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Abstract: 21 

The assessment of wind energy potential is generally based on the analysis of the statistical 22 

distribution of observed wind speed of short time resolution. Record periods of observational data 23 

used in practice at sites of interest are often very short, often ranging from a few months to a few 24 

years. Predictions based on such small record periods are likely to be biased as it is recognized that 25 

wind speed is subject to important interannual variability and long-term trends. Large-scale 26 

atmospheric circulation patterns have an important influence on wind speed. Their predictable 27 

nature can make them useful for the prediction of wind speed during the lifetime of wind farm 28 

projects. This feature is not exploited in practice. It is proposed in this study to introduce predictors 29 

of the wind speed in non-stationary statistical models. This approach allows the development of 30 

predictions of the wind speed distribution conditionally on the state of the predictors. The 31 

predictors used here are indices of atmospheric circulation to account for the interannual variability 32 

and a temporal index to account for the long-term temporal trend. The proposed approach was 33 

applied to hourly wind speed data at selected meteorological stations in the province of Québec 34 

(Canada). 20 stations with long record periods of over 30 years of data were used. The most 35 

important circulation indices identified in the study area are the North-Atlantic Oscillation (NAO) 36 

during the winter season and the Pacific North American (PNA) during the spring season. Results 37 

indicate that the annual goodness-of-fit at the stations of the case study improved on average when 38 

the non-stationary model is used compared to the stationary model. The proposed approach can 39 

potentially be used to model wind speed during the projected lifetime of wind farms using forecasts 40 

of the predictors. 41 

Keywords: Wind speed; Wind Energy; Non-stationary model; Probability density function; 42 

Climate oscillation indices; Climate variability.  43 
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1. Introduction 44 

For the assessment of wind energy potential and the design of wind farms, knowledge of 45 

the probability distribution of wind speed of short time resolution (typically hourly data) at sites of 46 

interest is essential. A common practice is to fit a probability density function (pdf) to observed 47 

short-term wind speed data (Ouarda et al., 2015). Observational wind speed data at the sites of 48 

interest are often not available for long periods and it is common in practical studies to use data for 49 

record periods as short as only a few months to a few years (Celik, 2004; Morgan et al., 2011). 50 

Considering that the expected lifetime for wind farms is about 30 years (Pryor et al., 2005), this is 51 

generally insufficient. Nevertheless, recent advances in meteorological reanalysis products provide 52 

the opportunity to use wind data over large areas and for extended periods (Holt and Wang, 2012). 53 

Regardless of the available record period of the wind speed data, the classical approach assumes 54 

that wind speed characteristics are homogeneous throughout the whole observed period and will 55 

also remain constant during the projected life of the wind farm project. However, it is recognized 56 

that wind speed is subject to important interannual variability and decadal trends, which have major 57 

impacts on the wind power output delivery (Naizghi and Ouarda, 2017). 58 

Several studies analysed trends in wind speed time series around the world from near-59 

surface observed data sets or reanalysis data sets. Studies that have analyzed trends from 60 

observational data sets have generally found declines over the last 30–50 years for stations located 61 

in mid-latitude (e.g. studies in Australia (McVicar et al., 2008), China (Zhang et al., 2019a) or the 62 

United-States (Pryor et al., 2009)). Converse results to those of observational data sets are often 63 

obtained with reanalysis data sets and the recent decline in wind speed observed from near surface 64 

stations is rarely reflected in the reanalyses (McVicar et al., 2008; Pryor et al., 2009; Holt and 65 

Wang, 2012). 66 
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In North America, the majority of studies using observational data found spatially coherent 67 

and statistically significant decreasing trends. Pryor et al. (2009) analysed trends in historical wind 68 

speed over the contiguous United States based on observational and reanalysis data sets. For the 69 

observational data sets, the majority of stations exhibit declines in the 50th and 90th percentile 70 

wind speeds for the period 1973–2005, and these trends are even stronger over the eastern United 71 

States and the Midwest. On the other side, converse trends were obtained in the output of the data 72 

sets analysed from different reanalysis products. Holt and Wang (2012) found statistically 73 

significant positive annual trends over the contiguous United States using the North American 74 

Regional Reanalysis (NARR). In Canada, Wan et al. (2010) used homogenized near-surface wind 75 

speed time series from meteorological stations. They found significant decreasing trends 76 

throughout western Canada and most parts of southern Canada in all seasons and significant 77 

increasing trends in the central Canadian Arctic in all seasons and in the Maritimes in spring and 78 

autumn. The dependence of trend on latitude in these results was confirmed by Wang et al. (2006). 79 

A number of causes and explanations of the downward trends in observational data sets 80 

have been suggested in the literature. Changes in atmospheric circulation patterns have been 81 

identified as having a major influence on wind speed variability (Wang et al. 2006; Hurrell and 82 

Deser, 2009). It has also been pointed out that observational wind data are highly inhomogeneous: 83 

stations are subject to frequent changes of anemometer type, location or height to which wind 84 

observations are sensitive (Wan et al., 2010). Some authors such Vautard et al. (2010) and Zhang 85 

et al. (2019b) attributed the decline in wind speed partly to the increase in surface roughness 86 

associated with factors such as urbanization, growth of forests, changes in forest distribution or 87 

changes in agricultural practices. Zhang et al. (2019b) indicated that atmospheric circulation 88 

explains monthly variation in surface wind speed during the past decades, but that the increased 89 
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surface friction dominates the long-term declining trend of wind speed. For Vautard et al. (2010), 90 

the failure of reanalysis models to replicate surface wind trends is due to the non-consideration of 91 

land use changes in the reanalyses. 92 

Climate variability in the tropical Atlantic has been largely associated with multiple large-93 

scale atmospheric circulation patterns (Sutton et al., 2000). The North-Atlantic Oscillation (NAO) 94 

has been identified as the most prominent mode of variability in the North-Atlantic region. Studies 95 

have established that many circulation patterns have important influence on wind speed variability 96 

in North America. Wang et al. (2006) found that the cyclone activity in Canada is closely related 97 

to the NAO, the Pacific Decadal Oscillation (PDO), and the El Niño–Southern Oscillation (ENSO) 98 

indices. Among these indices, the NAO is the index that most explains the cyclone variance. They 99 

found that a strong positive NAO is associated with more frequent cyclone activity in the high 100 

Arctic and less frequent activity on the east coast in all seasons but most significant during winter. 101 

Abhishek et al. (2010) found that the Pacific North America (PNA) index has the highest 102 

association with wind speed trends in three cities in the USA Midwest. Klink (2007) showed that 103 

wind speed variation is related to the Arctic Oscillation (AO) and the Niño-3.4 sea surface 104 

temperature (SST) anomalies. 105 

The most important consequence of the interannual variability and long-term trends in wind 106 

speed on wind energy assessment is that predictions may be inaccurate. This is especially true for 107 

the record periods that are noticeably short and which are used in the field of wind energy. Pryor 108 

et al. (2005) highlighted this problem by showing that using the data from the period of 1987–1998 109 

leads to an overestimation of the wind energy in Denmark relative to the period of 1958–2001 by 110 

approximately 10%. The persistent and potentially predictable nature of atmospheric circulation 111 

patterns can also be exploited to provide tools for the prediction of wind power output. Classical 112 
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models used in wind energy assessment do not take into consideration atmospheric circulation 113 

patterns and oscillations. Indeed, short term or long-term predictions of large-scale circulation 114 

patterns can help predict the future evolution of wind speed and consequently better predict the 115 

energy potential during the lifespan of a given wind farm project (Woldesellasse et al., 2020). 116 

A significant number of studies are devoted to the forecasting of short-term wind speed or 117 

corresponding wind energy (e.g. Wang et al., 2018). However, very few studies have looked at the 118 

prediction of long-term wind speed or wind power. Short-term predictions are generally made over 119 

a time horizon of a few hours to a few days, while long-term predictions are made over a time 120 

horizon of a few months, years or decades. Some approaches have been proposed to integrate 121 

predictors of the wind speed variability in tools for the prediction of long-term wind speed or 122 

power. Brayshaw et al. (2011) proposed to use a prediction of the state of NAO (high, medium or 123 

low) at some time in the future to obtain a statistical forecast of the power output. At each month 124 

of these NAO forecasts, the NAO index is used to generate artificial time-series of wind speed for 125 

that month. In Correia et al. (2017) and Jerez and Trigo (2013), circulation modes were used as 126 

predictors in multiple linear regression models to assess wind power at the monthly timescale. 127 

These latter models, when combined with forecasts of the studied circulation modes, allow to 128 

predict the wind power output. Similarly, Garrido-Perez et al. (2020) used a regression model to 129 

explain the monthly capacity factor using monthly frequencies of occurrence of weather regimes 130 

as predictors. 131 

These approaches somehow diverge from the traditional line in that the distribution of wind 132 

speed is not represented with a statistical model. Instead, forecast of a single point value 133 

representing the wind power for a given period is obtained. A new approach is proposed here for 134 

the prediction of the full wind speed distribution for a given period using its pdf parameters. It 135 
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consists in introducing covariates into the parameters of the probability distribution used for wind 136 

speed modelling. Such covariates could incorporate trends, cycles, physical characteristics or other 137 

phenomena that can explain the studied variable. The resulting models, often called non-stationary 138 

models, are therefore distribution functions that are conditional on time-dependent covariates. With 139 

such model, future wind speed distributions can potentially be obtained using forecasts of the 140 

covariates. Forecasts of low frequency climate oscillation indices are available from several climate 141 

modeling approaches (see for instance Lee and Ouarda, 2019). 142 

A similar approach is slowly gaining popularity for the incorporation of information 143 

concerning non-stationarities in research efforts dealing with the modeling of hydro-144 

meteorological extremes (El Adlouni et al., 2007; Hundecha et al., 2008; Thiombiano et al., 2017; 145 

Ouarda et al., 2019). However, this approach has never been adapted and used for the modelling 146 

of wind speed in the context of wind energy assessment. In the context of modeling hydro-147 

meteorological extremes, a single extreme value is extracted each year within a season or a year 148 

(e.g. spring flood, summer maximum temperature), while in the context of assessment of wind 149 

energy, we are interested in the whole distribution of wind speed corresponding to small time scales 150 

during a season or a year.  The non-stationary approach needs to be adapted to the particular context 151 

of the assessment of wind energy where the studied variable is on a time scale of typically one 152 

hour. In that context, it is assumed that the predictors or covariates modulate the shape of the 153 

distribution of the hourly wind speed on a seasonal or annual basis. The non-stationary statistical 154 

model presented here predict the hourly wind speed distribution for a given season or year as a 155 

function of the specific state of the covariates. 156 

Numerous studies have dealt with the identification of the appropriate wind speed pdf with 157 

the objective of reducing wind power estimation error (Kose et al., 2004; Akpinar and Akpinar, 158 



8 

 

2005). The Weibull (W) distribution is traditionally the most widely used and accepted probability 159 

distribution to model wind speed in the wind energy field (Tuller and Brett, 1985; Archer and 160 

Jacobson, 2003; Ouarda et al., 2015). However, more complex models were recently found to 161 

provide better fit to wind speed data in several studies (Ouarda et al., 2015). Mixture models of 162 

one-component distributions have also been shown to provide excellent fit when a bimodal wind 163 

speed behaviour is observed (Wang et al., 2019; Chang, 2011). Ouarda and Charron (2018) 164 

evaluated the suitability of a selection of several one-component distributions and two-component 165 

mixture distributions to model wind speed data over the same region analysed in the present study. 166 

While mixture models provided better fit that the one-component distributions at a number of 167 

stations, the W provided a general good fit and was the best one-component distribution with one 168 

shape parameter. In the present study, the W distribution is used to illustrate the non-stationary 169 

approach (NS-W) for the modeling of hourly wind speed series. The approach presented in the 170 

present study should be adapted to other distribution functions and to mixture models in future 171 

research efforts.  172 

The proposed approach is illustrated here on a case study in southern Québec (Canada) for 173 

20 stations with long time series of observed hourly wind speed data. This study is site specific and 174 

identifies the atmospheric circulation indices having the most influence on wind speed distribution 175 

in the study area, to be used as covariates in the non-stationary approach. An index of time is also 176 

used as covariate to account for long-term temporal trends. This study is focused on the extended 177 

winter season (December to May) as it is during that season that the circulation patterns have the 178 

biggest impacts on wind speed and it is also the period with the strongest winds in the study area. 179 

 180 

2. Methodology 181 
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An overview of the proposed methodology for wind energy assessment at a given site of 182 

interest over a long-term horizon is presented in Figure 1. The main steps are as follows: 183 

1. Selection of covariates such as climate oscillation indices. Trend detection is usually carried 184 

out on wind speed time series to assess the appropriateness of including the temporal trend 185 

as a covariate. 186 

2. Selection of the most suitable non-stationary model for observed wind speed data (e.g. the 187 

non-stationary Weibull pdf). 188 

3. Fitting of the non-stationary model and estimation of model parameters. 189 

4. Forecast of the covariates for the period of interest. 190 

5. Forecast of long-term future wind speed distributions on a seasonal or annual basis.  191 

6. Long-term prediction of wind power. 192 

2.1 Non-stationary Weibull distribution 193 

The NS-W model is used in this study to model hourly wind speed where the distribution 194 

parameters are modulated by a linear combination of one or several covariates. The cumulative 195 

distribution function (cdf) of the stationary W model is given by: 196 

( ); , 1 exp

k
x

F x k


  
= − −  

   

        (1) 197 

where 0x   is the wind speed, 0   is a scale parameter and k is a shape parameter. ( )F x  198 

represents the distribution of the hourly wind speed during the whole record period. In the non-199 

stationary framework, the parameters of ( )F x  are made linearly dependent upon one or several 200 

time-varying covariates. The conditional cdf of the NS-W model is then given by: 201 
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( ); , 1 exp

tk

t t

t

x
F x k



  
 = − − 
   

        (2) 202 

where t represents increments in the defined time step. In the case of a dependence on the covariate 203 

tX , we have:  204 

0 1t tX  = +  and 0 1t tk k k X= + .        (3) 205 

In the case of a dependence on both covariates tX  and tY , we have:  206 

0 1 2t t tX Y   = + +  and 0 1 2t t tk k k X k Y= + + .      (4) 207 

Therefore, ( ); ,t tF x k  represents the distribution of the hourly wind speed data during the tth 208 

season or year, conditional on the values of the covariates tX  and tY  associated with that season 209 

or year. 210 

2.2 Parameter estimation 211 

The parameters of the models are estimated here with the least-squares (LS) method which 212 

is commonly used for the modelling of wind speed data (Carta and Ramirez, 2007; Shin et al., 213 

2016; Jung and Schindler, 2017). For that, the observed wind speed data is arrangement into N 214 

class intervals 1 1 2 1[0, ),[ , ),...,[ , ]N Nv v v v v− . The relative frequency at the ith class interval is given 215 

by 1( ) ( )i i ip F v F v −= −  where 1iv −  and iv  are the lower and upper limits of the ith class interval 216 

and the cumulative empirical probability at the ith class is obtained by 
1

i

i j

j

P p
=

= . In the stationary 217 

framework, the objective function, which is the sum squared errors (SSE) for the LS method, is 218 

defined by:  219 
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2

1

SSE ( ; , )
N

i i

i

P F v k
=

= −          (5) 220 

where iv  is the upper limit of the ith class interval. 221 

In the non-stationary framework, each year is considered separately and the SSE is 222 

computed for each year. The objective function is then defined by the mean value of the individual 223 

SSEs: 224 

2

, ,

1 1

1
SSE ( ; , )

yr jn N

i j i j j j

j iyr

P F v k
n


= =

 = −         (6) 225 

where yrn  is the number of years, jN  is the number of class intervals for the jth year, ,i jv  is the 226 

upper limit of the ith class interval for the jth year, ,i jP  is the cumulative empirical probability at 227 

the ith class interval for the jth year, and j  and jk  are the values of the parameters for the jth year. 228 

Equations 5 and 6 can be solved with any numerical optimization tool.   and k  are the parameters 229 

to estimate for the stationary model, 0 1 0 1, , ,k k   are the parameters to estimate for the non-230 

stationary model with one covariate and 0 1 2 0 1 2, , , , ,k k k    are the parameters to estimate for the 231 

non-stationary model with two covariates. Equations 5 and 6 are solved here with the optimization 232 

function fminsearch in the MATLAB environment (MATLAB, 2019). 233 

2.3. Model validation 234 

In addition to the SSE computed during the optimization step, other statistics such as the 235 

Akaïke information criterion (AIC), the chi-square test statistic (
2 ), the coefficient of 236 

determination ( 2R ) and the Kolmogorov-Smirnov test statistic (KS) are used for the validation of 237 

the goodness-of-fit of the various models. These criteria are frequently used for the evaluation of 238 
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the goodness-of-fit in the field of wind energy (Ouarda et al., 2016). To compute these statistics, 239 

wind speed data are arranged in the same N class intervals defined in the model parameters 240 

estimation step. For the non-stationary models, these statistics are computed yearly and the global 241 

statistics are obtained by the mean values. 242 

The AIC accounts for goodness-of-fit and has the advantage of penalizing for model 243 

complexity (number of parameters). It is given by: 244 

ˆAIC 2log( ( )) 2L d= − +           (7) 245 

where ˆ( )L   is the likelihood function for the estimated model distribution parameters ̂ , and d is 246 

the number of parameters in the model. 2R  gives the proportion of the variance of the observed 247 

data that is explained by the model. Two different indices to compute 2R  are used here. The first 248 

one is defined by: 249 

2

2 1

2

1

ˆ( )
1

( )

N

i ii
F N

ii

P F
R

P P

=

=

−
= −

−




         (8) 250 

where ˆ
iF
 
is the predicted value of ( )iF v  at the ith class interval and P  is the mean value of iP . 251 

The second one is defined by: 252 

2

2 1

2

1

ˆ( )
1

( )

N

i ii
p N

ii

p p
R

p p

=

=

−
= −

−




         (9)

 

253 

where ˆ
ip  is the estimated probability at the ith class interval and p  is the mean value of ip . The 254 

2R  indices are further adjusted to account for models complexity with the following formula: 255 
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2 2 1
1 (1 )adj

n
R R

n p

−
= − −

−
         (10) 256 

The 
2  test statistic is a measure the adequacy of a given theoretical distribution to a data sample 257 

and is expressed as: 258 

( )
2

2

1

N
i i

i i

O E

E


=

−
=           (11) 259 

where iO  is the observed frequency in the ith class interval and iE  is the expected frequency in 260 

the ith class interval. When iE
 for a given class interval is very small, it is combined with the 261 

adjacent class interval in order to avoid the situation where iE  has an excessive weight. Finally, 262 

the KS statistic corresponds to the largest difference between the predicted and the observed 263 

distribution and is given by: 264 

1

ˆmax i i
i N

KS P F
 

= − .          (12) 265 

A lower value of AIC, 
2 , SSE or KS, and a higher value of 2R  indicate a better fit. 266 

 267 

3. Data 268 

The wind speed data used in this study were obtained from the Environment and Climate 269 

Change Canada's (ECCC) historical climate database (available at http://climate.weather.gc.ca). 270 

ECCC indicates that the vast majority of observational data is accurate, but the database may 271 

exceptionally contain some individual incorrect values. ECCC continues to review quality control 272 

procedures, both as current data is observed and incorporated into the database, and retrospectively 273 

http://climate.weather.gc.ca/


14 

 

for historical data. Wind speed data consist of hourly mean wind speeds observed at meteorological 274 

stations 10 m above the ground. The stations for this study area were selected exclusively from the 275 

province of Quebec (Canada). The same region was studied in Ouarda and Charron (2018) to 276 

explore the potential improvement in fitting wind speed data by using homogeneous and 277 

heterogeneous mixtures of distributions in a stationary environment. In this database, it is frequent 278 

for stations to be renamed (station number) or moved. Whenever possible, stations were combined 279 

to increase the record length of the times series at a given location. For that, stations with the same 280 

coordinates or located at very close distances from each other and at a similar altitude have been 281 

combined together.  282 

Among the candidate stations, those with a record length of at least 30 years and located in 283 

the southern part of the province (below latitude 55°N) were considered. In all, 20 stations were 284 

selected for this study. The geographical location of the selected stations is presented in Figure 2. 285 

Several stations are located on both sides of the Saint-Lawrence River estuary in the southern part 286 

of the province. Table 1 presents information concerning the period of record and the geographical 287 

location of each station in the present study. 288 

Plots of average monthly wind speed at the meteorological stations reveal that the months 289 

from November to April are in general the windiest for the region of study. It can be observed that 290 

there is a different seasonality between the northwestern stations (stations #1 to #5 and #15) and 291 

the southern stations along the Saint-Lawrence River. The seasonality of the northwestern stations 292 

is characterised by an extended windy season with two distinct monthly periods of highest speeds 293 

occurring in spring and autumn, while the stations along the Saint-Lawrence River are 294 

characterised by a shorter windy period occurring during the winter season in which the highest 295 

wind speeds take place. Figure 3 illustrates the average monthly wind speed at the stations of 296 
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Montréal/St-Hubert and Val-d’Or, representing respectively the seasonality of the southern and 297 

northwestern stations. 298 

Monthly data of the major climate indices having impacts in North America were obtained 299 

from the NOAA Physical Sciences Laboratory data base available at 300 

https://psl.noaa.gov/data/climateindices/list/. Data are available as monthly time series and are 301 

updated regularly. In this study, the following climate indices were considered: the PDO, the PNA, 302 

the NAO, the AO, the Atlantic Multi-decadal Oscillation (AMO), the southern oscillation index 303 

(SOI), and the Western Hemisphere Warm Pool (WHWP). Times series for most of these indices 304 

are available from 1950 to present. 305 

 306 

4. Results and discussions 307 

4.1. Relation with atmospheric circulation patterns and trends 308 

In this study, the identification of the seasonal atmospheric circulation indices having the 309 

most impact on seasonal wind speed is carried out by means of the correlations between the selected 310 

seasonal climate indices and the seasonal wind speed averages. For this, the correlation coefficients 311 

between the average of a given index over 3 consecutive months and the average wind speed over 312 

the same period are computed. Results show that NAO and PNA have a dominant influence in the 313 

region. Figure 4 presents the boxplots of the correlation coefficients obtained at all stations for the 314 

NAO and PNA indices. These graphs show that NAO during the winter season and PNA during 315 

the spring season have the most influence. This is consistent with the literature where NAO and 316 

PNA were identified as major circulation modes in the extratropical Northern Hemisphere (Hurrell 317 

and Deser, 2009).  318 

https://psl.noaa.gov/data/climateindices/list/
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It can be observed that the strongest relation exists during the season of December, January 319 

and February (DJF) for NAO, and during the season of March, April, and May (MAM) for PNA. 320 

The selected covariates are thus denoted by NAO (DJF) and PNA (MAM). The boxplot for NAO 321 

during the DJF season indicates that most of the correlations are significant and shows the presence 322 

of some significant positive correlations. It was decided here to study the DJF and MAM seasons 323 

separately because of the successive preponderant influence of NAO and PNA. It was also decided 324 

to study the whole DJFMAM season because it is the period with the strongest wind speeds in 325 

general in the study area and the two selected climate indices have influences during this period.  326 

Table 2 presents the correlation coefficients between the annual mean wind speed during 327 

each season of interest and the selected seasonal climate indices. The correlations with a temporal 328 

index (denoted Time), which represent the temporal trend, are also presented. Significant 329 

correlations at a confidence level of 10% using the student t-test are highlighted. For both climate 330 

indices, most correlations are significant and more significant correlations are observed for NAO 331 

during the DJF season and for PNA during the MAM season. Results show that the sign of the 332 

correlation for NAO is mostly negative but there are also few positive correlations. These positive 333 

correlations occur mainly for the stations located in the northwestern part of the study area. This 334 

indicates a possible spatial discontinuity in the influence of NAO. It is difficult to conclude here as 335 

the northwestern area is spatially not well represented by the meteorological stations. An opposite 336 

effect of NAO on the climate of northeastern America is well documented in several studies 337 

(Kingston et al., 2006a, 2006b; Hurrell, 1995). In the case of PNA, all correlations are negative and 338 

most are significant. This is consistent with previous studies on the impact of PNA on hydro-339 

climatic variables in northeastern America (see for instance Thiombiano et al., 2018).  340 
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Several significant decreasing trends are observed in the time series. The stations with no 341 

significant trend or with positive trends are a mixture of stations within the northwestern region 342 

(stations #1 to #5) and stations with a more recent record period (1981 and after) (stations #5 and 343 

#18-19). This last observation may indicate a climate change signal in the studied area during the 344 

last 30 years. Figure 5 presents the temporal long-term trends in the selected seasonal climate 345 

indices used as covariates. It can be observed that there is a constant increase in NAO (DJF) during 346 

the studied period. For PNA (MAM), the linear trends from 1952 to 1982 and from 1983 to 2020 347 

are presented to highlight an apparent change in the trend around the mid-1980s. The year of 1983 348 

was chosen as an approximative starting date for the stations with more recent starting dates in the 349 

1980s. A part of the negative trend in the wind speed time series may possibly be attributed to the 350 

increasing trend in NAO (DJF) since the 1950s. On the other hand, the increasing trends in stations 351 

with a more recent record (starting date) may be due to the negative trend in PNA (MAM) since 352 

1983. 353 

Figures 6-7 illustrate the possible impacts of the climate indices on the shape of the wind 354 

speed distribution. Figure 6 presents the frequency histograms along the fitted W model for the 355 

observed wind speed data at selected stations where data are divided according to the positive phase 356 

and negative phase of a given climate index. Figures 6a-b present wind speeds for the winter season 357 

(DJF) classified according to the positive and negative phases of NAO (DJF) at the stations of 358 

Mont-Joli and Québec/Jean Lesage Intl., and Figures 6c-d present wind speeds for the spring season 359 

(MAM) classified according to the positive and negative phases of PNA (MAM) at the stations of 360 

Bagotville and Val-D’Or. 361 

Figure 7 presents the pdf curves of the fitted W model for the observed wind speed data at 362 

the stations of Bagotville and Québec/Jean Lesage Intl. during the winter-spring season 363 
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(DJFMAM) where data are classified according to the positive and negative phases of NAO (DJF) 364 

and PNA (MAM). These figures show that atmospheric circulation patterns can have a strong 365 

influence on the inter-annual variability of the shape of the wind speed distribution and show that 366 

a model that is conditional on predictors can improve the inter-annual estimates. 367 

4.2 Performances of non-stationary statistical models 368 

The NS-W model was fitted to the wind speed time series of the case study. For the 369 

DJFMAM season, models with the covariates Time, NAO (DJF), PNA (MAM), Time and NAO 370 

(DJF), Time and PNA (MAM), NAO (DJF) and PNA (MAM) were used (denoted respectively as 371 

Time, NAO, PNA, Time+NAO, Time+PNA and NAO+PNA). For the DJF season, models with 372 

the covariates Time, NAO (DJF), Time and NAO (DJF) were used (denoted respectively as Time, 373 

NAO, Time+NAO). For the MAM season, models with the covariates Time, PNA (MAM), Time 374 

and PNA (MAM) were used (denoted respectively as Time, PNA and Time+PNA). 375 

The stationary W model is also fitted to the wind speed time series for comparison purposes. 376 

The performances of the models are evaluated and compared here with the different goodness-of-377 

fit indices. Goodness-of-fit statistics for all the stations are presented with boxplots in Figures 8-378 

10 for the DJFMAM, DJF and MAM season respectively. Table 3 presents the parameters and the 379 

statistics SSE (see equation 6) and 
2

FR  obtained for the DJFMAM season and for selected stations. 380 

All the non-stationary models improve the goodness-of-fit with respect to the stationary 381 

model. The model Time provides in general better performances than models including a single 382 

climate index or two climate indices in the case of the DJFMAM season. Results show that models 383 

including the temporal index and a climate index give the overall best performances for any season. 384 

It can be concluded that the temporal trend is an important component of the wind speed variability, 385 
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and it is only partly explained by the climate indices. Consequently, the temporal index explains to 386 

a large extent the long-term wind speed trend (change signal), while climate indices explain partly 387 

the interannual variability. 388 

The parameter coefficients of the NS-W models including Time in Table 3 show that a 389 

downward trend (most negative signs) is generally observed at the stations of the case study. 390 

Possible causes to explain the observed downward trends during the last decades have been 391 

discussed in the introduction. A portion of the observed wind speed trend may be attributed to 392 

changes in climate indices, as trends were noticed in the seasonal climate indices (see Figure 5). 393 

Since Time leads to a better performance than a single climate index or the use of two climate 394 

indices, trends in the climate indices cannot represent the only explanation. The increase in surface 395 

friction has been pointed out in a number of publications as a possible cause for the generally 396 

observed decreasing trends (Vautard et al., 2010; Zhang et al., 2019b). Most meteorological 397 

stations of this study are located in airports, and consequently are often located near cities or urban 398 

developments, which may have undergone a number of urban changes. This may possibly explain 399 

that stations in the northwest, a remote pristine area with low population density, did not observe 400 

decreasing trends. 401 

With non-stationary models, the shape of the distribution depends upon the state of the 402 

covariates. Figure 11 illustrates the different probability density functions predicted by the model 403 

Time+NAO for the DJF season at the station Québec/Jean Lesage Intl. For each year, the 404 

distribution of the wind speed with the value of NAO (DJF) for that year is displayed. It can be 405 

observed that a large range of different shapes of the distribution are obtained. This additional 406 

information detail can have a number of practical uses in the wind energy field. For instance, since 407 

the magnitudes of low frequency climate oscillation indices can be forecasted for several seasons 408 
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and years into the future, the information discussed above can be used to schedule maintenance 409 

activities during years and periods of low wind speeds. This would lead to a reduction of the impact 410 

of these scheduled maintenance activities on wind energy production.  411 

 412 

5. Conclusions and future work 413 

In this study, it was shown that modelling wind speed distributions for the aim of energy 414 

assessment without considering the inter-annual variability or long-term trend can lead to important 415 

biases in the predictions. This is especially true in the field of wind energy where modelling is 416 

usually based on relatively short record periods. It was proposed in this work to introduce predictors 417 

of wind speed as covariates in a non-stationary statistical model. Covariates used here are indices 418 

of atmospheric circulation patterns to account for the inter-annual variability and a temporal index 419 

to account for the long-term temporal trend. 420 

This approach has allowed to better model the observed wind speed series of the case study. 421 

It can also potentially provide a tool to predict wind energy potential during the future lifetime of 422 

wind farms. By using available short-term or long-term forecasts of the atmospheric circulation 423 

indices and other predictors, this model has the potential to provide valuable future predictions of 424 

wind speeds. The proposed approach has the advantage, over other approaches, of modeling the 425 

shape of the distribution as a function of the covariates instead of only the value of a given wind 426 

statistic. Instead of having a one-time estimate of the potential of a wind farm, the approach 427 

presented in this work allows to look at the annual evolution of the energy potential of the farm, 428 

and may affect the economic feasibility of the whole project, or even the decision about the starting 429 

date of the project. This is especially true for projects in which some sort of long-term energy 430 
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storage is considered (see Loutatidou et al., 2017 for instance). Future efforts should also focus on 431 

the development of approaches to carry out sensitivity analysis for the proposed non-stationary 432 

models for wind resource assessment (see Tsvetkova and Ouarda, 2019 for instance), and on the 433 

comparative modeling of the uncertainty associated to stationary and non-stationary wind speed 434 

models. Future research efforts should also look into the development of non-stationary mixed 435 

distribution models, as mixed distributions were shown in a number of studies to lead to a better 436 

fit than one-component models. The non-stationary approach should also be adapted to statistical 437 

distributions other than the Weibull, since previous studies have shown that different models lead 438 

to the best fit in different geographical regions. All these efforts should lead to better estimates of 439 

the wind speed distribution, and to an improved assessment of the true wind energy potential in 440 

different geographical regions.  441 

The most important atmospheric circulation patterns that influence wind speeds in the study 442 

region were identified by the mean of correlations. It was found that NAO during the winter season 443 

and PNA during the spring season have the most impact on the wind speed distribution. The 444 

selected seasonal climate indices were introduced in a non-stationary Weibull model. Results 445 

showed that the annual goodness-of-fit was significantly increased on average with the non-446 

stationary models compared to the stationary one.  447 

Results showed that the temporal trend, when it exists, is an important factor to explain 448 

long-term wind speed. The climate indices may partly explain the observed trends. For instance, 449 

the winter NAO index has constantly increased since the 1950s. However, results showed that 450 

climate indices alone do not explain all the long-term trend but may explain the interannual 451 

variability. 452 
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Other factors may have also influenced the observed wind speeds in the study region. 453 

Surface friction related to urbanization near the meteorological stations may also have had an 454 

influence on wind speed distribution. It is important to mention that any relevant covariate can be 455 

introduced in the model including an index of urbanisation, a roughness or friction coefficient, etc. 456 

Covariates of interest may represent natural or anthropogenic influences. The use of other relevant 457 

predictors should be considered in the proposed approach in future studies.  458 

Homogenization of data in Canada was performed in other studies such as Wan et al. 459 

(2010). It is a process that requires extra work and was not performed here. The objective of this 460 

study was to illustrate a new method in the field of wind energy. Additional efforts for the 461 

homogenization of wind data should be considered in future studies. It would also be interesting to 462 

use reanalysis data sets that combine models with observational data. They provide data on a fine 463 

spatial grid and are independent of the various measurement instruments used. In addition, trends 464 

have been traditionally observed with these reanalysis data in opposite directions to those obtained 465 

with observational data. In this study, the LS method was used. Other methods, such as the 466 

maximum likelihood method used with success with wind speed data in a number of studies, can 467 

be used and may potentially improve the fit of non-stationary models. Future research efforts 468 

should develop other methods than LS for the non-stationary modelling of hourly wind speed data.  469 
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Table 1. List of meteorological stations. 

# 

Station name 

Record period Latitude Longitude Calm (%) Median 

(m/s) 

CV Skewness Kurtosis 

1 Rouyn-Noranda 1975 – 2020 48.21 -78.84 7.89 3.06 0.63 0.42 2.93 

2 Matagami 1974 – 2020 49.76 -77.80 7.41 3.06 0.63 0.59 3.27 

3 Val-D’Or 1955 – 2020 48.06 -77.79 6.05 3.06 0.61 0.61 3.37 

4 La Grande Rivière 1978 – 2020 53.63 -77.70 2.93 3.89 0.54 0.69 3.78 

5 Chibougamau-Chapais 1983 – 2020 49.77 -74.53 4.67 3.06 0.59 0.57 3.26 

6 Montréal Mirabel Intl 1976 – 2020 45.68 -74.04 7.70 2.50 0.69 1.02 4.64 

7 Montréal/Pierre Elliott Trudeau Intl 1953 – 2020 45.47 -73.75 4.12 3.61 0.62 0.83 3.95 

8 Montréal/St-Hubert 1953 – 2020 45.52 -73.42 6.18 4.17 0.63 0.73 3.75 

9 Roberval 1958 – 2020 48.52 -72.27 7.39 3.61 0.65 0.69 3.49 

10 Sherbrooke 1963 – 2020 45.44 -71.69 12.76 2.22 0.77 0.96 3.91 

11 Québec/Jean Lesage Intl 1953 – 2020 46.79 -71.39 7.93 3.61 0.68 0.71 3.49 

12 Bagotville 1953 – 2020 48.33 -71.00 7.74 3.61 0.68 0.69 3.24 

13 Mont-Joli 1953 – 2020 48.60 -68.22 3.69 4.72 0.59 0.66 3.40 

14 Baie-Comeau 1965 – 2020 49.13 -68.20 3.97 3.89 0.62 0.83 3.93 

15 Schefferville 1953 – 2020 54.81 -66.81 5.65 4.17 0.62 0.64 3.55 

16 Sept-Iles 1953 – 2020 50.22 -66.27 7.39 3.89 0.67 0.93 4.46 

17 Gaspé 1975 – 2020 48.78 -64.48 13.03 2.78 0.78 0.81 3.68 

18 Havre-Saint-Pierre 1984 – 2020 50.28 -63.60 4.54 3.61 0.62 0.90 4.18 

19 Natashquan 1981 – 2020 50.19 -61.79 2.06 4.17 0.62 1.01 4.53 

20 Lourdes-de-Blanc-Sablon 1983 – 2020 51.45 -57.18 4.80 4.72 0.73 1.02 4.16 
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Table 2. Correlation coefficients between the average wind speed during each season of interest and the selected covariates. 

 DJFMAM season DJF season MAM season 

# Time NAO (DJF) PNA (MAM) Time NAO (DJF) Time PNA (MAM) 

1 0.27 0.30 -0.27 0.37 0.26 0.14 -0.30 

2 0.50 0.32 -0.26 0.55 0.25 0.37 -0.27 

3 0.26 0.03 -0.19 0.13 0.05 0.27 -0.29 

4 0.41 0.27 -0.37 0.33 0.42 0.32 -0.37 

5 0.66 0.43 -0.21 0.54 0.44 0.61 -0.20 

6 -0.70 -0.19 -0.05 -0.73 -0.27 -0.53 -0.11 

7 -0.05 -0.09 -0.33 -0.11 -0.15 0.01 -0.35 

8 -0.23 -0.25 -0.26 -0.22 -0.25 -0.21 -0.33 

9 -0.37 -0.45 -0.17 -0.31 -0.42 -0.36 -0.27 

10 0.08 -0.15 -0.45 0.01 -0.22 0.14 -0.45 

11 -0.52 -0.53 -0.30 -0.46 -0.58 -0.48 -0.38 

12 -0.28 -0.31 -0.26 -0.17 -0.30 -0.30 -0.34 

13 -0.52 -0.41 -0.32 -0.55 -0.49 -0.41 -0.33 

14 -0.42 -0.30 -0.07 -0.43 -0.42 -0.29 -0.10 

15 -0.40 -0.40 -0.26 -0.41 -0.41 -0.37 -0.34 

16 -0.76 -0.49 -0.27 -0.74 -0.60 -0.68 -0.22 

17 -0.27 -0.33 -0.21 -0.25 -0.45 -0.26 -0.24 

18 0.33 0.03 -0.51 0.29 -0.03 0.32 -0.53 

19 0.66 -0.09 -0.35 0.63 -0.11 0.64 -0.34 

20 0.07 -0.26 -0.06 -0.01 -0.42 0.14 -0.06 

Bold characters denote significant correlation at p=10%. 
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Table 3. Distribution parameters and goodness-of-fit statistics for selected stations during the DJFMAM season. 

 Model 0  1  2  0k   1k  2k  SSE R2 

Montréal/St-

Hubert 

Stat. 5.39   1.74   0.0225 0.9867 

Time 5.57 -0.01  1.56 0.01  0.0203 0.9879 

NAO 5.36 -0.13  1.75 0.04  0.0214 0.9872 

PNA 5.36 -0.16  1.73 -0.04  0.0215 0.9873 

Time+NAO 5.49 0.00 -0.09 1.54 0.01 -0.03 0.0200 0.9881 

Time+PNA 5.53 -0.01 -0.15 1.54 0.01 -0.05 0.0194 0.9885 

NAO+PNA 5.34 -0.12 -0.14 1.74 0.05 -0.05 0.0206 0.9877 

Roberval Stat. 4.64   1.53   0.0339 0.9758 

 Time 5.07 -0.01  1.54 0.00  0.0291 0.9778 

 NAO 4.58 -0.32  1.53 -0.05  0.0283 0.9789 

 PNA 4.62 -0.10  1.53 0.00  0.0335 0.9759 

 Time+NAO 4.85 -0.01 -0.23 1.48 0.00 -0.07 0.0270 0.9794 

 Time+PNA 5.05 -0.01 -0.09 1.55 0.00 0.00 0.0288 0.9778 

 NAO+PNA 4.57 -0.31 -0.06 1.53 -0.05 0.00 0.0282 0.9789 

Québec/Jean 

Lesage Intl 

Stat. 5.23   1.58   0.0418 0.9734 
Time 5.85 -0.02  1.65 0.00  0.0327 0.9776 
NAO 5.14 -0.44  1.58 -0.04  0.0326 0.9788 
PNA 5.18 -0.26  1.57 -0.03  0.0394 0.9748 

Time+NAO 5.58 -0.01 -0.29 1.62 0.00 -0.04 0.0296 0.9800 
Time+PNA 5.79 -0.02 -0.23 1.64 0.00 -0.04 0.0308 0.9789 
NAO+PNA 5.10 -0.41 -0.19 1.57 -0.04 -0.03 0.0313 0.9796 

Mont-Joli Stat. 6.43   1.80   0.0326 0.9838 

 Time 7.03 -0.02  1.83 0.00  0.0253 0.9873 

 NAO 6.37 -0.31  1.81 0.00  0.0284 0.9855 

 PNA 6.38 -0.24  1.80 -0.03  0.0308 0.9847 

 Time+NAO 6.90 -0.01 -0.14 1.84 0.00 0.00 0.0247 0.9875 

 Time+PNA 6.97 -0.02 -0.21 1.82 0.00 -0.03 0.0239 0.9880 

 NAO+PNA 6.33 -0.29 -0.19 1.80 0.00 -0.03 0.0273 0.9861 

Schefferville Stat. 5.25   1.63   0.0408 0.9750 

 Time 5.71 -0.01  1.50 0.00  0.0346 0.9778 

 NAO 5.20 -0.32  1.66 0.06  0.0353 0.9775 

 PNA 5.20 -0.20  1.63 -0.01  0.0392 0.9756 
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 Time+NAO 5.50 -0.01 -0.20 1.51 0.00 0.00 0.0333 0.9785 

 Time+PNA 5.66 -0.01 -0.19 1.50 0.00 -0.02 0.0333 0.9784 

 NAO+PNA 5.17 -0.30 -0.13 1.65 0.06 -0.03 0.0346 0.9778 

Gaspé Stat. 3.95   1.34   0.0352 0.9675 

 Time 4.29 -0.01  1.25 0.00  0.0312 0.9697 

 NAO 3.97 -0.25  1.35 0.00  0.0322 0.9693 

 PNA 3.94 -0.12  1.34 -0.03  0.0347 0.9683 

 Time+NAO 4.22 -0.01 -0.18 1.25 0.00 -0.03 0.0299 0.9708 

 Time+PNA 4.33 -0.02 -0.21 1.26 0.00 -0.01 0.0298 0.9711 

 NAO+PNA 3.96 -0.25 -0.11 1.34 0.00 -0.03 0.0318 0.9699 

Natashquan Stat. 5.50   1.69   0.0403 0.9740 

 Time 4.76 0.04  1.49 0.01  0.0252 0.9832 

 NAO 5.51 -0.10  1.69 -0.02  0.0400 0.9742 

 PNA 5.45 -0.35  1.68 -0.09  0.0355 0.9770 

 Time+NAO 4.76 0.04 -0.19 1.49 0.01 -0.04 0.0239 0.9839 

 Time+PNA 4.80 0.03 -0.20 1.51 0.01 -0.05 0.0238 0.9840 

 NAO+PNA 5.46 -0.09 -0.34 1.68 -0.02 -0.09 0.0353 0.9771 

Bold characters denote the best results for a given station. 
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Figure captions 

Figure 1. Overview of the methodology for wind energy assessment at a given site over a long-term horizon. 

Figure 2. Spatial distribution of the meteorological stations. 

Figure 3. Average monthly wind speed at the stations of Montréal/St-Hubert and Val-d’Or. 

Figure 4. Boxplots of correlation coefficients between the seasonal average of the NAO and PNA indices 

and the seasonal average wind speed. Dotted lines represent significance limits for a fictive sample of 50 

years. 

Figure 5. Trends in seasonal covariates of climate indices. 1953-2020 for NAO (DJF) and 1953-1982 and 

1983-2020 for PNA (MAM). 

Figure 6. Frequency histograms for observed wind speed data during the winter season (DJF) where data 

are segregated by the positive phase and negative phase of NAO (DJF) at the stations of Mont-Joli and 

Québec/Jean Lesage Intl. (a, b), and during the spring season (MAM) where data are classified according 

to the positive and negative phases of PNA (MAM) at the stations of Bagotville and Val-d’Or (c, d). 

Adjusted W pdfs are superimposed on each graph. 

Figure 7. Probability density functions fitted to the observed wind speed data during the winter-spring 

season (DJFMAM) where data are classified according to the positive and negative phases of NAO (DJF) 

and PNA (MAM) at the stations of Bagotville (a) and Québec/Jean Lesage Intl. (b). 

Figure 8. Boxplots of the goodness-of-fit statistics (DJFMAM season). 

Figure 9. Boxplots of the goodness-of-fit statistics (DJF season). 

Figure 10. Boxplots of the goodness-of-fit statistics (MAM season). 

Figure 11. pdf for each year with the nonstationary model using the covariates Time and NAO for the winter 

season at Québec/Jean Lesage Intl.  
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