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Abstract: Optical sensors are increasingly sought to estimate the amount of chlorophyll a (chl_a)
in freshwater bodies. Most, whether empirical or semi-empirical, are data-oriented. Two main
limitations are often encountered in the development of such models. The availability of data
needed for model calibration, validation, and testing and the locality of the model developed—
the majority need a re-parameterization from lake to lake. An Unmanned aerial vehicle (UAV)
data-based model for chl_a estimation is developed in this work and tested on Sentinel-2 imagery
without any re-parametrization. The Ensemble-based system (EBS) algorithm was used to train the
model. The leave-one-out cross validation technique was applied to evaluate the EBS, at a local
scale, where results were satisfactory (R2 = Nash = 0.94 and RMSE = 5.6 µg chl_a L−1). A blind
database (collected over 89 lakes) was used to challenge the EBS’ Sentine-2-derived chl_a estimates at
a regional scale. Results were relatively less good, yet satisfactory (R2 = 0.85, RMSE= 2.4 µg chl_a L−1,
and Nash = 0.79). However, the EBS has shown some failure to correctly retrieve chl_a concentration
in highly turbid waterbodies. This particularity nonetheless does not affect EBS performance, since
turbid waters can easily be pre-recognized and masked before the chl_a modeling.

Keywords: Sentinel-2; unmanned aerial vehicle; remote sensing; chlorophyll-a; machine learning;
ensemble-based system; freshwaters; water quality

1. Introduction

Man-made pollution towards the environment combined with global warming have
made algal blooms in freshwater bodies more recurrent, intense, and harmful more than
ever. When they are massive, algal blooms can be a real threat to human and animal
health [1]. Many readers make the common mistake of labelling massive algal blooms,
known as HAB (Harmful algal blooms), as cyanobacteria. Three main species of algae
can massively grow and turn into HAB: cyanobacteria, dinoflagellates, and diatoms [2].
Dinoflagellates-based or diatoms blooms are not as harmful to citizens as cyanobacteria-
based blooms, but their massive growth is as degrading to the freshwater quality and
to the entire aquatic ecosystem as cyanobacteria blooms [3]. Additionally, Long et al. [4]
have reported a positive relationship between the biomass of phytoplankton as well
as the concentration of their main pigment, Chlorophyll-a (chl_a), and the biomass of
cyanobacteria. For these reasons, the World Health Organization (WHO) has listed chl_a
as a mandatory parameter to measure in freshwater guidance level for cyanobacteria-
related risk (https://www.who.int/water_sanitation_health/bathing/srwe1-chap8.pdf,
accessed on 4 February 2021). However, punctual networks of in situ measurements and
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the low sampling temporal frequency make it an almost impossible task to survey the
spatiotemporal dynamic of chl_a in freshwaters [5]. In contrast, the synoptic viewing and
the continuous recording of sensors onboard satellites grant remote sensing data a relevant
advantage for chl_a mapping, both for water quality assessment and algal bloom growth
monitoring [6].

Chl_a is an optically active pigment and emits a typical spectral signature along
the electromagnetic spectrum during the photosynthesis process that is captured and
recorded by sensors onboard satellites. Gordon et al. [7] are likely among the first to
have utilized this characteristic to estimate chl_a concentration in open ocean. Since then,
many empirical [8–11] and semi-empirical [12–14] models as well as models based on
more sophisticated statistical approaches [15–17] to retrieve chl_a have been developed.
Most of these algorithms are data-oriented and require a large number of measurements to
train robust models, which is difficult to ensure in most cases. Several factors influence
this lack of data availability. Financially; no budget is available for field campaigns. In
this case, the scientist exploits existing data collected by other agencies (e.g., ministries,
municipalities, etc.) that were not intended for remote sensing developments. Many
problems arise with this type of database, such as sampling: (1) near the coasts (mixed pixel
problem), (2) outside of satellite tile acquisitions, (3) at different dates of satellites passage,
etc. Climatically; the presence of cloud and/or haze cover at the time of the satellite’s
passage over the area of interest. This is a particularly significant problem in high-latitude
areas where nearly 50% of the year is cloudy and lakes are covered with snow for almost
seven months each year. Chronologically; for a newly launched sensor, for instance, with
a high temporal frequency, it takes months, even years, to collect an exploitable in situ
database to train models explicitly to this sensor. This chronological delay prevents, in a
monitoring context for example, the use of valuable data free of charge.

Recently, the Unmanned aerial vehicle (UAV), combined with the latest generation
sensors, in particular hyperspectral sensors, has made it possible to develop easy-to-use, af-
fordable, and fully controlled engines for remote sensing applications. Works about remote
estimation of water quality, notably chl_a estimates, are increasingly published [18–21]. Al-
though satellite data-based chl_a modeling performance was as accurate as those obtained
with UAV data-based algorithms, this technology attracted the attention of scientists at the
beginning because of its flexibility in data acquisition (on-demand spectral, spatial, and
temporal resolutions), ability to fly under clouds, and its cost-effectiveness [22]. However,
due to difficulties in water image processing, costs, payload limitations, and the lack of
standardized methods, the interest rate in monitoring algae blooms using UAVs data has
dropped from the scientific community [19]. Furthermore, the UAV’s spatial coverage is
very limited (a few km2). This fact has made it very difficult to implement UAV-based
algorithms in operational uses.

As noted above, each of the two technologies (UAVs and satellites) has its strengths
and weaknesses. The most relevant points are: a local-scale coverage for UAVs versus a
regional-scale for satellites, the ability of a controlled data acquisition for UAVs versus un-
controlled data acquisition for satellites, and the ability of both technologies to model chl_a
with almost equal accuracy. Combining the strengths of each technology with a machine
learning algorithm could lead to the development of a local/regional model that can be
used with satellite and UAV data. Ensemble-based systems (EBS), considered as the revolu-
tion of the modern machine learning, have been found to be very effective to develop robust
models [23]. However, despite their popularity in remote sensing applications [24–30], EBS
use is yet limited to classification purposes. Among the few studies applied for regression
purposes, a MODIS-based EBS model was proposed to estimate chl_a in freshwater bodies.
When compared to other models, the EBS has reached the best results, in particular at
the early phase of algae bloom growth [15]. Xiaojuan et al. [31] used this technique as
well to develop remote sensing inversion ensemble models to estimate total nitrogen (TN)
and chl_a concentrations using Landsat images. The modeling accuracy has increased
for both parameters (TN and chl_a). Additionally, a multi-predictor ensemble model
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(MPEM) was developed to estimate water turbidity using Landsat data. Again, when
compared to traditional models, the MPEM has reached the best results [32]. Finally, a
machine learning-based ensemble model was also developed using remote sensing data for
estimating water quality parameters (phycocyanin, chl_a, total suspended solids, turbidity,
and total dissolved solids). This ensemble model combined several algorithms (Partial
least square regression, Gaussian process regression, Support vector regression, and Ex-
treme learning machine regression) using a weighted-prior method. Authors concluded,
as expected, that the machine learning-based ensemble model results were superior to
traditional methods [33].

This work presents a development effort of a regional/local EBS-based model for chl_a
estimates in freshwater bodies in southern Quebec that can be run on both data acquired by
an UAV and Sentinel-2 data. To our knowledge, none of the previous work had proposed a
single algorithm that could be used with both technologies for remote estimates of water
quality. The EBS was evaluated on two levels: (1) using the leave-one-out cross-validation
technique for local assessment purposes and (2) using a blind dataset of in situ chl_a
measurements collected over the Quebec province for regional assessment purposes. Four
statistical indices (coefficient of determination (R2), root mean squared errors (RMSE), bias,
and Nash criterion (Nash)) were used to evaluate the performance of the EBS. Challenges,
advantages, and limitations of chl_a retrieval using both technologies are discussed at the
end of this paper.

2. Study Area and Materials
2.1. Study Area

Located between latitudes 44◦ to 50◦ north and longitudes 67◦ to 80◦ west, the area
covered by this study represents Quebec priority watersheds and is composed of several
freshwater bodies spread all over southern Quebec (Figure 1). This area encompasses
approximately 2285 freshwater bodies that are visible at the spatial resolution of the
Sentinel-2. These are very diverse in terms of their intrinsic bio-optical characteristics
because they belong to different eco-environmental systems, which are not only governed
by different physiological and ecological factors, but by anthropogenic action as well. This
diversity is an interesting challenge to the EBS in order to test its robustness in different
aquatic environments.

2.2. Materials

Three lakes (Brome, Champlain, and Magog) were chosen for this study (zoomed
frame in Figure 1). Brome Lake is located southeast of Mount Brome and is the source of
the Yamaska River. The watershed is 187 km2 and the surface area is 15 km2. The length
and width are 6 and 5 km, respectively, and the mean and maximum depths are 6 and 13 m,
respectively. Lake Champlain is located in the Lake Champlain Valley, on the border of
the states of Vermont and New York, its northern end being in the south of the province of
Quebec. The watershed is 23,720 km2 and the surface area is 1269 km2. The length and
width are 201 and 23 km, respectively, and the mean and maximum depths are 20 and
122 m, respectively. Lake Magog is part of the large Saint-François River watershed. The
watershed is 1956 km2 and the surface area is 11 km2. The length and width are of 11 and
2 km, respectively, and the mean and maximum depths are of 9 and 19 m, respectively.
These lakes belong to different trophic statues (oligotrophic (Magog) mesotrophic (Brome),
and eutrophic (Champlain)). This was important for building a database of chl_a in situ
measurements as wide as possible, since it is an essential criterion to develop a robust
empirical model. The choice of these lakes was based on their historical (2001 to 2008)
in situ chl_a measurements, collected by different departments of the Government of
Quebec Province, which highlighted that all these lakes have experienced algae blooms
episodes, but with significant differences, in terms of frequency and duration (Figure 2). In
this analysis, concentrations higher than 10 µg chl_a L−1 were taken as a bloom episode
as stated by the WHO (https://www.who.int/water_sanitation_health/bathing/srwe1
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Figure 1. Geographic distribution of sample stations and freshwater bodies used for model calibration
and validation. The flags represent data used for the validation collected over 89 inland waterbodies.
In the zoomed area, the pushpins represent data used for the calibration collected over Brome,
Champlain, and Magog Lakes in the summer of 2017.
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3. Data Compilation and Pre-Processing

In situ measurements, collected for the model calibration, were sampled in summer
2017 (18 to 20 July and 4 to 16 August) using the same experimental protocol. First,
measurements were performed on a single transect composed of eighteen 20 × 20 m2 cells
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(Sentinel-2 spatial resolution) covering a distance of 340 m. Samples were collected at
the center of each cell. Second, as soon as the sampling process was completed, a drone
boarded with visible/near-infrared hyperspectral cameras flew over the same eighteen
20 × 20 m2 cells for image recording.

3.1. Calibration Database
3.1.1. Collection of Data from the Lake

Nine samples for chl_a, pheophytin-a, and Secchi disk measurements were collected
(one out of two cells of the eighteen), five samples for dissolved organic carbon (one
out of four cells of the eighteen) measurements were collected, and one sample for total
phosphorus and total nitrogen measurements (one cell of the eighteen) was taken at each
field campaign (FC). A 2 L bottle of water was sampled at each cell center, followed by a
water depth measurement using a 2.5 cm black/white Secchi disk. A part of this bottle was
filtered for the chl_a (25 mm diameter GF/F filter). A known volume of water with enough
chl_a was deposited on the filter for subsequent chl_a extraction. Since chl_a can be easily
degraded by sunlight, it was important to prevent the water from being exposed to light.
Therefore, it was directly collected in opaque containers. Thereby, as soon as filtration
was completed, filters were conserved in a freezer (between 0 and 2 ◦C) for laboratory
analysis. The rest of the water was frozen (−18 ◦C) for analysis of other parameters (colored
dissolved matters, dissolved organic carbon, phosphorus, and nitrogen).

Figure 3 illustrates the histogram of the calibration database (N = 41), from which
it is clear that the collected in situ chl_a cover a relatively wide range of concentrations
with a minimum of 2.16 µg chl_a L−1 (Magog Lake) and a maximum of 77.04 µg chl_a L−1

(Champlain Lake). Table 1 illustrates the results of all the analyzed water quality parameters
in this project. These results highlighted that the three pre-selected lakes belong to different
trophic levels ranging from oligo-mesotrophic (Magog Lake) to eutrophic (Champlain Lake)
based on the chl_a, transparency, and total phosphorus values following the classification
proposed by the Environmental Ministry of Quebec (Figure 4).
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Trophic classes 
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Phosphorus 
(µg/l) 

Chlorophyll a Transparency 

(µg/l) (m) 

Main class  Secondary class 
(transition) Average  Average  Average  

Ultra−oligotrophic   < 4  < 1 > 12 

Oligotrophic   4 − 10 1 − 3 12 − 15 

  Oligo−mesotrophic 7 − 13  2.5 − 3.5 6 − 4 

Mesotrophic   10 − 30 3 − 8 5 − 2.5 

  Meso−eutrophic 20 − 35 6.5 − 10 3 − 2 

Eutrophic   30 − 100 8 − 25 2.5 − 1 

Hyper−eutrophic   > 100 > 25 < 1 

Figure 4. Classes of lake trophic levels with corresponding values of total phosphorus. Chlorophyll-a and water transparency.
Inspired from the environmental Ministry of Quebec website (http://www.environnement.gouv.qc.ca/eau/rsvl/methodes.
htm, accessed on 4 February 2021).

Table 1. A summary of water properties analyzed (chlorophyll-a (chl_a), pheophytin-a (Pheo_a), Secchi disk depth (SDD)),
dissolved organic carbon (DOC), total phosphorous (TP), and total nitrogen (TN). FC1 and FC2 refer to field campaigns
1 and 2, respectively. Avrg, Std, Min, and Max refer to average, standard deviation, minimum, and maximum values,
respectively. CL, BL, and ML refer to Champlain, Brome, and Magog Lakes.

Lakes
chl_a (µg L−1)

Avrg ± Std
(Min −Max)

Pheo_a (µg L−1)
Avrg ± Std

(Min −Max)

SDD (m)
Avrg ± Std

(Min −Max)

DOC (µg L−1)
Avrg ± Std

(Min −Max)
TP (µg P/L) TN (mg N/L)

FC
1

CL 34.2 ± 4.7 (26.0 − 44.8) 7.7 ± 0.8 (5.9 − 8.9) 1.2 ± 0.1 (1.1 − 1.4) 6.9 ± 1.7 (5.6 − 9.5) 46 0.806

BL 3.4 ± 0.3 (2.8 − 4.3) 1.0 ± 0.1 (0.9 − 1.2) 4.2 ± 1.7 (1.9 − 2.2) 3.7 ± 0.9 (3 − 4.9) 23 0.409

ML 3.4 ± 0.4 (2.8 − 4.2) 0.7 ± 0.1 (0.6 − 0.9) 3.6 ± 0.2 (3.2 − 4.3) 4.4 ± 1.5 (3.4 − 7.1) 13 0.330

FC
2

CL 61.8 ± 8.5 (38.6 − 77.0) 19.7 ± 5.4 (11.0 − 27.5) 0.8 ± 0.1 (0.7 − 0.9) 4.8 ± 0.2 (4.5 − 5.2) 66 0.957

BL 17.1 ± 1.3 (14.6 − 20.6) 1.1 ± 0.5 (0.1 − 1.8) 1.5 ± 0.1 (1.0 − 1.7) 3.2 ± 0.1 (3.1 − 3.3) 18 0.425

ML 2.5 ± 0.2 (2.2 − 2.9) 0.5 ± 0.2 (0.3 − 0.9) 3.1 ± 0.2 (2.7 − 3.2) 3.3 ± 0.1 (3.3 − 3.5) 10 0.279

3.1.2. Hyperspectral Image Acquisition

The imaging engine used in this project is composed of a hexacopter drone loaded
with hyperspectral cameras: Pika II (covering wavelengths from 400 to 900 nm) and Pika
NIR (covering from 900 to 1700 nm). The spectral resolution of the Pika II is 3 nm, whilst
it is 6 nm for the Pika NIR. Since the payload of the hexacopter drone is about 10 kg, it
was necessary to make two overflights (a first with Pika II and a second with the Pika
NIR) for each field campaign. The hexacopter drone was placed at 100 m altitude allowing
image recording with a spatial resolution of 3 cm. However, since the goal is to develop a
model applicable to Sentinel-2 data sensors, during the geo-rectification, the outputs were
up-scaled to 20 m spatial resolution.

The Pika Hyperspectral sensor initially records the sunlight radiance in digital num-
bers (DN). Equation (1) was thus used to convert the DN to spectral radiance.

Spectral radiance = Gain ×DN + BIAS (1)

Figure 5 shows results of the radiances collected over the nine sampling points of
the three lakes in each FC. Each plot illustrates the average ± the standard deviation of
the radiance recorded over in situ measurements. As can be seen, the largest variation is
observed for FC 2 of Champlain Lake and the lowest is observed for FC 2 of Magog Lake.
These observations highly concord with in situ chl_a measurements, where the maximum
of the variation was also observed for FC 2 of Champlain Lake and the minimum of the
variation was observed for FC 2 of Magog Lake (Figure 3).

http://www.environnement.gouv.qc.ca/eau/rsvl/methodes.htm
http://www.environnement.gouv.qc.ca/eau/rsvl/methodes.htm
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3.1.3. Sentinel-2 Bands Simulation

The simulation of Sentinel-2 bands was performed based on its Spectral response
curves (SRC) using Equation (2), inspired by the work of Blonski, et al. [34]. These SRC
store information about the measured spectral responses and about the spectral width
of each band. Since Sentinel-2A and -2B are twin sensors, their SRC are almost identical.
Figure 6 shows the results of the simulation. The black lines represent the hyperspectral
radiance recorded by the drone, the red dots represent the simulated radiance for each
band using its corresponding SRC, and the colored lines are the plots of the Sentinel-2 SRC.
It is important to highlight that the plotted hyperspectral radiances and their simulations
are the averages picked up over the in situ measurements for each FC. From Figure 6,
it is clear that Sentinel-2 bands are simulated without any loss of information, as all the
simulations (red dots) are located on the initially signal recorded (black lines).

RAD_simi = ∑(hyp_RADi × SRCi) (2)

where:
RAD_simi is the simulated radiance of band i;
hyp_RADi is the hyperspectral radiance of band i;
SRCi is the curve spectral response of band i, where ∑ SRCi = 1.
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3.1.4. Simulated Bands Reflectance

In remote sensing applications, particularly in a multi-temporal context, it is better
to use the reflectance instead of the radiance. In fact, the radiance is the spectral flux that
reaches the satellite sensor determined both per unit of area and solid angle, whilst the
reflectance is equal to the radiance divided by the irradiance and by other parameters for
geometric considerations (Equation (3)). This eliminates the dependency on the instrument
observing it or on the irradiance received. It is an intrinsic property of the surface, which
only depends on illumination and observation angles. Thus, several advantages can be
attributed to the use of the reflectance:

â Its values are usually comprised between 0 and 1;
â It is easy to compare the reflectance from one spectral band to another;
â It is possible to compare the reflectance directly at different times of the year or

of the day, since it is already corrected for variations of earth–sun distance and so-
lar zenith angle (https://labo.obs-mip.fr/multitemp/les-grandeurs-radiometriques-
eclairement-luminance-reflectance/, accessed on 4 February 2021).

Equation (3), known as the COST algorithm (Cosine of the sun zenith angle), inspired
by the work of Moran, et al. [35], was used to estimate the reflectance of the simulated
bands. It is an enhanced version of the DOS algorithm (Dark object subtraction). Indeed, in
addition to the additive effect correction, such as the one used for the DOS algorithm, COST
uses an additional correction for transmittance along the path from the ground toward the
sensor (TAUz). The correction of this module, which is part of the multiplicative effect
of the atmosphere, is made by the computation of the cosine of the solar zenith angle.
According to Chavez Jr [36], the cosine of the solar zenith angle is a good approximation
of TAUz.

Re fCOST=
pi× (Lλ − Lhaze)× d2

(ESUNλ × COSθλ × COSθS)
(3)

where:
Lλ is spectral radiance at the sensor’s aperture;
Lhaze is the upwelling atmospheric spectral radiance scattered in the direction of the

sensor entrance pupil and within the sensor’s field of view
[
W ×m−2 × sr−1 × µ− 1

]
;

d is the earth–drone distance;
ESUNλ is the mean solar exo-atmospheric irradiance;
θλ is the approximation of the atmospheric transmittance terms;
θS is the solar zenith angle in degrees.
Figure 7 shows the results of the reflectance computed using the COST algorithm. The

results presented here are averages of the reflectance picked up over the sampling points
with their corresponding in situ chl_a measurements. It is important here to point out that
the reflectance obtained are typical to case-2 water bodies, as the ratio of blue to green
bands is clearly lower than 1.0 [37]. In addition, it reveals a relatively important signal
backscattering, in the red-edge part of the spectrum, that is only perceived for high values
of chl_a (Champlain Lake). This behavior is typical to water highly ladened with chl_a,
which is the case of the Champlain Lake (>25 µg chl_a L−1).

https://labo.obs-mip.fr/multitemp/les-grandeurs-radiometriques-eclairement-luminance-reflectance/
https://labo.obs-mip.fr/multitemp/les-grandeurs-radiometriques-eclairement-luminance-reflectance/
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3.2. Validation Database
3.2.1. In Situ Measurements

The Voluntary lakes monitoring network (VLMN) is a multiple partnership organiza-
tion (environmental ministry, municipalities, university researchers, and water associations)
that aims to: (1) acquire data to establish the trophic level of a large number of lakes and
follow their evolution over time; (2) detect lakes showing signs of eutrophication and
degradation; (3) educate, raise awareness, support, and inform local residents’ associations
and other participants; and (4) draw a global portrait of the situation of resort lakes in
Quebec. The VLMN has been operational since 2004, and since then, it has collected several
water quality parameters (chl_a, water transparency, phosphorus, dissolved organic carbon,
etc.), each year, over many inland freshwater bodies in Quebec. These data were used to
validate the developed EBS using images acquired by the Sentinel-2A and -2B sensors.

A database of approximately 1891 samples was collected by the VLMN between the
years 2015 and 2017. However, this number has been reduced to 94, spread over 89 inland
waterbodies, due to three main reasons: 1) the number of cross-over dates (sampling and
passage of satellite) was very low; 2) samples outside the Sentinel-2A and -2B tiles; and
3) the presence of haze or cloud. Table 2 summarizes the results of chl_a concentrations
that have been used to test the performance of the EBS using a completely blind database.
For 2015, it was not possible to cross-over any dates; thereby data collected from this year
were not used in this validation process. The minimum measured value was 0.7 µg chl_a
L−1 and the maximum was 41.8 µg chl_a L−1. Unlike the calibration database, most of the
validation chl_a concentrations are centered at around 5 µg chl_a L−1 (Figure 8), meaning
that most of the tested waterbodies belong to the oligotrophic level.
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Table 2. A summary of the chlorophyll-a (chl_a) measurements sampled by the Voluntary lakes moni-
toring network (VLMN) during the years 2015 to 2017 and the number of cross-over images. Avrg, Std,
Min, and Max refer to average, standard deviation, minimum, and maximum values, respectively.

Years chl_a (µg L−1)
Avrg ± Std (Min −Max) Number of Samples Number of Images

V
LM

N

2015 0 ± 0 (0 − 0) 0 0

2016 3.4 ± 2.3 (0.9 − 10.8) 32 16

2017 4.4 ± 5.9 (0.7 − 41.8) 62 9

Total 4.1 ± 5.1 (0.7 − 41.8) 94 25
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3.2.2. Remote Sensing Data

The remotely sensed data used in this project were obtained from Sentinel-2 Level 1
available on the Copernicus server. The Sentinel-2 sensor is boarded on two platforms (A
and B) belonging to the European Space Agency. The Sentinel-2A was launched first (23
June 2015). Two years later, the Sentinel-2B followed it (7 March 2017). It records across a
quite wide range of the spectrum covering 13 spectral bands (443–2190 nm), with a swath
width of 290 km, and spatial resolutions of 10 m (for the visible bands), 20 m (red edge
to shortwave of infrared (SWIR)), and 60 m (coastal blue and the atmospheric correction
bands). For this study, only cross-over dates of Sentinel-2A and -2B passage to the VLMN
in situ measurements were downloaded and pre-processed (Table 2). In order to increase
the number of Sentinel-2 bands, the 10 m spatial resolution bands were upscaled to 20 m
for a total of 9 bands covering parts from the blue (497 nm) to SWIR (1610 nm).

3.2.3. Atmospheric Correction of Sentinel-2 Images

Sentinel-2 Level 1 is radiometrically corrected and offers the Top of Atmosphere (ToA)
reflectance. This product is, however, still affected by atmospheric effects and needs to
be corrected. The Sentinel-2 bands were corrected, to the Bottom of Atmosphere (BoA)
reflectance, using an adapted algorithm of the COST model. In fact, contrariwise to the
simulated bands, where the Lhaze term of Equation (3) was insignificant (because images
were recorded at 100 m altitude), this term is very significant for the Sentinel-2 bands and
it has been necessary to correct it. The correction of this term is usually performed using
the dark object subtraction technique [36]. However, when this technique was tested, it
was perceived that the corrected reflectance of Sentinel-2 images was still influenced by
the atmosphere (Figure 9A); the magnitude of the COST reflectance is significantly higher
from those of the drone image (ImgDrone) (Figure 9A plot)).
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Figure 9. Comparison of Magog Lake reflectance. (A) Sentinel-2 based reflectance (11 August 2017)
corrected using: radiometric correction (Top of atmosphere (ToA)), COST algorithm, and a modified
version of the COST (COSTMod) algorithm and reflectance of drone image (ImgDrone ) for the field
campaign of the 14th August 2017. (B) Line 1:1 plot comparing COSTMod to ImgDrone reflectance’s.
Reflectance presented here are averages picked up over in situ sampling points.

Reflectance at the ToA and at the BoA using COST and COSTMod of a Sentinel-2 image
(11 August 2017) are compared to reflectance of ImgDrone (14th August 2017) of Magog
Lake and results are presented in Figure 9A. Results demonstrate that reflectance using
the COSTMod approximates the best the reflectance of the ImgDrone and are confirmed by
the plot in Figure 9B, where the R2 = 1.0 (ImgDrone and COSTMod (a modified version of
COST) reflectance are so close that they are superimposed in the Figure 9A plot). In fact,
identifying the dark pixel using the standard COST model has some issues in an automated
mode. In this study, a novel technique was developed using the radiance of the ImgDrone
in order to fix this issue. Indeed, the most important term to be estimated in Equation (3) is
the Lhaze. To reach a good estimation of the BoA reflectance, this term has to be the closest
to the radiance of oligotrophic water bodies, since the absorption of the sunlight in these
kinds of waterbodies is very high and, consequently, they are good samples of the dark
pixels ground entities.

As per in situ measurements results (Table 1), Lake Magog can be classified as an
oligotrophic water body. The radiance averages of each simulated band of this lake were
used as a reference radiance to corrected Sentinel-2 images for the atmosphere effects, as
presented in the Figure 10. Lλ, in this figure, correspond to the radiance of the dark object
(i.e., the minimal radiance corresponding to 1% reflectance) of the Sentinel-2 image that is
used to compute the Lhaze. The Lhaze was simply the difference between the Lλ and LRe f .
Thus, the correction of the Lhaze was based, this time, on a reference that is known to be a
“real” dark object.

Computing the Lhaze for each band of the Sentinel-2 image using the reference radi-
ances yielded good results when applied manually (at a local-scale). On the other hand, at a
regional-scale, the results significantly dropped. In fact, the main issue with this technique
is that, from one band to another, the Lλ of the dark pixel changes, and consequently, the
intrinsic relationships between Sentinel-2 bands were destroyed. To fix this issue, once
the Sentinel-2 dark pixel is identified for the blue band (since it is the most affected by the
atmosphere), radiance coefficients are computed based on the radiance value of this pixel.
These radiance coefficients are equal to the ratio of each band to the blue (Equation (4)).
Thereby, the intrinsic behavior of the dark pixel is kept unchanged. Contrariwise to the
first technique, solely the blue band radiance is used as a reference to correct for the Lhaze(s)
of the rest of the Sentinel-2 bands. Thus, by adding these modifications to Equation (3), it
took the form of Equation (5).

Coe f =
L(λ)DP

L(blue)DP
(4)
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where:
L(λ)DP is the radiance of the dark pixel for a given band (λ);
L(blue)DP is the radiance of the dark pixel blue band.

Re fCOST=
pi× (Lλ − [0.0023× Coe fλ])× d2

(ESUNλ × COSθλ × COSθS)
(5)

where:
Lλ is spectral radiance at the sensor’s aperture;
0.0023 is the averaged radiance recorded at the camera boarded on the drone;
Coe fλ is the correction coefficients as described in Equation (4);
d is the earth–sun distance in astronomical units;
ESUNλ is the mean solar exo-atmospheric irradiance;
θλ is the approximation of the atmospheric transmittance terms;
θS is the solar zenith angle in degrees.
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Figure 10. A novel approach for quantifying the Lhaze using image drone radiance as a reference.

The spectral reflectance presented in the red frame of Figure 11 illustrates the result
of the COSTMod algorithm based only on the blue band radiance as a reference, while
the spectral reflectance presented at the blue frame illustrates the result of the COSTMod
algorithm based on all bands radiance as a reference. It is clear that the reflectance along
the spectrum (from the blue to NIR) picked up from the image corrected with the COSTMod
blue band radiance-based is closer to the known case-1 water spectral behavior. On the
other hand, correcting independently the Lhaze for each Sentinel-2 band leads to destroying
of the intrinsic physical relationships along the spectrum within the image. This fact is
more tangible in the case of waters since the returned signal is initially too small and any
slight over- or under-estimation of the Lhaze could change the initial spectral behavior, as
shown in the blue frame of Figure 11.
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4. Methodology and Statistical Evaluation Indices
4.1. Methodological Approach

The flowchart presented in Figure 12 summarizes the methodological approach of
this study. Two main steps were followed during this process: calibration, where two
field campaigns were performed over three lakes. This step aims to collect in situ water
samples and to record hyperspectral images using a drone, simultaneously. Water samples
were analyzed in the laboratory for chl_a and other water properties, whilst drone images
underwent several pre-processing phases:

â Geometric and radiometric (Equation (1)) corrections;
â Upscaling to 20 m spatial resolution (equal to that of Sentinel-2);
â Sentinel-2 spectral bands simulation (Equation (2));
â Simulated bands reflectance computation (Equation (3)).

Once these steps were finalized, it was a question to calibrate an ensemble-based
system (EBS) to estimate chl_a concentration and to evaluate its performance locally
using the Leave-one-out cross-validation (LOOCV) technique (EBS development will be
more detailed in the next section). Once the EBS reached an acceptable rate of errors,
this closes the first step of the methodological approach. The second part focused on
validating and testing the robustness of the EBS at a regional scale. Thus, the EBS was
challenged over several inland waterbodies belonging to different geo-environmental
regions (Figure 1). Hence, it was a question of collecting chl_a in situ measurements from
several environmental organizations, particularly the VLMN, qualified here as a blind
database. Cross-over dates of Sentinel-2 images to in situ samples were downloaded and
pre-processed to the BoA reflectance (Equation (5)). Sentinel-2-based chl_a concentration
products were, as a final step, compared to in situ chl_a collected by the VLMN.
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4.2. Ensemble-Based System

Seeking additional opinions before making a decision is part of human nature. The
general concept behind EBS algorithms is based on this principle. In fact, an EBS is
composed of several individual elements (classifiers and/or estimators). Combining the
decision of these individual elements decreases modeling errors in contrast to an estimation
based on a unique model that can be erroneous and consequently, increases the error [23].
Two main keys are required for building a robust EBS: 1) reaching the highest possible
diversity between its individual elements and 2) finding the best combination rule of
individual elements so that correct decisions are amplified and the incorrect ones are
canceled out [23]. This technique is principally used in sensitive fields such as medical
care [38–40], financial businesses [41–43], and recently was used to remote estimate chl_a
using MODIS data [15].

On the other hand, the WHO has established the value of 10 µg chl_a L−1 as the first
alert level to freshwater bodies use for recreational activities [44]. In this context, many
studies have demonstrated that the returned signature from oligotrophic waterbodies is
different compared to that returned from mesotrophic or eutrophic waterbodies [45–47],
meaning that sensitive spectral regions to water bodies highly laden in chl_a are not
necessarily the same for water bodies moderately or poorly laden in chl_a concentrations.
As a consequence, using a specific model to each trophic level could enhance the quality of
chl_a estimates than using a unique model for all trophic levels [48]. Taking into account the
above statements, it was decided to develop a hybrid EBS composed of an Ensemble-based
classifier (EBC) and an Ensemble-based estimator (EBE).
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4.3. Statistical Indices for the Ensemble-Based System Assessment

Performance evaluation of the model in both cases (using the LOOCV technique
or using the blind dataset) was performed using five statistical indices (Coefficient of
determination (R2), bias, Root mean squared errors (RMSE), the Nash criterion (Nash),
and the relative errors). The Nash criterion evaluates the performance by comparing the
estimated values to the in situ measurements average, producing a result that ranges
between −∞ and 1.0 (inclusive). A negative Nash means that it would be better to use
the in situ measurements’ average than the model estimates, whereas values between 0.0
and 1.0 are generally viewed as acceptable levels of performance, and model performance
is satisfactory for values higher than 0.8; the model is perfect when Nash = 1.0. The
mathematical Equations (6)–(10) of the indices are as follows:

R2 =

 ∑n
i=1
(

Mi −M
)(

Es− Es
)√

∑n
i=1
(

Mi −M
)2
√

∑n
i=1
(
Esi − Es

)2

2

(6)

BIASr =
1
n

n

∑
i=1

(Esi −Mi) (7)

RMSE =

√
1
n

n

∑
i=1

(Esi −Mi )2 (8)

NASH = 1− ∑n
i=1(Mi − Esi)

2

∑n
i=1
(

Mi −M
)2 (9)

Relative error =
(Mi − Esi)

Mi
× 100 (10)

where:
n is the database size, M and Es are measured and estimated values, and M and Es

are averages of measured and estimated values.

5. Results and Discussion
5.1. The Ensemble-Based Classifier Development

Two levels in chl_a loads (> 10 µg chl_a L−1 representing mesotrophic and eutrophic
waterbodies and < 10 µg chl_a L−1 representing oligotrophic waterbodies) were used in this
study. For discrimination purposes, the Classification and regression tree (CART) algorithm
was applied [49]. The CART algorithm has selected Rλ4 − Rλ5 as the best discrimination
index. However, such kinds of algorithms are known to be local and unstable [50]. In
fact, the proposed decisions tree by the CART is optimal for the used training database,
but not unique. A simple modification within this database can lead to radical changes
in the decisions tree. An interesting way to control this uncertainty is to quantify it and to
take it into consideration when estimating chl_a concentrations. The control of the CART
uncertainty was possible by using the bagging algorithm (n-resampling with replacement;
nbag was set to 25,000 iterations in this study) based on the preselected discrimination index.
This allowed a random vector (v) to be generated composed by thousands of thresholds.

Normally, all these thresholds generated should be implied in the classification process,
but this will surely demand a huge running time as images are composed of hundreds of
thousands of pixels. Thus, the Gaussian quadrature method [51] was used for optimizing
the runtime. The purpose of this method is to summarize a given distribution in some
optimal points (referred to here as optimal thresholds) of this distribution that approximates
it the best. Thereby, based on the random vector, it was possible to establish a probability
distribution characterized by a mean (µ) and a variance (σ). These two statistical moments
have served after that to develop the EBC (beige frame in Figure 13) composed of three



Remote Sens. 2021, 13, 1134 17 of 27

(arbitrary choice) Optimal thresholds (OptThr) that are the Lower, Upper, and Nominal
thresholds, based on the Gaussian quadrature method, using the following equations:

NominalThr = µ(v) (11)

LowerThr = µ(v)−
√

3× σ(v) (12)

UpperThr = µ(v) +
√

3× σ(v) (13)

where µ(v) and σ(v) are the mean and variance of the random vector, respectively.
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which the discrimination index is, respectively, superior to the lower
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)
thresholds, used to train experts designed to model chl_a for meso-eutrophic waters. Beige frame is the

ensemble-based classifier and the blue frame is the ensemble-based estimator.
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5.2. The Ensemble-Based Estimator Development

Based on the EBC results, it was possible to develop an EBE. Indeed, by means of
the Nominal threshold (NominalThr), Lower threshold (LowerThr), and Upper threshold
(UpperThr), it is possible to subdivide the calibration database into six (3OptThr × 2Classes)
sub-classes and four modeling spaces (Figure 13). Each sub-class is composed of a dataset
of chl_a measurements that are used to train a specific estimator (known as expert in the
machine learning field). The subdivision was made as follows. Three datasets specific to
oligotrophic waterbodies are composed of chl_a samples where the values of Rλ4 − Rλ5

(the discrimination index) are, respectively, inferior to the NominalThr, LowerThr, and

UpperThr (blue arrows in Figure 13), referred as
{

Exp
OT↓i

}
in this study. Additionally, three

datasets specific to mesotrophic and eutrophic waterbodies are composed of chl_a samples
where the values of Rλ4 − Rλ5 are, respectively, superior to the NominalThr, LowerThr, and

UpperThr (red arrows in Figure 13), referred to as
{

Exp
OT↑i

}
. These sets of experts are the

individual elements of the EBE (blue frame in Figure 13). It is, however, important to
point out that it was not possible to train six different experts in this study. As shown in
Figure 13, there are no chl_a samples located in the transition zone (area between dashed
green (LowerThr) and blue (UpperThr) lines). As a consequence, it was possible to train only
a unique expert for each class instead of three each (calibration plots in Figure 13).

5.3. The Hybrid Ensemble-Based System for Chlorophyll-a Modeling

Estimation of the chl_a using this hybrid EBS is made on two steps: (1) determination
of the Modeling space (MS) by means of the EBC and (2) the estimation of the chl_a
concentration using the corresponding expert to the pre-identified MS. For the proposed
approach, 4 MSs are identified as illustrated in the blue frame of Figure 13. The estimation
of chl_a using this approach is weighted average-based. Weighting coefficients (ω), 1/6 for
the LowerThr and UpperThr and 2/3 for the NominalThr, are computed from the Gaussian
quadrature method, as demonstrated by Tørvi and Hertzberg [51]. Experts’ weights of chl_a
estimates change depending on the MS. However, the sum of the used weights in each case
is always equal to 1.0. Thus, chl_a estimation using the ESB is performed as it is described
in Figure 14. Even if it was not possible to train three different experts per sub-class, as is
supposed to be the case, we have deliberately detailed the calculation process, as if this
were the case, for those interested for their future work.
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5.4. Calibration of the Experts

Once the calibration database was subdivided, it was a question training the different
experts. To do this, all possible combinations of two- and three-band normalized indices
were computed, for each dataset, and integrated in a stepwise regression. For mesotrophic
and eutrophic waterbodies, three spectral indices were selected by the stepwise as the
best estimator to retrieve chl_a and were able to explain 93% (Figure 13) of its variance
(Equation (14)). For oligotrophic waterbodies, solely a unique spectral index was selected
by the stepwise as the best estimator to retrieve chl_a and was able to explain 47% (Figure 13)
of its variance (Equation (15)). As stated above, it was only possible to calibrate two experts
in this work. This is due to a lack of moderate chl_a values in the initial database, notably
between 5 and 15 µg chl_a L−1 (Figure 3). Since the discrimination threshold used here was
10 µg chl_a L−1 (as proposed by the WHO), there was a significant gap in the classification
results within the transition area between the two classes (dashed lines in Figure 13) and
consequently, only two datasets were set instead of six.

Based on the stepwise regression results, the expert designed to estimate chl_a of
mesotrophic and eutrophic waterbodies is trained by six different spectral regions ranging
from the blue to NIR. This spectral richness led to the development of a strong function of
calibration in these blooming conditions. The green, red, and NIR parts of the spectrum
have already been used, by many researchers, to estimate the chl_a in mesotrophic and
eutrophic water bodies [52,53]. The contribution of the blue band in retrieving chl_a in these
blooming conditions was not expected. However, it is important to take into consideration
that the blue band was used in a three-band normalized index including the red and NIR
bands. This combination of bands has, somehow, highlighted a significant relationship
between this spectral index and the chl_a. On the other hand, the expert designed to
estimate chl_a of oligotrophic waterbodies is trained by a simple function using a two-band
normalized index. The used bands are located in the green and red parts of the spectrum.
This result is coherent with other work results that have related the estimation of chl_a to
its bio-optical activity that is more correlated to the visible parts of the spectrum [54].

[Chl − a]Meso−eutrophic = exp(−2.72 ∗ Ind1 + 3.39 ∗ Ind2 + 3.23 ∗ Ind3 + 2.21) (14)

with

Ind1 = Band3−Band7
Band3+Band7

Ind2 = Band3−Band8
Band3+Band8

Ind3 =
(

Band5−Band2
Band5+Band2 + Band5−Band4

Band5+Band4

)
− Band2−Band4

Band2+Band4

[Chl − a]Oligotrophic = exp(−3.35 ∗ Ind4 + 1.93) (15)

with

Ind4 = Band3−Band5
Band3+Band5

where: band2 = 497, band3 = 560, band4 = 665, band5 = 704, band7 = 783, and band8 = 835 nm.

5.5. Cross-Validation: Local Evaluation

In order to evaluate the local performance of the developed approach, the cross-
validation technique was used. This technique consists of removing a sample (or a set
of samples (known as k-fold cross-validation)) from the calibration database, to use the
remaining samples to train a new model, and to estimate the chl_a concentration of the
removed sample with the trained new model (known as LOOCV). This exercise is re-done
for the whole calibration database. It is, however, important to underline that this technique
was adapted for the EBS. In fact, each removed sample was first classified by means of EBC.
Thereafter, the estimation of the chl_a concentration was done using the corresponding
EBE-expert to the classification result. With this technique, it was possible to compare
observed to estimated chl_a concentrations using the pre-mentioned statistical indices
(Equations (6)–(10)).
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Figure 15 shows the LOOCV result of chl_a estimates. It is important to point out that
the above processing and results are based only on the simulated Sentinel-2 reflectance
recorded by the drone. The R2 and Nash of 0.94% underscore the robustness of the EBS. The
accuracy and exactitude of the EBS can be considered as high (RMSE = 5.6 µg chl_a L−1)
to very high (bias almost null). These high performances are also supported by the
distribution of the dots around Line 1:1 that emphasize the absence of any under- or over-
estimation, particularly at the extremities (Figure 15A). The above findings are confirmed
by the residuals plot (Figure 15B) result, where the relative errors range between −0.8%
and 0.6% and are distributed around 0%, highlighting the absence of any form of trends.
Additionally, it is perceived that the relative error is reduced by almost 60% for values
higher than 40 µg chl_a L−1. This was somewhat expected since the expert designed to
estimate chl_a concentration in these blooming conditions was able to explain up to 93%
the chl_a variance (Figure 13).
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5.6. Validation with the Blind Dataset: Regional Evaluation

Figure 16 shows the results of EBS evaluation using the blind databases. The perfor-
mance of the EBS can be considered as low (R2 = 0.31) to very low (Nash =−1.95). However,
considering the results of the bias (−1.1 µg chl_a L−1) and the RMSE (8.8 µg chl_a L−1),
it can be concluded that in most cases, the estimation of chl_a is accurate and exact
(Figure 16A). These conclusions also emerge in the residuals plot where almost all the
residues are plotted around 0%, except for some specific cases (Figure 16B). Even if the
Nash is negative, meaning that the average of the measured chl_a concentrations is more
accurate than the chl_a modeling using the EBS, the low rate of the RMSE and residuals
distribution around 0% with relative errors comprised between −2% and 2%, in most cases,
encouraged us to investigate further in our research. In fact, based on the Figure 16B, only
four estimates are tainted with a high error (relative error < −3%). When these last esti-
mates were traced in the blind database, they all belonged to inland waterbodies affected
by very high turbidity (dashed arrows and circles in Figure 16). (The fourth sample was on
another Lake, to lighten the paper, this last case was not illustrated.)

When these four samples were removed from the blind database, the results increased
significantly (Figure 17). A R2 of 0.85 and a Nash of 0.79 underline the good performance
and the robustness of the EBS to retrieve the chl_a using data recorded from Sentinel-2A and
-2B sensors. The RMSE dropped to 2.4 µg chl_a L−1 and the bias is null (Figure 17A). These
two last statistical results highlight the high exactitude and accuracy of the EBS estimates.
It is interesting to point out that chl_a concentrations of the blind database are very low
(97% are inferior to 10 µg chl_a L−1 and 95% are inferior to 5 µg chl_a L−1 (Figure 8)). Chl_a
modeling errors are known to be high in such conditions, as the signal-to-noise ratio is
often high, because of the low signal magnitude returned by the chl_a that is almost equal
to water backscattering and to the retuned signal from other bio-optical components in the
water column (total suspended solids, colored dissolved organic matters, etc.). Despite
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these facts, chl_a modeling error rates using the EBS on Sentinel-2 data remained low with
relative errors comprised between −1% and 1% for values higher than 5 µg chl_a L−1 and
relative errors between −2.5% and 1% for values lower than 5 µg chl_a L−1 (Figure 17B).
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5.7. Spatial Distribution Assessment of the Ensemble-Based System

Figure 18 shows three examples of practical applicability of the EBS on Sentinel-2
images. The blue frame illustrates a zoomed section of Lake Saint-Jean with clear water
partially covered by a thin haze. The outputs of chl_a concentrations over this lake are
below 5 µg chl_a L−1 even in the hazy section. This clearly demonstrates that the chl_a
estimated by the EBS are not affected by the thin haze. The yellow frame illustrates a
zoomed section of Lake Saint-Pierre. This water body is known by its high loads of
suspended solids. In fact, according to the environmental Ministry of Quebec, the annual
average suspended solids (https://www.environnement.gouv.qc.ca/eau/Atlas_interactif/
evolution/pdf/05300004_TTEND_MES.pdf, accessed on 4 February 2021) load in Lake
Saint-Pierre for the year 2017 was approximately 163 mg/L, whilst the annual average
chl_a (https://www.environnement.gouv.qc.ca/eau/Atlas_interactif/evolution/pdf/05
300004_TTEND_CHLO.pdf, accessed on 4 February 2021) was about 5.85 µg/L1. Estimates
derived from the EBS of chl_a for Lake Saint-Pierre are between 0.1 and 5 µg/L1, as shown
in Figure 18. This is a good demonstration that the EBS is not affected by high loads
of suspended solids in inland waterbodies. Finally, Missisquoi Bay of Lake Champlain
experienced a huge harmful algae bloom on October 10, 2017 captured by the Sentinel-2

https://www.environnement.gouv.qc.ca/eau/Atlas_interactif/evolution/pdf/05300004_TTEND_MES.pdf
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sensor. Estimates from the derived EBS of chl_a copy the spatial distribution of this bloom
well, while in areas where the bloom did not occur, chl_a estimates have remained very
low. The three examples above highlight the applicability of the EBS, with a high level of
reliability, for monitoring harmful algal blooms using Sentinel-2 data.
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6. Challenges, Advantages, and Limitations of Chlorophyll-a Monitoring Using UAVs
and Satellites Data

The quality of surface water is affected by climate and human activity and affects
climate, biological diversity, and human well-being. For the last few decades, efforts by
many scientists have been made to monitor water quality, notably chl_a concentration,
using remote sensing data. In most cases, the developed models yielded success within
the calibration sites, but their estimates were mostly inaccurate outside these sites. The big
challenge of this study was thus to achieve acceptable accuracy rates at a local (within the
calibration sites) and a regional (outside the calibration sites) scale. This goal was partially
accomplished by using one of the most promising techniques in machine learning—the
EBS. On the one side, modeling quality, locally and regionally, indeed yielded satisfying
rates of accuracy (higher than 85%). On the other side, at both scales, it has been perceived
that errors increase with low chl_a concentrations. This fact was more tangible in the case
of validation with the blind database. Many researchers link this high rate of error to the
atmosphere effect and our results support this assumption as the relative errors were lower
using data collected by the drone (100 m altitude) than those collected by Sentinel-2 data
(786 km altitude). In addition, the atmospheric model used (COST) in this study is based
on the assumption of at-water leaving reflectance of dark object being equal to 1%. A new
selection method of the dark object, based on the hyperspectral image, was proposed and
yielded higher accuracy than the standard one. However, the small image stripe does not
cover a large part of the Sentinel-2 images. This fact could be a limiting factor, decreasing
the accuracy of the atmospheric correction in regions further away than those covered by
the hyperspectral image. More investigations must be conducted, in this field, to achieve
more accurate estimates of the BoA at-water reflectance.
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The developed hybrid EBS has demonstrated its ability to model chl_a using the
drone-simulated Sentinel-2 data and using data recorded by the two Sentinel-2 sensors.
This is a double added-value to the EBS use. In fact, it is possible, using the same algorithm,
to use two sources of data to monitor algae bloom. Indeed, Sentinel-2 sensor data-based
chl_a products could be used, as stated above, on a regional-scale for spatial monitoring of
algae blooms as well as for their temporal recurrence. Water managers and stakeholders
are constantly looking for such monitoring tools for their decisions-making. On the other
hand, UAVs are nowadays affordable and easy-to-use (almost fully autopiloted) more
than ever. Furthermore, cameras such as the Tetracam MicroMCA-global shutter model
have the ability to be set by personalized wavelength filters that can cover the same exact
spectral regions as used to estimate the chl_a using the EBS. Thereby, it is possible to
develop a low-cost engine for chl_a retrieval for local and personalized use anytime and
anywhere. This offers great flexibility of use (time, space, and sensor characteristics), which
could also be of great help to managers and stakeholders in specific crises. Through the
approach developed, it is now possible to harness the strength of these two complementary
technologies for the benefit of better-quality management of freshwater bodies.

The transposable application capacity (from UAVs towards satellites data and vice
versa) could open up new ways of exploiting previous databases (known as Spatial database
(SB) in remote sensing) to train models for the future generation of sensors and use their
very first data delivered with an acceptable modeling rate without any delay necessary to
collect a new SB specific to this sensor. Indeed, thanks to the SB already pre-collected, it
would be possible to simulate the bands of the new sensor and to train a new model, based
on machine or deep learning algorithms, that will be compatible with the images acquired
by this new sensor. Additionally, the performance of already trained and operational mod-
els could be enhanced by means of the proposed approach. In fact, since most operational
models are data-oriented, retraining them with their original SB merged with an SB built
from simulated bands (specific to their bandwidth and spectral regions) will certainly help
improve their modeling performance.

However, it is also important to underline the limitations of these technologies. Cloud
and haze are the big limiting-factors to use data from satellite sensors such as Sentinel-2. The
temporal frequency could also, at some level, be a limiting factor to monitor algae blooms
using Sentinel-2 data. In contrast, UAVs flights are more flexible in terms of temporal and
space use, but the spatial coverage is very restrained compared to satellite data. Climate
conditions, especially wind, are a big limitation for UAV use. In fact, depending on the
model, there is always a wind use-threshold. Above that, it is not recommended to take-
off. On the other side, in the case of a cloudy sky, the radiance recorded by the camera
boarded on the UAVs is significantly affected by cloud shadow. It is often recommended
to record image scenes in a uniform climate condition. With respect to EBS development,
the accuracy of the modeling could be higher if more data were available, especially for
concentrations between 10 and 20 µg chl_a L−1. This middle class was underrepresented
in the calibration database and led to the training of only one expert, instead of three, in
each trophic class. Averaging estimates of three experts would undoubtedly lead to greater
accuracy in the modeling of chl_a. Finally, it should be noted that the EBS has shown
a failure to estimate chl_a in waters affected by high turbidity. However, it can still be
applied in an operational mode, since these waters are known to highly reflect in the red
than in the green part of the spectrum. By using this information, it is possible to mask
waters highly affected by turbidity before proceeding to chl_a modeling.

7. Conclusions

A hybrid EBS for chl_a estimates using Sentinel-2 simulated bands was developed and
tested on freshwater bodies in southern Quebec using data recorded by Sentienl-2A and 2B
sensors. Several innovative aspects were developed in this paper: (1) development of a
hybrid EBS composed of EBC and EBE; (2) calibration of EBS using Sentinel-2 simulated
bands; (3) testing the EBS using data recorded by Sentinel-2A and 2B; and (4) the use of



Remote Sens. 2021, 13, 1134 25 of 27

the Gaussian quadrature function for time running optimization. Combining these aspects
has led to the development of a robust hybrid EBS to monitor chl_a concentrations in
freshwater bodies at local and regional scales.

Two validation techniques were used to assess the performance of the proposed
method: (1) the leave-one-out cross-validation, as a local evaluation of the EBS, and (2)
validation with blind datasets (in situ and remotely), as a regional evaluation. The leave-
one-out cross-validation results were satisfactory (R2 = Nash = 0.94). The hybrid EBS
showed a relatively negative bias (−0.2 µg chl_a L−1) and the errors were relatively low
(RMSE = 5.6 µg chl_a L−1). Validation with the blind datasets highlighted some failures
of the EBS in estimating the chl_a in waters affected by high turbidity. Modeling the
chl_a in these ecosystems is highly tainted by errors (Nash < 0). However, when the EBS
was tested on waters not affected by high turbidity, the results significantly increased
(R2 = 0.85, Nash = 0.79, RMSE = 2.4 µg chl_a L−1). Additionally, it has been perceived that
the relative errors were comprised between −2.5% and 1% and have decreased by almost
60% when estimating chl_a values higher than 40 µg chl_a L−1. This is probably due to
the reduced number of calibration data, notably medium values of chl_a, which were
under-represented and to the higher signal-to-noise ratio for at-water leaving reflectance in
oligotrophic waters.

The proposed method allowed the development of a robust approach to estimate
chl_a in freshwaters using either Sentinel-2 data simulated from a hyperspectral camera
boarded on a drone or data recorded by the Sentinel-2A and 2B sensors. Assessment of the
spatial distribution pointed out that the modelling of chl_a using EBS is not affected by thin
haze or suspended solids and is very sensitive to algal blooms. Overall, the performance
of the hybrid EBS was satisfactory, except for water affected by high turbidity. Despite
this, EBS could still be used in an operational mode, in a complementary way using both
technologies, since turbid water can be easily identified and masked before the chl_a
modeling. Such a tool could be of great assistance to water managers and stakeholders for
better water quality assessment, particularly in areas with abundant lakes like the province
of Quebec and Canada.
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