element of the human adaptation mechanism to 74 variations in environmental heat exposure. Several studies have shown that the degree of human heat acclimatization varies throughout the season, explaining why deadlier heat waves are often 75 detected in June or July [21, 22, 24]. For instance, Lee et al., 2014 have demonstrated that, over 76 148 cities in the U.S., heat effects of increased temperatures were larger in the spring and early 77 78 summer.

It is thus of public health importance to take into account human acclimatization through seasons
and develop an early warning system where health-based thresholds could evolve over time, with
a monthly resolution for instance.

The objective of the present study is to establish an extended data-driven HHWWS that evolves over the season, based on the meteorological and health data of each month (April to October in the studied case). To pursue this objective, the proposed methodology is an extension and generalisation of the HHWWS system currently in use in the province of Quebec, Canada [11]. The methodology consists in determining historical excess mortality episodes, then temperature thresholds are chosen by based on sensitivity and false alert criteria. Therefore, the proposed methodology is to adapt the method of Chebana et al. (2013) over each month of the extend period of the period considered, in order to take into account intra-season variability human acclimatization in the system. As result we obtained one system with different thresholds.

The paper is organized into five sections. Section 2 describes the data and the proposed method to establish the novel adaptive HHWWS. The obtained results are presented in Section 3 whereas the outcomes of the study are discussed in Section 4. Section 5 concludes the paper.

94 2 Methods

95 **2.1 Data**

96 The data used to establish indicators and thresholds include all-cause daily deaths and 97 meteorological data from the Greater Montreal area (including public health regions of Montréal, 98 Laval, Lanaudière, Laurentides and Montéregie; Figure 1). Health data are available from 1981 99 to 2015, for a total of 35 years of observations, and are provided by the National Institute of 90 Public Health of Quebec (*Institut national de santé publique du Québec* INSPQ). The study 91 period is restricted to the months of April to October included.

The meteorological data were available for the same period as per health data. Daily maximum and minimum temperatures (noted respectively Tmax and Tmin) are used and are collected from the DayMet database supported by the National Aeronautics and Space Administration (NASA) [25]. It produces estimates of several daily weather variables on a 1 km x 1 km gridded surface. 106 The final temperature series are thus daily averages of all grid points inside the Greater Montreal107 area.

108Figure 1: Study Area, Greater Montreal area, the area is identified with the color109red110

112

111

113 2.2 Methodology

Briefly, the purpose of this method is to estimate two indicators $I_{m,t}^{(Tmax)}$ and $I_{m,t}^{(Tmin)}$ for given months *m* and day *t*, as weighted averages of the associated variable over a number of days (lag), as well as their associated thresholds (S^{Tmax} and S^{Tmin}) such that $I_{m,t}^{(Tmax)} > S^{Tmax} \& I_{m,t}^{(Tmin)} >$ S^{Tmin}. The proposed methodology to establish the warning system is a generalisation of the one defined by Chebana, Martel [11]. Lagged indicators are selected to take into account the possible delay (in days) between the heat wave and the impact on mortality. The basic method includes four steps as detailed below:

- a) Compute excess mortality (EM) relatively to a baseline;
- b) Identify heat-related excess mortality episodes;
- 123 c) Select the maximum lags for the indicators;
- d) Choose the optimal thresholds and associated indicators.

First, we proceed to the division of the database into a monthly basis. Then, the previous steps are applied to each month considered independently. Note that each month is treated partially alone in particular to obtain its own threshold. However, the final proposed system is a unique system for the whole period, i.e. includes all the months. The performance evaluation of the entire system which makes the connection between the months. More precisely, it is about the evaluation of the system as a whole (with criteria given below) and not each month separately.

132

133

134 a) Excess Mortality Computation

Excess mortality is defined as the relative difference between observed deaths and baseline of expected deaths over a period of time. Formally, it is calculated as [26, 27]:

$$EM_t = \frac{OD_t - ED_t}{ED_t} * 100 \tag{1}$$

where OD_t is the number of observed deaths and ED_t is the estimated number of expected deaths on day *t*. The approach used here is the same as in Masselot, Chebana [27], the expected death is calculated by natural cubic splines with eight degrees of freedom per year for a total of 35 years. Note that the degree of freedom value is for the whole year, in order to account for the trend before the computation of EM for each month. Considering splines allow for a more flexible representation of seasonal variations and the long-term trend of mortality [27, 28].

143 b) Identification of Heat-related Excess Mortality Episodes

Once EM_t is computed, the following step is to determine EM episodes, i.e. successive days that 144 should be detected by the warning system. These days are those for which the EM value exceeds 145 a predefined mortality threshold (noted S_{EM}). S_{EM} is chosen through careful examination of the 146 curve of extreme values of EM_t compared to that of total values of EM_t as in Masselot et al. 147 (2019). In addition, Tmax and Tmin of the same day have to be above preliminary temperature 148 thresholds. This last condition ensures that the identified episode is likely heat-related (since the 149 EM episode corresponds to the T episode). In the present study, preliminarily temperatures 150 considered were: the 90th percentile for April, 95th for May, 92.5th for June-August, 95th for 151 September, and 92.5th for October, corresponding the range of percentiles in the literature for the 152 definition of a heat wave [29, 30]. The selection of these percentiles is obtained by computing 153

the associated number of heat waves that should have occurred. By choosing the value of the different percentiles cited above as thresholds in the application of the heat wave definition.

As Chiu, Chebana [31] indicated that the extreme peaks tend to occur in clusters, we combine consecutive EM exceedance days into one episode. In the present study, two EM peaks or "episodes" separated by less than 3 days are considered as a single episode (here, a heat wave).

159 c) Selection of the Maximum Lags for Temperature Indicators

160 The indicator used in the HHWWS consists of a weighted mean of lagged temperature. Using 161 lagged temperature allows to take into account the effect that could occur after the hot day. It is 162 denoted by $I_t^{(k)}$ for all $k \in \{Tmax, Tmin\}$, and is defined as follows

$$I_{m,t}^{(k)} = \sum_{j=0}^{l} \alpha_{j_{-k}} X_{m,t-j}^{(k)}$$
(2)

163 where $X_t^{(k)}$ is the daily temperature (Tmax or Tmin) and α_{j_k} are weights such that $\alpha_{0_k} \ge \alpha_{1_k} \ge$ 164 $\dots \ge \alpha_{l_k}$ (condition 1) and $\sum_j \alpha_{j_k} = 1$ (condition 2). The first condition ensures that the weighting 165 assigned to each day decreases with the horizon, ensuring that the system, once implemented, 166 will account for the decreasing accuracy of temperature forecasts with the horizon. The second 167 condition defines a weighted average for the indicators to be on the same scale as their respective 168 temperature variables.

The purpose of the present step consists in determining the maximum lag *l* of indicators in equation (2). This is chosen by examining the lag response relationship between extreme temperature and mortality estimated using a distributed lag non-linear model (DLNM [32]. The temperature dimensions of the DLNM surface is modelled through a penalized spline (Gasparrini et al. 2017) and the lag dimension through a natural spline with three knots. Unmeasured confounders are included as a natural spline of time with four degrees of freedom for the day of
the season and one degree of freedom per decade for interannual trend as in Gasparrini, Guo
[34]. A quasi-Poisson family is used to account for over-dispersion as in Gasparrini, Armstrong
[32].

d) Selection of the best health-based temperature thresholds and associated

179 indicators

180 The objective of this final step is to determine the optimal thresholds S^{Tmax} and S^{Tmin} , as well as 181 indicator weights α_{j_k} . They are chosen based on the comparison between detected alerts 182 (modeled episodes) and actual EM episodes. Thus, for given weighting and threshold values, the 183 estimated heat waves episodes are such that $I_t^{(Tmax)} > S^{Tmax} \& I_t^{(Tmin)} > S^{Tmin}$.

As in Chebana, Martel [11], the quality of each weighting and thresholds combination is assessed using the following criteria: i) sensitivity, which is the probability of detections being actual EM episodes; ii) number of false alerts (FA) which are estimated EM that are not actual EM episodes. The best modelled system is the one with high sensitivity, the minimum number of false alerts.

189 **3 Results**

In this section, we present the obtained results of the data of Greater Montreal area andthen we consider a sensitivity analysis.

3.1 Results of the proposed methodology

193 The following results are obtained by following the above four steps of the presented194 methodology.

197 a) Excess mortality

198 Step 1 of the methodology seeks to estimate EM as a function of the expected deaths through equation (1). Descriptive statistics of the estimated daily excess mortality are presented in 199 200 Table 1 (all the EM series are presented as figures in the next steps). The results of Table 1 indicate that months not belonging to the warmest period (April, May, September and October) 201 202 have roughly the same standard deviation of EM (with a difference of the standard deviation 203 intra-season around 0.4), while the standard deviations of summer months are slightly higher 204 (with an average difference around 0.8). This more important standard deviation of the summer 205 months is probably related to the important EM maxima witnessed during this period (e.g., 206 historical deadly heat waves). As for the summer season, June recorded the highest EM value 207 (111.2%), it even exceeded that of the heat wave period of July 2010 (88.3%, which corresponds 208 to the maximum value of the excess mortality compared to July).

Table 1. Descriptive statistics and standard deviation of the estimated daily excess mortality for the different months throughout the study period (%)

Month	Minimum	Mean	Maximum	Standard deviation
April	-38.1	0.4	44.8	11.7
May	-35.1	-0.1	40.3	12.2
June	-33.8	0.2	111.2	13.4
July	-35.7	0.6	88.3	14.2
August	-36.3	-1.0	40.9	12.3
September	-35.1	-0.5	40.9	12.1
October	-34.3	2.2	48.9	11.8

212

b) Heat-related excess mortality episodes

214 Before identification of the episodes, the present sub-step aims at choosing the EM threshold 215 above which a day is included within an episode. Figure 2 shows the number of EM episodes obtained for different S_{EM} values for each month. Note that for the sake of clarity, from there all 216 217 results are presented in three seasons (spring: April and May, summer: June, July and August, 218 autumn: September and October). Regarding April and May, Figure 2a shows that for values of 219 S_{EM} higher than 35%, the number of heat-related EM episodes and the total number 220 (unconstrained) of episodes are equal to zero for both months. Thus, we consider respectively the S_{EM} equal to 10% and 30% as EM thresholds of April and May, which corresponds to one 221 episode for each one. 222

Figure 2b indicates that the EM episodes associated with threshold values above 45% are almost all related to heat for July. We therefore choose S_{EM} equal to 50% for June, and 40% for July and August with one, four and one episode respectively.

For the autumn months, Figure 2c, the outcomes are similar to the results of the spring months. We then choose the values of 30% and 10% as preliminary thresholds for September and October, which corresponds to two and one episode respectively.

Figure 2: Number of excess mortality (EM) episodes related to heat (dotted lines) and total number of EM episodes (full lines) according to threshold values of EM (S_{EM}) between 10 and 100%, for each month combined in season, with the chosen S_{EM} for the different months.

Figure 3 shows the computed EM series along with the EM episodes identified through the S_{EM} thresholds obtained in the previous step. The highest number of EM episodes observed is in the

months of July (4 EM episodes) and the lowest is recorded during all other months with 1episode, except September which counts 2.

Time

Time

14

Figure 3: Daily excess mortality (EM) estimation with the identification of EM episodes (numbering) and S_{EM} threshold indicator (horizontal segments) according to each period of the month.

239 c) Selection of lags for the indicators

240 Figure 4 shows slices of the DLNM surface at each preliminary temperature threshold 241 determined in section 2.2. For spring months, Figure 4a shows that RR are significantly higher than 1 only for lags 0 and 1 for May. In April, the RR trend is different with a negative 242 243 association for the smallest lags, probably due to late cold days. We therefore choose l=1 for the Tmax indicator in April and May. Regarding Tmin, Figure 4b illustrates that the lag-response 244 relationship for May reaches its highest RR for lag 0 and then remains stable around RR values 245 246 not significantly different from 1. In April it is at lag 1. The maximum lag for the Tmin indicator is then chosen at l=1 for both May and April. 247

For Tmax, Figure 4c shows that the RRs for all summer months are strongly significant with a lag 0, but remains significant at lag 1. We observe the same thing at lag 0 and at lag 1 the RR stays around 1 for Tmin (Figure 4d). Thus, we choose an indicator based on lag 1 for Tmax and Tmin of all summer months.

For Autumn months, Figure 4e suggests for Tmax a lag 0 with RR values significantly higher than 1 for September and then decreases to 1, but it is non-negligible at lag 1. October RR for Tmax is consistently around 1 for all lags. Although the RR of Tmin (Figure 4f) for the two months are close to 1 for lags 1, we choose a lag value equal to 1 for the Tmax and Tmin.

256Figure 4: Lag-response relationship between mortality and Tmax (a, b, c) and Tmin (d, e, f)257at preliminary temperature values. Vertical bars represent the 95% confidence interval.

259 d) Thresholds and Indicators of the System

260 Table 2 summarizes the results of the chosen temperature threshold values and indicator weights 261 related to the different months. It shows that the Tmax indicator weights are mainly assigned to the first day of all months except for May, June, and August. For Tmin, weights found are based 262 263 on two days. As expected, temperature thresholds increase up to July and decrease afterward. The criterion of performance indicates that the resulting system has a sensitivity of 100% and 264 less than one false alert per year. These performance results are almost similar to those of the 265 current system for which corresponds to class 1 in Chebana, Martel [11]. Note that as indicated 266 in methodology, the corresponding values of performance evaluation (sensitivity and false alert) 267 268 are not for the month, but for all the system.

Table 2: Indicator weights, thresholds, sensitivity and number of false alert (FA) per year
for the various months

	Indicat	or weigh	ts	T	hreshol	ds (°C)	Sensitivity(%)	FA/year
Month	a _{0_Tmax}	a _{1_Tmax}	α _{0_Tmin}	α _{1_Tmin}	S ^{Tmax}	S ^{Tmin}		
April	1.0	0.0	0.8	0.2	23	12		
May	0.5	0.5	1.0	0.0	27	13		
June	0.8	0.2	0.6	0.4	32	20		
July	1.0	0.0	0.7	0.3	32	21	_	
August	0.6	0.4	0.5	0.5	31	19	100.0	0.1
September	1.0	0.0	0.6	0.4	28	19	_	
October	1.0	0.0	1.0	0.0	25	13	_	

271 **3.2 Sensitivity Analysis**

The selected lag to identify the final temperature thresholds are mainly based on estimated lagresponse relationship of the DLNM. In addition, the constraint imposed on the weights (same or different weights for the construction of each indicator). Even though these choices lead to 100% 275 of sensitivity and 0.1 of FA, a sensitivity analysis is hereby performed to evaluate the sensitivity 276 of model performances to the choice of two parameters: the maximum lag of the equation (2) and same/different weights for the two indicators (Tmax and Tmin). In particular, sensitivity to 277 278 the choice of lag is evaluated by running the methodology using lag 2 (three days) as was the case in previous studies [11, 35]. Figure 5 shows the receiver operating characteristic (ROC) 279 curve that relates sensitivity of the HHWWS to its number of false episodes per year, for each of 280 the following designs. The first case is the system with lag equal to 1 and with the weighting 281 constrained to be the same for both indicators. The second case uses a lag 2 and the weighting of 282 indicators that differs. Finally, the third case also uses a lag 2, but with the same weighting of 283 indicators. Note that the ideal ROC curve is the one that passes through the upper left corner of 284 sensitivity =1 and false episode = 0. 285

Figure 5: Receiver operating characteristic (ROC) curves for different lag values used to develop the HHWWS, with the red cross represents the resulting system. Figure 5 indicates that the performance of the HHWWS is lower using l = 1 (case 1) with equal weights for both indicators compared to the cases with l = 2 (cases 2 and 3). Case 2 HHWWS shows a ROC curve close to the upper left corner. However, it remains less performant when compared to the obtained system in terms of the number of false episodes. This is consistent with the results show in Figure 4 that l = 1 is the lag that is somewhat significant compared to l= 2. Therefore, the choice of a system with l = 1 and different indicator weights is optimal.

294 **4 Discussion**

This study proposes for the first time a data-based heat-health watch and warning systems (HHWWS) that can adapt the mortality-related temperature thresholds to the months of the seasons and heat waves detection over an extended season based on the characteristics of each month, especially with adaptive and evolving threshold. The scientific literature on this aspect has focused on the summer season and often more specifically on the hottest four months of the year [29]. Most authors use a single threshold for the whole summer season and with an excess mortality threshold at 60% [9, 11-13]).

The proposed approach for the definition of these thresholds is an extension and a generalization of the approach currently used in Quebec [11], especially the evolving aspect of the threshold. These improvements include the determination of a rule to filter out potential deaths related to heat, the formulation of the indicator, as well as the determination of lags to be considered in the construction of the indicators.

It should be noted that among the 4 EM episodes in July, we found two that were detected in the study of Giroux, Chebana [36]. One among the EM episodes is related to the 2010 heat wave that occurred in Quebec. This could confirm that the choice of monthly resolution also allows for a good characterization of the heat wave following each specific period. As a result, the model is able to distinguish between true positive and false positive. Previously published health-related heat thresholds [11, 36] for the same geographical area (Greater Montreal area) is shown in Table 3 in order to compare them with the present results (Table 2). Having split the system in monthly intervals did not shown aberrant results compared to a system taking into account the hole extended summer.

The threshold values of Tmax and Tmin obtained in the present study applied to months April-316 October vary from 23 to 32 for Tmax and from 12 to 21 for Tmin. The average Tmin threshold 317 318 for the summer months is similar to those currently used by the national HHWWS in the same area of interest (Table 3). The one of Tmax has a difference of 1 °C. Even if we look at the 319 monthly thresholds for June, July and August this proximity stay ranges from minus 1 to 2 °C for 320 321 the threshold of Tmax and minus or plus 1 the threshold of Tmin. Nevertheless, they have the same performance, therefore the median threshold of May-September of present study could be 322 323 more anticipatory with a threshold of (32,21) versus (33,20).

324	Table 3: Indicat	or weights, threshol	ds currently in use ar	nd the present	study in the Greater
			r v	1	

			I	ndicat	tor weights			Thresholds (°C)		Performance results	
Geographical area	Season	Lag	α_0 α_1		α2	s ^{Tmax}	s ^{Tmin}	Sensitivit	FA/ year		
Greater Montreal area ²		_									
[11]	May-September	2	0.4		0.4		0.2	33	20	100	0.12
The present study											
(median result)	May-September	1	0.8 0.7*		0.2	0.3*	n.a	32	21	100	0.10

325 Montreal area.

²: Excludes Laurentides, *: represents $\alpha 0$ and $\alpha 1$ of Tmin, n.a. there is no α_2 in the case of the present study

Figure 6 presents the thresholds of the current and previous studies. This one illustrates well the staggered form of the thresholds for the coolest months at the most. We note that the Tmax threshold of June coincides with that of July and idem between August and September for the Tmin thresholds. This can be explained by the border effect between the different in question.

Figure 6: Thresholds of previous study for the study Area from May to September and the
thresholds of present study following months April-October

The present system has some limits. The proposed approach to establishing an HHWWS with an evolving threshold is still subjective concerning the criterion of determining a threshold for excess mortality, since it is graphically-based. However, the foundation of this step is based on the characteristics of the phenomenon to be studied (heat wave) and its link with the health outcome (mortality). Other points of improvement could concern meteorological indicators 337 (Tmax and Tmin) to be used, it could be interesting to test other indicators such as Wet-Bulb/ WBGT, Excess Heat Indices, UTCI, diurnal temperature range [37-39]. Another point could also 338 be the edge effect, leading to a smooth threshold. This model ought to be updated frequently to 339 insure the inclusion of take into account the changing climate variables. We can also see from 340 341 figure 3 with the data available on the months of April and October that it is not obvious to 342 determine the EM threshold. However, this does not have too much influence on the statistical power of the final meteorological thresholds to identify excess mortality for the medium and 343 344 long term.

345 5 Conclusions

In this paper, we developed a HHWWS that has adjusted thresholds for each month, taking into account the human acclimatization through seasons. This novel system covers an extended season over the year and can help public health authorities in preparing for heat waves, especially in the context of climate change. The proposed methodology is general and can be applied or adapted to other regions.

The proposed methodology is inspired by that of the current system, consists to determine meteorological threshold values (maximum and minimum temperatures) that could significantly increase mortality through the evaluation of the heat-mortality relation. The thresholds obtained start in April with 23°C for Tmax and 12°C for Tmin, to reach 32°C and 21°C in July, then back down to 25°C and 13°C in October. The system could also be improved by considering other health outcomes such as hospital admissions.

357 List of abbreviations

358 DLNM: Distributed lag non-linear model

- 359 EM: Excess mortality
- 360 FA: False alerts
- 361 HHWWS: Heat-health watch and warning systems
- 362 RR: Relative risk
- S_{EM} : Predefined exceeds mortality threshold
- 364 Tmax: Maximum temperature
- 365 Tmin: Minimum temperature
- 366 UTCI : Indice universel du climat thermique
- 367 WBGT: Wet-bulb globe temperature

368 **Declarations**

369 Ethics approval and consent to participate

- 370 Spatially and temporally aggregated data (number per day over an entire region) are used, so no
- 371 ethical considerations are needed.

372 **Consent for publication**

373 Not applicable.

374 Availability of data and materials

- 375 The meteorological data generated and/or analysed during the current study are available in the
- 376 DayMet database repository, [https://daymet.ornl.gov/getdata]. The health data are available from
- the authors on reasonable request.

378 **Competing interests**

379 There are no competing interests to declare.

381 Funding

The present study was funded by the *Fonds Vert* (Green fund) of the 2013-2020 Climate Change Action Plan of the Québec government, in collaboration with the *Institut National de Santé Publique du Québec* (INSPQ), the Ouranos consortium and MITACS. The funding organization

did not play any role in study.

386 Authors' Contributions

MAI: conclusive analysis, methodology, software, writing—original draft, visualization; FC: conceptualization, methodology, writing—review and editing, supervision, funding acquisition; PM.: validation, software, writing—review and editing; CC: conceptualization, validation, writing—review and editing, funding acquisition; ÉL: validation, writing—review and editing; PG: validation, writing—review and editing; TO: writing—review and editing. All authors have read and approved the manuscript.

393 Acknowledgments

394 The authors would like to thank M. Christian Filteau and Jean-Xavier Giroux for their

support in the extraction of the data used in the study. All analyses are performed in the

396 open source R software environment.

397 **References**

398	1.	Mora, C., et al., <i>Global risk of deadly heat</i> . Nature climate change, 2017. 7 (7): p.
399		501-506.
400	2.	WMO, W., Heat waves and health: guidance on warning-system development.
401		World Meteorological Organization and World Health Organization. http://www.
402		who. int/globalchange/publications/heatwaveshealth-guidance/en. Accessed,
403		2015. 12 .
404	3.	Semenza, J.C., et al., Excess hospital admissions during the July 1995 heat wave
405		<i>in Chicago</i> . American journal of preventive medicine, 1999. 16 (4): p. 269-277.

406	4.	Robine, JM., et al., Death toll exceeded 70,000 in Europe during the summer of
407		2003. Comptes rendus biologies, 2008. 331 (2): p. 171-178.
408	5.	Rahmstorf, S. and D. Coumou, Increase of extreme events in a warming world.
409		Proceedings of the National Academy of Sciences, 2011. 108(44): p. 17905-
410		17909.
411	6.	Otto, F.E., et al., Reconciling two approaches to attribution of the 2010 Russian
412		<i>heat wave</i> . Geophysical Research Letters, 2012. 39 (4).
413	7.	Bustinza, R., et al., Health impacts of the July 2010 heat wave in Quebec,
414		<i>Canada</i> . BMC public health, 2013. 13 (1): p. 56.
415	8.	Germain, L., D. Marjolaine, and B. Ray. Surveillance des impacts des vagues de
416		chaleur extrême sur la santé au Québec à l'été 2018. 2019; Available from:
417		https://www.inspq.qc.ca/bise/surveillance-des-impacts-des-vagues-de-chaleur-
418		extreme-sur-la-sante-au-quebec-l-ete-2018.
419	9.	Casanueva, A., et al., Overview of existing heat-health warning systems in
420		<i>Europe</i> . International journal of environmental research and public health, 2019.
421		16 (15): p. 2657.
422	10.	World Health Organization 2009, Improving public health responses to extreme
423		weather/heat-waves– EuroHEAT. Technical summary, 2009.
424	11.	Chebana, F., et al., A general and flexible methodology to define thresholds for
425		heat health watch and warning systems, applied to the province of Québec
426		(<i>Canada</i>). International journal of biometeorology, 2013. 57 (4): p. 631-644.
427	12.	Pascal, M., et al., France's heat health watch warning system. International
428		journal of biometeorology, 2006. 50 (3): p. 144-153.
429	13.	McLean, K.E., et al., Establishing heat alert thresholds for the varied climatic
430		regions of British Columbia, Canada. International journal of environmental
431		research and public health, 2018. 15 (9): p. 2048.
432	14.	Nicholls, N., et al., A simple heat alert system for Melbourne, Australia.
433		International Journal of Biometeorology, 2008. 52 (5): p. 375-384.
434	15.	Lowe, D., K.L. Ebi, and B. Forsberg, <i>Heatwave early warning systems and</i>
435		adaptation advice to reduce human health consequences of heatwaves.
436		International journal of environmental research and public health, 2011. 8(12): p.
437		4623-4648.
438	16.	McGregor, G.R., et al., <i>Heatwaves and health: guidance on warning-system</i>
439	17	development. 2015: WMOP.
440	17.	Perkins, S., L. Alexander, and J. Nairn, <i>Increasing frequency, intensity and</i>
441		duration of observed global heatwaves and warm spells. Geophysical Research
442	10	Letters, 2012. 39 (20).
443	18.	IPCC, Managing the risks of extreme events and disasters to advance climate
444		change adaptation: special report of the intergovernmental panel on climate
445	10	change. 2012: Cambridge University Press.
446	19.	Ouarda, T.B. and C. Charron, Nonstationary Temperature-Duration-Frequency
447	20	<i>curves.</i> Scientific reports, 2018. $\delta(1)$: p. 1-8.
448	20.	Fischer, E.M. and C. Schar, <i>Consistent geographical patterns of changes in high-</i>
449	01	<i>impact European heatwaves.</i> Nature Geoscience, 2010. 3 (6): p. 398-403.
450	21.	Basu, K. and J.M. Samet, <i>Relation between elevated ambient temperature and</i>
451		mortality: a review of the epidemiologic evidence. Epidemiologic reviews, 2002.
452		24 (2): p. 190-202.

453	22.	Lee, M., et al., Acclimatization across space and time in the effects of temperature
454	22	on mortality: a time-series analysis. Environmental Health, 2014. 13 (1): p. 89.
455	23.	Dessai, S., Heat stress and mortality in Lisbon part I. model construction and
456	24	validation. International Journal of Biometeorology, 2002. 47(1): p. 6-12.
457	24.	Gasparrini, A., et al., Changes in susceptibility to heat during the summer: a
458		multicountry analysis. American journal of epidemiology, 2016. 183(11): p.
459		1027-1036.
460	25.	Thornton, P.E., S.W. Running, and M.A. White, Generating surfaces of daily
461		meteorological variables over large regions of complex terrain. Journal of
462		Hydrology, 1997. 190 (3-4): p. 214-251.
463	26.	Litvak, E., et al., Programme de vigie et de prévention des effets de la chaleur
464		accablante à Montréal. Direction de santé publique Montréal, 2005.
465	27.	Masselot, P., et al., Toward an Improved Air Pollution Warning System in
466		Quebec. International journal of environmental research and public health, 2019.
467		16 (12): p. 2095.
468	28.	Bhaskaran, K., et al., Time series regression studies in environmental
469		epidemiology. International journal of epidemiology, 2013. 42 (4): p. 1187-1195.
470	29.	Guo, Y., et al., <i>Heat wave and mortality: a multicountry, multicommunity study.</i>
471		Environmental health perspectives, 2017. 125 (8): p. 087006.
472	30.	Smith, T., B. Zaitchik, and J. Gohlke, <i>Heat waves in the United States:</i>
473		definitions, patterns and trends. Climatic change, 2013. 118 (3-4); p. 811-825.
474	31.	Chiu, Y., et al., Mortality and morbidity peaks modeling: An extreme value theory
475		<i>approach.</i> Statistical methods in medical research. 2018. 27 (5): p. 1498-1512.
476	32.	Gasparrini, A., B. Armstrong, and M.G. Kenward, <i>Distributed lag non-linear</i>
477	021	<i>models</i> . Statistics in medicine. 2010. 29 (21): p. 2224-2234
478	33	Gasparrini A et al Mortality risk attributable to high and low ambient
479	55.	temperature: a multicountry observational study. The Lancet 2015 386 (9991): n
480		369-375
480	34	Gasparrini A et al Temporal variation in heat-mortality associations: a
401	54.	multicountry study Environmental health perspectives 2015 123 (11): p. 1200-
402		1207
405	25	1207. Descel M at al Definition of temperature thresholds: the example of the Erench
404 405	55.	hast wave warming system. International journal of biometaorology, 2012, 57(1):
485		near wave warning system. International journal of bioineteorology, 2015. 57(1).
480	26	p. 21-29. Circum I.V. et al. Indicateurs et valeurs seuile météorologiques noum les
487	50.	Giroux, JA., et al., Indicateurs et valeurs-seults meleorologiques pour les
488		systemes de veille-averilssement cantcule pour le Quebec. Mise à jour de l'etude
489		de 2010 et developpement d'un logiciel de calcul pour les systèmes d'alerte.
490	27	2017, INRS, Centre Eau Terre Environnement.
491	37.	Willett, K.M. and S. Sherwood, <i>Exceedance of heat index thresholds for 15</i>
492		regions under a warming climate using the wet-bulb globe temperature.
493	• •	International Journal of Climatology, 2012. 32 (2): p. 161-177.
494	38.	Nairn, J.R. and R.J. Fawcett, The excess heat factor: a metric for heatwave
495		intensity and its use in classifying heatwave severity. International journal of
496		environmental research and public health, 2015. 12 (1): p. 227-253.
497	39.	Jendritzky, G., R. de Dear, and G. Havenith, UTCI—why another thermal index?
498		International journal of biometeorology, 2012. 56(3): p. 421-428.

- 499 40. Barnett, A.G., S. Tong, and A.C. Clements, *What measure of temperature is the best predictor of mortality?* Environmental research, 2010. **110**(6): p. 604-611.
- 41. Höppe, P., *The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment*. International journal of Biometeorology, 1999. 43(2): p. 71-75.
- 504 42. Oleson, K., et al., *Interactions between urbanization, heat stress, and climate change*. Climatic Change, 2015. **129**(3-4): p. 525-541.
- Spagnolo, J. and R. De Dear, A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and environment, 2003. 38(5): p. 721-738.
- 509 44. Vaneckova, P., et al., *Do biometeorological indices improve modeling outcomes*510 *of heat-related mortality?* Journal of Applied Meteorology and Climatology,
 511 2011. 50(6): p. 1165-1176.
- 512 45. Besancenot, J.-P., Vagues de chaleur et mortalité dans les grandes
 513 agglomérations urbaines. Environnement, risques & santé, 2002. 1(4): p. 229-40.
- 514 46. Bustinza, R., G. Lebel, and M. Dubé, Surveillance des impacts sanitaires des vagues de chaleur extrême au Québec: bilan de la saison estivale 2013. 2014.
- 516 47. Dousset, B., et al., Evolution climatique et canicule en milieu urbain: apport de la télédétection à l'anticipation et à la gestion de l'impact sanitaire. 2011.
- 518 48. Goddard, L., et al., *Current approaches to seasonal to interannual climate*519 *predictions.* International Journal of Climatology: A Journal of the Royal
 520 Meteorological Society, 2001. 21(9): p. 1111-1152.
- 49. Gosselin, P. and D. Bélanger, *Recherche, impacts et adaptations de santé publique au nouveau climat du Québec*. Santé publique, 2010. 22(3): p. 291-302.
- 50. Hajat, S., et al., Impact of hot temperatures on death in London: a time series approach. Journal of Epidemiology & Community Health, 2002. 56(5): p. 367-372.
- 51. Hajat, S., et al., *Heat-health warning systems: a comparison of the predictive capacity of different approaches to identifying dangerously hot days.* American journal of public health, 2010. **100**(6): p. 1137-1144.
- 529 52. Hémon, D. and E. Jougla, Surmortalité liée à la canicule d'août 2003: rapport
 530 d'étape. 2003.
- 53. Honda, Y., et al., *Heat-related mortality risk model for climate change impact projection*. Environmental health and preventive medicine, 2014. 19(1): p. 56-63.
- 53354.Lee, J.Y. and H. Kim, Projection of future temperature-related mortality due to534climate and demographic changes. Environment international, 2016. 94: p. 489-535494.
- 536 55. Li, T., R.M. Horton, and P.L. Kinney, *Projections of seasonal patterns in temperature-related deaths for Manhattan, New York.* Nature Climate Change, 2013. 3(8): p. 717-721.
- 539 56. Lin, Y.-K., et al., *High-temperature indices associated with mortality and outpatient visits: characterizing the association with elevated temperature.*541 Science of the total environment, 2012. 427: p. 41-49.
- 542 57. Masato, G., et al., *Improving the health forecasting alert system for cold weather*543 *and heat-waves in England: a proof-of-concept using temperature-mortality*544 *relationships.* PLoS One, 2015. 10(10).

- 545 58. Masterton, J.M. and F. Richardson, *Humidex: a method of quantifying human*546 *discomfort due to excessive heat and humidity*. 1979: Environment Canada,
 547 Atmospheric Environment.
- 548 59. McMichael, A.J., et al., *International study of temperature, heat and urban mortality: the 'ISOTHURM' project*. International journal of epidemiology, 2008.
 550 37(5): p. 1121-1131.
- Medina-Ramon, M. and J. Schwartz, *Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 US cities.*Occupational and environmental medicine, 2007. 64(12): p. 827-833.
- 554 61. Naumann, G. and W.M. Vargas, *A study of intraseasonal temperature variability*555 *in southeastern South America.* Journal of climate, 2012. 25(17): p. 5892-5903.
- 556 62. Patz, J., et al., *Health impact assessment of global climate change: expanding on comparative risk assessment approaches for policy making*. Annu. Rev. Public Health, 2008. 29: p. 27-39.
- 559 63. Price, K., S. Perron, and N. King, *Implementation of the Montreal heat response plan during the 2010 heat wave*. Canadian Journal of Public Health, 2013. **104**(2):
 561 p. e96-e100.
- 562 64. Sheridan, S.C., C.C. Lee, and M.J. Allen, *The mortality response to absolute and*563 *relative temperature extremes.* International journal of environmental research
 564 and public health, 2019. 16(9): p. 1493.
- 565 65. Sheridan, S.C. and L.S. Kalkstein, *Progress in heat watch-warning system*566 *technology*. Bulletin of the American Meteorological Society, 2004. 85(12): p.
 567 1931-1942.
- 568 66. Stocker, T.F., et al., *Climate change 2013: The physical science basis.*569 Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 2013. 1535.
- 571 67. Sung, T.-I., et al., *Relationship between heat index and mortality of 6 major cities in Taiwan*. Science of the total environment, 2013. 442: p. 275-281.
- 573 68. Toloo, G., et al., *Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence*. International journal of public health, 2013.
 575 58(5): p. 667-681.
- 576 69. Toutant, S., et al., An open source web application for the surveillance and
 577 prevention of the impacts on public health of extreme meteorological events: the
 578 SUPREME system. International journal of health geographics, 2011. 10(1): p. 39.
- 579 70. Valois, P., et al., Développement d'un indice d'adaptation à la chaleur chez les personnes habitant dans les 10 villes les plus peuplées du Québec. Québec:
 581 Université Laval, 2016.
- 582 71. Xu, Z., et al., *Heatwave and health events: A systematic evaluation of different temperature indicators, heatwave intensities and durations.* Science of The Total Environment, 2018. 630: p. 679-689.
- Yang, J., et al., *Heatwave and mortality in 31 major Chinese cities: definition, vulnerability and implications.* Science of The Total Environment, 2019. 649: p. 695-702.

588 **Figure titles**

589 Figure 1: Study Area, Greater Montreal area, the area is identified with the color red

- Figure 2: Number of excess mortality (EM) episodes related to heat (dotted lines) and
 total number of EM episodes (full lines) according to threshold values of EM (S_{EM})
 between 10 and 100%, for each month combined in season, with the chosen S_{EM} for
 the different months.
- Figure 3: Daily excess mortality (EM) estimation with the identification of EM episodes
 (numbering) and S_{EM} threshold indicator (horizontal segments) according to each
 period of the month.
- 597 Figure 4: Lag-response relationship between mortality and Tmax (a, b, c) and Tmin (d, e,
- f) at preliminary temperature values. Vertical bars represent the 95% confidenceinterval.
- Figure 5: Receiver operating characteristic (ROC) curves for different lag values used todevelop the HHWWS, with the red cross represents the resulting system.
- Figure 6: Thresholds of previous study for the study Area from May to September andthe thresholds of present study following months April-October
- 604

606