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Abstract: High-resolution urban image clustering has remained a challenging task. This is mainly
because its performance strongly depends on the discrimination power of features. Recently, several
studies focused on unsupervised learning methods by autoencoders to learn and extract more
efficient features for clustering purposes. This paper proposes a Boosted Convolutional AutoEncoder
(BCAE) method based on feature learning for efficient urban image clustering. The proposed method
was applied to multi-sensor remote-sensing images through a multistep workflow. The optical data
were first preprocessed by applying a Minimum Noise Fraction (MNF) transformation. Then, these
MNF features, in addition to the normalized Digital Surface Model (nDSM) and vegetation indexes
such as Normalized Difference Vegetation Index (NDVI) and Excess Green (ExG(2)), were used
as the inputs of the BCAE model. Next, our proposed convolutional autoencoder was trained to
automatically encode upgraded features and boost the hand-crafted features for producing more
clustering-friendly ones. Then, we employed the Mini Batch K-Means algorithm to cluster deep
features. Finally, the comparative feature sets were manually designed in three modes to prove
the efficiency of the proposed method in extracting compelling features. Experiments on three
datasets show the efficiency of BCAE for feature learning. According to the experimental results,
by applying the proposed method, the ultimate features become more suitable for clustering, and
spatial correlation among the pixels in the feature learning process is also considered.

Keywords: clustering; deep learning; unsupervised learning; convolutional autoencoder; feature
extraction; hand-crafted features; multi-sensor data

1. Introduction

Satellite and airborne image classification is one of the most demanding remote sens-
ing (RS) applications [1]. In general, image classification can be categorized as supervised
and unsupervised approaches [2]. Although supervised algorithms perform better than
unsupervised ones, they require labeled or training samples. As a result, the unavail-
ability of such high-quality and high-quantity training data justifies the use of clustering
algorithms [3]. Another advantage of unsupervised methods is that they carry out the
classification task by extracting valuable information from the data without any a priori
knowledge or specific assumption about data.

Clustering has been one of the fundamental research topics in data-mining stud-
ies [4,5]. It is usually referred to as a subcategory of an unsupervised algorithm employed
for dividing data into categories of a similar pattern without using training samples [6]. Fur-
thermore, the efficiency of machine learning algorithms highly relies on the representation
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or feature selection from data [7,8]. In other words, choosing proper feature representation
makes classification more efficient and accurate. Thus, proper feature representation for
classification is an open question that has recently received much scientific attention [9].

Feature extraction methods try to transform the data space into a new feature space
that is more compatible with clustering tasks [10]. Depending on the used features, land-
cover identification methods can generally be based on hand-crafted features, unsupervised-
learned features, and deep automated extracted features [11].

The first generation of research works on scene classification have been mostly based
on hand-crafted features, requiring a considerable amount of domain-expert knowledge
and time-consuming hand-tuning [12]. Traditionally, various hand-crafted feature extrac-
tion methods, such as scale-invariant feature transform (SIFT) [13], local binary pattern
(LBP) [14], non-negative matrix factorization (NMF) [15], and complex wavelet structural
similarity (CW-SSIM) [16], have been applied to extract the helpful information.

Automatic feature learning methods are considered a more helpful approach to over-
come the limitations of hand-crafted based feature extraction methods [17]. A typical and
commonly used unsupervised feature learning method is principal component analysis
(PCA) [18]. However, such methods fail to model the nonlinear data structures [19]. Com-
pared to traditional unsupervised feature-learning techniques, the deep-learning-based
method includes several processing units and layers and can extract more abstract repre-
sentations from data with the hierarchy of complexity levels. Furthermore, deep-feature
learning approaches effectively detect complicated patterns and hidden information in
high-dimensional data. These make it very promising to use deep-learning-based feature
extraction method for classification tasks [20].

The autoencoder (AE) deep neural network produces a nonlinear mapping function
through a learning process during iterations. The encoders map the input data to their
corresponding feature representation, and then the decoder regenerates input from the
features extracted by the encoding procedure. The learning procedure is iterative, ensuring
that the mapping function is efficient for the input data [21]. Clustering based on inde-
pendent features extracted from AEs has been studied in recent years. Song et al. [22]
have developed one of the first AE-based clustering models. They obtained a practical
and abstract feature, which is more informative for clustering purposes. They showed that
their proposed deep network could learn a nonlinear mapping by effectively partitioning
the transformed feature space [23]. Huang et al. [24] proposed a deep embedded network
to use a multilayer Gaussian restricted Boltzmann machine (GRBM) for feature extraction
with preserving spatial locality and group sparsity constraints, enabling the model to learn
more robust representations for clustering tasks. Tian et al. [25] proposed a graph-based
encoder method to use deep sparse AEs for clustering and obtained better accuracy than
spectral ones.

Instead of using AE as a preprocessing, joint AE and clustering were also considered
in the literature [26]. In Reference [27], a deep embedded clustering (DEC), as a jointly
optimized algorithm that learns feature and clusters data simultaneously, is presented.
The DEC works by mapping the data space to a new feature space through iteratively
optimizing a clustering objective. Guo et al. [28] argued that the feature space could be
adversely affected by clustering loss of DEC; accordingly, improved deep embedded clus-
tering (IDEC) was presented to integrate the AE clustering loss and reconstruction loss and
improve the performance by preserving the local-spatiality of data. Guo et al. argued the
inefficiency of dense layers for clustering tasks and then used a convolutional autoencoder
(CAE). Their results demonstrated improvement in both DEC and IDEC accuracies [29].
Thus, the method is introduced as deep convolutional embedded clustering (DCEC).

Recently, several research works have utilized AEs for clustering applications and demon-
strated notable performances over clustering using only hand-crafted features [8,30,31]. In
the multilayer structure of deep learning models, the feature of one level is transformed
into a higher and more abstract level [32]. However, AE had little contribution because it
cannot guarantee that similar input data obtain similar representations in the latent space,
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which is essential for clustering purposes [33]. On the other hand, several studies, includ-
ing References [34–37], have indicated that hand-crafted features, despite their simplicity,
contain information independent of the deep features.

Moreover, in remote-sensing image classification, single-source data generally cannot
achieve high accuracy due to the lack of rich and diverse information to distinguish different
land-cover classes [38]. Multisource data, such as optical, radar, lidar, thermal, etc., have
been used to overcome these limitations and significantly increased the discrimination
among the land-cover classes [39–41]. However, the limited representation of the hand-
crafted features extracted from multi-sensor data remains a significant challenge and needs
further investigation. This leads to the overlapped classes and corrupts the performance
of classification [42]. Therefore, to simultaneously use the advantages of deep learning
methods and available information in multi-sensor features in the proposed method in
this article, instead of using raw images, hand-crafted features were used for training the
CAE. The hand-crafted features applied are normalized difference surface model (nDSM),
normalized difference vegetation index (NDVI) or Excess Green (ExG(2)), and components
of minimum noise fraction (MNF) transformation.

To the best of our knowledge, no study has yet explored the possibility of CAEs for
land cover clustering in urban areas. In this paper, a new boosted convolutional autoen-
coder (BCAE) with hand-crafted features is proposed to extract more effective deep features
for clustering RS images automatically. The proposed model uses functional mid-level
features to train a light-weighted network to increase the separation of clusters in feature
space and boost the clustering results instead of applying raw images as input or employ-
ing complex network architectures. The model results are compared with the three most
commonly used sets of features to prove the efficiency of the proposed method in extracting
robust features. In addition, three different datasets were used to verify the performance of
our proposed method compared to the competing sets. Experimental results demonstrate
the effectiveness of the proposed method over the other three competing feature sets in
terms of required processing time and accuracy of clustering applied to datasets.

2. Materials and Methods
2.1. Remotely Sensed Data

To evaluate the performance of the proposed BCAE method, we perform several exper-
iments on three datasets, namely the Tunis, University of Houston, and ISPRS Vaihingen.
Datasets descriptions are as follows:

1. Tunis: These data are an improved satellite image in terms of spatial resolution by the
Gram–Schmidt technique and includes eight spectral bands with a spatial resolution
of 50 cm acquired by a WorldView-2 sensor. In terms of dimensions, this image
is 809 × 809 pixels. This dataset includes digital terrain model (DTM) and digital
surface model (DSM) of the study area;

2. University of Houston: The imagery was acquired by National Center for Airborne
Laser Mapping (NCALM) on 16 February 2017. The recording sensors consist of an
Optech Titan MW (14SEN/CON340) with an integrated camera (a LiDAR imager
operating at 1550, 1064, and 532 nm) and a DiMAC ULTRALIGHT + (a very high-
resolution color sensor) with a 70 mm focal length. We produced DTM and DSM from
this dataset from multispectral LiDAR point cloud data at a 50 cm ground sample
distance (GSD) and a very high-resolution RGB image at a 5 cm GSD. The data cube
used in the study includes a crop of the original data with a width and height of
1500 × 1500 pixels, in 5 layers (blue, green, and red bands with DSM and DTM);

3. ISPRS Vaihingen: The German Association of Photogrammetry, Remote Sensing, and
Geoinformation produced the dataset. It consists of 33 image tiles in infra-red, red,
and green wavelength and GSD of 9 cm/pixel that there is ground truth for 16 of
them. This imagery also contains DSM extracted from dense LiDAR data. We used a
1500 × 1500 pixel cube from the 26th image patch in the dataset in 4 layers (IR-R-G
with nDSM). It should be noted that we used the nDSM generated by Gerke [43].
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2.2. Methodology

This paper proposes a two-step framework feature learning and clustering of RS
images, as illustrated in Figure 1. The proposed CAE was trained with hand-crafted
features to extract more effective deep features in the first step. The extracted deep features
are fed into the Mini Batch K-Means clustering algorithm to identify clusters in the second
step. The central core of this framework is the proposed BCAE, which generates deep
features boosted by using hand-crafted features.
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Figure 1. An overall overview of the proposed clustering method.

2.2.1. Boosted Convolutional Autoencoder (BCAE)

In this paper, we propose to boost CAE by using hand-crafted features. In our model,
a preprocessing step was performed to create more robust representations through our
proposed CAE. In this phase, two practical hand-crafted features (i.e., normalized digital
surface model (nDSM) and vegetation indexes, such as NDVI and ExG(2) for urban-scene
classification, were used. We also used minimum noise fraction (MNF) [44] as another
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boosting feature. This workflow upgraded our deep features after unsupervised learning
by CAE.

CAE [45] is an unsupervised feature learning method that recently attracted scientific
attention. CAE is a multilevel feature extraction model aimed at discovering the inner
information of images [46]. Compared with conventional dense AE, CAE utilizes the
spatial-locality of the original images, which is critical for image clustering and decreases
the possibility of overfitting caused by parameter redundancy [30].

As illustrated in Figure 2, the proposed CAE includes two main blocks of encoder
and decoder. The transformation from the original image into the hidden layer is named
encoding. In contrast, the transforming feature map from the hidden layer toward the
output image is described as a decoding procedure. The target of the encoder is to mine
the inner information encapsulated in the input data and extracts them as constructive
features, and the goal of the decoder block is to reconstruct the input data from the extracted
features [46].
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In the proposed CAE, X = {x1, x2, . . . , xn} ∈ RH×W×D is used as the input tensor,
where D, W, and H indicate the depth (i.e., number of bands), width, and height of the input
image, respectively, and n is the number of pixels. The X consists of the image patches

(
x∗i
)

with the size of 7× 7× D (x∗i ∈ R7×7×D) which are extracted from the input image. In
the following, each patch is fed into the encoder Block. For the input x∗i , the hidden layer
mapping (latent representation) of the kth feature map is given by Equation (1) [47]:

hk = σ
(

x∗i ∗Wk + bk
)

(1)

where b is the bias, σ is an activation function (in this work, the rectified linear unit (ReLU)),
and the symbol * corresponds to the 2D convolution. Then, the reconstruction is obtained
by using Equation (2):

y = σ
(
∑ k∈Hhk ∗ W̃k + b̃k

)
(2)

where b̃ represents the bias for each input channel, and h denotes the encoded feature maps.
W̃ is the transposition of W, and y is the predicted value [48]. To calculate the parameter
vector θCAE =

{
Wk, W̃k, bk, b̃k

}
, the following loss function should minimize [49]:

E(θ) =
1
n ∑ n

i=1‖x∗i − yi‖2
2 (3)
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In order to minimize the loss function (Equation (3)), its gradient with respect to the
convolution window parameters

(
W, W̃, b, b̃

)
should be calculated as Equation (4) [48]:

∂E(θ)
∂Wk = x∗ ∗ δhk + hk ∗ δy

∂E(θ)
∂bk = δhk + δy

(4)

where δh and δy are the deltas of the hidden states and the reconstruction, respectively. The
weights are then updated by using adaptive learning rate methods (ADAMs) [50]. Finally,
the ultimate parameters of CAE are estimated once the cost function converges. The output
feature maps of the encoder block are considered deep features.

In this work, the dropout [51] strategy is added to improve the computational ef-
ficiency and reduce the overfitting of CAE [52]. In addition, the Batch Normalization
(BN) [53] is also applied to improve the network’s performance. BN helps networks learn
faster, as well as increase accuracy [54].

2.2.2. Boosting Deep Representations with Hand-crafted Features

The classification of high-spatial-resolution RS images has become challenged by
technology development in pixel size due to the high spectral mixture among different
classes, and multispectral images are insufficient for such classification tasks [55]. Light
detection and ranging (LiDAR) data like nDSM is a crucial component that provides high-
accuracy data about absolute elevation of objects which is almost perfect to distinguish
objects of different heights, such as buildings and roads in scene classification [56]. Huang
et al. [55] also emphasized the effectiveness of using this elevation data in extracting
buildings. Specifically, nDSM is advantageous for separating high and low vegetation.
Recently, many building detection approaches that used aerial imagery and LIDAR data
have shown that best correctness and completeness are achieved through spectral and
elevation information [57,58]. Nowadays, the urban scene classification task mainly relies
on elevation information rather than near-infrared (NIR) spectral bands [55].

NDVI, the popular vegetation index, quantifies the vegetation by the difference in
photosynthetic response to red-light absorption and near-infrared reflectance. The addition
of an NDVI image layer led to a more accurate clustering [59]. It was also added to detect
vegetation [60]. According to MacFaden et al. [61], the use of NDVI and nDSM is critical
to extract vegetation (in particular trees) next to buildings. The NDVI is based on the
spectral response in the NIR spectrum, which does not exist in the RGB data captured by
UAVs. Torres-Sánchez et al. [62] investigated several vegetation indices calculated from
RGB bands and showed that the excess green (ExG(2)) index [63] obtained the best result
for vegetation mapping in UAV data.

The MNF transformation, a modified version of PCA, aims to minimize the correlation
between bands and reduce systematic noise in the image [56]. The approach is a conven-
tional dimensionality reducing approach to determine the inherent dimensionality, reduce
computational requirements, and segregate data noise [64]. The hand-crafted features
applied in this study are nDSM, NDVI or ExG(2), and MNF components (Table 1).

Table 1. Extraction of hand-crafted features.

Feature Definition

nDSM nDSM = DSM – DTM
where DSM is the digital surface model, and DTM is the digital terrain model.

NDVI
NDVI = (ρNIR − ρred)/(ρNIR + ρred)
where ρNIR is the reflectance of the near-infrared wavelength band and ρred is the reflectance of the red
wavelength band.

ExG(2) ExG(2) = 2g− r− b
where r, g, and b are the color band divided by the sum of three bands per pixel [60].
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Table 1. Cont.

Feature Definition

MNF

Considering noisy data as x with n-bands in the form of x = s + e, where s and e are the signals and noise parts of x, the
covariance matrices of s and e can be calculated as follow:
Cov{x} = ∑ = ∑ s + ∑ e
Then, the noise variance of the ith band with respect to the variance for ith band can be described as:
Var{ei}/Var{xi}
In the following, the MNF transform is considered as a linear transformation:
y = AT x
where, y is a produced dataset with n bands, which is a transformation of the original bands, the unknown coefficients
(A) are obtained by calculating the eigenvectors associated with sorted eigenvalues:
A∑ e ∑ −1 = ΛA
where, Λ is eigenvalue matrix (λi), each eigenvalue associated with ai is the noise ratio in yi, i = 1, 2, . . . , n [65].

2.3. Accuracy Assessment

Cluster validity indices (CVIs) are applied to evaluate the performance of clustering
algorithms. Unfortunately, most of CVIs, including the Davies–Bouldin index (DBI) and
Xie–Beni index (XBI), were not suitable for RS images due to considerable between-cluster
overlaps [66]. Thus, in order to estimate the clustering accuracy, the confusion matrix was
used, and the overall accuracy (OA), producer’s accuracy (PA), and Kappa coefficient (κ)
were calculated by using this matrix.

It is noticeable that, due to the dependence of the Mini Batch K-Means algorithm on
the initial values and to eliminate its random influence and, also, because k-means may get
stuck in local optima, we run Mini Batch K-Means 5 times and display the clustering with
the smallest error [67]. Tables 2–4 describe the ground truth data used for each dataset.

Table 2. Ground truths of the Tunis dataset.

Class Ground Truth (Pixel)

Bare Land 39,052
Building 48,909

Vegetation 33,499
Total 121,460

Table 3. Ground truths of the UH dataset.

Class Ground Truth (Pixel)

Bare Land 131,061
Building 133,856

Low Vegetation 135,513
Tree 137,151
Total 537,581

Table 4. Ground truths of the Vaihingen dataset.

Class Ground Truth (Pixel)

Bare Land 719,721
Building 534,190

Low Vegetation 128,787
Tree 508,345

Water 358,957
Total 2,250,000

2.4. Parameter Setting

The encoder block of the proposed CAE framework consists of two convolutional
layers (CNN1 and CNN2) having 12 and 24 filters, respectively. The kernel size of these
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layers is set to be 3 × 3. There are also two convolutional layers (CNN3 and CNN4) with
the kernel size of 1× 1, making it applicable to completely use the spatial information from
the input datasets without considering the neighborhood and extracting features based
more on the depth of the data. In this block, we choose 12 and D to output convolutional
layers (CNN3 and CNN4) in our proposed model, where D is the depth of the dataset
in use. Based on trial and error, the learning rate and batch size were chosen to be 0.01
and 10, respectively. Regularization is also used to avoid overfitting. The BN is added
to the third dimension of each activation map of the convolutional layer to overcome the
internal covariant shift problem. A 30% dropout is applied to the CNN1 and CNN4 layers
to enhance the generalization ability by ignoring random connections [68]. In the training
process, the Adam optimizer optimized the mean squared error (MSE) cost function.
Table 5 summarizes the specifications of the layers in the proposed BCAE framework.

Table 5. The configuration of BCAE for the feature learning of the image path dataset with a 7 × 7 × D window size for the
input cube.

Block Unit Input Shape Kernel Size Regularization Output Shape

Encoder
CNN1 + ReLU + BN 7 × 7 × D 3 × 3 Dropout (30%) 5 × 5 × 12
CNN2 + ReLU + BN 5 × 5 × 12 3 × 3 - 3 × 3 × 24

MaxPooling 3 × 3 × 24 2 × 2 - 1 × 1 × 24

Decoder
CNN3 + ReLU + BN 1 × 1 × 24 1 × 1 1 × 1 × 12
CNN4 + ReLU + BN 1 × 1 × 12 1 × 1 Dropout (30%) 1 × 1 × D

UpSampling 1 × 1 × D 7 × 7 - 7 × 7 × D

2.5. Competing Features

In order to evaluate the performance of the BCAE method, three sets of features were
considered through three scenarios of input data. The configurations of these features are as
follows. The first feature set contained spectral features, including original spectral bands
from optical imageries. The second feature set contained spectral and spatial features,
including nDSM, NDVI, or ExG(2). Finally, the third feature set contained deep features
extracted by training proposed CAE over raw spectral information of each band.

• MS (Multispectral features);
• MDE (MNF + nDSM + ExG(2)) for UH dataset and MDN (MNF + nDSM + NDVI) for

Tunis and Vaihingen datasets;
• CAE_MS.

2.6. Mini Batch K-Means

The Mini Batch K-Means [69] clustering algorithm is a modified version of the K-
means algorithm that is considered faster, simpler to implement, and generally used for
large datasets [70]. The main idea of this algorithm is to make batches of a fixed size
randomly in each iteration and update the clusters. A learning rate is defined by inversing
of samples to decrease the number of iterations. Therefore, as the number of samples
increases, the effect of new samples is reduced [71]. In this study, Mini Batch K-Means with
a batch size of 10 was applied to cluster features extracted by BCAE. First, the number of
clusters was determined as the number of classes in each dataset. Then, we labeled the
clusters through visual inspection.

3. Experimental Results
3.1. Preprocessing

Two preprocessing steps of feature extraction and resampling were applied to the
datasets, as summarized in Table 6. The first one was to extract MNF, nDSM, NDVI, and
ExG(2) as hand-crafted features, and the second one was to make the resolution of the
dataset consistent.
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Table 6. Hand-crafted features for all datasets.

Preprocessing
Dataset

UH Tunis Vaihingen

Features Extraction

MNF
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contain no clear feature. On the other hand, considering the statistical information about 
transformed components (Table 8), we noticed that the first layer in UH has the highest 
eigenvalue with a meaningful interval. It is also true for the Vaihingen dataset. Accord-
ingly, for optimum result and reducing the redundancy, the first three bands in Tunis and 
the first band in UH and Vaihingen were selected. Then, selected MNF bands were 
stacked to the nDSM and the NDVI or ExG(2) features. Next, a dataset composed of 
patches (equal to the number of pixels in the dataset) taken from the stacked cube was 
generated. Finally, the proposed CAE was trained over the patches, and through unsu-
pervised learning, our deep representations were extracted. It should be noted that all the 
experiments here were conducted on an Intel Core i3-3120M CPU. Moreover, CAE has 
been implemented in the Python 3.7 language, which has utilized Tensorflow 2.1.0. 
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The MNF transformation was applied for the preprocessing phase. First, we carried
out MNF through Python programming, using Spectral Python (Spy) 0.21 package, leading
to a list of corresponding images from informative bands to noisy ones (Table 7). It is
evident from (Table 7) that in Tunis, after four first bands (a–d), the others are noisy and
contain no clear feature. On the other hand, considering the statistical information about
transformed components (Table 8), we noticed that the first layer in UH has the highest
eigenvalue with a meaningful interval. It is also true for the Vaihingen dataset. Accordingly,
for optimum result and reducing the redundancy, the first three bands in Tunis and the
first band in UH and Vaihingen were selected. Then, selected MNF bands were stacked to
the nDSM and the NDVI or ExG(2) features. Next, a dataset composed of patches (equal to
the number of pixels in the dataset) taken from the stacked cube was generated. Finally,
the proposed CAE was trained over the patches, and through unsupervised learning, our
deep representations were extracted. It should be noted that all the experiments here were
conducted on an Intel Core i3-3120M CPU. Moreover, CAE has been implemented in the
Python 3.7 language, which has utilized Tensorflow 2.1.0.
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Table 8. Statistics of MNF bands.

Dataset MNF Band Eigenvalue
Variance

Per Band (%) Accumulative (%)

Tunis

1 85.4706 34.99 34.9
2 53.9577 22.09 57.08
3 27.5616 11.29 68.37
4 22.4381 9.18 77.55
5 17.8637 7.32 84.87
6 16.7731 6.86 91.73
7 14.9745 6.13 97.86
8 5.2181 2.14 100.00

UH
1 97.7494 46.72 46.72
2 64.9348 31.03 77.75
3 46.5552 22.25 100.00

Vaihingen
1 219.6756 55.69 55.69
2 128.2491 34.10 89.79
3 39.5643 10.21 100.00

3.2. Clustering Results

We performed the BCAE method on the three datasets and applied the Mini Batch
K-Means algorithm to the encoded features. The clustering maps (Figures 3–5) and quanti-
tative results (Tables 9–11) are listed below.

3.2.1. Tunis Dataset

Figure 3 shows the clustering maps for different feature sets. Visually, the performance
of the boosted deep features (i.e., BCAE) is similar to spectral and spatial features (i.e.,
MDN), and they both outperform two other ones (i.e., MS and CAE–MS). It should be
mentioned that BCAE leads to compensate noise and extract the correct boundaries of the
vast majority of classes. Bare land had a similar spectral representation to some buildings.
Hence, spectral features (MS) alone were insufficient to separate these land-covers. Even
though the CAE–MS features perform slightly better than MS, summarizing these results
makes it possible to prove that the information in its raw form for use as features will
significantly impact reducing clustering performance. Table 9 presents the clustering
accuracies for different feature sets. MDN, i.e., spatial and spectral features (i.e., MNF,
nDSM, and NDVI), significantly improved OA by 16% compared to the first feature set
scenario, i.e., using only spectral features (MS). BCAE led to superior performance to the
competing features. The corresponding OA and Kappa were 20% and 30% higher than the
MS ones, 4% and 6% higher than the MDN ones, 14% and 21% higher than the CAE–MS
ones. The improved accuracy over MDN, particularly for building class (6%), indicates that
the proposed BCAE method boosted spatial and spectral features. Based on the comparing
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results in Table 9, the challenging class, i.e., building, demonstrates low clustering accuracy
over MS and CAE–MS, while the BCAE has remarkably improved the accuracy. It increased
about 6% in OA in comparison with the MDN feature set.
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Table 9. A comparison between the clustering results of the Tunis dataset.

Class
(Producer’s/User’s Accuracy (%))

Method

MS MDN CAE–MS BCAE

Bare Land 90.77/63.40 97.46/77.10 92.02/77.72 98.32/85.96
Building 41.90/92.19 81.71/99.43 55.93/99.17 87.94/99.54

Vegetation 98.32/76.02 91.33/95.91 98.42/69.21 97.83/97.59
Overall Accuracy 73.17 89.43 79.25 94.01

Kappa Coefficient (×100) 60.54 84.07 69.40 90.95

3.2.2. UH Dataset

The UH dataset has two important spectral mixings in land covers, including spectral
similarity between trees and low vegetation and bare land and building. In addition, there
are some difficulties in the classification of these two classes for trees near buildings or
trees without green leaves. The MS and CAE–MS were built on the spectral information
only; thus, they are insufficient to address clustering in this dataset and show poor OA
and Kappa values. On the other hand, compared to the MS, clustering with the CAE–MS
leads to about 2.84% and 3% improvements in OA and Kappa, respectively. According to a
recent comparison, the use of CAE has a positive effect on increasing cluster accuracy by
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extracting more distinct features. In the case of MDE, even with the significant improvement
in three classes, compared to MS and CAE–MS feature sets, there was no noticeable
improvement for building class; however, we have to note the fact that the use of MNF,
nDSM, and ExG(2) features lead to 12% and 16% improvements in the OA and κ compared
to the MS, respectively. In particular, MDE used the height information alongside ExG(2)
and facilitated tree class distinguishing. The BCAE approach had a visually highlighted
enhancement (Figure 4). Moreover, the BCAE method achieved better OA of 30% and κ of
40%. For the most challenging class (i.e., tree) in the UH dataset, the results (Table 10) show
poor clustering performance over competing features, while the BCAE has a considerably
improved accuracy of 77.37%.
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Table 10. A comparison between the clustering results of the UH dataset.

Class
(Producer’s/User’s Accuracy (%))

Method

MS MDN CAE–MS BCAE

Bare Land 79.43/93.56 94.35/79.18 75.65/93.01 94.29/96.70
Building 45.35/54.82 50.09/89.04 54.54/59.88 96.59/77.84

Low Vegetation 66.82/43.40 77.33/64.06 71.63/43.76 94.21/94.58
Tree 38.76/49.71 68.27/39.39 32.93/51.77 77.37/97.61

Overall Accuracy 55.64 67.87 58.48 90.53
Kappa Coefficient (×100) 40.85 57.23 44.62 87.37
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3.2.3. Vaihingen Dataset

Figure 5 and Table 11 demonstrate the clustering maps and accuracies, respectively.
In this dataset, we observe that CAE–MS performance is worse than MS by 3% and 2% in
terms of κ and OA, respectively. Generally, the spectral overlap between low vegetation and
tree classes leads to the worst accuracy among MS and CAE–MS. In this case, the features
learned directly from the raw data by the proposed ACE had a negative effect on accuracy.
These results show that the clustering of images by using only spectral information in raw
data cannot lead to acceptable performance. As shown in Figure 5, although the OA varies
from 45 to 54% in three competing feature sets, the clustering maps do not represent the
accurate content, especially in building class and bare land class affected by shadow. For
very high-resolution imagery, there is no success with clustering on only the spectral data at
all. There is a significant improvement for MDN compared to MS and CAE–MS (i.e., OA of
6–8% and Kappa of 9–12%). This is not surprising because the DSM can help in efficiently
classifying houses and trees, while the infrared band can discriminate vegetation better.
However, the water class is not classified correctly. Accordingly, to achieve high accuracy
in such clustering tasks, spatial information is not representative enough. In BCAE features,
all classes achieve remarkably better accuracy by using deep-boosted features than other
comparing feature sets.
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Table 11. A comparison between the clustering results of the Vaihingen dataset.

Class
(Producer’s/User’s Accuracy (%))

Method

MS MDN CAE–MS BCAE

Bare Land 40.28/65.12 94.16/32.46 34.21/61.60 91.63/97.22
Building 23.46/85.63 76.23/86.03 23.27/60.57 94.96/90.48

Low Vegetation 51.79/85.97 50.53/21.56 9.34/8.72 74.67/77.24
Tree 10.82/5.08 75.17/88.12 51.09/81.75 93.73/90.79

Water 98.00/32.64 00.00/00.00 98.24/29.65 97.52/96.79
Overall Accuracy 46.41 53.00 44.22 92.86

Kappa Coefficient (×100) 33.60 43.03 30.43 90.65

3.2.4. Running Time Comparison

The execution time of the K-Means-based algorithm increases with the growth of the
size and dimension of the dataset. Hence clustering datasets usually is not a time-efficient
task [72]. Therefore, it is necessary to accelerate these algorithms with dimension reduction
and efficiently reduce data size. As shown in Table 12, it can be seen that the clustering of
features extracted by BCAE has performed well compared to the three competing feature
sets in terms of running time, and the clusters have converged faster. As a result, in addition
to better accuracy, the proposed method is time-efficient.

Table 12. The computational time of the proposed and competing methods for the three datasets.

Method UH (s) Tunis (s) Vaihingen (s)

MS 34.542 11.063 40.146
MDE/MDN 33.379 10.486 48.911

CAE–MS 39.755 9.917 37.345
BCAE 31.292 9.864 35.308

4. Discussion

The main issue associated with image classification from using supervised methods is
the requirement of a large set of labeled training samples. The lack of sufficient training
data could highlight the importance of using unsupervised approaches. Clustering of
high-resolution urban scenes in remote sensing, considering high complexity and inter-
class diversity of land cover, is faced with low performances. Therefore, one solution to
overcome this problem would be extracting discriminative hand-crafted features, which
requires a considerable amount of experience and time.

In this study, we used an unsupervised feature learning method to produce high-level
features automatically. We also used multi-sensor data to boost deep features discrimi-
nation power by complementary spatial information and reducing dimensionality. The
experimental results from the three datasets validated the efficiency and versatility of the
BCAE for image clustering. The deep features outperform the manually designed ones.
It turns out to work surprisingly well with clustering algorithm by use of the following
factors: (1) the convolutional structure for local spatial-preserving and reducing data re-
dundancy, (2) the BN for decreasing interval covariate shift of network and dropout for
computational efficiency and increasing the generalizability, (3) fusion of complementary
spatial information (i.e., nDSM) with spectral features (i.e., MNF and NDVI), and (4) no
need for large labeled data and using patch learning with the scene image. In addition,
since our proposed network is light-weighted, its run-time is short. The numerical results
demonstrate the efficiency and superiority of the proposed method in terms of OA and
κ, compared with three competing features that rely only on the hand-crafted features or
only deep features learned from raw data. On the other hand, the low potential of clus-
tering methods, specifically the K-Means-based algorithm, limits the number of correctly
identified classes.
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5. Conclusions

Many researchers prove that feature extraction plays a vital role in data processing;
thus, in this article, we proposed a practical approach (BCAE) to learn more discriminative
features based on CAE and hand-crafted (spectral and spatial) features for clustering RS
images. The BCAE is constructed by stacking convolution layers in an AE form that learns
features from hand-crafted features as its input, and our network boosts the discrimination
of hand-crafted features. The feature maps of the last layer in the encoder part of BCAE
that reflect the RS data’s essential information can be used to input the clustering algorithm.
The extracted features have more separable and compact patterns than the hand-crafted
input features, which helps the clustering purpose. Our goal is to map data to a latent
space where Mini Batch K-Means is a suitable tool for clustering. The learned deep feature
representation is highly discriminative.

We will apply the proposed method to a broader range of data in our future work to
establish a more global one. In addition, investigating various hand-crafted features and
designing a robust autoencoder model and segment-based instead of pixel-wise clustering
would be an open issue for future studies.
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