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ABSTRACT: Regional frequency analysis (RFA) is widely used in the design of hydraulic structures at locations where

streamflow records are not available. RFA estimates depend on the precise delineation of homogenous regions for accurate

information transfer. This study proposes new physiographical variables based on river network features and tests their

potential to improve the accuracy of hydrological feature estimates. Information about river network types is used both in

the definition of homogenous regions and in the estimation process. Data from 105 river basins in arid and semiarid regions

of theUnited States were used in our analysis. Artificial neural network ensemblemodels and canonical correlation analysis

were used to produce flood quantile estimates, which were validated through tenfold cross and jackknife validations. We

conducted analysis for model performance based on statistical indices, such as the Nash–Sutcliffe efficiency, root-mean-

square error, relative root-mean-square error, mean absolute error, and relativemean bias. Among various combinations of

variables, a model with 10 variables produced the best performance. Further, 49, 36, and 20 river networks in the 105 basins

were classified as dendritic, pinnate, and trellis networks, respectively. The model with river network classification for the

homogenous regions appeared to provide a superior performance compared with a model without such classification. The

results indicated that including our proposed combination of variables could improve the accuracy of RFA flood estimates

with the classification of the network types. This finding has considerable implications for hydraulic structure design.
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1. Introduction

Regional hydrological frequency analysis (RFA) is adopted

widely for estimating extreme hydrological events and is essential

for the design and operation of hydraulic structures. RFA is

usually carried out to transfer information from locations where

data are available to ungauged locations (Durrans and Tomic

1996; Chebana and Ouarda 2007) or to partially gauged sites

(Seidou et al. 2006). RFA generally consists of two steps, namely,

the delineation of groups of hydrologically homogeneous basins

called ‘‘homogenous regions’’ or ‘‘homogenous neighborhoods,’’

and the transfer of hydrological information within the defined

groups. The quality of the final estimate depends mainly on the

quality of the defined homogeneous regions. When the region is

extremely small, it could have a high level of homogeneity but

insufficient information content to transfer the knowledge to the

ungauged site. For instance, even a simple transfer through re-

gression requires an adequate number of siteswithin the region, as

adequate regression cannot be built with a small number of points.

On the other hand, if the region is extremely large, the amount of

information remains important, but the level of homogeneity is

reduced substantially. Therefore, a delicate trade-off is usually

sought between the amount of information and the homogeneity

level. The precise identification of homogenous regions signifi-

cantly affects the performance of hydrological estimation models

(Chebana and Ouarda 2008; Wazneh et al. 2016).

Several methods have been proposed to delineate homo-

geneous regions. For instance,Matalas et al. (1975) and Beable

and McKerchar (1982) used geographic and administrative

boundaries, Hosking and Wallis (1997) proposed hierarchical

clustering usingWard’s method (Ward 1963), andOuarda et al.

(2001) recommended using canonical correlation analysis

(CCA) to determine hydrological neighborhoods to improve

the estimation of flood quantiles. Durocher et al. (2016) ana-

lyzed the delineation of homogenous regions based on refer-

ence variables representing nonlinear relationships among

hydrological data. Abdi et al. (2017a) used the growing neural

gas network to determine hydrological data clustering in RFA.

Various physiographical and meteorological variables have

been employed to define homogeneous regions in RFA, such as

basin area, mean basin slope, main channel length, percentage of

area covered by forest, percentage of area covered by lakes, main

channel slope, annual mean precipitation, annual mean days with

temperature exceeding 08C, and curve number (CN) (Flavell

1983; Shu andOuarda 2007;Aziz et al. 2014; Requena et al. 2018).

In the literature on hydrological frequency analysis, the focus is

mainly on the development and assessment of new methods of

delineation and estimation to enhance hydrological quantile es-

timation (Castellarin et al. 2001;Ouarda et al. 2008).However, the

physiographical and meteorological variables used in RFA have

not evolved much in recent decades. Noteworthy gains could re-

sult from the integration of drainage network features as new

variables in group delineation and regional transfermodels, as the

characterization of river networks depends on climatic, physio-

graphic, and topographic constraints (Horton 1945; Daniel 1981;

Burbank 1992), and flood dynamics are correlated with the

drainage density of a basin (Pallard et al. 2009). Information on

river network types and their properties is highly relevant to

understanding regional hydrological dynamics, such as floodCorresponding author: Kichul Jung, jkichul11@naver.com
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response time and the shape of hydrographs, for the generation

of flood quantile estimates. Therefore, integrating such infor-

mation should improve the definition of homogenous regions

and significantly affect RFA results.

Several methods have been proposed for estimation using

RFA.For instance, several countries have adopted the index flood

method (Dalrymple 1960; Hosking andWallis 1993; Chebana and

Ouarda 2009; Kjeldsen and Jones 2010). The key assumption of

this approach is that, except for an index factor, flood data from

different locations have similar distributions (Dalrymple 1960).

Alternatively, the rational method has been used for flood esti-

mates in small river basins (Hua et al. 2003). The rational method

is used generally for flood estimation in small urban or rural areas,

and it often fails to reproduce specific flood events when actual

rainfall data are applied. Diverse regression-based approaches

have also been applied in regional estimation (Haddad and

Rahman 2012; Ouarda et al. 2018). Hydrological processes gen-

erally represent nonlinear behaviors by showing substantial spa-

tial and temporal variability, and nonlinear regression approaches

provide estimates that are more accurate than linear regression

approaches in regional flood frequency analysis (Pandey and

Nguyen 1999; Grover et al. 2002). As regards nonlinear modeling,

artificial neural networks (ANNs) have been adopted generally

in a wide range of hydrological issues, such as rainfall runoff

modeling, hydrological forecasting, and flood quantile estimation

in regional frequency analysis (Daniell 1991; Muttiah et al. 1997;

Govindaraju 2000; Luk et al. 2001; Dawson and Wilby 2001; Shu

and Burn 2004; Dawson et al. 2006; Shu and Ouarda 2007;

Chokmani et al. 2008; Turan and Yurdusev 2009; Besaw et al.

2010; Aziz et al. 2014). ANN models in RFA can provide the

functional relationships between quantiles and physiographical

variables, resulting in improved quantile estimation. Furthermore,

the integration of canonical correlation analysis and ensemble

ANN has been proposed to improve flood quantile estimation

(Ouarda et al. 2001; Shu andOuarda 2007;Alobaidi et al. 2015). In

their analysis, Ouarda et al. (2001) proposed a theoretical

framework in applying the CCA for RFA.

RFA has been applied extensively in nonarid regions (Abdi

et al. 2017b; Requena et al. 2017; Rahman et al. 2018).

However, relatively few studies have proposed RFA proce-

dures for arid and semiarid regions, although the design of ir-

rigation and groundwater recharge dams is crucial in such

regions. A small country such as the UnitedArab Emirates, for

instance, has more than 130 recharge dams on intermittent

rivers (Gonzalez et al. 2016). Zaman et al. (2012) applied RFA

in arid regions in Australia, and Farquharson et al. (1992)

conducted RFA using flood data from 162 stations in arid re-

gions, including northwestern Africa, Iran, and Saudi Arabia.

However, RFA methods for arid and semiarid regions of the

United States have not been developed, and no studies have

attempted to use specific river network information to produce

flood quantile estimates in the context of RFA.

Drainage networks have a distinct appearance in different

regions and environments. For instance, a dendritic network is

typically tree like, and it develops freely, with tributaries

merging at moderately acute angles (Howard 1967). A parallel

network has a parallel form, and it generally develops on large

surface slopes characterized by straight main channels and

tributaries that join at acute junction angles (Mosley 1972;

Phillips and Schumm 1987; Jung et al. 2011). A pinnate net-

work features a feather-like form, with straight major channels

andmany small tributaries merging at extremely acute junction

angles (Howard 1967). A rectangular network involves stream

course irregularities characterized by a large number of 908
bends and tributaries that join at right angles (Howard 1967).

A trellis network appears lattice like and has small, short

channels that merge at nearly 908 angles (Howard 1967;

Abrahams and Flint 1983). Figure 1 shows examples of the

five types of river networks from U.S. basins.

Several attempts have beenmade to identify different drainage

network types based on river network characteristics and propose

classification methods. Argialas et al. (1988) used third-order

networks digitized from aerial photos to propose a river classifi-

cation system. Ichoku and Chorowicz (1994) proposed a quanti-

tative approach to determine different river networks based on 14

features of drainage networks derived from digital elevation

models (DEMs).Mejia andNiemann (2008) used threemeasures,

including drainage-area increments along a channel, channel

course irregularities, and tributary junction angles to classify dif-

ferent network types. More recently, Jung et al. (2015) proposed

identification of drainage network types based on the cumulative

distributions of secondary tributary lengths within various ranges

of tributary junction angles. As different river network types in-

volve specific drainage network features, river network classifi-

cation should provide valuable information for use in RFA.

The objective of the present work is to develop the RFA

model employing the river network information used for de-

lineating the homogenous regions. Further, the optimal com-

bination of physiographical and meteorological variables for

flood quantile estimation was analyzed based on statistical in-

dices. As regards the statistical indices, the k-fold cross-

validation and jackknife approaches were used to evaluate

the accuracy and performance and to present the appropriate

model. The k-fold cross-validation and jackknife techniques

are used extensively to evaluate the prediction model in fre-

quency analysis (Shu and Ouarda 2007; Ouarda and Shu 2009;

Alobaidi et al. 2015; Faridzad et al. 2018; Requena et al. 2018;

Jung et al. 2019). We applied a machine learning technique,

ANN, to produce flood quantile estimates in the RFA proce-

dure at arid and semiarid areas of the United States. As the

present study focuses on arid and semiarid regions, we con-

centrated on intermittent streams, which are normally dry but

do flow occasionally and seasonally. The homogenous regions

were defined by river network classification, and several sta-

tistical indices were used to evaluate the model performance.

Based on this analysis, we were able to determine an appro-

priate combination of variables to improve the performance. It

appears that employing river network classification has po-

tential for enhancing the RFA process.

2. Materials and methods

a. Dataset

A dataset representing 105 river basins, dominated by in-

termittent streams in arid and semiarid regions of the United

States, was developed for RFA. The spatial distribution of the

202 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by I.N.R.S. | Unauthenticated | Downloaded 06/25/21 12:55 PM UTC



relevant stations is presented in Fig. 2. These 105 stations were

selected among the hydrological stations on intermittent

streams in theUnited States to ensure the quality of the dataset

based on the following criteria:

1) availability of an historical flow record of at least 15 years

to ensure reliable quantile estimates;

2) basin characterized by a natural flow regime;

3) the historical flow data at all retained gauging stations had to

pass the tests of homogeneity (Wilcoxon 1945), stationarity

(Kendall 1948), and independence (Wald and Wolfowitz

1943), which permit verifying existence from an autocorre-

lation of significant first-order in the observations.

Several physiographical and meteorological variables were

estimated and employed in our analysis. The first seven vari-

ables (7Var) included in the database have been used generally

in previous studies (Ouarda et al. 2001; Shu and Ouarda 2007;

Mosaffaie 2015). These include drainage area (AREA), length

of the main channel (LMC), slope of the main channel (SMC),

mean basin slope (MBS), curve number (CN), annual mean

precipitation (AMP), and annual mean temperature (AMT).

FIG. 1. Illustrations for five drainage networks: (a) Buckeye Run, WV, for a dendritic network; (b) Yellow Creek, CO, for a parallel

network; (c) PaisanoWash, AZ, for a pinnate network; (d) Boreas River, NY, for a rectangular network; and (e) Sleepy Creek,WV, for a

trellis network. The block point of each network type indicates the outlet of the river basin, and the lines indicate the channels in the basin.

JANUARY 2021 JUNG ET AL . 203

Brought to you by I.N.R.S. | Unauthenticated | Downloaded 06/25/21 12:55 PM UTC



New physio-meteorological variables were added, including

the aridity index (ADI), tributary junction angle (TJA), time of

concentration (Tc), and three power-law exponents (3EXP) in

an attempt to improve regional hydrological estimates. Details

on the new variables are provided in section 2c. Descriptive

statistics for all physio-meteorological variables used in the

present study are presented in Table 1.

Ten-year (q10), 50-year (q50), and 100-year (q100) specific

quantiles were considered as hydrological variables. They were

estimated using the flow records from all the gauged sites in the

study area. The following statistical distributions were consid-

ered in the fitting processes: gamma, generalized extreme value,

generalized Pareto, Gumbel, two-parameter lognormal, three-

parameter lognormal, log-Pearson type III, Pearson type III, and

Weibull. At each station, the Bayesian information criterion was

used to identify the optimal statistical distribution to fit the data.

The physiographical, meteorological, and hydrological variables

were transformed to achieve normality and standardized to

obtain consistent format. Subsequently, the transformed vari-

ables were applied to the model for flood quantile estimation.

b. CCA and ANN ensemble model

In this study, the CCA and ANN ensemble techniques

(EANN-CCA) were integrated to estimate the flood quantiles

at ungauged locations. Shu and Ouarda (2007) suggested the

EANN-CCA model and demonstrated that its estimation perfor-

mance was superior compared with that of other generally used

RFA models. We used the EANN-CCA model to obtain flood

quantile estimates in arid and semiarid regions. In thismodel, CCA

was used to construct a transformed physio-meteorological space

based on site characteristics. The canonical variables derived from

CCA were fed to an ANN ensemble model to obtain flood

quantile estimates. A brief description of the CCA and ANN en-

sembles is provided in sections 2b(1) and 2b(2), respectively.

1) CANONICAL CORRELATION ANALYSIS

The CCA approach represents a statistical multivariate

analysis, and it characterizes the relationship between two sets of

random variables, removing nonessential data and preserving

the original property of the variables. In CCA procedures, X

indicates a set of physiographical and meteorological variables,

and Y represents a set of hydrological variables. These physio-

graphical and meteorological variables can be obtained easily

for ungauged locations. Given two sets (X and Y) of random

variables, the CCA approach was applied to link the sets using

vectors of canonical variables that were linear combinations of

the original ones. When linear combinations of X and Y are

denoted as W and V, the equations are

W5a0X , (1)

V5b0Y , (2)

where W implies the canonical variables for the physiograph-

ical and meteorological variables, and V indicates the canoni-

cal variables for the hydrological variables. The correlation of

the two canonical variables is

r5

a0�
XY

bffiffiffiffiffiffiffiffiffiffiffiffiffi
a0�

X

a
r ffiffiffiffiffiffiffiffiffiffiffiffiffi

b0�
Y

b
r . (3)

FIG. 2. Locations of 105 stations in the United States. Dots in the figure indicate stations in

different states: red dots in Arizona, purple ones in California, green ones in Colorado, pink

ones in Nevada, yellow ones in New Mexico, blue ones in Texas, and gray ones in Utah.

TABLE 1. Descriptive statistics of 13 variables for physiographical

and meteorological features used for regional frequency analysis.

Variables Min Max Mean Std dev

AREA (km2) 17.787 21 000.57 1483.295 3179.978

LMC (km) 8.277 435.794 73.641 74.662

SMC (%) 0.095 13.617 2.057 2.551

MBS (%) 0.775 57.616 14.797 13.67

CN 60.509 85.500 75.459 4.86

AMP (mm) 28.617 232.156 99.113 44.211

AMT (8C) 1.51 21.242 14.106 4.824

ADI 0.146 2.98 0.792 0.377

TJA (8) 41.62 71.485 55.66 5.729

Tc (h) 1.212 194.372 19.658 27.274

q10 (m3 s21 km21) 62.284 15644 3102.38 3537.667

q50 (m3 s21 km21) 96.476 54352 6432.242 8244.12

q100 (m3 s21 km21) 109.246 86402 8557.539 11 967.96
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The vectors of a and b can be determined by maximizing

the correlation. TheCCA in the EANN-CCAmodel allows the

construction of a transformed physiographical space, called the

canonical space, defined by physiographical and meteorologi-

cal variables. The constructed model can establish a functional

relationship between the canonical physiographical and mete-

orological variables on one side and the canonical hydrological

variables on the other. Based on the functional relationship,

estimates of the hydrological variables at ungauged locations can

be obtained in the canonical space. More theoretical informa-

tion about the use of CCA in RFA is presented in Ouarda

et al. (2001).

2) ANN ENSEMBLE

In the Shu and Ouarda (2007) model, the physiographical

and meteorological variables are first projected into the ca-

nonical space and then fed to an ANN model to estimate hy-

drological variables at ungauged locations (Dawson et al.

2006). In RFA, ANNs can be used as nonlinear hydrological

models to approximate the functional relationship between the

canonical physio-meteorological variables and the hydrologi-

cal variables.

Using the variables, multilayer perceptrons (MLPs), con-

sisting of an input layer, hidden layers, and an output layer,

were utilized to train the hydrological variables. A network

with MLPs was trained based on samples obtained from

gauged stations for estimating the hydrological variables, such

as flood quantiles. In the training process, network parameters

were optimized until the estimation error was minimized, and

the network obtained the specified level of accuracy. The

Levenberg–Marquardt (LM) algorithm (Hagan and Menhaj

1994) was used to identify optimal solutions and minimize the

network error in the study. Further, early stopping criteria

were used to avoid overfitting issues inANN training. Once the

ANN model completed the training procedure, the output

layer provided an ANN prediction, i.e., the flood quantile es-

timates in the present work.

To enhance the generalization ability and stability of a

single ANN, several researchers have used an ANN ensemble

model based on multiple ANNs trained and produced by in-

dividual networks (Cannon and Whitfield 2002; Dietterich

1997). Among ANN ensemble methods, the bagging proce-

dure has been used to produce a unique ensemble output, i.e.,

the flood quantile estimate, by averaging the networks. In the

process, each ANN member of the ensemble was trained in-

dependently on a subset of the training set, sampled with a

replacement of the dataset. This is a simple and effective

approach to generate ensemble output. Detailed information

on the use of the bagging method in RFA is available in Shu

and Ouarda (2007).

c. Estimation of new physiographical variables

We proposed and tested new variables that had not been

used previously in RFA to assess whether using them would

improve the performance of RFA models. These variables are

related to the hydrological and geomorphological dynamics

of a river basin, including tributary junction angles, time of

concentration, aridity index, and three exponents used for river

network classification. The procedures to obtain the proposed

variables are described in sections 2c(1)–2c(4).

1) TRIBUTARY JUNCTION ANGLE

Drainage networks generally display quite distinct features

in different regions, depending on the regional and local lith-

ologic and tectonic conditions during the development of the

network (Parvis 1950; Cox 1989; Burbank 1992). River net-

work characteristics have a significant effect on hydrological

responses. Among other river network properties, tributary

junction angles have been investigated frequently to under-

stand variations in the angles among different river network

types (Abrahams and Flint 1983; Phillips and Schumm 1987;

Ichoku and Chorowicz 1994; Hackney and Carling 2011).

Tributary junction angles are used also in RFA to estimate

flood quantiles along with other physiographic and climatic

variables. Tributary junction angles are important features in a

basin and are calculated at every junction between primary and

secondary tributaries (Mejia and Niemann 2008; Jung et al.

2015). A primary tributary is calculated using the chord be-

tween the junction and a location determined based on the

Euclidean distance upstream from the junction on the larger

tributary in a river network. A secondary tributary is estimated

using the chord between the junction and a location deter-

mined based on the Euclidean distance upstream from the

junction on the smaller tributary in the river network.

Subsequently, the two chords can be applied to obtain the

junction angles. Comprehensive theoretical information on

calculating the angles is presented in the studies of Mejia and

Niemann (2008) and Jung et al. (2015).

2) TIME OF CONCENTRATION

The time of concentration Tc is defined as the time required

for runoff to travel from the most hydraulically distant location

in a basin to its outlet (Jung et al. 2017). As a crucial variable

linked directly to a river basin hydrological regime, Tc was

included as an RFA variable in the present study. Several re-

searchers have alluded to its importance by investigating Tc for

diverse hydrological applications. Wong (2005) and Sharifi and

Hosseini (2011) used Tc to estimate the peak discharge for the

construction of hydraulic structures. In a more recent study,

Jung et al. (2017) examined Tc within different river network

types to identify whether network types affect the hydrological

response of a basin.

Several Tc estimation methods have been proposed. We

used the lag method of the Natural Resources Conservation

Service (NRCS) (U.S. Department of Agriculture). Folmar

and Miller (2000) demonstrated the effectiveness of this

method for computing Tc, and Jung et al. (2017) examined

Tc values calculated using the NRCS lag method along-

side drainage network characteristics for use in hydro-

logical models. In the NRCS lag method, Tc can be

estimated by

T
c
5

L

0:6
, (4)

where L is the watershed lag (h) defined as a function of the

hydraulic length. This lag can be calculated as
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L5
l0:8(S1 1)0:7

1900Y0:5
, (5)

where Y represents the mean basin slope (%) and l indicates

the main channel length (ft). The unit of the main channel

length is converted from km to ft for application of the equa-

tion. The variable S represents the maximum potential reten-

tion related to the rate of infiltration at the soil surface in the

basin. The maximum potential retention can be written as

S5

�
1000

CN

�
2 10, (6)

where CN is the curve number. Soils show high infiltration

rates when the CN value is low and low infiltration rates when

the CN is high. Note that Tc can be obtained at ungauged lo-

cations and can serve as a physiographical variable in RFA

flood quantile estimates.

3) ARIDITY INDEX

We used an ADI, which is a numerical indicator of the de-

gree of dryness of a climate, as a meteorological variable in the

study of RFA. Walton (1969) investigated the nature and

causes of aridity, which are affected generally by geomorpho-

logical processes, vegetation, and climatic phenomena, in-

cluding seasonality. For example, the rain shadow effect, which

is related to topographical features, is an important factor that

leads to aridity. The rain shadow effect occurs when rising air at

the windward sides of mountain ranges cools by generating

precipitation and losing moisture, while descending air on the

leeward side of ranges warms up, thereby creating arid envi-

ronments. Stadler (1987) and Maliva and Missimer (2012)

employed ADI to identify aridity patterns and conditions

correlated with climate variables, such as temperature, pre-

cipitation, and evaporation for water resource estimation and

management.

A low ADI value implies an arid environment, whereas a

large value indicates a humid environment. We investigated

whether ADI could be used as a climate index to improve flood

quantile estimates in arid and semiarid regions. ADI can be

estimated as follows:

ADI5
P

PET
, (7)

where P is the annual mean precipitation (over ranges of 10–

70 years) and PET is potential evapotranspiration. We used the

Hamon potential evapotranspiration equation, which has been

employed in global hydrological studies to estimate potential

evapotranspiration in our study (Hamon 1960). Themonthly PET

(mmmonth21) equation based on Hamon’s method is as follows:

PET5 13:973d3D2 3W
t
, (8)

where d is the number of days in the month, andD is the mean

monthly number of hours of daylight in 12-h units. The variable

Wt (gm
23) is a saturated water vapor density term estimated by

W
t
5
4:953 e0:0623T

100
, (9)

where T is the mean monthly temperature (8C).

Further, the Hamon equation for the annual PET (mmyr21)

is as follows:

PET5 [0:59491 (0:11893TC)]3 365, (10)

where TC is the annual mean temperature (8C). For ADI

calculations in the current study, PET was obtained based on

Eq. (10) using the annual mean temperature.

4) CLASSIFICATION OF RIVER NETWORK TYPES

In several studies, river networks were classified based on

the network characteristics (Ichoku and Chorowicz 1994;

Mejia and Niemann 2008; Jung et al. 2015). The development

and characterization of drainage networks normally depend on

local and regional constraints (Parvis 1950; Howard 1967). We

used methodology proposed by Jung et al. (2015) to classify

river networks into five types (dendritic, parallel, pinnate,

rectangular, and trellis) in arid and semiarid regions. This

method was selected for its simplicity, as only two character-

istics, namely, tributary junction angles and secondary tribu-

tary lengths in a basin are required to distinguish between

different river network types. This approach was used to pro-

vide data for defining homogenous neighborhoods based on

the river network classification in RFA.

To examine the classification of the river networks, the

tributary junction angles of a basin are grouped into three

overlapping ranges (08–608, 308–908, and 608–1208) by consid-

ering continuity. Subsequently, the lengths of the secondary

tributaries in the basin were estimated for the different ranges,

and the distributions of the secondary tributary lengths were

obtained to produce cumulative histograms of the length dis-

tributions. These cumulative histograms provide three power-

law exponents for the secondary tributary lengths, which are

similar to the fractal dimensions, to classify different river

network types (Velde et al. 1990; Gloaguen et al. 2007; Jung

et al. 2015). The exponents of the power law can be calculated

based on the following equation:

N
i
5

C

lDi
, (11)

where D implies the power-law exponent, c means the pro-

portional constant, and Ni indicates the number of secondary

tributaries based on a length less than li. The method for

classifying the different networks is described briefly here, and

further details on the procedure are presented in Jung et al.

(2015). The present study is the first to employ these power-law

exponents in the context of RFA. The exponents were assessed

to determine whether they could be used as physiographical

variables to improve flood quantile estimates.

d. Model validation methods and criteria

Tenfold cross-validation and jackknife procedures are used

regularly as resampling methods to assess the performance of

regional frequency models (Miller 1964; Shao and Tu 2012).

We used these approaches for model validation and to evaluate

the relative performance of the RFA models. Figure 3 shows

the construction process of the EANN-CAA model for
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regional frequency estimation of hydrological variables, along

with the resampling procedures.

In tenfold cross-validation, the original sample was divided

randomly into ten subsamples of the same size and, in each

trial, one of the subsamples was used to test the proposed

EANN-CCA model, while the remaining nine subsamples

were used as training data. The process of cross validation was

repeated 10 times by producing the model outputs based on a

dataset of known data. These outputs were then averaged over

the rounds to provide an estimate of the model performance.

We also conducted jackknife estimation for three pre-

dicted flood quantiles (q10, q50, and q100) using the model

involving river network types. In the jackknife procedure,

each gauged site in the study area was removed temporarily

from the database in every trial and considered as an

ungauged location. Subsequently, regional estimates for the

site were obtained using an EANN-CCA model that was

trained based on the data from the remaining locations. For

the model used in this study, various numbers of neurons

were tested to identify the optimal number of hidden neu-

rons. Generally, when very few neurons are used, an

underfitting problem could arise because of insufficient

complexity to produce a functional relationship between

input and output systems. On the other hand, when many

neurons are used, an overfitting problem could arise because

the number of training cases is inadequate. Considering

these factors in their analyses, Shu and Ouarda (2007)

identified the number of neurons in RFA ranging from three

to eight. We also used various numbers of hidden neurons

ranging from 2 to 17 in estimating flood quantiles. It was

found that fewer than five hidden neurons provided superior

estimates. We used five hidden neurons, as proposed by Shu

and Ouarda (2007), and an ensemble size of 14, indicating

14 ANN members and averages of the networks to produce

a unique output (flood quantile).

The EANN-CCA model used in our study was assessed

further using five measures, namely, the Nash–Sutcliffe effi-

ciency (NSE), root-mean-square error (RMSE), relative root-

mean-square error (rRMSE), mean absolute error (MAE),

and relative mean bias (rBIAS). The five measures are defined

by the following equations, respectively:

NSE5 12
�
n

i51

(q
i
2 q̂

i
)2

�
n

i51

(q
i
2 q

i
)
2

, (12)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(q
i
2 q̂

i
)2

s
, (13)

rRMSE5 1003

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

�
q
i
2 q̂

i

q
i

�2
s

, (14)

MAE5
1

n
�
n

i51

jq
i
2 q̂

i
j , (15)

rBIAS5
100

n
�
n

i51

�
q
i
2 q̂

i

q
i

�
, (16)

where n indicates the total number of basins used in the anal-

ysis, qi represents the at-site estimate for location i, qi implies

the mean of at-site estimate, and q̂i represents the RFA flood

estimate for location i.

3. Results

a. Models without river network classification assessed

via tenfold cross validation

The proposed EANN-CCA model was applied to the 105

river basins to estimate three flood quantiles corresponding

to generally used return periods (q10, q50, and q100). In the

analysis, we used the new physiographical andmeteorological

variables (ADI, TJA, Tc, and 3EXP) related to river network

characteristics with the seven variables (7Var) used in pre-

vious studies. Based on the collected variables, we examined

the flood quantile estimation by considering homogenous

regions defined by river network classification. In section 3a,

the classification was not applied in estimating the flood

quantiles, implying that the definition of the homogenous

regions in RFA was not considered. In addition, we investi-

gated whether adding the new variables representing drain-

age network dynamics could improve quantile estimation.

We applied the tenfold cross-validation procedure to this

model to validate the model performance. We conducted

several case studies using various combinations of variables

to identify the parameters that would produce the optimal

performance. To ensure generalizability, we examined the

sizes of the ensemble in the EANN-CCA model. We found

that with an extremely large ensemble, the training time in-

creased, and when it was extremely small, generalizability

would be insufficient. We selected an ensemble size of 14

in the EANN-CCA model process, as has been suggested by

Shu and Ouarda (2007).

FIG. 3. EANN-CCA model process for regional frequency estimation of hydrological variables.
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An EANN-CCA model with 10 variables (7Var, ADI,

TJA, and Tc) was employed to determine an optimal com-

bination of variables for flood quantile estimates. Figure 4

shows the plot of the RMSE values based on four variable

combinations (7Var, 7Var 1 ADI, 7Var 1 ADI 1 TJA, and

7Var1ADI1TJA1Tc) for the three quantiles as a function

of the number of hidden neurons (ranging from 2 to 17). The

three cases including 7Var, 7Var 1ADI, and 7Var 1ADI 1
TJA appeared to produce a superior performance based on a

number of neurons ranging from four to six. On the other

hand, the RMSE for most input variable combinations

(7Var 1 ADI 1 TJA 1 Tc) tended to increase using more

than two neurons.

Figure 4 indicates that the RMSE values decrease grad-

ually when the new variables are included. For example, the

EANN-CCA model using 7Var 1ADI produced a superior

performance compared with the model with 7Var for all

quantiles. Further, the model using 7Var 1 ADI 1 TJA

shows decreased RMSE values, especially for the q50 and

q100 quantiles. The model using 7Var 1 ADI 1 TJA 1 Tc,

however, showed the optimal performance. The lowest

RMSE values of 0.043, 0.110, and 0.163 were achieved for

the q10, q50, and q100 quantiles, respectively, using this

combination of variables. We found that including the ADI

variable improved the model performance. However, high

RMSE values and strong fluctuations were observed with

large numbers of hidden neurons. This could be ascribed to

EANN-CCA models with many hidden neurons having

sufficient training cases to properly train all the neurons

during the procedure.

We also examined the effect of the 3EXP variables on the

model performance for the three quantiles. The perfor-

mance of the EANN-CCA model using 7Var 1 ADI 1
3EXP was superior compared with the model with 7Var 1
ADI. However, when we added the Tc variable, there was no

improvement in the RMSE values. The behavior of the

model using 7Var 1 ADI 1 3EXP 1 TJA was similar to

that of the model using 7Var 1 ADI 1 3EXP 1 Tc. The

combination 3EXP 1 Tc or 3EXP 1 TJA did not appear to

improve the model performance. Furthermore, the perfor-

mance of the model using a combination of 7Var 1 ADI 1
TJA1 Tc 1 3EXP was the worst. The results suggested that

the adoption of redundant variables in RFA could lead to

unnecessarily complex models that reduce overall model

performance.

Further, we investigated combinations of other variables

without ADI to determine how such other variables affected

model performance. Adding the variables TJA and Tc to the

model with 7Var led to a gradual improvement in the perfor-

mance. However, the best RMSE value derived from the

model using 7Var1 TJA1 Tcwas inferior to the worst RMSE

values derived from the model with 7Var1ADI1 TJA1 Tc.

The performance was achieved with the combination 7Var 1
ADI1 TJA1 Tc. The performance of the model with 7Var1
3EXP 1 TJA1 Tc was similar or inferior to that of the model

using 7Var 1 TJA 1 Tc. The performance of the model using

FIG. 4. RMSE of the EANN-CCA model for 105 stations based on the cross-validation method for four case

studies (7Var, 7Var1ADI, 7Var1ADI1 TJA, 7Var1ADI1 TJA1 Tc) for the three quantiles with a number

of hidden neurons increasing from 2 to 17.
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7Var1 3EXP1Tc appeared to be inferior to that of themodel

with 7Var 1 3EXP.

b. Models without river network classification assessed via
jackknife validation

We evaluated the EANN-CCA model with different

combinations of variables for the three quantiles (q10, q50,

and q100) using the jackknife validation procedure. The

RMSE and rRMSE indices were used to assess the predictive

accuracy of the models in absolute and relative terms, and the

MAE and rBIAS indices were used to identify eventual

overestimation and underestimation of flood quantile esti-

mates. Table 2 shows the evaluation results of themodels with

7Var and 7Var 1 ADI 1 TJA 1 Tc, the model that achieved

superior performance in the tenfold cross-validation proce-

dure. The performance of themodelwith 7Var1ADI1TJA1
Tc was superior to that of the model with 7Var for the five

indices.

TABLE 2. Jackknife validation results based on the EANN-CAAmodel for q10, q50, and q100 quantiles using 105 river basins in arid and

semiarid regions. The bold font indicates the best-performing approach for each quantile.

q10 q50 q100

7Var 7Var 1 ADI 1 TJA 1 Tc 7Var 7Var 1 ADI 1 TJA 1 Tc 7Var 7Var 1 ADI 1 TJA 1 Tc

NSE 0.513 0.628 0.491 0.546 0.434 0.452

RMSE 0.071 0.062 0.169 0.158 0.261 0.253
rRMSE (%) 186.77 99.92 183.24 122.54 202.34 136.53

MAE 0.017 0.010 0.038 0.026 0.054 0.043

rBIAS (%) 262.10 224.95 252.47 234.68 262.58 241.97

FIG. 5. Jackknife estimation for three quantiles (q10, q50, and q100) using themodel with 7Var (7 variables) and the

model with 7Var 1 ADI 1 TJA 1 Tc (10 variables).
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Figure 5 shows a plot of the regional estimates as a function

of the local estimates for all three quantiles, based on the

models using 7Var and 7Var 1 ADI 1 TJA 1 Tc. Regional

estimates include those obtained from the proposed model

using the jackknife validation technique, whereas local esti-

mates include at-site observations of the quantiles. We deter-

mined that the model using 7Var1ADI1 TJA1 Tc provided

optimal estimates according to the tenfold cross-validation and

jackknife methods and we only plotted the results for these two

combinations. Figure 5 shows that the estimation error is re-

duced for sites with low quantile values. However, the models

appear to underestimate these values at sites with high quantile

values. This could be ascribed to inadequate training data

available in the variable space for the RFA procedures.

Although Fig. 5 appears to show no obvious difference be-

tween the results for 7Var and 7Var 1 ADI 1 TJA 1 Tc, the

values of the statistical indices including NSE, RMSE, rRMSE,

MAE, and rBIAS improved when we used the model with

7Var 1ADI 1 TJA1 Tc. The NSE shows a range from 0.513

to 0.434 with 7Var, and a range from 0.628 to 0.452 with 7Var1
ADI 1 TJA 1 Tc for the q10, q50, and q100 quantiles. The

RMSE values and the rRMSE values of 7Var range from 0.071

to 0.261 and range from 186.77 to 202.34, whereas the RMSE

values and rRMSE of 7Var 1 ADI 1 TJA 1 Tc range from

0.062 to 0.253 and range from 99.92 to 135.62 for the three

quantiles. Further, The MAE values and the rBIAS values of

7Var range from 0.017 to 0.054 and range from 262.10

to262.58, whereas theMAEvalues and rBIASof 7Var1ADI1
TJA 1 Tc range from 0.010 to 0.043 and range from 224.95

to 241.97 for the q10, q50, and q100 quantiles. The relative

statistical indices of 7Var 1 ADI 1 TJA 1 Tc clearly show

superior performance compared with the indices of Var7.

In practical hydrology, a change of even 1% in the estimation

of a design quantile for a dam could translate into a cost dif-

ference of tens of millions of dollars.

c. River network classification

River network classification data are used in RFA to define

homogenous regions in arid and semiarid regions. Different

drainage network types are associated with different hydro-

logical responses. Therefore, we expect that the use of infor-

mation on drainage network types could improve homogenous

group delineation. In the present work, we identified different

river network types using the power-law exponents proposed

by Jung et al. (2015) for the channel network classification of

105 river networks. Among these, 49 were dendritic, 36 were

pinnate, and 20 were trellis networks. These classified river

networks were used to define homogenous regions in our study.

d. Models with river network classification using tenfold
cross validation

Forty-nine dendritic networks were identified in the 105

drainage networks. Figure 6 shows the plot of the RMSE values

of the EANN-CCA model using 7Var1 ADI1 TJA1 Tc as a

FIG. 6. RMSE of the EANN-CCAmodel for dendritic networks using the cross-validation method for four case

studies (7Var, 7Var1ADI, 7Var1ADI1 TJA, 7Var1ADI1 TJA1 Tc) for the three quantiles with a number

of hidden neurons increasing from 2 to 17.
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function of the number of hidden neurons, ranging from 2

to 17, for the three quantiles of the dendritic networks.

Figure 6 indicates that the model performance improved

when ADI, TJA, and Tc are added to the 7Var variables for

quantile q10. However, the models using 7Var 1 ADI 1 TJA

and 7Var 1 ADI 1 TJA 1 Tc show similar RMSE values for

quantiles q50 and q100. The EANN-CCA model with 7Var

shows large RMSE fluctuations, as using 7Var alone with a

small number of stations is not sufficient to produce stable

results for the RFA procedure.

Among the 105 river networks, 36 drainage networks were

identified as pinnate networks. Figure 7 shows the RMSE

values of models using four variable combinations to assess

model performance in these networks. The performance of the

7Var 1 ADI model was superior to that of the model using

7Var. However, adding the TJA and Tc variables to the models

led to only minor improvements for the estimates in each

quantile. Figure 7 also shows that the proposed models ap-

peared to suffer from overfitting owing to insufficient training

cases for large numbers of hidden neurons.

Twenty trellis river networks were identified among the 105

drainage networks. Figure 8 shows the RMSE values for

models with different numbers of hidden neurons in trellis

networks. There was no significant improvement when we used

the models with 7Var 1 ADI and 7Var 1 ADI 1 TJA com-

pared with the model with 7Var. The performance of the

model using 7Var1ADI1 TJA1 Tc is superior to that of the

model based on 7Var. Substantial fluctuation is also observed

for the models using 7Var, 7Var 1 ADI, and 7Var 1 ADI 1
TJA with several hidden neurons. This could be ascribed

to the small number of stations, which affects the accuracy

of the RFA procedures.

e. Models with classification versus models

without classification

In this section, we discuss the effectiveness of using drainage

network types (dendritic, pinnate, and trellis) in defining ho-

mogenous regions to derive flood quantile estimates. For this

purpose, we conducted RFA using the EANN-CCA model

with 7Var1ADI1TJA1Tc. To determine whether the river

network type classifications improved model performance

through the improved delineation of homogenous regions, we

examined models based on classified versus unclassified river

networks. For the model with unclassified channel networks

that were not defined as homogenous regions, 49, 36, and 20

drainage networks indicating the number of dendritic, pinnate,

and trellis networks, respectively, were selected randomly

from the 105 channel networks. Figure 9 shows the RMSE

values for groups 49, 36, and 20 river networks for quantiles

q10, q50, and q100, respectively. The figure shows the results

obtained from the analysis with river network classification, in

which homogenous regions were delineated, and the results of

the analysis without river network classification, with homog-

enous regions not delineated.

FIG. 7. RMSE of the EANN-CCA model for pinnate networks using the cross-validation method for four case

studies (7Var, 7Var1ADI, 7Var1ADI1 TJA, 7Var1ADI1 TJA1 Tc) for the three quantiles with a number

of hidden neurons increasing from 2 to 17.
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Figure 9 shows that the results for dendritic and trellis net-

works based on river network classification are superior to

those obtained without river network classification for the

three quantiles. The results corresponding to trellis networks

show a particularly significant improvement in association with

the use of drainage network classification. However, opposite

results are shown for pinnate networks, i.e., the performance of

models without river network classification was superior to

those with river network classification. This could be ascribed

to the characteristics of pinnate networks being more complex

compared with those of other network types. This aspect would

need to be investigated in futurework. Further, the development

and feature of pinnate networks are not clear. Several authors

have attempted to identify the differences between other

FIG. 8. RMSE of the EANN-CCA model for trellis networks using the cross-validation method for four case

studies (7Var, 7Var1ADI, 7Var1ADI1 TJA, 7Var1ADI1 TJA1 Tc) for the three quantiles with a number

of hidden neurons increasing from 2 to 17.

FIG. 9. RMSE of the EANN-CCAmodel using the cross-validationmethod for the classified networks and for the randomnetworks based

on 7Var 1 ADI 1 TJA 1 Tc with the three quantiles changing a number of hidden neurons from 2 to 17.
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networks and pinnate networks; however, this is beyond the

scope of the present study (Phillips andSchumm1987;Mejia and

Niemann 2008; Jung et al. 2011; Jung andOuarda 2015). In these

studies, the regional slopes of rivers or surface characteristics,

such as sandy loams, clay loams, and erodible surfaces, were

shown to affect river network classifications. In addition, com-

bining variables, such as the arid index and tributary junction

angle, proposed in the study for RFA at arid and semiarid re-

gions could affect the performances of the models with and

without classification. Other geomorphological features that

differ between the different river networks and the effect of

these features on hydrological models should be considered in

detail in the future.

Table 3 shows the statistical indices, NSE, RMSE, rRMSE,

MAE, and rBIAS for themodel with 7Var1ADI1TJA1Tc.

As shown in the table, we compared the results for the river

networks without and with classification based on the q10, q50,

and q100 quantiles. The classified networks for dendritic and

trellis networks tend to produce superior performance with the

indices compared with the unclassified networks for the three

quantiles, as shown in Fig. 9. The networks classified as pinnate

tend to show inferior performance compared with the unclas-

sified networks, except for the q100 quantile with rRMSE and

rBIAS. In the analysis of Jennings et al. 1994, various regional

regression equations were used to estimate the frequency and

magnitude of floods at ungauged locations in each state of the

United States. These authors examined multivariate regional

statistical relationships between stream, climate, and geomor-

phology to calculate flood-flow statistics. They also investi-

gated typical approaches to streamflow prediction based on the

delineation of geographical areas with similar patterns for

flows at ungauged sites. Their results showed that the estimates

of floods were reasonable and provided estimates similar to

station data (Jennings et al. 1994). These typical regression

equations and approaches should be considered for compari-

son with the proposed method in estimating hydrological var-

iables in future work.

4. Conclusions

In the present study, we proposed using river network in-

formation related to the dynamics of river basins to improve

the performance of RFA models. The analysis involved 105

river basins in arid and semiarid regions of the United States.

For the structure of themodel, the CCA approach and anANN

ensemble method were applied for estimation of the flood

quantiles (q10, q50, and q100). Based on the EANN-CCA

model, we determined whether the physiographical and me-

teorological variables, including ADI, TJA, Tc, and 3EXP,

affected the model performance. Further, we used river net-

work classification to enhance flood quantile estimates by de-

fining homogenous regions.

Tenfold cross- and jackknife validation techniques were

used as resampling approaches to evaluate the performance of

EANN-CCA models employing different combinations of

variables (7Var, ADI, TJA, Tc, and 3EXP). Among several

combinations we used, the model with variables 7Var1ADI1
TJA 1 Tc produced a superior performance in estimating the

three quantiles. The performance of the model with the pro-

posed variables was superior compared with a model with

7Var. The performance of themodel using 7Var1ADI1TJA1
Tc, was enhanced gradually by adding the variables ADI, TJA,

and Tc to 7Var. However, when we included 3EXP in 7Var

1 ADI 1 TJA 1 Tc, the model performed poorly. Some var-

iables were not adequately representative of the hydrological

processes.

TABLE 3. Results based on the 7Var 1 ADI 1 TJA 1 Tc model with q10, q50, and q100 quantiles for consideration of river network

classification including the dendritic network, pinnate network, and trellis network. The bold font indicates the best-performing approach

for each quantile.

q10 q50 q100

Unclassified Dendritic Unclassified Dendritic Unclassified Dendritic

NSE 0.511 0.648 0.481 0.557 0.474 0.493
RMSE 0.074 0.050 0.236 0.219 0.562 0.516

rRMSE (%) 123.837 86.305 189.260 139.712 310.780 185.099

MAE 0.005 0.004 0.053 0.042 0.162 0.105

rBIAS (%) 251.103 231.244 282.767 264.573 2153.376 286.526

Unclassified Pinnate Unclassified Pinnate Unclassified Pinnate

NSE 0.601 0.589 0.577 0.594 0.515 0.548

RMSE 0.158 0.185 0.253 0.389 0.328 0.506

rRMSE (%) 67.403 120.927 83.705 105.390 104.397 82.675

MAE 0.055 0.068 0.082 0.167 0.108 0.209

rBIAS (%) 219.436 245.881 222.342 234.187 233.806 221.390

Unclassified Trellis Unclassified Trellis Unclassified Trellis

NSE 0.501 0.585 0.472 0.602 0.374 0.527

RMSE 0.038 0.029 0.043 0.031 0.051 0.036
rRMSE (%) 66.370 39.635 144.444 31.962 151.153 30.282

MAE 0.007 0.011 0.013 0.009 0.010 0.003

rBIAS (%) 219.871 212.348 238.756 25.456 279.984 26.280

JANUARY 2021 JUNG ET AL . 213

Brought to you by I.N.R.S. | Unauthenticated | Downloaded 06/25/21 12:55 PM UTC



For the identification of the effect of river network classifi-

cation in RFA, 49 of the 105 drainage networks were identified

as dendritic, 36 as pinnate, and 20 as trellis. The various net-

work types were used to define the homogenous regions. The

performance of the model with 7Var 1 ADI 1 TJA 1 Tc was

assessed for each network type based on the RMSE values for

the three flood quantiles. Adding the variables TJA and Tc to

the model using 7Var 1 ADI produced stable results. The

model using homogenous regions defined through river net-

work classification was compared with the model without ho-

mogenous regions. The results showed that the performance of

the model with classification was superior compared with that

of the model without classification for the dendritic and trellis

networks. However, for pinnate networks, the model without

classification appeared to produce superior performance.

Future studies should employ data from a larger number

of river basins in arid and semiarid regions and other cli-

mates to study the value of river network information in

various RFA procedures. Studies should also explore the

use of physical data, such as geology and land use, to classify

river basins. Future efforts could also focus on the use of

river network classification in multivariate RFA procedures

and in combination of local and regional analysis, i.e., where

it is important to adequately delineate homogenous regions

for the target site.
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