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Abstract

The pretreatment of biomass remains a critical requirement for bio-renewable fuel produc-

tion from lignocellulose. Although current processes primarily involve chemical and physical

approaches, the biological breakdown of lignin using enzymes and microorganisms is

quickly becoming an interesting eco-friendly alternative to classical processes. As a result,

bioprospection of wild fungi from naturally occurring lignin-rich sources remains a suitable

method to uncover and isolate new species exhibiting ligninolytic activity. In this study, wild

species of white rot fungi were collected from Colombian forests based on their natural

wood decay ability and high capacity to secrete oxidoreductases with high affinity for pheno-

lic polymers such as lignin. Based on high activity obtained from solid-state fermentation

using a lignocellulose source from oil palm as matrix, we describe the isolation and whole-

genome sequencing of Dictyopanus pusillus, a wild basidiomycete fungus exhibiting ABTS

oxidation as an indication of laccase activity. Functional characterization of a crude enzy-

matic extract identified laccase activity as the main enzymatic contributor to fungal extracts,

an observation supported by the identification of 13 putative genes encoding for homolo-

gous laccases in the genome. To the best of our knowledge, this represents the first report

of an enzymatic extract exhibiting laccase activity in the Dictyopanus genera, offering

means to exploit this species and its enzymes for the delignification process of lignocellu-

losic by-products from oil palm.
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1. Introduction

The accumulation of agro-industry lignocellulosic postharvest by-products is a direct conse-

quence of the global demand for crops employed in the food supply chain and bio-renewable

fuel production. Following this trend, global palm oil production has increased 41% over the

past 10 years to reach 71.45 million tons in 2018, primarily due to high biodiesel demand [1].

As a result, the product-to-waste ratio for palm oil production remains significantly high (1:3),

generating important lignocellulosic biomass accumulation [2]. This represents a particularly

pressing environmental issue for the largest producing countries such as Malaysia and Indone-

sia. One alternative to overcome the significant build-up of cellulosic biomass is the produc-

tion of bioethanol by fermentation of syrups extracted from cellulose and hemicellulose

hydrolysis. Lignocellulosic ethanol production is an eco-friendly alternative to current agro-

industry by-products, in addition to offering an important source of renewable energy [3].

Lignocellulose is a raw material composed of lignin, cellulose, and hemicellulose, forming a

complex aromatic polymer that provides rigidity and strength to plant cell walls. While cellu-

lose represents an inestimable carbon energy source on a global scale, releasing cellulose from

lignocellulose by lignin removal represents a major challenge in many industrial processes,

including the bioethanol and pulp and paper industries [4–6]. To this day, delignification is

either performed by chemical strategies using environmentally damaging acids or alkaline

solutions, and/or through physical processes such as high temperature and pressure conditions

[7]. A biological delignification process using ligninolytic enzymes that breakdown lignin

through an oxidation mechanism would therefore offer a valuable alternative for the pretreat-

ment of lignocellulose [8]. Laccases (EC 1.10.3.2), manganese peroxidases (EC 1.11.1.13), and

lignin peroxidases (EC 1.11.1.14) are the most promising ligninolytic catalysts for such biologi-

cal pretreatment. These enzymes are primarily expressed and secreted from basidiomycete

fungi, especially the Agaricomycetes class [9]. Fungi are the main organisms associated to wood

decay colonization due to their ability to secrete oxidoreductases and their high affinity for

phenolic polymers such as lignin. Studies on fungi lignocellulose decomposition have thus

demonstrated that species involved in wood decay produce a pool of many enzymes acting

against the three primary lignocellulose components [10,11].

It has been established that co-evolution between white-rot fungi and angiosperms favored

the specialization of ligninolytic enzymes to degrade lignin and a broad range of compounds

derived from wood decay, turning these organisms into valuable biotechnological tools

[12,13]. Fungal enzymatic extracts exhibiting ligninolytic activities are thus currently posi-

tioned as a promising biotechnological tool for the management of recalcitrant pollutants such

as dyes, pesticides, phenolic compounds, and agro-industry residues [14,15]. Nevertheless,

fungus-based lignocellulosic pretreatment processes for industrial applications is still ham-

pered by the difficulty to produce large amounts of highly active enzymes. Luckily, these prob-

lems can partly be overcome by the use of recombinant organisms and/or screening of species

with enhanced enzymatic ability [16,17]. Additionally, new sequencing techniques used in

combination with fungi bioprospecting can increase our understanding of the enzymatic

delignification process performed by fungi during lignocellulose recycling. Such knowledge

can then serve as basis to develop biotechnological alternatives to handle lignocellulosic resi-

dues from agro-industry, potentially leading to new developments in the production of

bioethanol and/or organic compounds [18–20].

Herein, we describe the isolation, whole-genome sequencing of D. pusillus, and initial char-

acterization of wild basidiomycete enzymatic extracts exhibiting ABTS oxidation as an indica-

tive of laccase activity. To shed light on potential enzymes involved in this ligninolytic activity,

the genome of D. pusillus was sequenced and annotated using single-molecule real-time
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sequencing technology. Our overall strategy for bioprospecting, fungi isolation & identifica-

tion, experimental characterization of ligninolytic activity and genome sequencing is summa-

rized in S1 Fig in S1 File. Our main goal was to identify new fungal enzymatic tools capable of

sustaining harsh experimental conditions for extended periods of time, such as higher temper-

atures and lower pH, while favoring an increase in the release of reducing sugars during simul-

taneous pretreatment and saccharification processes of empty fruit bunch from oil palm trees.

We found that laccase activity was the main enzymatic contributor to our fungal enzymatic

extracts, which included a highly active isolate from D. pusillus LMB4. In addition to charac-

terizing potentially valuable biotechnological tools for the enzymatic lignocellulose pretreat-

ment of oil palm tree residues, our results also present the first complete genome sequencing

of a Dictyopanus fungus.

2. Materials and methods

2.1. Fungi isolation and growth conditions

Fruit bodies from basidiomycete fungi growing on decaying wood were collected in a tropical

humid forest in Colombia, following previously published parameters to favor the presence of

delignification enzymes [21,22]. The main inclusion criteria were macroscopic properties

belonging to the orders of Agaricales, Russulales, and Polyporales due to the possible ligninoly-

tic activity of these organisms [23,24]. Collected samples were kept in wax paper bags to pre-

vent deterioration. Isolation of the collected fungi was performed in wheat bran extract agar

composed of 18 g.L-1 agar, 10 g.L-1 glucose, 5 g.L-1 peptone, 2 g.L-1 yeast extract, 0.1 g.L-1

KH2PO4, 0.1 g.L-1 MgSO4.7H2O, 0.085 g.L-1 MnSO4, 0.1 g.L-1 chloramphenicol, 0.1 g.L-1, 600

U.L-1 nystatin, and 1000 ml wheat bran extract. Wheat bran extract was obtained by filtering

175 g.L-1 of wheat brand soaked in distilled water for 1 h. Pilei were adhered to the top cover of

Petri dishes, allowing spores to fall and, eventually, to germinate on the culture media. Top

covers were rotated every 24 h for 3 days and those containing the pilei were replaced by new

sterilized ones [25]. Sub-cultures in the same media were incubated at 25˚C to obtain axenic

strains from these isolates. The axenic cultures were determined by fungal slide culture tech-

nique [26]. The presence of microscopic sexual basidiomycete properties was checked, includ-

ing septate hyaline hyphae and clamps. Lactophenol cotton blue stain was used for all the

microscopic observations. Twelve ligninolytic fungi belonging to genera Aleurodiscus, Dictyo-
panus, Hyphodontia, Mycoacia, Phellinus, Pleurotus, Stereum, Trametes, and Tyromyces were

axenically isolated from 43 collected wild-type strains. Fungi collection was planned under the

regulations of Colombia’s Environmental Ministry. The research permit in biological biodiver-

sity was obtained from the Corporación Autónoma de Santander (file number 153–12 REB)

and with the agreement of the Ministerio del Interior, certifying the absence of ethnic groups in

the area (application number 1648, August 14, 2012).

2.2. Phylogenetical identification of selected isolates

Total genomic DNA was extracted from selected isolates following a standard phenol-chloro-

form protocol. Briefly, fungi were grown in wheat bran extract agar for 15 days and 0.5 g of

mycelium was placed in a tube with a lysis solution (0.1 M NaCl2, Tris-HCl pH 8, 5% SDS)

and 0.5 mm diameter glass beads. The aqueous fraction was collected, and the fungus DNA

was precipitated with isopropanol. The DNA pellet was dissolved in TE buffer (10 mM Tris, 1

mM EDTA, pH 8.0) [27]. A pair of primers within the Internal Transcribed Spacer regions

(ITS1/ITS4) was used to amplify ribosomal DNA by PCR [28]. PCR products were sequenced

by the Sanger method using the same amplification primers. ITS1 sequences were used as

query to retrieve the most similar DNA sequences from the NCBI database. A set of 36 curated
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sequences were extracted from the results obtained through BLAST, after which the ITS1

sequences and the query sequence were used to create a multiple sequence alignment. To infer

the evolutionary history and obtain the genetic identity of the fungus isolated and pre-identi-

fied as Dictyopanus sp., we applied the UPGMA protocol, where the best tree hits arose after a

bootstrap of 500 repetitions using the Maximum Composite Likelihood method to obtain the

evolutionary distances. All phylogenetic analyses were performed with the MEGA suite, ver-

sion 10.0.5 [29].

2.3. Fiber analysis of oil palm by-products

Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), and Acid Detergent Lignin

(ADL) were determined by the Van Soest method using the FiberCap™ system (Foss Analytical

AB, Denmark). Cellulose and hemicellulose percentages were estimated as the difference

between ADF and ADL, and NDF and ADF respectively, while lignin concentrations corre-

sponded to ADL percentages in dry weight of oil palm by-products. Additionally, values were

used to estimate the total carbon concentration in fermentation assays. All assays were per-

formed in duplicate.

2.4. Basidiomycete screening by Solid-State Fermentation (SSF)

The main selection criterion of isolated wild-type fungi was ligninolytic activity observed in

the crude fungi enzymatic extracts from SSF using lignocellulosic material from oil palm by-

products [30]. SSF was performed in 250 ml flasks in sterile conditions. Each flask contained

12 ml of basal media in deionized water, comprising 0.2 g.L-1 yeast extract, 0.76 g.L-1 peptone,

0.3 g.L-1 urea, 0.25 g.L-1 CuSO4·5H2O, 1.4 g.L-1 (NH4)2SO4, 2 g.L-1 KH2PO4, 0.3 g.L-1

MgSO4·7H2O, 0.4 g.L-1 CaCl2·2H2O, 0.005 g.L-1 FeSO4·7H2O, 0.0016 g.L-1 MnSO4, 0.0037

g.L-1 ZnSO4·7H2O, 0.0037 g.L-1 CoCl2·6H2O, and 2.5 g.L-1 of empty fruit bunch chopped into

chunks of approximately 2 cm3. Each flask was inoculated with eight agar plugs cut from

actively growing fungal mycelium grown on wheat bran extract agar. Each SSF batch isolation

contained thirty flasks and fermentation was held without agitation at 25˚C for 30 days. Every

three days, three flasks were used to collect crude enzymatic extracts.

2.5. Recovery of crude fungal enzymatic extracts

Crude fungal enzymatic extracts were obtained by addition of 30 ml of 60 mM sterile phos-

phate buffer into the fermentation flask, which was shaken for 24h at 150 rpm. Whole flask

contents were then collected in 50 ml tubes, vortexed in a Benchmark Scientific multi-tube

vortexer for 15 minutes at 1500 rpm, and finally centrifuged twice at 8900g for 15 minutes to

remove suspended solids. Supernatants were taken as crude fungal enzymatic extracts [31] and

concentrated by lyophilization to evaluate the effects of pH and temperature on enzymatic

activity and simultaneous pretreatment and saccharification.

2.6. Quantification of reducing sugars

Reducing sugars were quantified by oxidation of 3,5-dinitrosalicylic acid to 3-amino,5-nitrosa-

licylic acid (DNS) by measuring the release of the reducing extremity of sugars. The reaction

was followed at 420 nm and a standard curve was obtained with glucose (0,1 to 1 mg.ml-1) to

quantify the concentration of reducing sugars [32].
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2.7. Ligninolytic and cellulase assays

Crude fungal enzymatic extracts obtained from SSF were assayed for laccase, lignin peroxidase,

and manganese peroxidase activities. Laccase activity was followed by the oxidation of 2,20-

azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (Sigma-Aldrich, USA) [33]. Reac-

tions were initiated by mixing 40 μL of culture supernatant, 150 μL of 50 mM acetate buffer

(pH 4.5) and 10 μL of 1.8 mM ABTS; activity of mixtures was estimated by reading absorbance

at 420 nm. Manganese peroxidase activity was measured by the formation of Mn3+-malonate

complexes at pH 4.5 in 50 mM sodium malonate buffer containing 0.5 mM MnSO4 [34]. Reac-

tions were performed by mixing 20 μl of culture supernatant, 100 μl of 20 mM citrate buffer at

pH 4.5, 40 μl of sodium malonate buffer, and initiated with 40 μl of fresh 0.8 mM H2O2. Read-

ings at 270 nm were used to estimate the transformation of Mn+3 to Mn+2 as manganese per-

oxidase activity. Lignin peroxidase activity was measured by the transformation of

3,4-dimethoxybenzyl alcohol (VA) (Sigma-Aldrich, USA) to veratryl aldehyde (VAD), which

exhibits a yellow color [35]. Reactions were performed by mixing 20 μl of culture supernatant,

100 μl of 20 mM citrate buffer at pH 3, 40 μl of 10 mM VA, and initiated with 40 μl of fresh 0.8

mM H2O2. Enzymatic activity was measured at 310 nm and expressed in units per liter (U.L-

1). One unit of enzymatic activity was defined as the quantity of enzyme needed to transform

1 μmol of substrate per minute. Absorbance readings were performed with a ThermoFisher

Multiskan™ GO Microplate Spectrophotometer.

The total cellulosic activity was quantified by units of paper filter (UPF.ml-1). In tubes,

500 μL of commercial cellulase solutions from Trichoderma reesei Sigma Aldrich C2730 Cellu-

clast1 (USA) were incubated with 500 μL of 50 mM citrate buffer at pH 4.8, 50 and 5 mg of fil-

ter paper for 1 h, at 50 ˚C. The concentration of reducing sugars released was measured by the

oxidation of 3,5-dinitrosalicylic acid (DNS), as described above [36].

2.8. Effect of pH and temperature on ABTS oxidation as laccase activity

The effect of pH was examined for crude fungal enzymatic extracts exhibiting the highest lac-

case activity. A pH range from 2 to 8 (50 mM hydrochloric acid buffer, pH 2; 50 mM citric

buffer pH 3–4; 50 mM acetate buffer pH 4.5–5, and 50 mM phosphate buffer pH 6–8) was

evaluated using ABTS as substrate. The effect of temperature on enzyme activity and stability

was measured with crude fungal enzymatic extracts in 50 mM acetate buffer pH 4.5 at 40˚C,

50˚C, and 60˚C for 7 h. Finally, comparison of crude fungal enzymatic extracts with a control

laccase from Trametes versicolor, 53739 Sigma-Aldrich (Canada) was performed in triplicate

using pH and temperature conditions exhibiting the highest activity. All components (except

enzymes) were sterilized separately and mixed under environmentally sterile conditions.

2.9. Simultaneous pretreatment and saccharification of empty fruit bunch

The simultaneous pretreatment and saccharification process was performed in 50 ml tubes

containing 1.5 g empty fruit bunch, 16 ml of 50 mM acetate buffer at pH 4.5 and combining

either the laccase enzyme from D. pusillus or the commercial laccase from T. versicolor (53739

Sigma-Aldrich-Canada) with the cellulase from T. reesei (Sigma Aldrich C2730 Celluclast1).

For the reaction mixture, both laccase and cellulase were added in a volume of 2 ml to reach a

final concentration of 25 U�L-1 and 50 UPF, respectively. Tubes were incubated at 40˚C for 72

hours. The saccharification process was evaluated by the production of reducing sugars, mea-

sured by a DNS assay. Assays were performed in triplicate and all components (except

enzymes) were sterilized separately and mixed under environmentally sterile conditions.

Simultaneous pretreatment and saccharification of empty fruit bunch was conducted with

fungal enzymatic extracts exhibiting laccase activity and cellulases according to a multilevel
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factorial experimental design (3 levels with 5 variables) to evaluate significant variables in the

experimental process [37]. Five independent variables were evaluated: pH (3 to 5) using either

50 mM acetate buffer (pH 3 and 4) or 50 mM citrate buffer (pH 5), temperature (25, 35, and

45 ˚C), copper concentration (1, 3, and 5 mM), laccase (100, 200, and 300 U.L-1), and cellulase

(50, 100, 150 UPF.ml1) activities. Simultaneous pretreatment and saccharification was per-

formed in 50 ml tubes with 1.5 g empty fruit bunch and 20 ml total volume, including 2 ml

each of laccase enzymatic extract and cellulase concentrate. The mixture was incubated for 72

h and the concentration of reducing sugars was measured in each tube. To increase robustness

of the analysis, 4 experimental replicates were performed and results were analyzed with a con-

fidence interval of 95% using Statgraphics Centurion XVII.

2.10. Genome analysis of D. pusillus LMB4

Mycelium from D. pusillus grown on Potato Dextrose Agar (PDA) was used to extract the

genomic DNA (gDNA) through a high salt phenol-chloroform cleanup protocol recom-

mended by PacBio1 systems. More precisely, 0.5 g of mycelium was placed in a tube with a

lysis solution (0.1 M NaCl2, Tris-HCl pH 8, 5% SDS) and 0.5 mm diameter glass beads until

mycelium was broken (visual evaluation) and centrifuged at 11,000g for 10 minutes. The

supernatant was mixed in the same proportion with a phenol-chloroform-isoamyl alcohol

solution 25:24:1 and centrifuged at 11,000g for 5 minutes. The new supernatant was mixed

again in the same proportion with a chloroform-isoamyl alcohol solution (24:1) and centri-

fuged at 14,000g for 10 minutes. Finally, the aqueous fraction was collected and fungal proteins

were precipitated by adding absolute ethanol (10:3 aqueous fraction-ethanol). After centrifuga-

tion at 11,000g for 15 minutes, the supernatant was mixed with ethanol (10:17 supernatant-

ethanol) to precipitate DNA. The DNA pellet was obtained by centrifugation at 11,000g for 15

minutes and dissolved in DEPC-treated DNase-free water. The genomic DNA of D. pusillus
LMB4 was sequenced using five SMRT cells on a Pacific Biosciences RS II system at the

Génome Québec Innovation Centre (McGill University, Montréal, Canada). The 964 206

resulting sequencing reads were assembled de novo in contiguous sequences using the default

parameters in Canu (version 1.7) [38], with the exception of the expected genome size, which

was set to the average genome size of members of the Tricholomataceae family deposited in

GenBank (54.16 Mb). For diploid genomes with heterozygous regions such as the one from

D. pusillus LMB4 (i.e. similar sections of a genome inherited from different parents), de novo
assembly tools tend to create chimeric assemblies containing contigs from different haplotypes

(i.e. sections of a genome inherited from the same parent). This results in highly fragmented

assemblies that are artefactually too large in size. To simplify the search for genes encoding lac-

cases and to avoid biasing general statistics such as genome size, assembly was reduced using

Redundans (version 0.14a) [39]. This tool takes advantage of the long PacBio reads (where

each read corresponds to the sequencing of a DNA strand) to find co-inherited genetic mark-

ers to generate single continuous homozygous regions. When ambiguity occurs in genome

assembly, Redundans keeps the proper haplotype according to the quality of the heterozygous

region.

2.11. Ligninolytic laccase annotations of the D. pusillus genome draft

Protein encoding genes were predicted with WebAUGUSTUS [40] using Laccaria bicolor as a

training dataset. The resulting predicted gene sequences were annotated using the webserver

of eggNOG-mapper [41]. Each putative laccase sequence was submitted to the Basic Local

Alignment Search Tool for proteins BLASTp tool from the database at National Center for

Biotechnology Information (NCBI) server to find a correlation with other laccase enzymes
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reported on the Protein Data Bank server (PDB). Moreover, the four conserved copper-

binding motifs, i.e. Cu1 (HWHGFFQ), Cu2 (HSHLSTQ), Cu3 (HPFHLHG), and Cu4

(HCHIDFHL) [42], were searched into these putative protein sequences. Also, sequences cor-

responding to putative laccases were further analyzed using InterProScan [43] to verify the

presence of multicopper oxidase signatures (PS00079 and PS00080 Prosite entries, ExPASy

Bioinformatics Resource Portal) and Cu-oxidase Pfam domains (PF00394, PF07731, and

PF07732 entries) [44]. Comparisons with the Laccase and Multicopper Oxidase Engineering

Database [45] was also used to validate that the identified sequences were laccases. Finally, this

Whole Genome Shotgun project was deposited at DDBJ/ENA/GenBank under the accession

QVIE00000000.

3. Results and discussion

3.1. Fungi isolation

From all fruit bodies collected, twelve axenic cultures were obtained and thirty one isolates

exhibited fungal contamination from biota mycoparasitism associated to basidiomycetes,

mainly from Trichoderma species. These fungi possess fungicide and antagonistic activity

against basidiomycete cell walls, in addition to releasing enzymes such as chitinases and gluca-

nases [46,47]. Moreover, basidiomycete recovery from collected samples can also suffer from

competition with ascomycete fungi. Competition between these two fungi heavily relies on

nutrient accessibility, growth factors favoring ascomycetes due to their faster growing pace in

complete culture media, or even the presence of simple nutrient sources observed in advanced

stages of wood decay [48]. Based on fruiting body macroscopic properties (front and back sur-

face, color, texture, border margins, heights and widths), twelve fungi isolates were identified.

Isolated strains belong to the orders i) Hymenochaetale: Hyphodontia (2 isolates), Phellinus (1

isolate); ii) Polyporales: Aleurodiscus (1 isolate), Mycoacia (2 isolates), Stereum (1 isolate), Tra-
metes (1 isolate), Tyromyces (1 isolate), and iii) Agaricales: Dictyopanus (1 isolate), Pleurotus (2

isolates). Such orders are associated with oxidoreductase and hydrolase producers that cluster

in the same evolutionary taxa (class Agaricomycetes). It is also worth mentioning that those

fungi represent the most cited ligninolytic enzyme producers [49–51].

3.2. Screening of isolates

Fungal enzymatic extracts were screened for enzymes known to participate in the delignifica-

tion process, i.e. laccases, manganese peroxidases, and lignin peroxidases. From the crude fun-

gal enzymatic extracts obtained by SSF, only five isolates exhibited laccase activity in our

screening assay. Surprisingly, we were unable to measure peroxidase activity other than

through the ABTS assay. Since peroxidases are common enzymes present during fungi-cata-

lyzed wood decay, peroxidase activity was either negligible in our isolates or the enzymatic

assay was not sensitive enough to quantify such activity. It has been reported that variations in

the concentrations of lignin, carbon, nitrogen, and the presence of chemical compounds such

as inducers in the culture media could affect the profile of ligninolytic enzymes expressed and

secreted during fermentation [52–54]. While current experiments cannot explain whether the

lack of peroxidase activity is related to the composition of the culture media, the abovemen-

tioned results confirm previous reports suggesting that laccase activity is the most prevalent

ligninolytic activity observed during fermentation with lignocellulose as substrate [55,56].

Isolates exhibiting ligninolytic activity were identified as Dictyopanus sp. LMB4 (22.3

U.L-1), Pleurotus sp. LMB2 (69.5 U.L-1), and Pleurotus sp. LMB3 (57.2 U.L-1) (Fig 1). Laccase

activity of the Hyphodontia and Trametes isolates was considered too low to warrant further

characterization. For the three most active isolates, the highest laccase activity was detected
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after 20 days of fermentation. Using these 3 isolates, laccase activity conditions were optimized

by increasing copper concentration and carbon-to-nitrogen ratios (C/N) [57,58]. As a result,

the isolate exhibiting the highest laccase activity under these newly optimized conditions was

Dictyopanus sp. LMB4 (267.6 U.L-1 after 28 days of fermentation). To the best of our knowl-

edge, this represents the first observation of significant laccase activity in a crude enzymatic

extract from a Dictyopanus fungus. Furthermore, this activity is similar to a previously

reported Trametes sp. laccase activity evaluated under comparable fermentation conditions

using lignocellulosic by-products from oil palm (218.6 U.L-1) [59]. The maximal laccase activi-

ties of the Pleurotus isolates were at least 5 times lower than the one observed in Dictyopanus
sp. LMB4, with 98 U.L-1 for Pleurotus sp. LMB2, and 66.9 U.L-1 for Pleurotus sp. LMB3 (Fig 1).

Upon growth condition optimization, the crude enzymatic activity of Dictyopanus sp.

LMB4 increased 6- and 12-fold after 20- and 28-day incubation, respectively, highlighting the

importance of copper and carbon source accessibility for proper enzyme expression. The

increase in laccase activity for fungal enzymatic extracts upon copper and glucose addition has

been reported for Colorios versicolor and Ganoderma lucidum. These reports suggested that

copper and glucose could respectively stimulate laccase expression and mycelial growth, fur-

ther correlating with a proportional increase in the amount of laccase secreted by the fungi

Fig 1. Laccase activity of SSF isolates. ABTS oxidation activity was tested for three culture supernatants from Dictyopanus LMB4 (circles), Pleurotus
LMB2 (squares), and Pleurotus LMB3 (triangles) isolates. With a C/N ratio of 1.9 and in the absence copper, the Pleurotus spp. isolate exhibited the

highest laccase activity (see inset). However, a 12-fold increase in laccase activity was observed in the Dyctiopanus sp. isolate with a 10-fold increase in

the carbon-to-nitrogen ratio (19 C/N) and 5 mM copper (main histogram). Axes and units are the same for both histograms. The Dictyopanus LMB4

isolate is highlighted by an asterisk in both histograms.

https://doi.org/10.1371/journal.pone.0227529.g001
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[60,61]. For the enzymatic extract of D. pusillus, the calculated laccase activity obtained per

gram of oil palm by-products was 31.5 U.g-1 after 12 days of SSF. It is worth mentioning that

this activity is four times higher than the previously reported laccase activity of a Pycnoporus
sanguineus enzymatic extract obtained under similar SSF conditions using empty fruit bunch

as substrate (7.5 U.g-1) [62].

3.3. Molecular identification of Dictyopanus sp

In contrast to most organisms genetically identified using 16S ribosomal RNA sequencing,

Internal Transcribed Spacer regions (ITS) is considered a more appropriate method to identify

species in the fungi kingdom [63]. In the past, mycologists have used an arbitrary sequence

similarity cutoff ranging between 3–5% ITS identity as a threshold for species differentiation.

However, the natural variability of ITS sequences at the phylum level within the fungi kingdom

complicates the use of such cutoff [63]. For instance, in Basidiomycota (to which the Dictyopa-
nus genus belongs), the infraspecific ITS variability was reported to average at 3.3%, with a

standard deviation of 5.62% [63]. This significantly limits the use of GenBank BLAST searches

as the only source to properly identify fungi species, especially considering the fact that more

than 27% of ITS sequences were submitted with insufficient taxonomic identification [64]. In

addition, until 2003, nearly 20% of all fungal species listed in GenBank were incorrectly anno-

tated [65]. As a result, using BLAST searches to categorize fungal species can lead to serious

misidentification and characterization. Consequently, fungal specimen identification requires

a careful, systematic, and multi-source process.

To overcome some of these limitations, we first performed preliminary in situ morphologi-

cal identification of the samples collected in the Colombian forest. Genus level inspection was

performed in the laboratory using macroscopic and microscopic examination, followed by

final phylogenetic identification through DNA extraction and sequencing of ITS regions 1 and

4 [28]. This allowed identification of the pusillus species, to which the Dictyopanus LMB4 fun-

gus sample belongs (Fig 2). The same analysis also allowed us to differentiate the evolutionary

history for some members of the Panellus genus, with which members of the Dictyopanus
genus are often confused. Results presented in Fig 2 support the usefulness of taxonomic clas-

sification performed during fungi sample collection, selection, and isolation. The Dictyopanus
genus belongs to the Agaricomycetes class, and its genus is known to include species capable of

bioluminescence, which have been suggested to be linked to delignification processes through

the use of secondary compounds produced during lignin degradation [66]. Dictyopanus iso-

lates were also reported as an alternative for the pretreatment of remazol brilliant blue R [67]

and bamboo in ethanol production [68], further supporting the potential use of this fungus in

large-scale biomass degradation.

3.4. Effect of pH and temperature on the fungal enzymatic extracts

obtained from D. pusillus
Characterization of crude fungal enzymatic extracts showed that pH values between 3 and 5

provided the highest laccase activity for D. pusillus LMB4, with a maximum activity of

2,277 ± 36 UI�L-1 at pH 3 (Fig 3A). This pH range corresponds to other laccase preferences in

fungi [69]. Moreover, thermal stability of the crude D. pusillus LMB4 enzymatic extract was

found to be quite robust, with reduced activity only observed at 60˚C (46 ± 5% activity loss

after 6 hours of incubation). This behavior is quite different from that observed with the T. ver-
sicolor commercial laccase under the same experimental conditions, showing 28 ± 4% and

88 ± 2% activity loss after a 6h incubation at 50˚C and 60˚C, respectively (Fig 4). Thus,

D. pusillus LMB4 appears to express laccases with enhanced thermostability and high tolerance
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to low pH values. However, long incubation of this crude fungal enzymatic extract at low pH

resulted in an important activity loss of 80.1 ± 0.2% after two hours of incubation (Fig 3B). Pre-

vious studies have shown that a laccase from Physisporinus rivulosus remained stable at 50˚C

with optimal activity at pH 3.5 [70]. Similarly, a laccase from Trametes trogii was shown to sus-

tain temperatures up to 75˚C, although only for short 5-min incubations [71]. Nevertheless,

our results suggest that the laccase activity from the D. pusillus LMB4 extract has higher toler-

ance to acidic and thermally induced perturbations than previously identified fungal laccases.

3.5. Using D. pusillus for the simultaneous pretreatment and

saccharification of empty fruit bunch

Fiber analysis of palm empty fruit bunch revealed a composition of 77.53% NDF, 58.32%

ADF, and 17.15% ADL (see Materials and methods for details). These values indicate that

empty fruit bunch composition of the lignocellulosic polymer used for SSF was 40.79% cellu-

lose, 19.21% hemicellulose, 17.15% lignin, and 22.47% impregnated oil and ashes. These results

are in accordance with typically reported empty fruit bunch composition, with cellulose being

Fig 2. Phylogenetic analysis of the pre-identified isolates labeled as Dictyopanus sp. We used the ITS region 1 as the genetic marker to infer the

evolutionary history of this fungus using the UPGMA protocol (see Materials and methods for details). The optimal tree analysis shows a branch length

of 0.60, with clustering of species after a bootstrap of 500 replicates using the Maximum Composite Likelihood method to obtain evolutionary distances

between members. The species was identified as Dictyopanus pusillus. The phylogenetic tree was drawn to use the same branch length units as those of

the evolutionary distances. This analysis was performed using the standalone MEGA software, version 10.0.5.

https://doi.org/10.1371/journal.pone.0227529.g002
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the main component, followed by hemicellulose and lignin [72]. Reducing sugar release was

observed when the cellulolytic enzymatic extract from T. reesei was used alone (20.84 ± 0.7

g.g-1). Higher reducing sugar release from empty fruit bunch was also observed when the cellu-

lolytic enzymatic extract from T. reesei was used with the commercial laccase enzyme from

T. versicolor (46.47 ± 5.9 g.g-1) or the enzymatic extract from D. pusillus (44.80 ± 5.2 g.g-1),

confirming that ligninolytic enzymes such as laccases favor cellulose hydrolysis, as previously

reported [73,74]. These results suggest that a combination of cellulolytic and ligninolytic

enzymes enhance the release of reducing sugars. However, production of reducing sugars was

not significantly different when the commercial laccase from T. versicolor or enzymatic

extracts from D. pusillus were mixed with the cellulolytic enzymatic extract from T. reesei
(Fig 5).

To identify the dominant variables affecting reducing sugar release, we compared the effects

of pH, temperature, copper concentration, and laccase (U.L-1) or cellulase (UPF) concentra-

tion using a multilevel factorial experimental design (P = 0.05 with a confidence level of 95%)

(Fig 6). For the pretreatment and saccharification experiment with laccase from T. versicolor,
pH (P<0.0001), temperature (P = 0.0006), and cellulases (P = 0.0021) were the three dominant

variables affecting activity. For pretreatment and saccharification with the enzymatic extract

from D. pusillus, pH (P<0.0001) was the only dominant variable affecting enzymatic perfor-

mance (Fig 6). Our results indicate that pH values between 3–4 and temperatures up to 45˚C

promote sugar release by simultaneous pretreatment and saccharification. These results con-

firm what was observed in our stability experiments, where the activity of the enzymatic

extract was almost obliterated at pH values higher than 4 (Fig 3A). It is worth mentioning that

cellulase (P = 0.0021) is the third most important contributing factor to activity when simulta-

neous pretreatment and saccharification is performed with the commercial laccase (Fig 6A), a

result we do not observe with the enzymatic extract from D. pusillus (Fig 6B). The requirement

of a cellulase activity in the case of the commercial laccase are perhaps due to the combined

production of ligninolytic and cellulolytic enzymes in the basidiomycete fungi during wood

decay processes [75,76]. Some authors have also demonstrated the efficiency of enzymatic

extracts from basidiomycetes for the SSF production of ligninolytic and cellulolytic enzymes

Fig 3. pH tolerance of a D. pusillus LMB4 extract exhibiting laccase activity. A) Laccase activity from a crude D. pusillus LMB4 enzymatic extract at

different pH values. B) pH stability assay performed with the crude enzymatic extract from D. pusillus LMB4. Laccase activity was evaluated at 40˚C

under different pH conditions: pH 3 (circles), pH 4 (squares), and pH 5 (triangles). Average values and standard deviation were obtained from three

replicates of each point.

https://doi.org/10.1371/journal.pone.0227529.g003
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using wheat straw as substrate [77]. These results further highlight the importance of D. pusil-
lus as an efficient, accessible, and economical source of relevant biotechnological assets in the

field of delignification processes.

The highest reducing sugar concentration obtained with the enzymatic extract of D. pusillus
was 65.87 g.g-1 (pH 4.5, 45˚C, 2:1 laccase-to-cellulase ratio). In the same conditions, reducing

sugar production reached 64.13 g.g-1 for the commercial laccase from T. versicolor. These

results confirm that the enzymatic extract from D. pusillus exhibits similar ligninolytic effi-

ciency than the purified commercial laccase from T. versicolor. Additionally, empty fruit

bunch represent a good lignocellulose source for reducing sugar production since palm oil

bunches are subjected to a first round of “sterilization” to extract oil palm fruits from the

bunch, which effectively acts as a pretreatment during palm oil extraction. As a result, this ini-

tial pretreatment might improve the delignification process performed by the enzymes. Ligno-

cellulose breakdown of empty fruit bunch and empty fruit bunch pulp was previously reported

using the white rot fungi T. versicolor TISTR 3224, Phanerochaete chrysosporium CECT 2798,

and Pleurotus ostreatus CEC20311. These fungi were also used as efficient pretreatments for

lignin removal in empty fruit bunch [78,79]. To the best of our knowledge, only one study

reported the use of fungal enzymatic extracts with laccase activity from Pycnoporus sanguineus
UPM4 as a pretreatment of empty fruit bunch to increase production of reducing sugars in

similar conditions [80]. This report and the results presented here on the use of a crude fungal

enzymatic extracts exhibiting laccase activity from a white-rot fungi reinforce the relevance of

using ligninolytic enzymatic extracts as a valuable tool for the pretreatment of lignocellulose in

empty fruit bunch.

Fig 4. Thermal stability of a D. pusillus LMB4 extract exhibiting laccase activity. Laccase activity was measured

after different temperature incubations: 40˚C (triangles), 50˚C (circles), and 60˚C (squares). Solid lines represent the

crude fungal enzymatic extract from D. pusillus LMB4, while dashed lines represent the commercial laccase from T.

versicolor, 53739. Average values and standard deviation were obtained from three replicates of each point.

https://doi.org/10.1371/journal.pone.0227529.g004
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3.6. Genome sequencing of D. pusillus LMB4 and laccase sequence

annotation

Given the striking ligninolytic activity of D. pusillus LMB4 and lack of genomic data available

to identify and compare potential enzyme homologs promoting such activity in this organism,

we used long-reads single-molecule real-time technology (PacBio) to perform genomic DNA

sequencing of D. pusillus LMB4. This allowed analysis and annotation of a number of puta-

tively encoded laccases in this genome, offering means to predict potential enzymes involved

in this ligninolytic activity. After de novo assembly of the genome from D. pusillus LMB4, we

estimated heterozygosity at 13.53% using the Redundans tool (i.e. similar sections of a diploid

genome, but inherited from different parents). Comparing this value to genome heterozygosity

in nearby fungi remains difficult due to the lack of reported information, namely for the order

Agaricales. However, a previous study reporting on the sequence of 90 fungi suggested that

genomes of members of the phylum Basidiomycota, of which D. pusillus belongs, typically

have high levels of heterozygosity [81]. Reduction in homozygous genome allowed the assem-

bly of 49.37 Mbp distributed in 3463 contigs (N50 = 23,741 bp) (Table 1). After splicing of the

95,174 annotated introns, a total of 16,866 coding sequences (CDSs) were predicted to be

encoded in the genome of D. pusillus LMB4. Of this number, we confidently annotated a total

of 13 CDSs as complete putative laccase sequences, which were further aligned with a previ-

ously reported laccase homolog from Trametes to identify consensus regions and conserved

motifs (Fig 7, S1 Table in S1 File). Our results show that all putative laccases encoded in the

D. pusillus genome preserve the four conserved copper-binding motifs normally observed in

this enzyme family, i.e. Cu1 (HWHGFFQ), Cu2 (HSHLSTQ), Cu3 (HPFHLHG), and Cu4

Fig 5. Comparative production of reducing sugars from empty fruit bunch using fungal enzymatic extracts alone

or in combination. Reducing sugar release was observed: A) without any fungal enzymatic extract, B) with a

cellulolytic extract from T. reesei, C) with a commercial laccase from T. versicolor, D) with the enzymatic extract from

D. pusillus. Combinations of B+C and B+D were also tested. Standard deviation was obtained from three replicates in

each condition.

https://doi.org/10.1371/journal.pone.0227529.g005
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(HCHIDFHL) [42]. These make them potentially promising candidates for future functional

investigation of new laccases exhibiting interesting properties with respect to activity, stability,

and industrial tolerance.

4. Conclusion

The present work demonstrates that a crude fungal enzymatic extract from a wild Colombian

source of D. pusillus LMB4 exhibits significant laccase activity (267 ± 18 U.L-1). This crude

fungal enzymatic extract was probed for the successful pretreatment of low-cost lignocellulosic

raw materials (oil palm by-products), suggesting that an upscaling of this process could poten-

tially help with the delignification of starting materials in cellulosic bioethanol production. An

increase in copper and glucose concentration during solid-state fermentation proved benefi-

cial, resulting in a 12-fold increase in laccase activity and suggesting that ligninolytic enzyme

expression can further be induced to improve enzyme production in D. pusillus LMB4. The

Fig 6. Pareto charts from multilevel factorial experimental design analysis. i) Cellulolytic extract from T. reesei mixed with commercial laccase from

T. versicolor. ii) Cellulolytic extract from T. reesei mixed with enzymatic extract from D. pusillus. Parameters: A, pH; B, temperature; C, copper

concentration; D, U.L-1 of laccase, and E, UPF of cellulase. Vertical lines represent the statistically significant threshold of 95% confidence with a

P = 0.05, while grey and blue bars highlight positive and negative effects, respectively.

https://doi.org/10.1371/journal.pone.0227529.g006

Table 1. Assembly of the D. pusillus LMB4 genome draft.

Feature Value

Genome assembly size (Mbp) 49.37

Number of contigs 3463

N50 (bp) 23,741

GC (%) 53.08

Number of CDSs 16,866

Number of introns 95,174

Heterozygosity (%) 13.53

https://doi.org/10.1371/journal.pone.0227529.t001
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Fig 7. Multiple Sequence Alignment (MSA) of the 13 putative laccases identified in the genome of Dictyopanus
pusillus LMB4. The four conserved copper-binding motifs are highlighted by red dashed rectangles. The laccase

sequence of the Trametes genus was used as reference to perform the MSA. Consensus sequence is presented on the

bottom of the alignment. Putative laccase genes are identified as in S1 Table in S1 File.

https://doi.org/10.1371/journal.pone.0227529.g007

PLOS ONE Genome sequencing and functional characterization of D. pusillus

PLOS ONE | https://doi.org/10.1371/journal.pone.0227529 July 30, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0227529.g007
https://doi.org/10.1371/journal.pone.0227529


simultaneous pretreatment and saccharification of empty fruit bunch also illustrated that the

enzymatic extract from D. pusillus exhibits good ligninolytic capacity at acidic pH, in addition

to demonstrating higher pH and thermal stability than the purified commercial laccase from

T. versicolor. These properties demonstrate the efficiency of such crude enzymatic extract from

D. pusillus as a versatile biotechnological tool for lignocellulose pretreatment such as for cellu-

losic bioethanol production. Genome sequencing of D. pusillus LMB4 also revealed 13 laccases

and a significant number of other putative enzymes that could be exploited and/or engineered

to develop more efficient delignification pre-treatments. These results thus present the first

few stages in the implementation of a strategy that combines genome data mining and compu-

tational modelling as efficient approaches to identify promising new protein engineering can-

didates as new sets of catalysts with application in delignification processes.
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