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Abstract  26 

Ecological risk assessments (ERAs) of polycyclic aromatic compounds (PACs), as single 27 

congeners or in mixtures, present technical challenges that raise concerns about their accuracy 28 

and validity for Canadian environments. Of more than 100,000 possible PAC structures, the 29 

toxicity of fewer than 1% have been tested as individual compounds, limiting the assessment of 30 

complex mixtures.  Because of the diversity in modes of PAC action, the additivity of mixtures 31 

cannot be assumed, and mixture compositions change rapidly with weathering.  In vertebrates, 32 

PACs are rapidly oxygenated by cytochrome P450 enzymes, often to metabolites that are more 33 

toxic than the parent compound.  The ability to predict the ecological fate, distribution and 34 

effects of PACs is limited by toxicity data derived from tests of a few responses with a limited 35 

array of test species, under optimal laboratory conditions.  Although several models are available 36 

to predict PAC toxicity and rank species sensitivity, they were developed with data biased by test 37 

methods, and the reported toxicities of many PACs exceed their solubility limits.  As a result, 38 

Canadian Environmental Quality Guidelines for a few individual PACs provide little support for 39 

ERAs of complex mixtures in emissions and at contaminated sites. The issues are illustrated by 40 

reviews of three case studies of PAC-contaminated sites relevant to Canadian ecosystems.  41 

Interactions among ecosystem characteristics, the behaviour, fate and distribution of PACs, and 42 

non-chemical stresses on PAC-exposed species prevented clear associations between cause and 43 

effect. The uncertainties of ERAs can only be reduced by estimating the toxicity of a wider array 44 

of PACs to species typical of Canada’s diverse geography and environmental conditions.  45 

Improvements are needed to models that predict toxicity, and more field studies of contaminated 46 

sites in Canada are needed to understand the ecological effects of PAC mixtures.  47 

 48 

Capsule:  This review assesses the challenges of ecological risk assessments for polycyclic 49 

aromatic compounds due to complex interactions among a diversity of structures, exposures, and 50 

receptors in Canadian ecosystems. 51 

Keywords: Polycyclic aromatic compounds (PACs); species sensitivity; environmental 52 

stressors; mixture interactions; ecological risk assessments (ERA). 53 
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1 Introduction 57 

The present paper is one of a series that review the sources, distribution and potential effects of 58 

polycyclic aromatic compounds (PACs) emitted to Canadian ecosystems (Galarneau, In prep. for 59 

this special issue).  The objective of the present contribution is to identify the obstacles to 60 

realistic ecological risk assessments of PAC emissions, research needs and new approaches to 61 

assessing risks in Canada at local and regional scales. 62 

 Marvin et al. (In prep. for this special issue) found clear evidence of environmental 63 

contamination by PACs in virtually every region of Canada (Table 1). The sources include 64 

petrogenic PACs from the extraction, refining and spills of fossil fuels, pyrogenic PACs from 65 

urban and industrial development, the combustion of fossil fuels, and forest fires, and biogenic 66 

synthesis from organic industrial wastes.  These diverse sources emit a wide array of PACs 67 

comprised of polycyclic aromatic hydrocarbons (PAH), PAH with multiple alkyl substitutions, 68 

and heterocyclic aromatic compounds containing oxygen, nitrogen and sulfur; PACs containing 69 

halogens are not reviewed.  Canada’s Air  Pollutant Emission Inventory estimated that 110,000 70 

kgs of only four PACs (benzo[a]pyrene (BaP), benzo[b]fluoranthene, benzo[k]fluoranthene, and 71 

indeno[1,2,3-cd]pyrene) were emitted from anthropogenic sources in 2017 (ECCC 2019), a small 72 

fraction of the total. Despite an overall reduction (ECCC 2019; Berthiaume et al. In prep. for this 73 

special issue), PAC emissions from some sectors are increasing, particularly Alberta’s Oil Sands 74 

industries (Harner et al. 2018). This reflects a doubling of crude oil exports between 2009 and 75 

2018, from 292 to 571,000 m3d-1 (Canada 2019), and an increase in the risk of PAC 76 

contamination by oil spills.  A moderate-sized spill of 1,000,000 L (1000 m3) of crude oil 77 

containing 1% PACs by weight (mid-range; Wang et al. 2003) would introduce 10,000 kg (10 T) 78 

of PACs to a receiving environment. 79 

 Clearly, ERAs are needed for PAC emissions and contaminated sites, but it is likely that 80 

the environmental fate and effects of fewer than 1% of the PACs released to Canadian 81 

environments have ever been studied. There is ample evidence that emissions have contaminated 82 

aquatic and terrestrial species, particularly at sites of legacy industrial contamination and areas 83 

affected by bitumen mining (Marvin et al. 2020). In contrast, the environmental effects of PACs 84 

are less evident. The toxicity of PACs has only been studied with a relatively small number of 85 

Canada’s plant and animal species and the range and nature of effects are not well known 86 
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(Wallace et al. 2020).  Most toxicity tests are conducted under standard laboratory conditions.  In 87 

contrast, there is little knowledge of how PAC fate and effects would vary among Canada’s 88 

temperate and Arctic, desert and rainforest, and marine and freshwater ecosystems.  There are 89 

also emerging concerns about potential interactions between climate change and the frequency of 90 

forest fires, and the expansion of Arctic resource extraction as global warming extends the 91 

shipping season. 92 

Given the wide range of environmental conditions and natural resources in a country as 93 

large as Canada, there is an urgent need for ecological risk assessments (ERAs) to understand 94 

and limit the potential effects of PAC emissions.  Their objective is to define PAC emission rates 95 

and concentrations in environmental media that may harm Canada’s plant and animal species.  96 

The present review summarizes some of the challenges for ERAs of the diversity of PACs and 97 

PAC mixtures, aquatic and terrestrial species, and environmental conditions in Canada.  These 98 

challenges are illustrated with three case studies of PAC-contaminated environments relevant to 99 

Canadian ecosystems. Although the emphasis is on aquatic environments, reflecting the 100 

predominance of literature on aquatic species, the conclusions are valid for all terrestrial and 101 

aquatic ecosystems. 102 

2 Diversity of PACs 103 

Pyrogenic PACs are generally unsubstituted and dominated by 4-6-ringed PAHs and 104 

heterocycles.  In contrast, petrogenic PACs in crude and refined oils are mainly 2-4-ringed 105 

PAHs, with lower proportions of heterocycles, and higher proportions (80-95%) of alkyl-106 

substituted PAHs (Wang et al. 2003).  For heterocyclic PACs, the O, N and S atoms may 107 

substitute for carbon in ring structures (e.g., dibenzothiophene) or occur as side groups (e.g., 108 

aromatic amines); heterocycles may also contain alkyl substituents (Manzano et al. 2016; 2017).   109 

The effects of PAC structures on exposure and toxicity are clear. Lipid solubility, 110 

bioaccumulation, retention in lipid-rich tissues and toxicity increase markedly with molecular 111 

size, with strong correlations to the logarithm of octanol-water partition coefficients (log KOW) 112 

(Di Toro et al. 2000).  These correlations become non-linear at log KOW >6.5, largely because of 113 

low water solubility and steric hindrance of trans-membrane diffusion by large molecules (Oliver 114 

1984).  The chemical properties, environmental behaviour and toxicity of alkyl and heterocyclic 115 

PACs can deviate markedly from those of unsubstituted PAHs. 116 
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The diversity and complexity of PAC structures is evident in the large number of unique 117 

compounds in PAC mixtures.  For example, alkyl substituents of phenanthrene can be located at 118 

one or more of the 10 available ring carbons.  The permutations and combinations of C1, C2, C3, 119 

and C4 linear or branched substituents predict 575 different alkyl phenanthrenes; for alkyl-BaP, 120 

there are 2000 C1-C4 congeners (Johnson et al. 2018).  However, toxicity data to support ERAs 121 

represent only a small fraction (< 1%) of the more than 100,000 possible PACs released to the 122 

environment, and toxicity varies widely among the few tested (Hodson 2017). Even fewer are 123 

included in Canadian environmental quality guidelines.  For example, the current freshwater 124 

guidelines are derived from toxicity data for only three aquatic species and 12 pyrogenic PACs 125 

(CCME 1999; 126 

https://public.tableau.com/views/DRAFTPAHGuidelinesdashboard_v1/Dashboard1?:display_co127 

unt=y&:origin=viz_share_link). Toxicity is usually measured by laboratory tests of individual 128 

compounds under standard conditions, but in the environment, PACs invariably occur in 129 

complex mixtures.  The source of these mixtures (pyrogenic vs petrogenic) determines their 130 

composition, which changes rapidly with dilution and weathering.  Therefore, it is unlikely that 131 

the ecological effects of PAC mixtures can be predicted successfully from the toxicity of a few 132 

and often unrepresentative congeners measured under standard conditions (Section 4.1). 133 

2.1 Multiple modes of action 134 

Wallace et al. (2020) reviewed numerous toxic effects caused by specific groups of PACs plus 135 

multiple effects of some individual PACs, reflecting multiple modes of action (MOA), some 136 

unique to the species affected.  Mechanisms included those typical of acute lethality (narcosis, 137 

oxidative stress) and of chronic and sublethal toxicity.  For vertebrates, commonly measured 138 

effects included carcinogenicity, embryotoxicity and endocrine disruption; much less is known 139 

about PAC toxicity to invertebrates.   140 

The diversity of PAC structures enables interactions with a wide array of cellular receptors, 141 

particularly the aryl hydrocarbon receptor (AHR) protein, a ligand-activated nuclear transcription 142 

factor that is also activated by dioxin-like compounds (chlorinated PACs including dioxins, 143 

furans, and non-ortho substituted biphenyls).  Activation of the AHR is frequently linked to 144 

toxicity, with more potent activators being more toxic.  However, while AHR binding is the main 145 

pathway of toxicity for dioxin-like compounds, PAC mixtures act through multiple pathways 146 

https://public.tableau.com/views/DRAFTPAHGuidelinesdashboard_v1/Dashboard1?:display_count=y&:origin=viz_share_link
https://public.tableau.com/views/DRAFTPAHGuidelinesdashboard_v1/Dashboard1?:display_count=y&:origin=viz_share_link
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depending on the dose and the mixture components.   For example, PACs affect the developing 147 

heart of fish embryos by AHR-independent mechanisms that disrupt ion regulation in cardiac 148 

myocytes (Incardona 2017).   149 

Even when the AHR does not directly mediate PAC toxicity, AHR binding by some PACs 150 

triggers the synthesis of cytochrome P450 enzymes.  These powerful enzymes oxygenate PACs 151 

to hydroxylated metabolites, changing their tissue distributions, tissue concentrations and rates of 152 

excretion according to their susceptibility to oxygenation (Wallace et al. 2020). However, some 153 

PAC metabolites are also highly toxic; e.g., diol-epoxide derivatives of BaP initiate cancers 154 

when they form covalent bonds with DNA and disrupt replication. Similarly, reactive oxygen 155 

species released by P450 enzyme activity can denature proteins and initiate lipid peroxidation 156 

and oxidative stress. Thus, PAC oxygenation may limit toxicity by accelerating excretion rates or 157 

increase toxicity by producing toxic metabolites (Wassenberg et al. 2005; Hodson et al. 2007; 158 

Scott & Hodson 2008; Mu et al. 2016).  In mixtures, the toxicity of one PAC may depend on 159 

how much P450 enzyme activity is induced or inhibited by others such as 2-aminoanthracene 160 

(Scott et al. 2009), a PAC found in industrially-contaminated sediments (Nelson & Hites 1980).   161 

Overall, the variability in tissue distribution, pharmacokinetics and toxicity among PACs 162 

presents challenges for ERAs of mixtures, particularly using models that assume common MOAs 163 

(Section 2.2).  Nevertheless, some mixtures may share a common MOA despite different origins 164 

and chemical compositions.  Pyrogenic PACs extracted from industrially contaminated 165 

sediments and petrogenic PACs from light crude or heavy fuel oil caused similar effects on 166 

zebrafish (Danio rerio) when added to their diet (Larcher et al. 2014; Vignet et al. 2014).  After 167 

nine months, all diets caused an increased frequency of deformities and pre-neoplastic and 168 

neoplastic lesions of bile duct epithelium. However, PACs from heavy fuel oil were most toxic 169 

and uniquely reduced long-term survival.  Compared to lighter oils, their higher toxicity may 170 

reflect their higher concentrations of 3-6 ringed PACs (Larcher et al. 2014; Vignet et al. 2014), 171 

or other hydrocarbons co-extracted with PACs (Meador & Nahrgang 2019).   172 

Other factors affecting ERAs are the very small number of PACs whose toxicity has been 173 

measured, the complexity of PAC mixtures, and rapid changes in mixture composition caused by 174 

weathering (e.g., volatilization; biodegradation; photo-oxidation).  Given these obstacles, ERAs 175 

of mixtures may be most successful if based on toxicity tests of the whole mixture, although  176 
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such ERAs may be quite specific to the mixture studied, and not easily applied to other mixtures 177 

(Heys et al. 2016).  The alternative is to model risks from toxicity data for each component 178 

measured in the mixture, or those that are most potent (Section 2.2). Experimentally, the most 179 

toxic components can be identified by effects-driven chemical fractionation, an approach that 180 

identified 3-5-ringed PACs as the most likely components of crude oil causing embryotoxicity to 181 

fish (Adams et al. 2014). 182 

2.2 Tools for predicting the toxicity of PAC mixtures 183 

Several models predict the toxicity of PACs or PAC mixtures from their physical properties or 184 

the toxicity of reference compounds. Each assumes that all PACs modeled share a common 185 

MOA, a potential flaw for such a large and structurally diverse group of compounds.  186 

2.2.1 Toxic Unit Models 187 

Toxic unit (TU) models compute the toxicity of mixtures of compounds from the sum of their 188 

fractional toxicities, i.e., the ratios of measured concentrations in a mixture to the concentrations 189 

causing a given effect (e.g., LC50).  Barron et al. (2004) applied a TU model to the measured 190 

concentrations of PACs in test solutions of crude oil to identify the MOA that best predicted the 191 

observed fish embryotoxicity. Assuming additivity, the best predictor was a model that summed 192 

the TUs for the embryotoxicity of alkyl phenanthrenes. Models for a wider array of PACs based 193 

on LC50s for narcosis, EC50s for AHR binding, or a combination of mechanisms, were less 194 

successful.  The poor results for these latter models may reflect a lack of toxicity data for 195 

petrogenic alkyl PAC or, more likely, the assumption of a common MOA among PACs that 196 

cause many different effects (Wallace et al. 2020). 197 

2.2.2 Target Lipid Model 198 

The most widely used tool for estimating the acute lethality of mixtures of hydrophobic 199 

organic compounds is the target lipid model (Di Toro et al. 2000).  It assumes that narcosis 200 

(physical disruption of lipid membrane structure and function) is the MOA.  Lethality occurs 201 

when hydrophobic compounds accumulate in lipid membranes to a toxic concentration, termed 202 

the critical body burden, or median lethal dose (µmol g-1 lipid). The critical body burden is 203 

assumed to vary little among compounds but may vary considerably among species (McCarty & 204 

Mackay 1993). Each component of a mixture is also assumed to partition from water to tissue 205 

lipids in proportion to its KOW.  Hence, at any given concentration in water, the molar 206 
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concentration of that compound in tissue lipid can be calculated from its KOW, and vice versa.  207 

The aqueous concentration corresponding to an LD50 (i.e., the critical body burden) would be 208 

the LC50 (i.e., 1.0 TU).   For mixtures, the model calculates the sum of the molar lipid 209 

concentrations of each component that corresponds to their water concentrations, expressed as 210 

TUs.  If the sum of TUs in tissues equals or exceeds 1.0, mortality would be expected (Di Toro et 211 

al. 2007). The target lipid model successfully predicts the lethality of PAC mixtures, although a 212 

correction factor is needed for the ‘additional’ toxicity of PACs compared to ‘baseline’ narcotics.  213 

Error limits on predictions are often wide, perhaps because some PACs have multiple MOAs and 214 

cannot be grouped as narcotics. As well, the model was developed from published reports of the 215 

measured toxicities of PACs, which can vary widely among labs because of different test 216 

methods (Section 4.1).  217 

Incardona (2017) challenged the application of the target lipid model to chronic toxicity, 218 

particularly as a model for PAC-induced cardiotoxicity.  He characterized narcosis as over-219 

simplified because it does not account for PAC interactions with cellular receptors, ion channels 220 

and receptors governing membrane function. The relationships between fish embryotoxicity and 221 

log KOW also vary considerably.  A regression for closely-related PACs (alkyl-phenanthrenes; r2 222 

≈ 0.94; n = 6) (Turcotte et al. 2011) was less variable than one for diverse structures (alkyl 223 

anthracenes, phenanthrenes, chrysenes, benzo[a]anthracenes, plus C0-BaP; r2 ≈ 0.73; n = 16) 224 

(Hodson 2017). All data were collected in one laboratory using the same test method.  Hence, the 225 

greater variance of the 4-family model may reflect multiple receptor interactions driven by the 226 

number, size and substitution patterns of alkyl side chains and the number and shape of fused 227 

benzene rings.  Regardless of MOA, the target lipid model highlights the critical role of water-228 

lipid partitioning in determining tissue dose, a primary driver of toxicity. 229 

2.2.3 Toxic Equivalency Factors 230 

The toxicity of mixtures of compounds can be described by a Toxic Equivalents (TEQs) model 231 

(Van den Berg et al. 1998). For each mixture component, a Toxic Equivalency Factor (TEF) is 232 

the ratio of its measured toxicity to that of a more widely tested reference compound, and its 233 

TEQ represents its TEF multiplied by its concentration in the mixture.  When the sum of TEQs 234 

for all mixture components exceed the toxicity of the reference compound, toxicity should occur.   235 
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A fundamental assumption of TEQ models is that all components share a common MOA, 236 

(e.g., binding to the AHR) and that mixture interactions are additive, not antagonistic or 237 

synergistic.  Although a common MOA may characterize dioxin-like compounds, Incardona 238 

(2017) concluded that many PACs act through AHR-independent mechanisms, causing a wide 239 

array of different effects (Wallace et al. 2020). The TEQ approach has been useful for assessing 240 

the potency of some PAC mixtures.  For example, a TEF model successfully predicted the 241 

mammalian carcinogenicity of mixtures containing non-alkylated PAHs with ≥ 4 rings; the 242 

reference PAC was BaP (Nisbet and LaGoy 1992). However, the model over-estimated toxicity 243 

for mixtures of smaller PAHs that were less carcinogenic.  Congeners with <4 rings also have a 244 

lower affinity for the AHR (Billiard et al. 2002).  Although the TEF approach shows promise for 245 

PAHs, it must be refined to improve its predictive capacity and to deal with multiple MOAs and 246 

families of PACs. 247 

2.2.4 Grouping PACs to assess risks of mixtures 248 

In Canada, some ERAs have grouped PACs into classes to assess mixture toxicity because there 249 

are too few data or guidelines to evaluate each compound individually. For example, the ERA 250 

for a Teck Frontier oil sands mine grouped more than 50 PACs into nine categories for ERAs of 251 

water, sediment, and air (Teck 2015). Groups contained 3-11 PACs, including an indicator 252 

compound whose toxicity or guideline represented the entire group. Although grouping 253 

simplified ERAs, it likely underestimated mixture risks because all members of each group were 254 

assumed to have the same MOA and toxicity as the indicator PAC.  For example, the chronic 255 

toxicity of anthracene represented a limited array of anthracenes/phenanthrenes, despite evidence 256 

that alkyl substitution increases phenanthrene toxicity (Hodson, 2017) and that C0-C4 petrogenic 257 

anthracenes/phenanthrenes likely include >1000 possible congeners. Although this approach 258 

might be attractive in the absence of data, the estimated risks will be highly uncertain, likely 259 

underestimated to an unknown degree, and an inadequate basis for decision-making. 260 

2.2.5 Other approaches for assessing ecological risk 261 

In vitro tests of AHR binding affinities have been used to assess the risks of dioxin-like toxicity 262 

to vertebrates.  A rat hepatoma assay demonstrated additivity of AHR binding for mixtures of 263 

unsubstituted, alkylated, and oxygenated PACs (Lam et al. 2018). Although methylated PACs 264 

were often more potent than unsubstituted PACs, predictions of mixture potency supported 265 
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additivity, particularly with increasing numbers of components. For the in vitro SOS chromotest, 266 

the genotoxicity of complex mixtures of unsubstituted PACs was effectively additive at lower 267 

concentrations, but far less than additive at high concentrations (White 2002). 268 

These in vitro results were partially consistent with P450 induction in vivo.  Rainbow 269 

trout (Oncorhynchus mykiss) exposed to mixtures of potent inducers (e.g., benzo[k]fluoranthene; 270 

benzo[b]fluoranthene) showed additivity of induction, as did mixtures of weak inducers (e.g., 271 

C1-C3 phenanthrenes) (Basu et al. 2001).  However, combinations of strong and weak inducers 272 

caused an 8- to 9-fold more-than-additive induction of P450s, high-lighting interactions among 273 

induction potency, P450 activity, and rates and products of PAC metabolism that would not be 274 

evident in vitro.   275 

Overall, the interactions of different PAC structures with many molecular and physiological 276 

processes suggest that PAC mixture toxicity might best be described by combining models.  277 

Pharmacokinetic models (e.g., water-lipid partitioning; P450 metabolism; excretion) coupled 278 

with mechanistic models (interactions among PAC structures, receptor binding, and toxic 279 

effects) could improve risk predictions and highlight interactions that are poorly understood. 280 

3 Species Sensitivity 281 

The total number of species in global ecosystems is estimated at approximately 8,700,000 (Mora 282 

et al. 2011). In contrast, the number included in toxicity tests is likely much less than 0.01% of 283 

this total and the number used routinely is even smaller.  The life cycle of each species may also 284 

include several life stages, each with its own environmental requirements, interactions with other 285 

species, and sensitivity to PAC toxicity.  Biodiversity highlights a critical challenge for ERAs: 286 

environmental protection relies on a poorly-tested assumption that toxicity data for a few lab-287 

tolerant species can adequately predict the risk for >8,700,000 species of unknown sensitivity.  288 

There are many reports of PAC toxicity to marine and freshwater fish and invertebrates, yet 289 

few conclusions can be drawn about which taxa are consistently most sensitive. For example, 290 

BaP LC50 and EC50s for zooplankton ranged from 5 - 58 µg L-1, whereas the range for 291 

phytoplankton was 1 - 4000 µg L-1 (Behera et al. 2018). For an aquatic ecosystem in China, BaP 292 

acute LC50s for three invertebrate species ranged from 1 - 2 µg L-1 compared to LC50s of 4 - 30 293 

µg L-1 for three fish and one amphibian species (Wu et al. 2016). In contrast, fish from the 294 

Canadian oil sands watershed were quite sensitive to PACs, in contrast to invertebrates 295 
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(Hyalella; mussel larvae; Daphnia) (McMaster et al., 2018a; Parrott et al. 2018).  The toxicity of 296 

PACs also vary considerably within taxa. For example, dibenzothiophene was embryotoxic to 297 

zebrafish (Incardona et al. 2004) and Japanese medaka (Oryzias latipes, (Rhodes et al. 2005), but 298 

non-toxic to zebrafish (Peddinghaus et al. 2012) and killifish (Fundulus heteroclitus) 299 

(Wassenberg et al. 2005).  The apparent contradiction for zebrafish suggests either differences in 300 

dibenzothiophene sensitivity among populations of the same species or in test methods among 301 

laboratories (Section 4.1).    302 

For birds, few embryotoxicity data for PACs are available. However, several studies 303 

suggest that large inter-species differences in sensitivity among other AHR ligands (e.g., dioxin-304 

like compounds) are not evident for PACs. For example, the embryotoxicity of 305 

benzo[k]fluoranthene differed little among chicken (Gallus gallus domesticus), turkey 306 

(Meleagris gallopavo), and domestic duck (Anas platyrhynchos domesticus), three species with 307 

dramatically different sensitivities to dioxin-like compounds (Brunstrӧm et al. 1990; Franci et al. 308 

2018). Similarly, Louisiana crude oil applied directly onto chicken and mallard eggshells caused 309 

equivalent embryo lethality to both species (Hoffman 1978), suggesting an equal sensitivity to 310 

petrogenic PACs. 311 

Variations among species in the nature of responses to single PAC or PAC mixtures may 312 

reflect their unique genetics, developmental stage, physiology, life histories, and habitat. For 313 

insects and amphibians, there are tectonic changes in these characteristics as one life stage 314 

transitions to the next, with each uniquely susceptible to PAC exposure and toxicity. For all 315 

species, embryonic stages appear particularly sensitive to PAC, likely due to the many target 316 

genes that are expressed (or suppressed) during critical developmental processes. Sensitivity may 317 

also reflect changes in PAC exposures.  Red sea bream (Pagrosomus major) larvae were more 318 

sensitive than embryos to BaP, phenanthrene, or pyrene exposures, possibly the protective 319 

chorion is lost at hatch (Zhao et al. 2017).  Species that develop slowly may be more sensitive 320 

than those developing quickly (Raine et al. 2018) due to longer exposure times. For example, 321 

early-season copepods (Calanus glacialis) and larval sculpin (Myoxocephalus sp.) were more 322 

sensitive to dispersed crude oil than more rapidly developing late-season copepods and juvenile 323 

Arctic cod (Boreogadus saida) (Gardiner et al. 2013).  324 
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Species sensitivity to PACs is also determined by exposure route.  The toxicity of oil to 325 

zebrafish embryos is a function of dissolved PAC concentrations in test solutions, not the oil 326 

droplets introduced during oil-water mixing (Carls et al. 2008).  In contrast, the accumulation of 327 

oil droplets on the chorions of Atlantic haddock (Melanogrammus aeglefinus) eggs likely 328 

increased their exposure to PACs compared to Atlantic cod (Gadus morhua) eggs that did not 329 

accumulate droplets (Sørensen et al. 2017). Bird and mammal embryos can also be exposed to 330 

high concentrations of PACs in ovo or in utero by maternal transfer (Ramesh & Archibong 331 

2011). However, in harp seals (Pagophilus groenlandicus) from the Northwest Atlantic, PAC 332 

concentrations were lowest in foetuses, highest in juveniles, and intermediate in mature adults 333 

(Hellou et al. 1991). 334 

3.1 Species Sensitivity Distributions  335 

In the absence of toxicity data for all species in an ecosystem, species sensitivity distributions 336 

(SSDs) are often used to predict chemical concentrations that are toxic or hazardous to the 5th 337 

percentile of tested species (HC5).  This threshold is somewhat arbitrary, but statistically 338 

supportable for a limited array of species (Bejarano & Mearns 2015).  The critical assumption is 339 

that SSDs for a few species represent the range of sensitivity among all. To construct an SSD, 340 

species are ranked by their sensitivity to a chemical; the most sensitive (e.g., lowest EC50) is 341 

ranked first.  Ranks are converted to proportions that are compared to measured EC50s, and the 342 

concentration toxic to the 5th percentile species is calculated by regression analysis. The SSDs 343 

can be applied within taxa (e.g., fish species) or more broadly among taxa (Bejarano & Mearns 344 

2015).   345 

Species sensitivity distributions can improve ERAs for PACs, but few have been published 346 

due to a paucity of toxicity data (Section 2), although databases can be augmented by toxicity 347 

values estimated from interspecies correlations (Dyer et al. 2008). For example, BaP water 348 

quality guidelines in China were developed from SSDs bolstered by LC50s and EC50s for eight 349 

Chinese species computed from interspecies correlation models (Wu et al. 2016).  For the present 350 

review, two SSD plots were constructed to illustrate how sensitivity to waterborne BaP or Cold 351 

Lake Blend diluted bitumen (dilbit; contains a mixture of PACs) varies among taxa (Figure 1; 352 

Table SI-2). Benzo[a]pyrene is among the most tested PAC for international regulations and 353 

dilbit is the most studied source of petrogenic PACs in Canada.  Invertebrates and fish from 354 
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different habitats are well represented in these SSDs, but only two amphibian species were 355 

included, and data for species exposed to BaP or dilbit in non-aqueous media were not included. 356 

The predicted HC5 for BaP was 0.55 µg L-1, similar to the values of 0.39 and 0.51 µg L-1 357 

reported by Wu et al. (2016). These concentrations are 25 - 37-fold higher than the 2015 358 

guideline of 0.015 µg L-1 for the protection of freshwater life recommended by the Canadian 359 

Council of Ministers of the Environment (CCME 1999). The guideline was calculated with a 360 

correction factor of 0.01 applied to the lowest LC50 found in a literature review, i.e., 1.5 µg L-1.  361 

There is no CCME guideline for petrogenic total PAC concentrations.  362 

Figure 1a demonstrates that LC50s for BaP vary over 10,000-fold among taxa, although no 363 

taxon is consistently more sensitive than the others.  The variations among LC50s generated a 364 

relatively wide confidence interval about the HC5 of 0.55 μg L-1, perhaps due to species 365 

characteristics such as life stage tested (Table SI-2).  However, the wide interval more likely 366 

reflects the diversity among publications of test methods that influence the composition, stability 367 

and toxicity of PAC solutions (Section 4.1).  The reported LC50s for 14 of 20 species (70%) in 368 

Figure 1a exceeded the BaP solubility limit of 4 µg L-1 (Pearlman et al. 1984), creating 369 

considerable uncertainty about the validity of the regression and the estimated HC5. While 370 

informative, the computed HC5 and CCME Guideline are insufficient for ERAs of BaP or 371 

complex mixtures containing BaP. 372 

Given the instability of oil solutions, dilbit toxicity should also be highly variable.  373 

However, the predicted HC5, expressed as the sum of all measured PACs, was 12.1 µg/L with a 374 

coefficient of variation (cv; 13%) 6.5-fold lower than for BaP (Figure 1b). Most data for the 375 

dilbit SSD were from a single source (Barron et al. 2018) that applied standard methods for 376 

preparing, testing and characterizing solutions of dilbit.  Thus, the most precise and useful SSDs 377 

will be derived by consistently applying standard test methods in one laboratory and calculating 378 

toxicity from measured concentrations of PACs in test solutions, not applied concentrations 379 

(Hodson et al. 2019).   380 

3.2 Adaptations to PAC exposure 381 

Sensitivity to PACs varies not only among taxa, but also among conspecific populations. 382 

Adaptive and non-adaptive responses to long-term exposure may change phenotypic expression, 383 

giving exposed populations a broader range of tolerance (Wallace et al. 2020). Estimates of PAC 384 



15 
 

toxicity depend on the source population and the degree to which individuals have 385 

accommodated PAC exposures through physiological, epigenetic, or genetic adaptations. 386 

Toxicity data from tolerant populations would bias ERAs of the toxicity of PACs to non-adapted 387 

populations. 388 

The metabolism of PACs by P450 enzymes plays an important role in modifying toxicity. 389 

During ongoing dietary exposures of areolate grouper (Epinephelus areolatus) to 12.5 μg g-1 390 

BaP, hepatic P450 activity peaked in week 2, then declined to background by week 4. The 391 

apparent resistance likely reflected the activation of detoxification/depuration mechanisms to 392 

restore homeostasis, reducing or even eliminating PAC toxicity (Wu et al. 2003).  However, 393 

PAC metabolism can also increase toxicity if metabolites are more toxic than the parent 394 

compound, as observed for trout embryos exposed to retene (Hodson et al. 2007).  Although 395 

some PACs do not induce P450 enzymes, all may be metabolized when present in mixtures that 396 

include inducing compounds. 397 

Non-heritable adaptations to PACs may still translate across at least one generation. 398 

Killifish sampled from the PAC-contaminated Elizabeth River (VA, USA) were less sensitive to 399 

P450-inducing compounds than reference fish (Meyer et al. 2002). Resistance extended to the F1 400 

generation, but was lost in F2 and F3 generations, indicating a non-genetic basis for resistance. 401 

Conversely, F1 and F2 generations from resistant killifish had lower rates of teratogenesis 402 

following exposure to benzo[k]fluoranthene or fluoranthene than those bred from reference fish 403 

(Clark et al. 2014), suggesting an inherited response. Despite large differences in PAC toxicity 404 

between F1 embryos from resistant and reference populations, the differences involved the 405 

regulation of comparatively few genes (Bozinovic et al. 2013). The mechanisms of inherited 406 

resistance to PACs also differed among phenotypic traits. Prolonged exposure to PACs may 407 

favour certain genotypes, altering population gene frequencies and reducing the sensitivity of 408 

exposed populations to chemical stressors.  409 

Compared to fish from non-contaminated sites, Atlantic tomcod (Microgadus tomcod) 410 

from the highly contaminated Hudson River (USA) were resistant to toxicity and P450 induction 411 

by dioxin-like compounds, but not by PACs. Wirgin et al. (2011) identified heritable genomic 412 

alterations in the AHR2 receptor of Hudson River tomcod, suggesting a rapid evolution in 413 

response to selective pressure from dioxin-like compounds. The number of populations that have 414 
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adapted to PAC exposure, through either a permanent change to population gene frequencies or 415 

more transient epigenetic responses, is unknown. 416 

3.3 Standard vs ‘non-standard’ test species 417 

Most regulatory and research tests of PAC toxicity involve a few standard species (e.g., Table 418 

SI-2).  These species are easily obtained, easily cultured in large numbers, and of a size and 419 

behaviour that suits laboratory culture and standard test protocols (e.g., EC 2007; Busquet et al. 420 

2013).  However, their selection for testing bears no relationship to their chemical sensitivity 421 

which can vary markedly among species and compounds tested. 422 

Non-standard species are tested less frequently because they are available only seasonally or 423 

may be difficult and expensive to culture and test.  Among 39 subarctic Alaskan species of 424 

marine fish and invertebrates exposed to crude and refined oils, there were significant challenges 425 

in collecting early life stages; many species were available as gametes or embryos for only brief 426 

periods. Within these limitations, the most sensitive species were shrimp and pelagic fish 427 

embryos (Rice et al. 2005).  Nevertheless, studies with non-standard species are highly valued 428 

because their adaptations to different environments (e.g., pelagic vs benthic) may influence their 429 

sensitivity to PAC exposure.  The geographic overlap of the sources and distributions of PACs 430 

and the distribution of highly valued species should dictate priorities for test species. 431 

4 Other challenges in applying PAC toxicity data to ERAs 432 

An assumption inherent in many ERAs is that estimates of PAC toxicity are absolute and 433 

unaffected by environmental conditions.  However, the opposite is true: PAC exposures and 434 

toxicity not fixed but depend highly on test methods, interactions with other chemicals, and the 435 

environmental conditions of lab tests and the ecosystem where risk is being assessed. 436 

4.1 Test methods and data quality 437 

Predictions of the ecological risks of PACs are only as good as the toxicity data applied in the 438 

assessment.  Much of the variance in measured toxicity is derived from test methods, including 439 

test conditions, preparation of test solutions, and the extent to which non-steady state exposures 440 

are recognized and characterized, especially for aquatic tests (Bejarano et al. 2014; Hodson et al. 441 

2019). Most PACs are relatively insoluble in water (log KOW ranges from <4 to >7) and typically 442 

added to test solutions in miscible solvents, creating a potential for PAC-solvent interactive 443 
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toxicity.  Hydrophobic PACs disappear rapidly from aqueous solutions due to uptake by test 444 

organisms, partitioning to test containers and particulates, evaporation, biodegradation and 445 

photolysis (Section 4.4) (Peddinghaus et al. 2012; Hodson et al. 2019).  These issues are 446 

particularly critical when test solutions are not renewed (static protocols) or renewed periodically 447 

(e.g., static with daily renewal). Concentrations of PACs can decline to non-detectable within 448 

hours or days, especially when initial concentrations exceed solubility limits. Under these 449 

conditions, concentrations that best represent the actual exposures of test organisms are unknown 450 

and end points calculated from added (nominal) concentrations under-estimate toxicity and bias 451 

subsequent ERAs (Hodson et al. 2019) (e.g., Section 3.1).   452 

One solution to this dilemma is passive dosing, i.e., the partition-controlled delivery of 453 

PACs to aqueous solutions from solid substrates, such as polydimethylsiloxane films loaded with 454 

the test chemical.  When partitioning between polydimethylsiloxane and water reaches an 455 

equilibrium, aqueous concentrations remain constant, providing stable gradients of exposure 456 

within the solubility limits of each PAC and reliable estimates of toxicity (e.g., Kiparissis et al. 457 

2003; Turcotte et al. 2011; Lin et al. 2015; Butler et al. 2016; Jahnke et al. 2016;).   458 

Another strategy is to calculate PAC toxicity from tissue dose (e.g., LD50s), although 459 

measuring dose is technically challenging for small organisms (e.g., embryos).  However, dose 460 

can be estimated from KOW with pharmacokinetic models, or by passive samplers added to test 461 

solutions as surrogates of bioaccumulation (biomimetic extraction; McConville et al. 2018).  462 

Passive samplers integrate time-varying concentrations of PACs in water, but not those 463 

associated with particulates or oil droplets that bias chemical analyses of test solutions. In 96-h 464 

lethality tests, passive samplers demonstrated that sablefish (Anoploma fimbria; deep sea 465 

species) are among the most sensitive of marine species to Alaska North Slope Crude oil, 466 

toluene, 2-methylnaphthalene and phenanthrene (McConville et al. 2018).  In any aquatic test of 467 

PAC toxicity, it is essential that PAC concentrations be measured in test solutions to characterize 468 

variations in PAC exposures and incorporate them into calculated toxicity (Hodson et al. 2019). 469 

Test methods for non-aquatic species raise related concerns. Although tests of PAC 470 

toxicity to bird embryos avoid issues of water solubility, it is difficult to define exposures (dose) 471 

because birds metabolize PACs rapidly.  For example, 94% of a mixture of PACs injected into 472 

the yolk of chicken eggs on embryonic day four was metabolized within two weeks (Näf et al. 473 



18 
 

1992), indicating a non-steady-state exposure.  Individual embryos vary substantially in their 474 

capacity for P450 induction and PAC metabolism (Head & Kennedy 2019), increasing the 475 

variance of measured doses in wild birds and their apparent sensitivity to PAC exposure. 476 

The two main routes of bird embryo exposure are maternal transfer during egg formation, 477 

and external contamination (e.g., by transfer of oil from contaminated feathers of parents).  478 

These routes can be modelled by injecting PACs directly into eggs or by applying oil droplets to 479 

eggshells (Albers 2006). Both routes are environmentally realistic, although the injection site (air 480 

cell, yolk, or albumen) can generate widely different results (Heinz et al. 2006).  Factors such as 481 

the developmental stage of embryos when injected, the carrier solvents used, and injection 482 

location also complicate data interpretation (Heinz et al. 2006; Henshel et al. 1997). In general, 483 

embryos were more sensitive to PACs injected through the air cell than into the yolk, possibly 484 

because the air cell interacts with the chorioallantoic membrane (Albers 2006). This vascularized 485 

membrane could modulate embryo exposure by metabolizing PACs to compounds that differ in 486 

toxicity from the parent compound (Granberg et al. 2003).  For PAC mixtures applied to eggs, 487 

the fraction that crosses the shell and membrane varies with the nature of the mixture (e.g., 488 

solvent type; weathered vs unweathered oil), increasing the variability of measured toxicity 489 

(Hoffman & Gay 1981; Albers 2006). Absorption of PACs from the yolk represents a more 490 

natural exposure route, although yolk may dilute reduce PAC exposures (Henshel et al. 1997) 491 

unless the test period incudes yolk absorption. Hence, interactions between exposure methods 492 

and the physiology of eggs must be considered when comparing sensitivity among PACs for 493 

ERAs. 494 

4.2 Interactions of PACs with other contaminants 495 

In ecosystems near urban, industrial and agricultural development, PAC emissions will 496 

inevitably be mixed with other contaminants, including pulp mill and mining effluents, pesticides 497 

from agriculture or forestry, and components of sanitary and storm sewage, such as 498 

pharmaceuticals.  The toxicity of PACs in binary mixtures with other contaminants such as 499 

metals may be synergistic or antagonistic, depending on the specific PACs and metals (Fleeger et 500 

al. 2007; Wang et al. 2008).  A review of metal-PAC interactions found additivity in 50% of 501 

cases or fewer, and synergism was quite common (Table 2), particularly when one mixture 502 

component occurred at non-toxic concentrations (Gauthier et al. 2014).  The mechanisms 503 
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underlying additivity were complex and numerous, including direct competition for receptor sites 504 

and effects on membrane structure and function.  Indirect mechanisms included interactions with 505 

the pharmacokinetics and disposition of test compounds or metabolites, the generation of 506 

reactive intermediates (e.g., oxyradicals), and the expression of genes responding to oxidative 507 

stress. For example, metals induce the hypoxia inducible factor HIF-α which modulates AHR 508 

signaling or inhibits P450 enzymes by binding to active sites; both mechanisms would slow the 509 

depuration of PACs and prolong their toxic actions. Inhibiting P450 enzymes could shift PAC 510 

metabolism to less efficient pathways with different metabolites having different effects and 511 

toxicity (Hodson et al. 2007). Both metals and PACs inhibit key cell functions such as adenosine 512 

triphosphate ion pumps, suggesting that combined MOAs influence toxicity. Mixtures of arsenic 513 

and BaP did not affect P450 enzyme activity of mouse hepatoma Hepa-1 cells but increased the 514 

levels of DNA adducts by disrupting glutathione homeostasis (Maier et al. 2002). These MOAs 515 

may be unique to each PAC or metal, so that predicting interactions in real-world mixtures is 516 

quite complex (Gauthier et al. 2014).  517 

The toxicity of PACs is also influenced by organic compounds with similar MOAs. A 518 

mixture of BaP and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) caused a dose-dependent 519 

increase in toxicity to Pacific oyster (Crassostrea gigas) embryos.  However, the mixture was 520 

not as potent as either contaminant separately, indicating a less-than-additive toxicity (Xie et al. 521 

2017).   Compared to either compound alone, mixtures of benzo[k]fluoranthene and 3,3',4,4',5-522 

pentachlorobiphenyl (PCB-127) injected into chicken embryos increased mortality additively. 523 

However, the mixture did not induce more P450 activity than the highly potent PCB, suggesting 524 

a maximum capacity for induction (Brunström et al. 1990; Brunström 1992) or that PCB-127 525 

out-competed benzo[k]fluoranthene for AHR binding. Exposures of turbot (Scophthalmus 526 

maximus) to both BaP and PCB-77 induced the formation and persistence of BaP diol epoxide 527 

metabolites; these adducts were not present when fish were exposed only to BaP (Gunawickrama 528 

et al. 2008). 529 

4.3 PAC toxicity and environmental stressors 530 

Each ecosystem does not represent a single set of environmental conditions. They encompass 531 

mosaics and gradients of conditions that determine the presence, abundance and distribution of 532 

species, the distribution, fate and effects of PACs, and subsequent ecological effects.  Each 533 
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species is also subject to physiological stress due to seasonal environmental extremes (e.g., 534 

temperature; food availability; predator-prey interactions), and seasonal cycles of sexual 535 

maturation, reproduction, and migration. The disparity between toxicity measured under standard 536 

conditions and under actual environmental conditions is largely unknown and creates significant 537 

uncertainties in estimates of ecological risk. Thus, it is not surprising that ERAs of PACs present 538 

far greater challenges than human health risk assessments, which focus on one species living in 539 

relatively controlled environments.    540 

Except for hypoxia and temperature, there are few studies of the interactions between 541 

PAC toxicity and environmental variables.  Hypoxia alone had no effect on pericardial edema in 542 

zebrafish embryos co-exposed to β-naphthoflavone or BaP, despite inhibiting P450 activity by 543 

up to 60%. In contrast, fluoranthene or α-naphthoflavone caused severe edema and spinal 544 

curvatures when combined with moderate hypoxia, even though these PACs are not typically 545 

embryotoxic (Matson et al. 2008). Embryotoxicity to sheepshead minnow (Cyprinodon 546 

variegatus v.) was also enhanced following co-exposure to hypoxia and oil from the Deepwater 547 

Horizon spill (Hedgpeth & Griffitt 2016).  548 

Many species are subjected to extremes of temperature, either seasonally or during 549 

migrations, but no studies were found of PAC toxicity at the limits of a species’ temperature 550 

tolerance.  However, for rainbow trout, no change in retene toxicity was observed within the 551 

normal temperature range for larval development (5 to 11 °C) (Honkanen et al. 2020).  Toxicity 552 

was evident only when larvae reached swim-up, i.e, when they were ready to feed.  At 11 °C, 553 

swim-up and higher rates of mortality and deformities occurred after 16-18 d exposure. At 5 °C, 554 

larvae showed the same signs of toxicity and identical EC50s only after 32 d exposure.  The 555 

difference in time-to-toxicity was eliminated by expressing exposure times as thermal units or 556 

‘degree-days’, a critical factor determining larval development rates.  Thus, temperature affected 557 

both the rates of larval development and the timing of retene toxicity, but not the concentrations 558 

causing toxicity.  For ERAs of aquatic ecosystems with variable temperatures, the effects of 559 

PACs on any aquatic species should be assessed at its limits of thermal tolerance as well as 560 

within its optimal range.  At lower temperatures, it is essential to prolong exposures to 561 

encompass all sensitive developmental stages to ensure that exposure times are sufficient to 562 

express toxicity.   563 
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Overall, a critical research need is to assess the physical and chemical characteristics of 564 

each ecosystem that determine the form, distribution and concentration of each PAC.  These 565 

factors must be measured and included in models of their environmental fate and effects. 566 

4.4 Phototoxicity of PACs 567 

The composition and concentration of PAC mixtures derived from oil spills or industrial 568 

emissions change rapidly as weathering by evaporation, dissolution, and adsorption to 569 

particulates removes lighter or more hydrophobic components.  In air, water or on surfaces, 570 

PACs can also be degraded (photolysis) by the interactions of ultraviolet (UV) light, particularly 571 

UVA (wavelengths of 320-400 nm), with the double bonds of benzene rings to release excited 572 

state electrons.   573 

Photolysis will reduce the exposure of biota to PACs if the photoproducts are diluted in air 574 

or water before they are bioaccumulated.  The photolysis of airborne PACs depends on day 575 

length, light intensity (time of year, cloud cover) and sun angle as it reflects off the water’s 576 

surface (Barron 2017).  At any latitude, the risk of phototoxicity is greatest in the summer when 577 

light intensities and the angle of incidence are highest.  In water, the maximum depth of UVA 578 

penetration with sufficient intensity to cause photolysis ranges from <1 m (turbid waters) to 78 m 579 

(ultra-clear alpine lakes); penetration depths in the ocean range from 8 to 37 m (Roberts et al. 580 

2017).  In many Canadian lakes, UV penetration is limited by humic substances (Weinstein & 581 

Oris 1999) and turbidity caused by suspended solids. Under these conditions, PACs will not be 582 

photodegraded and may ultimately be transported to sediments. 583 

In contrast, PACs that have been bioaccumulated by semi-transparent biota cause tissue 584 

necrosis and rapid mortality (phototoxicity) when photolysis occurs in vivo (Vehniainen et al. 585 

2003; Barron 2017).  Cell death and necrosis occur when reactive products, including excited-586 

state PACs or singlet oxygen, interact with double bonds to cause lipid peroxidation, protein 587 

denaturation, and DNA damage (Barron 2017; Roberts et al. 2017).  The severity of 588 

phototoxicity varies with tissue PAC concentrations and UV exposure; low concentrations and 589 

high UV intensities cause the same toxicity as high concentrations and low UV intensities 590 

(Roberts et al. 2017).  Unpigmented early life stages of inland silverside (Menidia beryllina), 591 

sheepshead minnow, Gulf killifish (Fundulus grandis) and mysid shrimp (Americamysis bahia) 592 

showed enhanced sensitivity to fluoranthene under UV light (Finch & Stubblefield 2016).  In 593 
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fact, most zooplankton species are highly sensitive to phototoxicity (Roberts et al. 2017). Larvae 594 

of Lahontan redside minnow (Richardsonius egregious) were more heavily pigmented and less 595 

affected by exposure to ambient levels of UV light or UV light plus fluoranthene than bluegill 596 

larvae (Lepomis macrochirus).  Nevertheless, for both species, mortality due to UV light was 597 

significantly enhanced by co-exposure to 0.05 µg L-1 of fluoranthene, a component of motorboat 598 

exhaust (Gevertz et al. 2012). 599 

Those PACs most susceptible to photolysis include 3-5-ringed compounds and their 600 

alkylated congeners (Huovinen et al. 2001; Hakkinen et al. 2003; Roberts et al. 2017).  601 

Phototoxicity to fish embryos is associated with the 3- to 5-ringed PACs derived from crude oils, 602 

middle distillates, and heavy fuel oils (Barron 2017; Hatlen et al. 2010), likely due to their higher 603 

content of PACs.  Aliphatics, mono- and di-aromatics, and asphaltenes are not considered 604 

phototoxic (Barron 2017). Thus, refined fuels low in PACs would not be phototoxic, in contrast 605 

to pyrogenic (Gevertz et al. 2012) or petrogenic PACs (Barron 2017).  For 3-d-old mysid shrimp, 606 

phototoxicity increased with increasing PAC methylation (Finch et al. 2017), and the acute 607 

lethality of a mixture of three phototoxic PACs (fluoranthene, pyrene, anthracene) to mysid 608 

shrimp and inland silverside minnows was additive (Finch & Stubblefield 2019).  Rates of 609 

mortality and malformations of olive flounder (Paralichthys olivaceus) embryos exposed for five 610 

days under natural UV light to seawater contaminated by a diesel spill increased with 611 

concentrations of polar compounds from photooxidation (Kim et al. 2019). However, UV alone 612 

can induce P450 and heat shock proteins in whitefish (Coregonus lavaretus), but not in vendace 613 

(Coregonus albula) (Vehniainen et al. 2003), perhaps due to photolysis of endogenous 614 

compounds that resemble PACs. 615 

Many aquatic species are protected from phototoxicity by habitat selection (deep water 616 

benthic species) and avoidance (diurnal vertical migrations; sheltering in shaded areas) (Roberts 617 

et al. 2017). Nevertheless, by virtue of their habitat, many aquatic species (>30) are sensitive to 618 

environmentally realistic concentrations of PACs and UV intensities (Gevertz & Oris 2014; 619 

Alloy et al. 2016; Alloy et al. 2017). For example, the mass mortality of Pacific herring embryos 620 

(Clupea pallasii) spawned in an intertidal zone of San Francisco Bay (USA) followed exposure 621 

to a heavy fuel oil spill and UV light at low tide (Incardona et al. 2011).     622 



23 
 

Amphibians are also affected by phototoxicity. Northern leopard frog (Lithobates pipiens) 623 

larvae experienced phototoxicity just after hatch when exposed to fluoranthene and natural 624 

sunlight (Hatch & Burton 1998) or full intensity UV light (Monson et al. 1999). The mortality of 625 

common frog embryos (Rana temporaria) exposed to UV light and a mixture of naphthalene, 626 

phenanthrene, and pyrene increased slightly when the jelly that surrounds the eggs was removed, 627 

suggesting it limits exposures to PACs and UV radiation (Marquis et al. 2006). Common frog 628 

tadpoles were unaffected by UVB alone or BaP alone, but a combination of UVB and 250 - 500 629 

µg L-1 BaP was acutely lethal within 48 h (Marquis et al. 2009).  The differences among species 630 

demonstrate the need to recognize unique aspects of the biology of each species when assessing 631 

PAC toxicity. 632 

5 Field studies of PAC exposures and effect 633 

Despite many reports of PAC toxicity to plants and animals, it is difficult to associate cause and 634 

effect in field studies of contaminated sites, which questions whether ERAs of PAC exposure 635 

can be validated. It is even more challenging to link PAC exposure and toxic effects to changes 636 

in population structure. Although uncommon, field experiments are particularly valuable when 637 

some environmental variables can be eliminated or controlled.  For example, whitefish 638 

(Coregonus clupeaformis) eggs held in cages on heavy fuel oil-contaminated sediments in 639 

Wabamun Lake (AB, Canada) showed a higher prevalence and severity of deformities when 640 

hatched than eggs held on reference sediments within the same lake. The connection between 641 

PAC exposures and effects was established through multiple passive samplers installed adjacent 642 

to egg cages (Debruyn et al. 2007).   643 

Case studies that do link cause and effect are highly valued, and three are presented below as 644 

evidence of PAC toxicity under conditions highly relevant to Canadian aquatic ecosystems.  The 645 

first reviews the response of brown bullhead (Ameiurus nebulosus), a benthic fish that feeds on 646 

sediment invertebrates, to PACs in sediments of Great Lakes tributaries contaminated by steel 647 

mill effluents.  This case is highly relevant to Canada because steel mills have historically 648 

discharged effluents to the St. Mary’s River at Sault Ste Marie (between Lakes Superior and 649 

Huron) and Hamilton Harbour (L. Ontario).  The second summarizes research on the effects of 650 

the Exxon Valdez oil spill on Pacific herring and pink salmon (Oncorhynchus gorbuscha) in 651 

Prince William Sound AK, a marine area similar to coastal British Columbia.  The third 652 
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describes the impacts of bitumen mining and processing on fish species in the Athabasca River 653 

watershed (AB, Canada).   654 

5.1 Case Study 1: PAC-induced cancers in brown bullhead 655 

Some of the earliest reports of PAC effects on fish focussed on the carcinogenicity of pyrogenic 656 

PACs in freshwater and marine sediments contaminated by industrial emissions. To assess the 657 

strength of proposed cause-effect relationships, Rafferty et al. (2009) reviewed 18 studies 658 

comparing the prevalence of pre-cancerous and cancerous lesions to PAC concentrations in 659 

sediments of tributaries to Lake Erie. At sites contaminated by steel mills, bullhead exhibited 660 

external (skin, lips, barbels) and internal (liver, bile duct) tumour-like lesions, and measurable 661 

concentrations of PACs and PAC metabolites in tissue and bile.  Liver lesions ranged from 662 

cellular changes typical of pre-neoplastic tumours to liver and bile duct carcinomas.  Their 663 

prevalence and severity increased with fish age, typical of PAC toxicity. The associations 664 

between skin lesions and PAC exposures were not as clear cut as for liver cancer. Non-cancerous 665 

tumours were associated with infections (bacteria, parasites, viruses), environmental stressors 666 

(temperature, organic enrichment), complex mixtures of other contaminants, and population 667 

demographics (age, size, sex, sexual maturation) (Rafferty et al. 2009). 668 

Cause-effect associations were reinforced experimentally by pre-neoplastic lesions in 669 

bullhead fed laboratory diets containing extracts of PAC-contaminated sediments (Rafferty et al. 670 

2009).  However, some associations were weakened because PACs co-occurred with raw or 671 

treated sewage containing pharmaceuticals and metals (e.g., As, Cr) as well as potent P450 672 

inducers (e.g., dioxin-like compounds) that could accelerate the oxygenation of PACs to 673 

carcinogenic metabolites. The plausibility of associations was strengthened by species 674 

differences in the inducibility of P450 enzymes and the prevalence of cancer. For closely-related 675 

channel catfish (Ictalurus punctatus), there was less induction of P450 and epoxide hydrolase 676 

enzymes, more resistance to oxidative stress, fewer BaP proximate carcinogens (e.g., BaP-7,8-677 

dihydrodiol), and a lower prevalence of cancer than in bullheads (Rafferty et al. 2009). 678 

Some correlations between PAC contamination and cancer prevalence were weakened by 679 

flaws in survey designs related to characterizing chemical exposures, confirming cancers 680 

histologically, identifying or eliminating alternative causes, and controlling for confounding 681 

factors. When Rafferty et al. (2009) applied seven epidemiological criteria for causality to 18 682 
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published studies of cancer in bullheads, the case for a chemical cause of skin neoplasms was 683 

relatively weak, but the case for liver neoplasms was strong. The evidence was strongest for 684 

biological and technical plausibility and strength of association, moderate for consistency of 685 

association, temporal sequence, dose-response and experimental evidence, and weakest for 686 

specificity of the relationship.  The weak specificity was not surprising given the number of 687 

chemicals in contaminated sediments and the small proportion tested for carcinogenicity to fish.   688 

While the association between cancer and PAC contamination was plausible, the 689 

ecological consequences were less well understood.  A multi-year study of bullhead exposed to 690 

PAC-contaminated sediments in the Black River, OH (USA) near steel and coking mills 691 

demonstrated a high prevalence of liver cancer. Cancer rates declined after the mills closed, 692 

increased again when dredging re-distributed contaminated sediments, and declined thereafter to 693 

rates typical of reference sites (Baumann & Harshbarger 1995).  In all years, the prevalence and 694 

severity of liver cancer increased with age; when the mills were operating, the age-distribution of 695 

bullheads was truncated, with few fish older than 6+ years (Baumann & Harshbarger 1998). 696 

Following the closure, the number of older fish increased, suggesting lower rates of cancer-697 

induced mortality.  Nevertheless, even when cancer was most prevalent, bullhead survived past 698 

the age of first reproduction. Unfortunately, these studies did not assess critical indicators of 699 

ecological effects such as abundance, the role of immigration from uncontaminated areas in 700 

sustaining abundance, or changes in the fish community structure. 701 

5.2 Case Study 2: Herring and salmon embryotoxicity from an oil spill 702 

The 1989 Exxon Valdez Oil Spill (EVOS) in Prince William Sound, AK created a new and 703 

broader understanding of the effects of oil spills on fish reproduction.   The new insights 704 

included a recognition of the long-term persistence of oil and its effects on aquatic species, and 705 

the great sensitivity of fish embryos to petrogenic PACs (Rice et al. 2001; Rice 2009).  Prior to 706 

the EVOS, studies of oil spills were focused on the acutely lethality of low molecular weight 707 

(<12 carbons) alkanes and mono- and diaromatic compounds.  Their partitioning from oil to 708 

water could create acutely lethal concentrations of hydrocarbons that act additively (Di Toro et 709 

al. 2007).  However, the rapid spreading of oil and evaporation of low molecular weight 710 

compounds limited the risk of lethality to a matter of hours or days. For the EVOS, 20% of the 711 

oil was lost quickly by weathering, enriching the concentrations of residual 3-5-ringed PACs, 712 
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components that are chronically toxic to fish embryos (Rice et al. 2001; Adams et al. 2014).  713 

While juvenile and adult fish might avoid oil exposure, embryos of many species are sessile, and 714 

buried in sediments or attached to substrates contaminated by stranded oil.  Embryos also occur 715 

at high densities; when large numbers are exposed at once, toxicity can impair recruitment and 716 

the abundance of adult fish.   717 

Following the EVOS, research focused on the embryos of Pacific herring that spawned 718 

on submerged vegetation at the time of the spill, and of pink salmon which had already spawned 719 

in tributaries crossing the shorelines of Prince William Sound. Waterborne concentrations of 720 

PACs where herring spawned and in contaminated tributaries supporting salmon embryos 721 

corresponded to concentrations causing toxicity in laboratory studies (0.4 to 1.0 µg L-1 total 722 

PAC).  These concentrations could explain the missing 1989 year-class of herring at recruitment 723 

time and elevated mortality rates of salmon embryos for several years following the spill (Rice 724 

2010). However, demonstrating PAC effects on the subsequent abundance of these species was 725 

challenging (Rice et al. 2001).  Field studies to connect cause and effect were hindered by 726 

difficulties in measuring embryo exposures due to complex exposure pathways.  Field sampling 727 

and in situ experiments were complicated by multiple biological and environmental factors that 728 

interact with PAC toxicity (see above), and the need for very large surveys to generate statistical 729 

power in highly variable environments.  730 

In the years following the EVOS, ecological damage from the oil spill was attributed to 731 

the collapse of the herring population followed by a lower abundance of their predators, the 732 

stellar sea lion (Eumatopius jubatus) (Thorne & Thomas 2008). However, links between oil 733 

exposure and PAC effects on herring were obscured by an epizootic of viral haemorrhagic 734 

septicemia.  This disease was attributed to an over-population of herring, a reduced food supply 735 

in previous years, the poor condition of adults, and an increased susceptibility to disease 736 

(Pearson et al. 1999).  The counter argument that the EVOS did not affect herring was 737 

strengthened by population declines in other populations due to over-fishing and environmental 738 

stress caused by changes in ocean temperature and salinity.  A more recent analysis concluded 739 

that herring decline was not associated with mass mortalities that typify an epizootic (Thorne & 740 

Thomas 2008).  Instead, the decline occurred over five years, consistent with long-term effects 741 

on adult herring of floating oil encountered when surfacing at night to gulp air, a unique 742 

behaviour of herring. 743 
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For pink salmon, PAC concentrations in spawning shoals of streams that crossed oil-744 

contaminated beaches were sufficient to induce cytochrome P450 enzymes in caged fry, 745 

demonstrating the multi-year bioavailability of PACs (Rice et al. 2001). Not surprisingly, these 746 

PAC exposures were sufficient to cause embryotoxicity (Carls et al. 2003).  Delayed effects on 747 

salmon populations were also possible.  When embryos that survived experimental exposures to 748 

low oil concentrations were released to the ocean to feed and mature, there was a 15% decrease 749 

in marine survival when the adults returned to spawn (Heintz et al. 2000). Nevertheless, the 750 

effects of the EVOS on the numbers of adult salmon returning to Prince William Sound was 751 

obscured by the large-scale release and good survival of hatchery-reared salmon (Rice 2009).    752 

Applying the epidemiological criteria for plausibility (Rafferty et al. 2009), the case for 753 

impacts of petrogenic PACs on pink salmon fisheries appears strongest for biological and 754 

technical plausibility, dose-response, experimental evidence, and specificity of the relationship.  755 

However, it was weaker for field studies of temporal sequence, strength of association, and 756 

consistency of association. The case for PAC impacts on the herring fishery was similar to that 757 

for pink salmon except that the specificity of the relationship was weaker. In both cases, a focus 758 

on PACs may have over-looked the potential effects of other constituents of oil (Meador & 759 

Nahrgang 2019). 760 

5.3 Case Study 3: PAC mixtures from the Alberta oil sands 761 

The oil sands of northern Alberta, Canada, present an important opportunity to understand the 762 

effects of petrogenic PACs in freshwater environments.  As with crude oil, PACs from oil sands 763 

are diverse; most are alkylated, with only a small percentage unsubstituted (Wang et al. 2014). In 764 

contrast to oil spills, PACs in the oil sands area occur naturally.  Aquatic organisms are exposed 765 

to PACs in river sediments containing eroded bitumen (Headley et al. 2001; Conly et al. 2002; 766 

Akre et al. 2004; Glozier et al. 2018) and in some areas to waterborne PACs derived from 767 

bitumen mining and processing (Tetreault et al. 2003; Colavecchia et al. 2004; Colavecchia et al. 768 

2006; Evans et al. 2016; Droppo et al. 2019; Evans et al. 2019).  Industrial sources of oil sands 769 

PACs in abiotic matrices can be discriminated from natural sources by the spectrum of PACs 770 

measured (Culp et al. 2018; McMaster et al. 2018a; McMaster et al. 2018b).  However, 771 

discriminating between these sources in biota is more difficult due to PAC metabolism and 772 

excretion. 773 
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Forage fish in tributaries of the Athabasca River accumulated tissue concentrations of 100 774 

to 280 ng g-1 (ww) total PACs; of  44 PACs measured,  naphthalene and alkylated naphthalenes, 775 

fluorenes and phenanthrenes were most concentrated (Evans et al. 2019). At reference sites, PAC 776 

concentrations in slimy sculpin (Cottus cognatus) were highly variable despite low 777 

concentrations of sediment and waterborne PACs. Monitoring fish health provides reliable 778 

baselines for tracking future impacts of the growing oil sands industries (McMaster et al., 779 

2018b). Responses to PAC exposures of sculpin sampled near oil sands mines included larger 780 

livers, smaller gonads, and higher P450 activities than at upstream reference sites.  781 

Tailings ponds contain oil sand process water that can slowly leach into groundwater and 782 

rivers (Ferguson et al. 2009; Fennell & Arciszewski 2019). It is a complex mixture of PACs, 783 

naphthenic acids, heavy metals, and dissolved ions that impairs fish and invertebrate 784 

development and reproduction, similar to the effects of PACs (Li et al. 2017).  In general, 785 

concentrations of hydrophobic PACs in tailings pond leachates are low, perhaps because they are 786 

sorbed to solids and trapped in pond sediments or filtered out by fine substrates as the leachates 787 

pass through (Ferguson et al. 2009; Frank et al. 2014; Roy et al. 2016).  788 

The mining and processing of bitumen also create PAC-contaminated dusts and air 789 

emissions that enter aquatic and terrestrial ecosystems directly or via contaminated rain and 790 

snowfall (Kelly et al. 2009; Kurek et al. 2013). Air, snow, and lake sediments from the oil sands 791 

region contain many PACs not typically measured in analyses of the 16 conventional PAHs and 792 

35 alkyl PAHs (Manzano et al. 2016; Manzano et al. 2017). These include PACs containing Cl, 793 

N, O, or S, detected only by high resolution two-dimensional gas chromatography-mass 794 

spectrometry (Manzano et al. 2012; Manzano et al. 2013; Ahad et al. In prep for this special 795 

issue). The potential ecological risks of airborne PACs are suggested by the contamination of 796 

tadpoles in isolated wetland ponds near oil sands industries; the summed concentrations of 75 797 

PACs ranged from 110 to 190 ng g-1 dry weight (Mundy et al. 2019). As well, the meltwater of 798 

PAC-contaminated snow collected within seven km of oil sands mines was lethal to larval 799 

fathead minnows (Parrott et al. 2018).  800 

Although Harner et al. (2018) provide a thorough analysis of the sources, distribution, and 801 

fate of PACs in the region, there is no equivalent review of the nature, distribution and trends of 802 

effects.  A detailed review is needed of research on the impacts of oil sands development to 803 
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assess potential cause-effect relationships for the observed levels of PAC contamination and to 804 

provide directions for future research in boreal ecosystems. 805 

6 Modelling to predict the ecological risks of PAC emissions to air, land and water 806 

The significance of Canada’s PAC emissions, environmental contamination and toxicity is only 807 

apparent when assessed on a regional or site-specific basis.  Modelling provides a rapid 808 

appreciation of the potential risks of ecological impacts and the information gaps that hinder 809 

understanding and appropriate management.  Nationally, Canadian industries report their annual 810 

point-source emissions of PACs to the National Pollutant Release Inventory (NPRI) (Berthiaume 811 

et al. In prep. for this special issue).  Although the NPRI details measured or estimated point 812 

source releases to air, water and land, the data are not combined across industries within a region 813 

to illustrate what resources are at risk of exposure and toxicity.  The Risk Assessment 814 

IDentification And Ranking (RAIDAR) model, developed by Arnot et al. (2006) and Arnot and 815 

Mackay (2008), provides a screening-level exposure and risk assessment of chemical emissions.  816 

It combines mass balance, environmental fate and food web bioaccumulation models in a 817 

regional scale (100,000 km2) environmental model representative of temperate Canada.  Its 818 

objective is to better understand the connection between pollutant emissions, distributions, and 819 

corresponding ecological risks. The model is publicly available 820 

(https://arnotresearch.com/raidar/) and provides full details on physical compartments, 821 

representative organisms, food webs and other key parameters.  822 

A customized version of RAIDAR (version 2.985) was developed to estimate the risk of 823 

point source emissions of PACs (Berthiaume et al. In prep. for this special issue). For the 32 824 

PACs reported to Canada’s NPRI, model inputs included physical-chemical properties, chemical 825 

degradation half-lives, biotransformation half-lives in fish and mammals, and toxicity values 826 

(ARC 2014).  As a first step, RAIDAR evaluated the exposure potential of individual PACs in a 827 

‘unit emission scenario’ (assumes that each PAC is emitted at 1.0 kg. h-1) using Level III 828 

multimedia chemical fate, food web, and bioaccumulation models (i.e., open systems in steady-829 

state). Predicted whole-body concentrations of PACs in representative organisms for this ‘unit’ 830 

emission scenario were compared to critical effects concentrations from the EnviroTox database 831 

(HESI 2018; Arnot & Toose 2019; Connors et al. 2019). The comparison yielded a hazard 832 

assessment factor (HAF), i.e., the ratio between the expected dose calculated from ‘unit emission 833 

https://can01.safelinks.protection.outlook.com/?url=https%3A%2F%2Farnotresearch.com%2Fraidar%2F&data=02%7C01%7Cpvh%40queensu.ca%7C6497227597064d33535c08d80d6263f2%7Cd61ecb3b38b142d582c4efb2838b925c%7C1%7C1%7C637274063532126512&sdata=cILK64hKAfU8PLre31vfAKg5w2DGksFVkOlWp%2FXiLsU%3D&reserved=0
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rates’ and the toxic dose.  The HAFs reflect the toxicity, persistence and bioaccumulation of each 834 

PAC (Arnot & Mackay 2008; Arnot & Toose 2019) and can be compared and ranked by most 835 

vulnerable organism or by organism of interest. When PACs from the 2017 NPRI data were 836 

ranked by their predicted HAFs for the most vulnerable organism (Figure 2–A2), 1-nitropyrene 837 

was most hazardous (greatest likelihood of toxicity in a ‘unit’ emission scenario), with plankton 838 

the most likely species to be affected.  839 

The NPRI emissions data were integrated into RAIDAR as actual emission rates to predict 840 

PAC concentrations in representative organisms. The ratios of actual NPRI emissions to unit 841 

emissions were used to scale the HAF to a risk assessment factor (RAF), i.e., the ratio between 842 

the expected dose and the toxic dose. Figures 2-C and 2-E show the NPRI releases, ranked by 843 

total quantity, and the resulting RAFs calculated by RAIDAR, ranked by the most vulnerable 844 

receptor. When viewing Figure 2 by ‘most vulnerable organism’, the summed RAF values for 845 

individual NPRI PACs are each far lower than one. This means that the conservative and 846 

hypothetical scenario in which all 2017 NPRI emissions Canada-wide are released in a 100,000 847 

km2 regional environment do not expose the most vulnerable organism to PAC concentrations 848 

greater than critical effect thresholds. The same conclusion was reached for all other years of 849 

NPRI data examined (2008-2016).  An alternative view is shown in Figure 2-F, where the 850 

emphasis is on RAFs in all receptor organisms, not just the most vulnerable. Each PAC is 851 

presented as an individual entity, and assuming additivity, the sum of RAFs for all NPRI PACs 852 

per receptor organism (red star) is still far less than 1.0.   853 

Although the RAIDAR scenario provides a perspective on risk, the computed RAFs must 854 

still be interpreted with caution. Tevlin et al. (in prep. for this special issue) identified 855 

exceedances of air quality guidelines for PACs in the oil sands area, suggesting a real risk of 856 

PAC emissions.   The conflict with the RAIDAR predictions could be explained two ways.  857 

Either the risks of PAC emissions are truly low and Canada’s air quality guidelines are overly 858 

conservative, or the risks were under-estimated because significant diffuse sources such as 859 

transportation were not included in the NPRI (Berthiaume et al. In prep. for this special issue). 860 

The RAIDAR scenario also distributes PAC depositions evenly over 100,000 km2 and over 861 

seasons.  Steep concentration gradients radiating from bitumen mines and urban point sources 862 

(Harner et al. 2018; Whaley et al. 2018) are ignored, as well as seasonal pulses of PAC released 863 

in spring snowmelt (Parrott et al. 2018).  Synergistic and antagonistic interactions are also not 864 
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considered (Section 2.2), a weakness shared with air quality guidelines. The estimated risks of 865 

complex mixtures would likely be higher if based on larger numbers of PACs; like all ERAs, 866 

RAIDAR assessments are limited to a very small number of test species and environmental 867 

interactions. 868 

Further research and model enhancements are needed to better understand these results 869 

and to apply the model more widely.  For example, the hypothetical conditions of RAIDAR’s 870 

evaluative environment (e.g., meteorological, vegetative, land cover, size, etc.) could be more 871 

specific and realistic, a task underway for human health risk assessment (ARC 2019). Replacing 872 

the Level III steady-state fugacity modelling with non-steady-state modelling would address 873 

questions related to the effects on PAC distribution of temporal and geographical gradients, 874 

among others. Filling emission information gaps (Berthiaume et al. In prep. for this special 875 

issue) will provide more realistic risk estimates than presented here.  Recent comprehensive 876 

reviews of the emissions and distribution of PACs from oil sands production (Harner et al. 2018) 877 

could spur the development of models that provide a more focused and local understanding of 878 

ecological risks.  Finally, expanding the scope of the model to include known and fugitive PAC 879 

emissions in solid and liquid wastes would provide a more complete view of ecological risks. 880 

7 Summary and research needs  881 

Despite the complexity and technical challenges associated with estimating the ecological risks 882 

of PACs, there is abundant evidence that PAC emissions damage ecosystems.  Nevertheless, the 883 

toxicity of most alkylated and heterocyclic PACs typical of complex mixtures are still unknown, 884 

limiting the development and utility of structure-activity models. Models predicting mixture 885 

toxicity are often based on unrealistic assumptions, including additivity of effects among PACs 886 

and single rather than multiple MOAs. Interactions of PACs with co-occurring contaminants 887 

from urban, industrial, agricultural, and forestry activities are little known, increasing the 888 

uncertainty of site-specific ERAs.  Not surprisingly, current Canadian environmental quality 889 

guidelines are limited to a small fraction of the thousands of different PAC congeners. There is 890 

an urgent need to update the guidelines to include a wider array of PACs and to improve models 891 

for estimating the ecological risks of complex mixtures.   892 

To support more comprehensive guidelines and more realistic ERAs, research is needed to 893 

expand our knowledge of the effects of diverse PAC structures and properties on their 894 
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environmental distribution, fate and effects.  A focus is needed on PAC metabolism and 895 

degradation, interactions with cellular receptors and MOAs, structure-activity relationships and 896 

mixture interactions. 897 

ERAs are also weakened by significant but unquantified errors in aquatic toxicity data when 898 

toxicity is estimated from nominal PAC concentrations in test solutions. To reduce uncertainty, it 899 

is essential that passive dosing and sampling methods be adopted in standard protocols to 900 

characterize PAC exposures.  Improved test methods will increase the accuracy and precision of 901 

predictive models for ERAs of PAC emissions.    902 

More site-specific research is needed to identify ecosystems that are particularly sensitive to 903 

PAC loadings and to establish priorities for managing regional impacts.  Research at PAC-904 

contaminated sites and ‘spills of opportunity’ is essential to understand ecological impacts of 905 

PACs under different environmental conditions and the significance of species that are hyper-906 

sensitive or resistant to PAC exposures. Lack of access to contaminated sites limits ecological 907 

research, and ERAs will only be improved if collaborations among governments, industries and 908 

universities are facilitated. Although the present review focused primarily on aquatic ecosystems, 909 

the issues raised apply equally well to terrestrial ecosystems. 910 
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Table 1.  Important sources of PAC contamination in Canada’s provinces and territories 1447 

(summarized from Marvin et al. In prep for this special issue). NL – Newfoundland and Labrador; 1448 

NS – Nova Scotia; PEI – Prince Edward island; NB – New Brunswick; QC – Quebec; ON – Ontario; MB 1449 

– Manitoba; SK - Saskatchewan; AB – Alberta; BC – British Columbia; NT – Northwest Territory;  YT – 1450 

Yukon Territory;  NU – Nunavut. 1451 

 1452 

Sources of PACs NL NS PEI NB QC ON MB SK AB BC NT YT NU 

Atmospheric transport x x x x x x x x x x x x x 
Forest fires x x  x x x x x x x x x  
Fossil fuel combustion and leakage 
from fuel storage  

x x x x x x x x x x x x x 

Coal mining   x       x x    
Oil, gas and bitumen extraction x     x  x x x x   
Coastal oil refineries x x  x x x    x    
Crude & refined oil and gas 
transportation: By pipeline 

 x  x x x x x x x x x  

By rail  x  x x x x x x x    
    By truck x x x x x x x x x x x x  
  By Ship x x  x x x    x   X 

Petcoke production         x     
Steel mills  x   x x        
Aluminum production     x     x    
Biogenic production from pulp mill 
wastes 

x x  x x x   x x    

Contaminated sediments in 
industrial harbours 

 x  x x x    x    

Demonstrated contamination of 
biota 

 x   x x   x x    

 1453 

 1454 

 1455 

 1456 

 1457 
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Table 2.  The percentage of mixture interactions that showed more-than-additive, additive, or 1458 

less-than additive effects on mortality, accumulation of metals and production of reactive oxygen 1459 

species, summarized from Gauthier et al. (2014).  The interactions represented 63 combinations 1460 

of four PACs (phenanthrene, fluoranthene, benzo[a]pyrene; phenanthrenequinone) and four 1461 

metals (Cd, Cu, Ni, Zn) reported in nine studies of six species of fish, invertebrates and 1462 

microbes. 1463 

Effect More-than-additive Additive Less-than-additive 

Mortality 44.7 44.7 10.6 

Metal Accumulation  46.6 26.7 26.7 

Production of reactive oxygen 

species 

37.5 50 12.5 
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Figure Captions 1466 
 1467 

Figure 1. Species sensitivity distributions of LC50s for: A. waterborne benzo[a]pyrene (BaP) 1468 

(20 species), and B. total concentrations of polycyclic aromatic compounds (TPAC) measured in 1469 

test solutions of Cold Lake Blend dilbit (6 species). Dotted black lines define the HC5 1470 

(concentration hazardous to the 5th percentile species):  BaP = 0.55 ± 0.47 μg L-1 (95% CI = 0.22 1471 

– 2.0; cv = 85%); dilbit TPAC = 12.1 ± 1.55 μg L-1 (10.3 – 16.3; cv = 13%). The dashed red line 1472 

represents Canada’s BaP guideline for the protection of freshwater life (0.015 μg L-1; CCME 1473 

1999). The solid black line represents the BaP solubility limit of 4 μg L-1.  LC50 data (Table SI-1474 

1) were fitted to a Log-Gumbel distribution based on goodness-of-fit tests; confidence limits 1475 

were predicted from 10,000 bootstrap samples. Geometric means were used when multiple 1476 

LC50s were available for one species.  1477 

Figure 2.  RAIDAR model outputs for 2017 NPRI PAC emissions. Panel 2a.  A1, A2: Hazard 1478 

assessment factors (HAF) (unitless) for each PAC; B1,B2: Release type (environmental 1479 

compartments); C1, C2: Release quantities (T); D: Species most vulnerable to PAC exposure; 1480 

E1, E2: Predicted and ranked risk assessment factors (RAFs). Panel 2b. F: the sum of RAFs for 1481 

all PACs, ranked by species sensitivity.   Interactive versions of Figure 2 with reports filtered by 1482 

year, substance, receptor, or environmental compartment are available at: 1483 

2.a: https://public.tableau.com/views/Draft-1484 

PAHsMostsensitiveorganismRAIDARanalysis_ForTableaupublic/Dashboard1?:display_count=y1485 

&:origin=viz_share_link 1486 

2.b: https://public.tableau.com/views/Draft-PAHs2008-1487 

2017RAIDARAllecoreceptororganisms_ForTableaupublic/Dashboard1?:display_count=y&publi1488 

sh=yes&:origin=viz_share_link 1489 
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