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Résumé

Dans cette thèse, nous nous intéressons au développement de nouvelles techniques d’identifica-
tion des canaux sans fil et d’estimation des paramètres du canal pour les technologies d’interface
radio 5G et au-delà. Les propriétés physiques des canaux sans fil peuvent avoir des effets indésirables
vu que les signaux transmis subissent toujours plusieurs réflexions, diffractions, etc. Ces derniers se
traduisent par exemple par la présence de copies multiples du même signal avec des atténuations,
des distorsions, des retards et des déphasages différents du côté du récepteur. Dans un tel scéna-
rio, les interférences entre ces copies peuvent conduire à une combinaison destructrice au niveau
du récepteur rendant une communication fiable impossible. Par conséquent, il est essentiel que le
récepteur connaisse les paramètres caractérisant le canal sans fil via des techniques d’estimation
pour pouvoir détecter le signal transmis. Plus précisément, nous proposons des solutions d’estima-
tion conjointe de plusieurs paramètres offrant ainsi de meilleures performances. En premier lieu, on
s’intéresse à l’estimation conjointe du délai de propagation et de la direction d’arrivée (DdA) qui
sont principalement utilisés à des fins de localisation. Ensuite, nous abordons l’estimation conjointe
des décalages temporels et fréquentiels pour assurer la synchronisation dans les réseaux coopératifs.
Enfin, les coefficients du canal et la variance du bruit sont utilisés pour acquérir une estimation
précise du rapport signal à bruit (RSB). Les techniques développées doivent bien fonctionner selon
les scénarios variés tel qu’un environnement à faible RSB ou des utilisateurs à mobilité élevée. Pour
garantir des performances élevées, les techniques proposées reposent sur l’approche du maximum de
vraisemblance (MV) et qui ont été adaptées en fonction des scénarios pour assurer une complexité
de calcul raisonnable. Comme le montrent les résultats des simulations, les solutions proposées fonc-
tionnent mieux que les benchmarks en termes de précision au niveau des composants et rapportent
un meilleur débit au niveau lien.

Mots-clés Modules sensoriels, estimation des paramètres du canal, estimation assistée par les
données, estimation autodidacte, localisation, synchronisation, probabilité maximale, débit au ni-
veau lien, OFDM.
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Abstract

In this thesis, we are interested in the development of new wireless channel identification and
parameter estimation techniques for 5G-and-beyond radio interface technologies. Since the physical
properties of wireless channels may have undesirable effects as the transmitted signals always un-
dergo multiple reflections, diffraction etc. The latter result for example in the presence of multiple
copies of the same signal with different attenuation, distortion, delays, and phase shift at the receiver
side. In such scenario, the interference between these copies may lead to a destructive combination
at the receiver making it impossible to ensure a reliable communication. Hence, it is crucial for the
receiver to be aware of the parameters charactering the wireless channel via estimation techniques to
be able to detect the transmitted signal. More specifically, we provide solutions for joint estimation
of several parameters, thereby offering better performance. The channel parameters investigated
in this thesis can be categorized into three categories: the joint propagation delay and direction
of arrival (DoA) estimation which are mainly used for localization purposes. Next, we have the
joint estimation of the timing and frequency offsets which are required for the synchronization in
cooperative networks. We also investigate the channel coefficient and the noise variance to acquire
an accurate estimate of the signal-to-noise (SNR) ratio. The developed technique should perform
well in various scenarios such as low SNR environments or high mobility users. To ensure high
performance, the proposed techniques rely on maximum likelihood (ML) approach. The developed
techniques are adapted depending on the scenarios to ensure a reasonable computational complexity.
As shown in simulation results, the proposed solutions perform better than the benchmarks in terms
component level accuracy and link-level throughput. Finally, we provide a summary of other contri-
butions achieved during the PhD program including the participation in the evaluation process of
IMT-2020.

Keywords Sensory modules, channel parameter estimation, data-aided, non-data-aided, loca-
lization, synchronization, maximum likelihood, link-level throughput, OFDM, IMT-2020, WP 5D.
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Chapitre 1

Extented Summary

1.1 Background and motivation

Every 10 years, wireless communications go through a technological shift that brings more

use cases and opportunities. The 1G was marked by the introduction of analog telecommunications

that support voice only. During the 90s, the second generation introduced digital standards allowing

new services such as roaming and short message service (SMS). In the year 2000, the International

Telecommunication Union (ITU) issued the International Mobile Telecommunications (IMT)-2000

which is a globally coordinated definition of 3G covering key issues such as frequency spectrum

use and technical standards. This generation introduced the notion of smartphones for the first

time and proposed new sorts of applications such as web browsing and email access. As new cases

surface and become more data hungry, there was a need for new technologies. The 4G, under the

banner of IMT-Advanced, was put on the table in 2010 and brought new concepts such as “all

IP”, multimedia data (video and music) and faster mobile broadband. In the past decade, a lot

of research efforts were carried out to prepare for the next generation of wireless communications.

The new generation, with the first recommendations aimed to be released in 2021 under the banner

of IMT-2020, is promising much faster connection, more reliability and higher connection density

along with a lower latency. These features vary depending on the application. Indeed, 5G is aiming

to provide more than enhanced broadband services and encompass new ones. As shown in fig. 1.1,

5G relies on three main pillars. The first one being an enhanced mobile broadband (eMMB) allowing

a more reliable and faster connections when compared to the existing long term evolution (LTE)
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technology. The second one is the massive machine type communications (mmtc) which covers

Figure 1.1 – Usage scenarios of IMT for 2020 and beyond [1].

applications like the internet of things applications, smart homes and factories. The third one is the

ultra-reliable low latency communications (URRLC) for applications requiring extreme reliability

and latency below 0.1ms.

1.2 Motivations

The physical properties of wireless channels may have undesirable effects as the transmitted

signals always undergo multiple reflections, diffraction etc. The latter result for example in the

presence of multiple copies of the same signal with different attenuation, distortion, delays, and

phase shift at the receiver side. In such scenario, the interference between these copies may lead to

a destructive combination at the receiver making it impossible to ensure a reliable communication.

Hence, it is crucial for the receiver to be aware of the parameters charactering the wireless channel

via estimation techniques to be able to detect the transmitted signal. Indeed, it needs information

regarding the carrier frequency, timing, and phase offsets to ensure a full synchronization between

the transmitter and the receiver. While the direction of arrival (DoA) can be used for localization

purposes, channel tracking and noise variance estimation are useful in computing the signal-to-noise

(SNR) ratio which is useful for the adaptive modulation, coding, and handoff scheme. Estimation
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techniques can be categorized in different ways depending on the approach, the type of input data,

etc. For example, depending on the type of input, estimation techniques can be categorized into four

main categories: the data-aided (DA) approaches where the transmitted symbols are assumed to be

perfectly known at the receiver. Generally, they provide highly-accurate estimates at a significant

cost, however, in terms of overhead; ii) the blind or non-data-aided (NDA) approaches where the

receiver does not have a priori information about the transmitted data. Therefore, NDA techniques

do not incur any overhead but come with reduced accuracy. iii) Some NDA parameter estimation

approaches available in the literature (e.g., see [5]-[6]), occasionally or intermittently, operate an

initialization step at much less frequent pilot insertion instants (by an order or two of magnitude).

Referred to as hybrid (i.e., combine NDA and DA), these techniques very often perform much better

than full NDA approaches (i.e., with random initialization). While at the same time they require

negligible overhead amounts compared to DA solutions [7]; iv) The code aided (CA) approach can

be seen as a middle ground solution between the NDA and DA estimation schemes. Indeed, rather

than relying on perfectly known or completely unknown symbols, CA estimation takes advantage

of the soft information delivered by the decoder at each decoding iteration. As shown in [8], this

kind approach provides a significant improvement compared to the NDA counterpart. However, its

performance is strictly related to coding rate. While it is able to reach near DA performance at

mid-range SNR, it is only the case for low rate configurations that come with high redundancy

and eventually lower link-level throughput. The developed techniques can also be categorized by

the adopted approach. Indeed, some techniques focus on estimating one specific parameter while

assuming the rest to be known. Such techniques provide high accuracy in ideal cases but may suffer

from performance deterioration in real scenarios where the remaining parameters are obtained using

additional estimators. This may increase the overall complexity and makes the performance strongly

dependent on other solutions’ accuracy. Joint estimation, however, provides estimates for two or

multiple channel parameters at the same time providing a higher accuracy and in certain cases lower

computational complexity since a limited number of estimations techniques is involved.

1.3 Thesis contributions

In this thesis, we aim to develop new advanced joint estimation techniques for channel parameters

ranging from channel quality parameters including channel coefficients and the noise variance, to the
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synchronization parameters including timing and frequency offsets, and the localization parameters

such as joint propagation delay and DoA estimation. The developed techniques rely mainly on the

maximum likelihood (ML) approach which is renowned to exhibit high performance. The main

contributions of this thesis are:

1.3.1 ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective

Channels Over SIMO OFDM Transmissions

Overview of related works

Orthogonal frequency-division multiplexing (OFDM) showed its effectiveness in current 4G. A

scalable variety of CP-OFDM is already included in 5G new radio (NR) standards by the 3rd Ge-

neration Partnership Project (3GPP) [9]. The adopted waveform will include multiple sub-carrier

spacings that depend on the type of deployments and service requirements. Moreover, when coupled

with the large-scale antenna technology OFDM is poised to enable the 1000-fold increase in capa-

city that is required over the next few years. Despite its attractive features such as robustness to

frequency selective channels and spatial diversity, OFDM-type radio interface technologies (RITs)

are already very sensitive to channel time variations since the latter break the crucial orthogonality

between the subcarriers thereby introducing the so-called inter-carrier interference (ICI). Accurate

channel estimation, hence, becomes a daunting task at very high mobility [10].

So far, several channel estimation techniques have been reported in the literature. They can

be categorized in two major categories: i) the data-aided (DA) approaches where the transmitted

symbols are assumed to be perfectly known at the receiver. They provide highly-accurate channel

estimates at a significant cost, however, in terms of overhead; ii) the blind or non-data-aided (NDA)

approaches where the receiver has no a priori information about the transmitted data. Therefore,

NDA techniques do not incur any overhead at the cost, however, of reduced accuracy. Some NDA

parameter estimation approaches available in the literature (mainly proposed by the authors’ group

e.g., see [5]-[6]), occasionally or intermittently, operate an initialization step at much less frequent

pilot insertion instants (by an order or two of magnitude). Referred to as hybrid (i.e., combine NDA

and DA), these techniques very often perform much better than full NDA approaches (i.e., with

random initialization). While at the same time they require negligible overhead amounts compared

to DA solutions [7]. Hence, we shall advocate a hybrid approach in this work.
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For fast time-varying channels, most of the DA techniques rely on a basis expansion model

(BEM) to estimate the equivalent discrete-time channel taps [11]-[12]. In fact, BEM methods such

as Karhunen-Loeve BEM were designed with low mean square error (MSE) [11]. They are, however,

sensitive to statistical channel mismatch. The complex-exponential BEM, also proposed in [11],

does not make use of the channel statistics but suffers from large modeling errors. The polynomial

BEM (P-BEM) investigated in [13] yields accurate channel estimates, but only at low Dopplers. In

[2], the complex gain variations of each path was approximated by a polynomial function of time

then estimated by least squares (LS) technique. This solution offers accurate performance even at

high Doppler. However, it requires that the number of paths to be smaller than the inserted pilot

symbols in each OFDM time slot. Moreover, it was derived in the single-input single-output (SISO)

case and its extension to single-input multiple-output (SIMO) systems has never been addressed.

Under the NDA category, time-varying channel estimation was also investigated in [14]. The

authors used the discrete Legendre polynomial BEM along with the space alternating generali-

zed expectation maximization (EM)-maximum a posteriori probability (SAGE-MAP) technique to

estimate the time-domain channel coefficients of OFDM channels. In [15], we used EM to esti-

mate the channel gains over a SISO configuration. However, both techniques have been tailored

for multi-carrier SISO systems and, hence, do not exploit the potential diversity gain achievable by

multi-antenna systems. Moreover, they require the number of pilots to be greater than the number

of channel paths. In [16], the instantaneous SNR estimation problem was investigated using the

EM approach, yet still over SISO configurations only. In [17] and [18], both the EM and LS tech-

niques were again leveraged, respectively, to estimate the SNR over single-carrier SIMO systems. In

[19],[20], iterative channel estimation with Kalman filtering and QR detection was first investigated

under SISO multi-carrier channels and later generalized to MIMO OFDM systems. Its performance

was further enhanced in [21] by exploiting the statistics of the channel estimation errors in an itera-

tive estimation process. However, Kalman filter-based techniques require perfect knowledge of the

Doppler as well as the power-delay profile. Moreover, a high number of pilots per OFDM block is

needed to obtain accurate estimates, thereby affecting the overall throughput of the system.

Contribution

In this contribution, we develop an iterative EM-based ML estimator of fast time-varying chan-

nels over SIMO OFDM-type radio interfaces. By relying on the polynomial approximation of the
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multipath channel gains [2] and resorting to the powerful EM technique [22] instead of the LS

approach, our solution offers a more accurate ML-type acquisition of the polynomial expansion co-

efficients and the resulting time-varying channel gains. To avoid local convergence that is inherent to

iterative algorithms, we initialize the EM algorithm with a SIMO DA ML version developed in this

work for that sole purpose. We show that the latter boils down to applying SISO DA LS in [2] over

each receive antenna. Besides, coming back to our key contribution here, our new SIMO NDA ML-

EM solution, it yields as a byproduct MAP-based soft estimates of the unknown symbols. The latter

are leveraged to devise a dedicated ICI cancellation (ICIC) scheme that works side by side with the

EM-based time-varying estimator according to the turbo principle (e.g., see [8]). Furthermore, we

introduce an alternative SIMO regularized DA ML (RDM) initialization procedure that can still

apply when the number of paths exceeds the number of available pilot observations. This desirable

feature renders the proposed solution robust to any rapid variations in the propagation environment

where the number of paths can change unpredictability due to the mobile users motion. Hence, we

investigate the possibility of reducing the number of pilots in each OFDM block down below the

number of channel paths without significantly affecting the performance. By doing so, we are able to

reduce the overhead and eventually increase the throughput quite significantly. Simulation results

show that the proposed hybrid ML-EM estimator (i.e., combines all new NDA ML-EM and DA ML

or RDM versions) converges within few iterations, thereby providing very accurate estimates of all

multipath channel gains. Most importantly, this increased estimation accuracy translates into very

significant BER and link-level per-carrier throughput gains over the best representative benchmark

solution available so far for the problem at hand, the SISO DA LS technique in [2] with its new gene-

ralization here to SIMO systems. We see from Figs. 1.2 (a) and (b) that the per-carrier throughput

increases with hybrid ML-EM at low to medium Doppler once the refreshment interval RI jumps

from 1 to 5. It follows that the pilot subcarriers are no longer required at the current OFDM blocks

and can be used to carry data instead. Pilot insertion rate can be slowed down significantly, by

at least as much as 20 times (pilot to data or overhead ratio can become as low as 0.16%), while

still reporting some noticeable throughput gains instead of losses, more so at high per-carrier SNR.

Whereas SISO DA LS in [2] and its proposed SIMO DA ML extension still require the same amount

of pilots to provide reliable channel estimates. Therefore, no additional throughput gains can be

achieved.
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Hybrid SIMO ML-EM / Np = 4, RI = 1

SIMO DA ML / Np = 8
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Figure 1.2 – Link-level per-carrier throughput vs. the per-carrier SNR of the advocated new hybrid
ML-EM (with Np = 4) at multiple RI values, the SISO DA LS in [2] (i.e., Nr= 1), and its proposed
SIMO DA ML extension (with Np = 8) with Nc = 3, Nr = 2, and λ = 0.5 at: (a) v = 60 km/h, (b) v = 120
km/h, and (c) v = 240 km/h.

1.3.2 Multi-Node ML Time and Frequency Synchronization for Distributed

MIMO-Relay Beamforming over Time-Varying Flat-Fading Channels

Overview of related works

Spatial diversity is a well-known concept allowing to combat the channel fading and increase the

overall throughput of communication systems. Such attracting advantage can be achieved through

multiple solutions. Cooperative networks provide a distributed solution that avoids some of the

difficulties related to traditional MIMO systems [23], [24]. Indeed, in many situations, some user

equipments are not able to embed multiple antenna sensors due to size and power limitations. As

such, users can cooperate with each other to form a virtual antenna array. However, some challenges

need to be addressed to ensure constructive cooperation between the relays. One major problem

in cooperative relaying systems is multi-node synchronization, both in time and frequency. The

latter is crucial for the proper implementation of energy-, spectrum-, and area-efficient distributed

MIMO-relay beamforming between a given source-destination link having coverage limitations.

There are two basic approaches to alleviate the effect of time-varying channel (TVC) distor-

tions in time, frequency, phase, and amplitude: the closed-loop and the open-loop compensation

procedures. In the closed-loop approach, the destination performs the estimation of all the syn-
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chronization parameters along with the channel coefficients. Those estimates are later fed to an

equalization block to combat time and frequency asynchronism as proposed in [25],[26]. To their

credentials, closed-loop approaches exhibit less overhead as the interaction among the relay nodes

is kept to minimal while the destination coordinates the synchronization process. However, it may

be difficult for wireless networks without the adequate infrastructure to handle highly-complex

multi-dimensional estimation algorithms. In open-loop approaches, however, the source signal to

be relayed is shifted in the temporal and frequency domains before transmission, as proposed in

[27]. By doing so, we ensure that replicas of the same transmitted signal, originating from different

relay nodes, arrive at the same time and combine constructively at the receiver. In this scenario,

less complex estimation algorithms can be considered at the nodes with minimal signaling from the

destination.

As far as the estimation of the synchronization parameters is concerned, multiple techniques

exist in the open literature [28]. On one hand, the works in [29]-[30] investigate time delay (TD)

synchronization while neglecting the carrier frequency offset’s (CFO) effect. On the other hand,

the solutions introduced in [31]-[32] deal with multiple CFOs while neglecting the TD effect. Other

techniques perform joint estimation of all parameters at the destination in closed-loop cooperative

networks [25],[33],[34]. Although they could work well in practice, they suffer from high computa-

tional complexity since they require solving a multi-dimensional problem that increases with the

number of relaying nodes. Moreover, the synchronization task might become very costly in terms

of overhead. Indeed, after estimating the TDs and CFOs, the destination node needs to feed them

back to the relays. Such a step leads to an additional overhead problem along with quantization

errors since the estimated values are quantized before their feedback phase.

Alternative solutions can be considered by relying on distributed collaborative beamforming

(DCBF) schemes [35]. Many of these techniques focus on the optimal design of the beamformer’s

weights while assuming perfect synchronization that leave them extremely vulnerable in practice to

phase, frequency, and time offsets. Many other techniques focus, on the other hand, on combating

the misalignment effect at the destination caused by such offsets. In [36], the authors proposed a

phase compensation solution based on an iterative bit-feedback approach. In [37], a solution for

frequency synchronization in wireless sensor networks (WSN)s using a round trip synchronization

method was proposed. In [38], a distributed synchronization method was proposed for dense wire-

less networks using a correlation-based joint TD and CFO estimator. Yet, all the above-mentioned

techniques rely on the simplifying time-constant channel (TCC) assumption. In contrast, a broad
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range of applications require that the terminals act as relaying nodes and, at the same time, fifth-

generation (5G) communication systems are expected to support reliable communications at very

high velocities reaching 500 Km/h (e.g., in high-speed trains) [39]. For such systems, the conventio-

nal TCC assumption leads to severe performance losses. Recently, some other works on DCBF [40],

[41] had tackled the challenging problem of multi-node synchronization under TVCs using enhan-

ced versions of one-bit feedback technique. However, they have only addressed phase compensation

while assuming perfect TD and CFO estimation.

Contribution

Motivated by these facts, we develop in this chapter a new decentralized ML synchronization

technique along with a distributed MIMO-relay beamforming design that tackles the challenging

TVC case over multi-node relaying transmissions. The proposed ML TVC solution builds upon a

very useful approximation of the channel covariance matrix by a two-ray propagation model. It pro-

vides accurate ML estimates of the TDs and CFOs at a reduced computational cost because it does

not require any matrix inversion. We also develop an iterative version, referred to as ML TVC-DE

(Doppler estimate), that accounts for the practical need to estimate at each relay node the Doppler

spread upon which relies the initial version referred to hereafter as ML TVC-PD (perfect Doppler).

Simulation results show significant synchronization accuracy improvement over previous distributed

multi-node synchronization techniques assuming TCCs. The latter translates into noticeable gains

in terms of useful (i.e., after accounting for incurred overhead) link-level throughput, more so at

higher Doppler or with more distributed MIMO-relay beamforming nodes. In Fig. 1.3, we report

noticeable and constantly increasing throughput gains of ML TVC over TCC-based SAGE and ML

TCC at both medium and high SNR levels when increasing the number of relays from 1 to 8. At

higher Doppler values (i.e., FDk = 200 Hz or FDk = 300 Hz), the relative throughput gains of ML

TVC over SAGE and ML TCC become even more significant, again more so when the number

of relays also increases. These key observations come as a solid confirmation of the very impor-

tant performance benefits of the proposed distributed MIMO-relay beamforming and multi-node

synchronization schemes.
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Figure 1.3 – Link-level throughput vs SNR for ML TVC-PD at a refreshment rate P = 100 and different
Doppler frequencies for: (a) K = 1, (b) K = 2, (c) K = 4, and (d) K = 8.

1.3.3 Maximum Likelihood Joint Angle and Delay Estimation from Multipath

and Multicarrier Transmissions With Application to Indoor Localization

Over IEEE 802.11ac Radio

Overview of related works

In parametric multipath propagation models, a source signal impinges on an antenna array

through a number of rays, each described by an angle-of-arrival (AoA), a time delay (TD), and a

path gain. The joint angle and delay estimation (JADE) problem consists then in jointly estimating

all the AoAs and their corresponding TDs from a finite number of received samples. The JADE

problem arises in many practical situations ranging from military applications (e.g., radar and

sonar) to broadband wireless communication systems. Typically, the power to characterize each

path with its own angle and delay endows the system with stronger sensorial capabilities leading,

for instance, to more robust beamforming techniques [42] and enhanced equalization performance
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[43]. Moreover, as location-aware services for handhelds are likely to be in high demand for future

wireless communication systems, the information about the AoAs and the TDs can be used to

design highly-accurate localization techniques [44]-[45]. In this context, in order to cope with dense

multipath environments, the so-called fingerprinting paradigm which recasts source localization into

a pattern recognition problem was envisaged in [46]-[47]. In particular, it was recently shown that

fingerprinting with location signatures that are characterized by the AoAs and TDs of each candidate

location leads to substantial improvements against location signatures that are characterized by the

received signal strength (RSS) [48]. In fact, contrarily to the RSS which varies substantially over a

wavelength distance (due to constructive and destructive multipath interference), the AoAs together

with the associated TDs form a unique fingerprint for each location [47]. Hence, accurate and low-

cost estimation of such multipath parameters can be used along with the fingerprinting paradigm

to develop very efficient localization algorithms. Alternatively, if multiple access points (APs) are

available, they can cooperate to localize a mobile user by using the estimated time difference of

arrivals (TDoA)s and AoAs (see [49] an [50] for more details).

Unlike JADE, the separate (or disjoint) estimation of either time delays or directions of arrivals

(DoA)s has been heavily investigated for decades now. For prior works on DoA-only and TD-only

estimation, see [51], [52] and [53], [54] and references therein, respectively. In comparison with dis-

joint estimation techniques which first estimate the delays and then the corresponding angles, the

joint estimation of these space-time parameters (i.e., JADE) is more accurate in cases where mul-

tiple rays have nearly equal delays or angles [42]. Moreover, contrarily to JADE, the number of

estimated angles in DoA-only estimation schemes must be smaller than the number of antennae.

Thus DoA-only estimators would require large-size antenna arrays in highly dense multipath envi-

ronments.

So far, a number of JADE techniques have been reported in the literature , except the unitary

matrix pencil (UMP)-based approach proposed recently [49], all the existing solutions are geared

toward single-carrier systems. Roughly speaking, they can be broadly categorized into two major

categories: subspace-based and ML-based estimators. Most of subspace-based techniques are built

upon the well-known MUSIC and ESPRIT algorithms [55]-[56]. In practice, subspace-based ap-

proaches are more attractive due to their reduced computational load. However, they are usually

suboptimal and suffer from severe performance degradation (both in terms of resolution and es-

timation accuracy) for low SNR levels and/or closely-spaced paths. ML approaches, however, are
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known to enjoy higher accuracy and enhanced resolution capabilities. Yet, despite their promising

advantages, their computational complexity has been often considered as the major culprit for a

widespread reluctance of designers to their implementation in practice.

In the specific JADE context, to the best of our knowledge, only two ML estimators have been so

far introduced but only for narrowband signals. The very first ML solution was proposed by Wax

et al. in [57] which is iterative in nature and thus will be referred to, hereafter, as the iterative

ML (IML) estimator. The other ML solution introduced later in [58] is also iterative and based

on the space-alternating generalized expectation maximization (SAGE) algorithm. However, like

any iterative approach, the performance of these two ML estimators is closely tied to the initial

knowledge about the unknown parameters, i.e., they will not converge to the global maximum of

the log-likelihood function (LLF) if their initial guesses are not reliable. Besides, for both iterative

ML estimators, a fixed sampling grid is selected to serve as a possible set of all candidate estimates

for the unknown TDs and AoAs. Then, by assuming all true (unknown) parameters to be exactly

on the selected grid, IML and SAGE attempt to maximize the LLF iteratively. Consequently, they

suffer from the inevitable off-grid problem which arises in practical situations where some of the

true TDs and/or AoAs do not lie on the sampling grid. For accurate estimation, it is compulsory to

use a densely-sampled grid since it reduces the gap between the true parameters and their nearest

points on the grid. However, as “there is no free lunch”, the cost of a dense grid sampling is the

excessive increase in computational complexity.

Contribution

The proposed estimator builds upon the global maximization theorem of Pincus [59] and the

importance sampling (IS) concept [60]. In particular, owing to a very accurate approximation of the

concentrated likelihood function (CLF), we transform the original multi-dimensional optimization

problem into multiple two-dimensional optimization ones resulting thereby in tremendous com-

putational savings. Even more, the underlying two-dimensional optimization problems are totally

disjoint and, as such, they can be performed separately in practice. From this perspective, the new

IS-based ML estimator lends itself to a very attractive parallel computing implementation that can

be efficiently executed on nowadays multiprocessor platforms.

The combination of Pincus’ theorem and IS concept has been previously applied to many fundamen-

tal estimation problems. To the best of our knowledge, however, this elegant combination was first
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pioneered by S. Kay and S. Saha in [61] in the context of multiple frequencies estimation. There,

it was shown for the very first time that joint ML estimation of multiple frequencies boils down

to the computation of sample mean estimates from a number of realizations generated according

to a carefully designed importance function (or pseudo-pdf). Pincus’ theorem along with the IS

concept were later on applied by S. Kay et al. to the estimation of chirp signals’ parameters [62],

sources’ DOAs estimation with antenna arrays [52], as well as, joint angle and Doppler estimation

in [63]. They were also successfully applied in the context of joint CFO and channel estimation un-

der: i) single-user OFDMA communications [64], and ii) multiuser multiple-input multiple-output

(MIMO)-OFDM communications with optimal training sequences design [65]. More recently, these

powerful tools were leveraged in the context of TDoA-based source localization [66], non-data-aided

(NDA) timing recovery [67], as well as, time delays acquisition in multipath environments [54].

Computer simulations show the superiority of the proposed IS-based ML estimator over state-of-

the-art ML-type and subspace-based JADE techniques in terms of estimation accuracy, resolution

capabilities, and computational complexity. Real-world channel measurements collected using IEEE

802.11ac standard’s setup parameters in an indoor environment were also used to investigate the

online localization capabilities of the proposed algorithm.

As seen from Fig. 1.4 (a), both UMP and IS ML techniques yield remarkably small localization

errors which are smaller than 10 cm at all times, when used with the covariance-based localization

procedure. Fig. 1.4 (b) depicts the Cumulative distribution function (CDF) when the more practical

covariance-free localization procedure is applied using the TDoA and AoA estimates provided by

each algorithm. There, its is seen that IS-ML still provides a localization error smaller than 10 cm

in 90% of the cases (and never exceed 15 cm) while UMP localization errors are higher than 70 cm

in 10% of the cases.

1.3.4 Other Contributions within this Thesis

Evaluation of Radio Interface Technology (RIT) and Set of RITs (SRITs) Candidates

ITU-R WP 5D for IMT-2020 (5G) within the CEG 1 and ISED 2 Mandates

One of the strongest driving forces for wireless technology evolution today is 5G, also known

as IMT-2020 [1], which promises to encompass several radio interface technologies (RITs) or sets

1. Canadian Evaluation Group
2. Innovation, Science, and Economic Development Canada
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Figure 1.4 – CDF of the position error ez for both IS-ML and UMP: (a) covariance-based localization
procedure (b) covariance-free localization procedure.

thereof (SRITs), including 3GPP and ETSI/DECT among others. These IMT-2020 standard can-

didates, made available very recently for evaluation, are to be assessed for compliance to minimum

requirements [68],[69].

Multiple key features are to be assessed such as packet throughput, cell spectrum efficiency,

packet loss rate, and latency. These features will give valuable insights to identify i) areas where

enhancements can be made, ii) introduce these enhancements and evaluate them, iii) support equip-

ment manufacturers and operators in their standardization effort to integrate these enhancements

if deemed valuable. The comparaison of the selected 5G technologies is performed on a fair basis

using a common simulation platform.

It is from this perspective that the Wireless Lab team, mandated by Innovation, Science and

Economic Development Canada (ISED) and the Canadian Evaluation Group (CEG), has worked on

developing a common simulation platform to evaluate the 3GPP and ETSI/DECT RIT candidates

for 5G. The characteristics chosen for evaluation by simulation include 5th percentile user spectral

efficiency, average spectral efficiency, connection density, reliability, and mobility [68]. The obtained
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results were included in the final report of the CEG contribution to the working party 5D (WP 5D)

meetings.

Contribution

Multiple standard candidates were submitted to WP 5D for evaluation. In Table 1.1, we provide

a summary of the performance criteria evaluated for each submitted technology. To be approved,

each candidate needs to fulfill the minimum requirements of each of the evaluation criteria mentioned

above. The meeting WP 5D #35e reviewed the results of Step 4 (Evaluation of candidate RITs or

Table 1.1 – Technologies covered by the CEG for WP 5D

IMT-2020 SUBMISSION
Proponent 3GPP China South Korea TSDSI ETSI-DECT NuFront
Document Reference RIT [70] SRIT [71] [72] [73] [74] [75] [76]

Status Evaluated Evaluated

Not evaluated
(WP 5D has determined that
the 3GPP evaluation
applies to this candidate)

Not evaluated
(WP 5D has determined that
the 3GPP evaluation
applies to this candidate)

Not evaluated
(After de-activation of
certain features, TSDSI RIT
became sufficiently
similar to 3GPP RIT)

Partial evaluation
(only the DECT
component RIT)

Partial evaluation

Average spectral efficiency X X N/A Missing data
5% spectral efficiency X X N/A Missing data
Mobility X X N/A Missing data
Reliability X N/A X Missing data
Connection density X X Missing data Missing data

SRITs by independent evaluation groups). It was agreed during the meeting that the 3GPP RIT

and SRIT proposals, China, Korea, and TSDSI are considered as qualified RIT/SRITs of Step 6.

Hence, they were forwarded to further consideration in Step 7. In Step 7:

— The RITs and SRITs proposed by 3GPP, China and Korea are grouped into the technology

identified in ITU as “3GPP 5GSRIT" and “3GPP 5GRIT” as developed by 3GPP. Both

technologies passed Step 7.

— The TSDSI RIT also passed Step 7 as “TSDSI RIT”.

— The WG Technology Aspects failed to reach an agreement on how to summarize the Step 4

results for ETSI-DECT and Nufront submissions. In the closing plenary of WP 5D Meeting

#35e (23 June – 9 July), the meeting agreed on option 2 (Fig. 7.2) and provide a one-time

extension on an exception basis for both candidates

1.4 Concluding remarks

In this thesis, we proposed multiple joint estimation techniques to acquire the information of

key channel parameters. Mainly, we made four contributions. First, we proposed an ML estimator
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that builds upon the global maximization theorem of Pincus [59] and the IS concept [60]. In the

second contribution, we developed a new decentralized ML synchronization technique along with a

distributed MIMO-relay beamforming design that tackles the challenging TVC case over multi-node

relaying transmissions. The proposed ML TVC solution builds upon a very useful approximation

of the channel covariance matrix by a two-ray propagation model. In the third contribution, we

develop an iterative EM-based ML estimator of fast time-varying channels over SIMO OFDM-type

radio interfaces. We also introduce an alternative SIMO RDM initialization procedure that can still

apply when the number of paths exceeds the number of available pilot observations. In the fourth

contribution, we covered the evaluation by simulation of 3GPP RIT and SRIT and we are currently

pursuing the same process with re-evaluation of DECT and NuFront. Our work during this project

was included in the CEG final report submitted to the WP 5D 34th meeting. The research during

the PhD program has resulted in three journals and seven conference papers (cf. section 8.4).



Chapitre 2

Résumé long

2.1 Contexte et motivation

Tous les 10 ans, la communication sans fil subit un changement technologique qui apporte plus

de cas d’utilisations et d’opportunités. La 1G a été marquée par l’introduction des télécommunica-

tions analogiques qui ne supportent que la voix. Au cours des années 90, la deuxième génération a

introduit des normes numériques introduisant ainsi de nouveaux services tels que l’itinérance et le

service de messages courts. En 2000, l’union internationale des télécommunications a publié l’Inter-

national Mobile Telecommunications-2000 (IMT-2000) qui est une définition bâtie sur un consensus

mondial de la 3G couvrant des problématiques clés telles que le spectre de fréquences utilisé et les

normes techniques. Cette génération introduit pour la première fois la notion de téléphone intelli-

gent et propose de nouveaux types d’applications tels que la navigation web et l’accès aux courriels

électroniques. À mesure que de nouveaux cas font surface et deviennent de plus en plus gourmands

en données, une nouvelle technologie était nécessaire. La 4G, sous la bannière IMT-Advanced, a

été mise sur la table en 2010 et a apporté des nouveaux concepts tels que le tout IP, les données

multimédias (vidéo et musique) et un débit mobile plus rapide. Au cours de la dernière décennie,

de nombreuses recherches ont été menées pour préparer la prochaine génération de communications

sans fil. Cette génération, avec les premières recommandations destinées à être publiées en 2021 sous

la bannière IMT-2020, promet une connexion beaucoup plus rapide avec plus de fiabilité et aussi une

densité de connexion plus élevée et une latence plus faible. Ces fonctionnalités varient en fonction

de l’application. En effet, la 5G vise à fournir plus que juste des services à haut débit améliorés mais
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Figure 2.1 – Scénarios d’utilisation de l’IMT pour 2020 et au-delà [1].

elle englobe de nouveaux scenarios d’utilisation. Comme le montre la figure 2.1, la 5G repose sur 3

piliers principaux. Le premier étant le haut débit mobile amélioré permettant des connexions plus

fiables et plus rapides par rapport à la technologie “LTE” existante. Le second couvre les communi-

cations massives de type machine qui couvrent des applications telles que les applications Internet

des objets, les maisons et les usines intelligentes. Le troisième est dédié aux communications ultra

fiables à faible latence nécessitant une fiabilité extrême et une latence inférieure à 0,1 ms.

2.2 Motivations

Les propriétés physiques des canaux sans fil peuvent avoir des effets indésirables car les signaux

transmis subissent toujours de multiples réflexions, diffractions, etc. Ces dernières résultent par

exemple de la présence de plusieurs copies du même signal avec des atténuations, des distorsions,

des retards et des déphasages différents au niveau du côté récepteur. Dans un tel scénario, les

interférences entre ces copies peuvent conduire à une combinaison destructrice au niveau du récep-

teur rendant une communication fiable impossible. Par conséquent, il est crucial que le récepteur

connaisse les paramètres caractérisant le canal sans fil via des techniques d’estimation pour pouvoir

détecter le signal transmis. En effet, il a besoin des informations concernant les décalages temporels,

de la fréquence porteuse et de la phase pour assurer une synchronisation complète entre l’émetteur
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et le récepteur. Alors que la direction d’arrivée (DdA) peut être utilisée à des fins de localisation,

les coefficients de canal et la variance du bruit sont utiles pour calculer le RSB qui est utile pour

la modulation adaptative et le codage. Les techniques d’estimation peuvent être catégorisées de

différentes manières selon l’approche, le type de données d’entrée, etc. Par exemple, selon le type

de données d’entrée, les techniques d’estimation peuvent être classées en quatre catégories prin-

cipales: les approches assistées par les données (AD) où les symboles transmis sont supposés être

parfaitement connus au niveau du récepteur. En général, ces techniques fournissent des estimations

très précises, cependant, elles réduisent le débit avec la transmission de symboles connus; ii) les

approches autodidactes où le récepteur n’a pas d’informations a priori sur les données transmises.

Par conséquent, les techniques autodidactes n’entraînent aucune réduction sur le débit, cependant,

elles ont une précision réduite par rapport aux techniques AD ; iii) certaines approches autodi-

dactes disponibles dans la littérature (par exemple, voir [5] - [6]) opèrent occasionnellement ou par

intermittence une étape d’initialisation à des instants d’insertion des pilotes beaucoup moins fré-

quente. Ces techniques, appelées hybrides (c’est-à-dire combinant autodidacte et DA), fonctionnent

très souvent mieux que les approches complètement autodidactes (c’est-à-dire avec une initialisation

aléatoire). En même temps, elles nécessitent un nombre de symboles pilotes négligeable par rapport

aux solutions AD [7] ; iv) l’approche assistée par codage (AC) peut être vue comme une solution

intermédiaire entre les schémas d’estimation autodidacte et AD. En effet, plutôt que de s’appuyer

sur des symboles parfaitement connus ou totalement inconnus, l’estimation CA profite des informa-

tions délivrées par le décodeur à chaque itération de décodage. Comme le montre [8], ce type de

techniques apporte une amélioration significative par rapport aux solutions autodidactes en termes

de précision d’estimation. Cependant, ses performances sont strictement liées au taux de codage.

Bien qu’il soit capable d’atteindre des performances quasi-AD à moyen RSB, ceci n’est possible que

pour des taux de codage faibles conduisant ainsi à une redondance élevée et un débit de niveau

lien moins élevé. Les techniques développées peuvent également être catégorisées selon l’approche

adoptée. En effet, certaines techniques se concentrent sur l’estimation d’un paramètre spécifique

tout en supposant que le reste soit parfaitement connu. Ces techniques offrent une précision élevée

dans le cas idéal, mais peuvent souffrir d’une détérioration des performances dans des scénarios

réels où le reste des paramètres sont obtenus à l’aide d’autres estimateurs. Ceci peut augmenter

la complexité globale vu que des estimateurs supplémentaires sont inclus. Elle rend également la

précision de la solution proposée étroitement liée à la précision des autres techniques. Cependant,

l’estimation conjointe fournit des estimations pour deux ou plusieurs paramètres de canal en même
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temps, offrant ainsi une précision plus élevée et, dans certains cas, une complexité de calcul faible

car moins de techniques d’estimation sont impliquées.

2.3 Contributions de la thèse

À travers cette thèse, nous visons à développer de nouvelles techniques avancées d’estimation

conjointe des paramètres du canal tels que les paramètres de qualité de canal comme les coefficients

du canal et la variance du bruit, les paramètres de synchronisation, y compris les décalages temporels

et fréquentiels, et aussi les paramètres de localisation tels que les délais de propagation et les DdA.

Les techniques développées reposent principalement sur l’approche du maximum de vraisemblance

(MV) qui est réputée pour ses performances élevées. Les principales contributions de cette thèse

sont:

2.3.1 Estimation EM de type ML des canaux sélectifs en fréquence à variation

temporelle rapide pour des transmissions SIMO OFDM

Revue de littérature

Le multiplexage orthogonal par répartition en fréquence (OFDM) a montré son efficacité dans

la 4G. Une variété évolutive de CP-OFDM est déjà incluse dans les nouvelles normes radio de la

5G par le projet de partenariat de 3e génération (PP3G) [9]. La forme d’onde adoptée comprendra

plusieurs espacements de sous-porteuses qui dépendent du type de déploiement et des exigences

de service. De plus, lorsqu’il est couplé à la technologie d’antenne à grande échelle, l’OFDM est

prêt à permettre l’augmentation de 1000 fois de la capacité requise au cours des prochaines années.

Malgré ses caractéristiques attrayantes telles que la robustesse aux canaux sélectifs en fréquence et

la diversité spatiale, les technologies d’interface radio (TIR) de type OFDM sont très sensibles aux

variations du canal dans le domaine temporel puisque ces dernières influencent l’orthogonalité entre

les sous-porteuses introduisant ainsi ce que l’on appelle l’interférence inter-porteuse (IIP). Ainsi,

l’estimation précise des canaux devient une tâche difficile à très haute mobilité [10].

Jusqu’à présent, plusieurs techniques d’estimation du canal ont été rapportées dans la littérature.

Ils peuvent être classés en deux grandes catégories: i) les approches assistées par les données (AD) où
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les symboles transmis sont supposés être parfaitement connus au niveau du récepteur. Ils fournissent

des estimations très précises des canaux à un coût important, cependant, en termes d’«overhead»; ii)

les approches autodidactes où le récepteur n’a pas d’informations a priori sur les données transmises.

Par conséquent, les techniques autodidactes n’entraînent aucun surcoût en termes d’«overhead».

Cependant, elles ont une précision réduite par rapport aux techniques AD. Certaines approches

d’estimation des paramètres autodidactes disponibles dans la littérature (voir [5] - [6]) opèrent

occasionnellement ou par intermittence une étape d’initialisation à des instants d’insertion pilote

beaucoup moins fréquente. Ces techniques, appelées hybrides (c’est-à-dire combinant autodidacte

et DA), fonctionnent très souvent bien mieux que les approches autodidactes (c’est-à-dire avec une

initialisation aléatoire). Alors qu’en même temps, ils nécessitent des «overheads» négligeables par

rapport aux solutions AD [7]. Par conséquent, nous préconiserons une approche hybride dans ce

travail.

Pour les canaux rapides variant dans le temps, la plupart des techniques AD s’appuient sur

un modèle d’expansion de base (MEB) pour estimer les coefficients du canal [11] - [12]. En fait,

les méthodes BEM telles que Karhunen-Loeve MEB ont été conçues avec une erreur quadratique

moyenne (EQM) faible [11]. Ils sont cependant sensibles au décalage statistique des canaux. Le

MEB complexe-exponentiel, proposé aussi dans [11], n’utilise pas les statistiques de canal mais

souffre de grandes erreurs de modélisation. Le polynôme MEB (P-MEB) étudié dans [13] donne

des estimations précises des coefficients du canal, mais uniquement dans des scenarios à Doppler

faible. Dans [2], les variations des gains complexes de chaque trajet ont été approximées par une

fonction polynomiale dans le temps puis estimations par la technique des moindres carrés (MC).

Cette solution offre des performances précises même à un Doppler élevé. Cependant, il nécessite que

le nombre de chemins soit inférieur aux nombres de symboles pilotes insérés dans chaque bloque

OFDM. De plus, il a été dérivé dans le cas du système à entrée unique et sortie unique (SISO) et

son extension aux systèmes à entrée multiple sortie unique (SIMO) n’a jamais été abordée.

Dans la catégorie autodidacte, l’estimation du canal variant dans le temps a été également

étudiée dans [14]. Les auteurs ont utilisé le polynôme discret de Legendre MEB avec la technique de

MEGAE -maximum a posteriori (MEG-MAP) pour estimer les coefficients du canal dans le domaine

temporel. Dans [15], nous avons utilisé espérance maximisation (EM) pour estimer les gains du canal

sur une configuration SISO. Cependant, les deux techniques ont été développées aux systèmes SISO

multi-porteuses et, par conséquent, n’exploitent pas le gain de diversité qui peut être atteint par

les systèmes multi-antennes. De plus, ils exigent aussi que le nombre de pilotes soit supérieur au
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nombre de trajets du canal. Dans [16], le problème d’estimation instantanée du RSB a été étudié

en utilisant l’approche EM, mais toujours sur des configurations SISO uniquement. Dans [17] et

[18], les techniques EM et LS ont de nouveau été utilisées respectivement pour estimer le RSB sur

des systèmes SIMO à une seule porteuse. Dans [19], [20], l’estimation itérative du canal avec filtre

de Kalman et détection QR a d’abord été étudiée sous les canaux multi-porteuses SISO et ensuite

généralisée aux systèmes OFDM à entrées multiples et sorties multiples (MIMO). Ses performances

ont été encore améliorées dans [21] en exploitant les statistiques des erreurs d’estimation de canal

dans un processus d’estimation itératif. Cependant, les techniques basées sur les filtres de Kalman

nécessitent une parfaite connaissance du Doppler. De plus, un nombre élevé de pilotes par bloc

OFDM est nécessaire pour obtenir des estimations précises affectant ainsi le débit global du système.

Contribution

Dans cette contribution, nous développons un estimateur MV itératif basé sur EM des canaux

rapides variant dans le temps sur des interfaces radio de type SIMO OFDM. En s’appuyant sur

l’approximation polynomiale des gains du canal multi-trajet en [2] et en recourant à la puissante

technique EM [22] au lieu de l’approche LS, notre solution offre une acquisition plus précise des

gains de canal variant dans le temps. Pour éviter la convergence locale inhérente aux algorithmes

itératifs, nous initialisons l’algorithme EM avec une version SIMO DAMV qui est développée dans ce

travail dans ce seul but. Nous montrons que ce dernier se résume à appliquer SISO DA LS de [2] sur

chaque antenne réceptrice. En outre, pour revenir à notre contribution clé ici, notre nouvelle solution

SIMO autodidacte MV-EM donne comme sous-produit des estimations des symboles inconnus. Ces

derniers sont utilisés pour concevoir un schéma d’annulation IIP dédié (AIIP) qui fonctionne côte

à côte avec l’estimateur basé sur EM selon le principe turbo (par exemple, voir [8]). De plus,

nous introduisons une autre procédure d’initialisation, SIMO DA MV régularisée (DMR) qui peut

s’appliquer lorsque le nombre de chemins dépasse le nombre de symboles pilotes disponibles. Cette

caractéristique rend la solution proposée robuste à toute variation rapide de l’environnement de

propagation où le nombre de trajets peut changer en raison du mouvement des utilisateurs mobiles.

Ainsi, nous montrons la possibilité de réduire le nombre de pilotes dans chaque bloc OFDM en

dessous du nombre de chemins de canal sans affecter de manière significative les performances de

la solution globale, ce qui nous permet de réduire l’«overhead» et par la suite d’augmenter le débit

de manière assez significative. Les résultats des simulations montrent que l’estimateur hybride ML-
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Hybrid SIMO ML-EM / Np = 4, RI = 20

Hybrid SIMO ML-EM / Np = 4, RI = 5

Hybrid SIMO ML-EM / Np = 4, RI = 1

SIMO DA ML / Np = 8

SISO DA LS [1] / Np = 8

Figure 2.2 – Link-level per-carrier throughput vs. the per-carrier SNR of the advocated new hybrid
ML-EM (with Np = 4) at multiple RI values, the SISO DA LS in [2] (i.e., Nr= 1), and its proposed
SIMO DA ML extension (with Np = 8) with Nc = 3, Nr = 2, and λ = 0.5 at: (a) v = 60 km/h, (b) v = 120
km/h, and (c) v = 240 km/h.

EM proposé (c’est-à-dire combine toutes les nouvelles versions autodidacte MV-EM et DA MV ou

DMR) converge en quelques itérations, fournissant ainsi des estimations très précises de tous les

gains de canaux à trajets multiples. Plus important encore, cette précision d’estimation accrue se

traduit par des gains très significatifs du taux d’erreur binaire (TEB). Ceci permet d’avoir un gain

en débit par porteuse au niveau lien par rapport à la meilleure solution de référence disponible à ce

jour pour le problème en question. La technique en question est la SISO DA MC, développée [2],

avec sa nouvelle généralisation ici aux systèmes SIMO. Nous voyons a travers les Figures 2.2 (a) et

(b) que le débit par porteuse augmente avec le MV-EM hybride pour des Doppler faible et moyen

quand l’intervalle de rafraîchissement RI passe de 1 à 5. Il s’ensuit que les sous-porteuses pilotes ne

sont plus nécessaires au niveau des blocs OFDM actuels et peuvent être utilisées pour transporter

des données à la place. Le taux d’insertion du pilote peut être considérablement ralenti, d’au moins

jusqu’à 20 fois (le rapport pilote / données ou le rapport d’« overhead » peut devenir aussi bas que

0,16 %), tout en signalant des gains de débit notables au lieu de pertes, d’autant plus à des niveaux

élevés -porteur RSB. Alors que SISO AD MC de [2] et son extension SIMO AD MV nécessitent

toujours le même nombre de pilotes pour fournir des estimations de canal fiables. Par conséquent,

aucun gain de débit supplémentaire ne peut être obtenu.
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2.3.2 Synchronisation du temps et de la fréquence au sens maximum de vrai-

semblance pour la formation de faisceaux dans un système de relais MIMO

distribués sur des canaux à évanouissement plat variant dans le temps

Revue de littérature

La diversité spatiale est un concept bien connu permettant de lutter contre l’évanouissement des

canaux et d’augmenter le débit global des systèmes de communication. Un tel avantage peut être

obtenu grâce à de multiples solutions. Les réseaux coopératifs fournissent une solution distribuée

qui évite certaines des difficultés liées aux systèmes entrées multiples et sorties multiples (MIMO)

traditionnels [23], [24]. En effet, dans de nombreuses situations, certains équipements utilisateurs

ne sont pas en mesure d’intégrer plusieurs capteurs d’antenne en raison de limitations en taille et

puissance. Dance ce cas, les utilisateurs peuvent coopérer les uns avec les autres pour former un

réseau d’antennes virtuel. Cependant, certains défis doivent être abordés pour garantir une coopé-

ration constructive entre les relais. Un problème majeur dans ces systèmes de relais coopératifs

est la synchronisation multi-nœuds, à la fois en temps et en fréquence. Ce dernier est crucial pour

assurer une efficacité en énergie, en spectre et en surface lors de la mise en œuvre de la formation

de faisceaux à relais MIMO distribué dans le cas une liaison source-destination donnée ayant des

limites de couverture.

Il existe deux approches pour atténuer l’effet des distorsions en temps, fréquence, phase et am-

plitude d’un canal variant dans le temps (CVT), on nomme: les procédures de compensation en

boucle fermée et en boucle ouverte. Dans l’approche en boucle fermée, la destination effectue l’es-

timation de tous les paramètres de synchronisation avec les coefficients de canal. Ces estimations

sont ensuite transmises à un bloc d’égalisation pour lutter contre l’asynchronisme en temps et en

fréquence comme proposé dans [25], [26]. Les approches en boucle fermée présentent moins d’«

overhead » car l’interaction entre les nœuds de relais est maintenue au minimum tandis que la des-

tination coordonne le processus de synchronisation. Cependant, il peut être difficile pour les réseaux

sans fil sans infrastructure adéquate de gérer des algorithmes d’estimation multidimensionnel très

complexes. Dans les approches en boucle ouverte, cependant, le signal source à relayer est décalé

dans les domaines temporel et fréquentiel avant transmission, comme proposé dans [27]. Ainsi, les

répliques du même signal transmis, provenant de différents relais, arrivent au même moment et se

combinent de manière constructive au niveau du récepteur. Dans ce scénario, des algorithmes d’es-
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timation moins complexes peuvent être envisagés dans les nœuds avec une signalisation minimale

de la destination.

En ce qui concerne l’estimation des paramètres de synchronisation, plusieurs techniques existent

dans la littérature ouverte [28]. D’une part, les travaux de synchronisation [29] - [30] enquêtent sur

le décalage temporel (DT) en négligeant l’effet du décalage fréquentiel (DF). D’un autre côté, les

solutions introduites dans [31] - [32] traitent l’estimation conjointe de plusieurs DFs en négligeant

l’effet des DTs. D’autres techniques effectuent une estimation conjointe de tous les paramètres à la

destination dans les réseaux coopératifs en boucle fermée [25], [33], [34]. Bien qu’ils puissent bien

fonctionner dans la pratique, ils souffrent d’une complexité de calcul très élevée car ils nécessitent

la résolution un problème multidimensionnel qui augmente avec le nombre de relais. De plus, la

tâche de synchronisation peut devenir très coûteuse en termes d’«overhead». En effet, après avoir

estimé les DTs et les DFs, la destination doit les renvoyer aux relais. Cette dernière résulte en un

«overhead» supplémentaire sans oublier des erreurs de quantification puisque les valeurs estimations

sont quantifiées avant leur phase de rétroaction.

Des solutions alternatives peuvent être envisagées en s’appuyant sur des schémas de formation

de faisceaux collaboratifs distribués (FFCD) [35]. Beaucoup de ces techniques se concentrent sur

la conception optimale des poids du formateur de faisceaux tout en supposant une synchronisation

parfaite qui les rend extrêmement vulnérables en pratique aux décalages de phase, de fréquence et

de temps. D’autres techniques se concentrent en revanche sur la lutte contre l’effet de désalignement

à destination qui est provoqué par de tels décalages. Dans [36], les auteurs ont proposé une solution

de compensation de phase basée sur une approche itérative de retour de bits. Dans [37], une solu-

tion de synchronisation de fréquence dans les réseaux de capteurs sans fil utilisant une méthode de

synchronisation aller-retour a été proposée. Dans [38], une méthode de synchronisation distribuée

a été proposée pour les réseaux sans fil denses en utilisant un estimateur conjoint de DTs et DFs

qui est basé sur la corrélation. Pourtant, toutes les techniques mentionnées ci-dessus reposent sur

l’hypothèse simplificatrice d’un canal statique (CS). En revanche, une large gamme d’applications

nécessite que les terminaux agissent comme des relais et, dans le même temps, les systèmes de

communication de la 5G devraient prendre en charge des communications fiables à des vitesses très

élevées atteignant 500 km / h (par exemple, en train à grande vitesse) [39]. Pour de tels systèmes,

l’hypothèse conventionnelle du CS conduit à de graves pertes de performances. Récemment, d’autres

travaux sur FFCD [40], [41] avaient abordé le problème difficile de la synchronisation multi-nœuds

sous CVT en utilisant des versions améliorées de la technique de rétroaction à un bit. Cependant,
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ils n’ont abordé que la compensation de phase en supposant une estimation parfaite du DTs et du

DFs.

Contribution

Motivés par ces faits, nous développons dans ce chapitre une nouvelle technique de synchro-

nisation décentralisée au sens MV avec une conception de formation de faisceau à relais MIMO

distribuée qui aborde le cas difficile du CVT pour des transmissions de relais multi-nœuds. La

solution MV CVT proposée repose sur une approximation très utile de la matrice de covariance de

canal par un modèle de propagation à deux raies. Elle fournit des estimations précises de type MV

des DTs et des DFs à un coût de calcul réduit car elle ne nécessite aucune inversion de matrice. Nous

développons également une version itérative, appelée MV CVT-ED (avec estimation du Doppler),

qui tient en compte de la nécessité pratique d’estimer à chaque relai l’étalement Doppler sur lequel

repose la version initiale appelée ci-après MV CVT-DP (Doppler parfait). Les résultats des simu-

lations montrent une amélioration significative de la précision de la synchronisation par rapport

aux précédentes techniques de synchronisation distribuée à plusieurs relais en supposant des CSs.

Ceci se traduit par des gains notables en termes de débit au niveau lien (c’est-à-dire en tenant en

compte de l’«overhead»), plus encore à Doppler plus élevé ou avec des un nombre de nœuds plus

important. Dans la figure 2.3, nous rapportons des gains de débit notables de MV CVT par rapport

aux techniques MEGAE et MV CS à des niveaux RSB moyens et élevés lors de l’augmentation

du nombre de relais de 1 à 8 . À des valeurs Doppler plus élevées (c’est-à-dire, FDk = 200 Hz ou

FDk = 300 Hz), les gains de débit de MV CVT par rapport à MEGAE et MV CT deviennent

encore plus significatifs, encore plus lorsque le nombre de relais augmente. Ces observations clés

sont une solide confirmation des avantages de performance des schémas de formation de faisceaux

et de synchronisation multi-nœuds à relais MIMO distribués proposés.
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Figure 2.3 – Débit du niveau lien vs. RSB pour MV CVT-DP à un taux de rafraîchissement P = 100
et différentes fréquences Doppler pour: (a) K = 1, (b) K = 2, (c) K = 4, et (d) K = 8.

2.3.3 Estimation au sens maximum de vraisemblance conjointe des angles d’ar-

rivées et des délais de propagation pour des transmissions multi-trajets et

multi-porteuses avec des applications pour la localisation à l’intérieur via

la radio IEEE 802.11ac

Revue de littérature

Dans les modèles de propagation à trajets multiples, un signal source est reçu par un réseau

d’antennes via un certain nombre de trajets, chacun étant décrit par un angle d’arrivée (AdA),

un retard temporel (RT) et un gain de trajet. Le problème d’estimation conjoint des AdA et des

RT (ECAR) consiste alors à estimer conjointement tous les AoAs et leurs RTs correspondants

à partir d’un nombre fini d’échantillons reçus. Le problème ECAR se pose dans de nombreuses

situations pratiques allant des applications militaires (par exemple, radar et sonar) aux systèmes de

communication sans fil à large bande. En général, la capacité de caractériser chaque trajet avec son
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angle et son délai fournit au système des capacités sensorielles plus fortes menant, par exemple, à des

techniques de formation de faisceau plus robustes [42] et à des performances d’égalisation améliorées

[43]. De plus, comme les services de géolocalisation seront probablement très demandés pour les

futurs systèmes de communication sans fil, les informations sur les AdAs et les RTs peuvent être

utilisées pour concevoir des techniques de localisation hautement précises [44]; [45]. Dans ce contexte,

afin de faire face à des environnements à trajets multiples denses, le paradigme d’ empreinte digitale

qui refond la localisation des sources en un problème de reconnaissance de formes a été envisagé dans

[46] - [47]. En particulier, il a été récemment montré que l’empreinte digitale avec des signatures de

localisation qui sont caractérisées par les AdAs et les RTs pour chaque emplacement candidat conduit

à des améliorations par rapport aux signatures de localisation qui sont caractérisées par la puissance

du signal reçu (PSR) [48]. En fait, contrairement au PSR qui varie sensiblement sur une distance

de longueur d’onde (en raison d’interférences de trajets multiples constructives et destructives), les

AdAs avec les RTs associés forment une empreinte digitale unique pour chaque emplacement [47].

Par conséquent, une estimation précise et peu coûteuse de ces paramètres de trajets multiples peut

être utilisée avec le paradigme d’empreinte digitale pour développer des algorithmes de localisation

très efficaces. Alternativement, si plusieurs points d’accès (PA) sont disponibles, ils peuvent coopérer

pour localiser un utilisateur mobile en utilisant le décalage horaire d’arrivée (DHA) et AdAs (voir

[49] an [50] pour plus de détails) .

Contrairement à ECRA, l’estimation séparée (ou disjointe) des retards ou des AdAs fait l’objet

de nombreuses recherches depuis des décennies. Pour des travaux antérieurs sur l’estimation ADAs

uniquement et RTs uniquement, voir respectivement [51], [52] et [53], [54]. En comparaison avec les

techniques d’estimation disjointes qui estiment d’abord les retards puis les angles correspondants,

l’estimation conjointe de ces paramètres spatio-temporels (c’est-à-dire ECRA) est plus précise dans

les cas où plusieurs trajets ont des RTs ou AdAs presque égaux [42] . De plus, contrairement à

ECRA, le nombre d’angles estimés dans les schémas d’estimation DOA uniquement doit être in-

férieur au nombre d’antennes. Ainsi, les estimateurs AdAs uniquement nécessiteraient des réseaux

d’antennes de grande taille dans des environnements à trajets multiples très denses.

Jusqu’à présent, plusieurs techniques ECRA ont été rapportées dans la littérature, à l’exception

de l’approche basée sur le «matrix pencil» unitaire (MPU) proposée récemment dans [49], toutes

les solutions existantes sont orientées vers des systèmes à porteuse unique. Principalement, elles

peuvent être classées en deux grandes catégories: les estimateurs sous-espace et MV. La plupart des
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techniques sous-espaces sont construites sur les algorithmes MUSIC et ESPRIT [55] - [56]. En pra-

tique, les approches sous-espace sont plus attrayantes en raison de leur complexité de calcul réduite.

Cependant, ils sont généralement sous-optimaux et souffrent d’une dégradation des performances (à

la fois en termes de résolution et de précision d’estimation) pour des niveaux de RSB faibles et/ou

des trajets très rapprochés. Les approches MV, cependant, sont connus par leur haute précision et

une capacité de résolution améliorée. Pourtant, malgré leurs avantages prometteurs, leur complexité

de calcul a souvent été considérée comme un principal inconvénient.

Dans le contexte JADE spécifique, à notre connaissance, seuls deux estimateurs MV ont été in-

troduits jusqu’à présent, mais uniquement pour les signaux à bande étroite. La toute première

solution MV a été proposée par Wax et al. dans [57] qui est de nature itérative et sera donc appelée,

ci-après, l’estimateur itératif MV (IMV). L’autre solution MV introduite plus tard dans [58] est

également itérative et basée sur l’algorithme de maximisation d’espérance généralisée en alternance

d’espace (MEGAE). Cependant, comme toute approche itérative, la performance de ces deux es-

timateurs MV est étroitement liée à la connaissance initiale des paramètres inconnus, c’est-à-dire

qu’ils ne convergeront pas vers le maximum global de la fonction log-vraisemblance (FLV) si leurs

estimations initiales ne sont pas fiables. En outre, pour les deux estimateurs MV itératifs, une grille

d’échantillonnage fixe est sélectionnée pour servir l’ensemble de toutes les estimations candidates

pour les RTs et les AdAs inconnus. Ensuite, en supposant que tous les vrais paramètres (inconnus)

sont exactement sur la grille sélectionnée, IMV et MEGAE tentent de maximiser la FLV de ma-

nière itérative. Par conséquent, ils souffrent du problème inévitable qui se pose dans des situations

pratiques où certains des vrais RTs et/ou AdAs ne se trouvent pas sur la grille d’échantillonnage.

Ainsi, pour une estimation précise, il est obligatoire d’utiliser une grille à échantillonnage dense pour

réduire l’écart entre les vrais paramètres et leurs points les plus proches sur la grille. Cependant, le

coût d’un échantillonnage en grille dense est l’augmentation excessive de la complexité de calcul.

Contribution

L’estimateur proposé s’appuie sur le théorème de maximisation globale de Pincus [59] et le

concept d’échantillonnage préférentiel (EP) [60]. En particulier, grâce à une approximation très

précise de la fonction de vraisemblance concentrée (FVC), nous transformons le problème d’opti-

misation multidimensionnel original en plusieurs problèmes d’optimisation bidimensionnels, ce qui

se traduit par une réduction de la complexité de calcul. De plus, les problèmes d’optimisation bidi-



30

mensionnelle sont totalement disjoints et peuvent être exécutés séparément dans la pratique. Dans

cette perspective, le nouvel estimateur MV basé sur les EP peut compter sur une implémentation

en parallèle qui peut être exécutée efficacement sur les plates-formes multiprocesseurs actuelles.

La combinaison du théorème de Pincus et du concept EP a déjà été appliquée à de nombreux

problèmes d’estimation fondamentaux. A notre connaissance, cependant, cette combinaison a été

appliquée pour la première fois par S. Kay et S. Saha dans [61] dans le contexte de l’estimation

de fréquences multiples. Là, il a été montré pour la toute première fois que l’estimation conjointe

MV de fréquences multiples se résume au calcul d’estimations moyennes d’échantillons à partir d’un

certain nombre de réalisations générées selon une fonction d’importance soigneusement conçue. Le

théorème de Pincus et le concept EP ont été appliqués plus tard par S. Kay et al. pour l’estimation

des paramètres des signaux de type chirp [62], estimation AdAs des sources avec des réseaux d’an-

tennes [52], ainsi que l’angle d’articulation et du Doppler dans [63]. Cette approche a également

été appliqué avec succès dans le contexte de l’estimation conjointe du canal et du décalage fréquen-

tiel sous: i) communications OFDMA mono-utilisateur [64], et ii) communications MIMO-OFDM

multi-utilisateurs [65]. Plus récemment, ces outils puissants ont été mis à profit dans le contexte de

la localisation de source basée sur DHA [66], de l’estimation de RT autodidacte dans[67], ainsi que

l’acquisition des RTs dans les environnements à trajets multiples [54]. Les simulations numériques

montrent la supériorité de l’estimateur MV basé sur l’EP proposé par rapport aux techniques ECRA

de type MV et sous-espace en termes de précision d’estimation, de capacité de résolution et de com-

plexité de calcul. Des mesures de canal réelles collectées à l’aide des paramètres de configuration de

la norme IEEE 802.11ac dans un environnement intérieur ont également été utilisées pour étudier

les capacités de localisation en ligne de l’algorithme proposé.

Comme le montre la Figure 2.4 (a), les techniques UMP et EP MV produisent des erreurs de lo-

calisation remarquablement petites, inférieures à 10 cm à tout moment, lorsqu’elles sont utilisées

avec la procédure de localisation basée sur la covariance. La figure 2.4 (b) représente la fonction de

distribution cumulative (FDC) lorsqu’une procédure de localisation sans covariance (plus pratique)

est appliquée en utilisant les estimations DHA et AdAs fournies par chaque algorithme. Là, on voit

qu’EP MV fournit toujours une erreur de localisation inférieure à 10 cm dans 90 % des cas (et ne

dépasse jamais 15 cm) tandis que les erreurs de localisation UMP sont supérieures à 70 cm dans 10

% des cas.
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Figure 2.4 – FDC de l’erreur de position ez pour EP MV et UMP: (a) procédure de localisation basée
sur la covariance (b) procédure de localisation sans covariance.

2.3.4 Autres contributions dans cette thèse

Évaluation des technologies d’interface radio (TIR)s et des ensembles de TIR (ETIR)s

pour IMT-2020 (5G) dans le cadre du mandat du CEG

La 5G, également connue sous le nom d’IMT-2020 [1], est l’une des forces motrices les plus

puissantes de l’évolution de la technologie sans fil, qui promet d’englober plusieurs TIRs, y compris

3GPP et ETSI-DECT. Ces candidats IMT-2020, mis à disposition très récemment pour évaluation,

doivent être évalués pour assurer leur conformité aux exigences minimales [68], [69].

Plusieurs caractéristiques clés doivent être évaluées telles que le débit des paquets, l’efficacité

du spectre cellulaire, le taux de perte de paquets et la latence. Ces fonctionnalités donneront des

informations précieuses pour identifier i) les domaines où des améliorations peuvent être apportées,

ii) introduire ces améliorations et les évaluer, iii) soutenir les fabricants et les opérateurs d’équipe-

ment dans leurs efforts de normalisation pour intégrer ces améliorations si elles sont jugées utiles.
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La comparaison des technologies 5G doit être déployée sur une base équitable, en utilisant une

plateforme de simulation commune.

C’est dans cette perspective que l’équipe du Wireless Lab, mandatée par Innovation, Sciences

et Développement économique Canada (ISDE) et le groupe canadien d’évaluation, a travaillé sur

développement d’une plateforme de simulation commune pour évaluer les candidats 3GPP et l’ETSI-

DECT RIT. Les caractéristiques choisies pour l’évaluation par simulation comprennent le 5e centile

de l’efficacité spectrale de l’utilisateur, l’efficacité spectrale moyenne, la densité de connexion, la

fiabilité et la mobilité [68]. Les résultats obtenus ont été inclus dans le rapport final de la contribution

du CEG aux réunions du groupe de travail 5D (WP 5D).

Contribution

Plusieurs candidats ont été soumis au WP 5D pour évaluation. Dans le tableau 2.1, nous four-

nissons un résumé des critères de performance évalués pour chaque technologie soumise. Pour être

approuvé, chaque candidat doit satisfaire aux exigences minimales de chacun des critères d’évalua-

tion mentionnés ci-dessus. La réunion WP 5D # 35e a examiné les résultats de l’étape 4 (évaluation

Table 2.1 – Technologies couvertes par le CEG pour WP 5D

Soumission IMT-2020
Candidat 3GPP Chine Corée du Sud TSDSI ETSI-DECT NuFront
Document Référence RIT [70] SRIT [71] [72] [73] [74] [75] [76]

Status Evalué Evalué

Non évalué
(WP 5D a déterminé que
l’évaluation 3GPP
s’applique à ce candidat)

Non évalué
(WP 5D a déterminé que
l’évaluation 3GPP
s’applique à ce candidat)

Not evaluated
(After de-activation of
certain features, TSDSI RIT
became sufficiently
similar to 3GPP RIT)

Évaluation partielle
(uniquement la composante
DECT TIR

Évaluation partielle

Efficacité spectrale moyenne X X N/A Données manquantes
5% d’efficacité spectrale X X N/A Données manquantes
Mobilité X X N/A Données manquantes
Fiabilité X N/A X Données manquantes
Densité de connexion X X Données manquantes Données manquantes

des candidats TIRs ou ETIRs par des groupes d’évaluation indépendants). Il a été convenu au cours

de la réunion que les propositions de 3GPP TIR et ETIR, Chine, Corée et TSDSI passent l’étape

6. Par conséquent, elles ont été transmises pour un examen plus approfondi à l’étape 7. À l’étape 7:

— Les TIRs et ETIRs proposés par 3GPP, la Chine et la Corée sont regroupés dans la même

technologie identifiée à l’UIT comme “3GPP 5GETIR” et “3GPP 5GTIR” et telle que déve-

loppée par 3GPP. Les deux technologies ont passé l’étape 7.

— TSDSI TIR a également passé l’étape 7 en tant que “TSDSI RIT”.

— le «WG Technology Aspects» n’a pas réussi à parvenir à un accord sur la manière de résumer

les résultats de l’étape 4 pour les soumissions ETSI-DECT et Nufront. Lors de la séance
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plénière de clôture de la réunion WP 5D # 35e (23 juin - 9 juillet), la réunion a approuvé

l’option 2 et a accordé une prolongation unique à titre exceptionnel pour les deux candidats.

2.4 Conclusion

Dans cette thèse, nous avons proposé plusieurs techniques d’estimation conjointe pour acquérir

les informations sur des paramètres clés du canal sans-fil. Principalement, nous avons fait quatre

contributions. Tout d’abord, nous avons proposé un estimateur MV qui s’appuie sur le théorème

de maximisation globale de Pincus [59] et le concept EP [60]. Dans la deuxième contribution, nous

avons développé une nouvelle technique de synchronisation MV décentralisée avec une conception de

formation de faisceaux MIMO-relais distribuée qui s’adapte au cas difficile du CVT sur des transmis-

sions de relais multi-nœuds. La solution ML CVT proposée repose sur une approximation très utile

de la matrice de covariance de canal par un modèle de propagation à deux raies. Dans la troisième

contribution, nous développons un estimateur MV itératif basé sur l’EM de canaux rapides variant

dans le temps sur des interfaces radio de type SIMO OFDM. Nous avons également introduit une

procédure alternative d’initialisation SIMO DMR qui peut encore s’appliquer lorsque le nombre de

chemins dépasse le nombre d’observations pilotes disponibles. Dans la quatrième contribution, nous

avons couvert l’évaluation par simulation de TIR et ETIR 3GPP. Nous poursuivons actuellement le

même processus avec la réévaluation de DECT et NuFront. Nos travaux au cours de ce projet ont

été inclus dans le rapport final du CEG soumis à la 34e réunion du WP 5D. La recherche au cours

du programme de doctorat a abouti à trois revues et sept articles de conférence (cf. section 7.4).
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Thesis Overview

Every 10 years, wireless communications go through a technological shift that brings more use

cases and opportunities. The 1G was marked by the introduction of analog telecommunications that

support voice only. During the 90s, the second generation introduced digital standards allowing new

services such as roaming and short message service (SMS). In the year 2000, the ITU issued the

IMT-2000 which is a globally coordinated definition of 3G covering key issues such as frequency

spectrum use and technical standards. This generation introduced the notion of smartphones for

the first time and proposed new sorts of applications such as web browsing and email access. As

new cases surface and become more data hungry, there was a need for new technologies. The 4G,

under the banner of IMT-Advanced, was put on the table in 2010 and brought new concepts such as

“all IP”, multimedia data (video and music) and faster mobile broadband. In the past decade, a lot

of research efforts were carried out to prepare for the next generation of wireless communications.

The new generation, with the first recommendations aimed to be released in 2021 under the banner

of IMT-2020, is promising much faster connection, more reliability and higher connection density

along with a lower latency. These features vary depending on the application. Indeed, 5G is aiming

to provide more than enhanced broadband services and encompass new ones. 5G relies on three

main pillars. The first one being an enhanced mobile broadband (eMMB) allowing a more reliable

and faster connections when compared to the existing LTE technology.
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3.1 Background and preliminaries

3.1.1 Adopted algorithms and mathematical tools

Within this thesis, we used multiple algorithmic approaches and mathematical tool to achieve

high performance while keep a practical computational Complexity.

Maximum Likelihood Estimation

Maximum likelihood (ML) estimates are obtained by maximizing the likelihood function (LF).

The latter measures how well the statistical model is fitting the observations for a specific value of

the unknown parameter. It is one of the most widely used approaches to obtain practical estimates.

The ML estimator (MLE) is known to be asymptotically efficient. In other words, it can reach the

Cramer Rao low bound (CRLB) (3.4) for a large number of data samples [77]. In general, to obtain

the ML estimates of a vector parameter δ, we need to maximize LF, p(y; δ), over the allowable

range of δ. To obtain the MLE estimate, the straightforward approach is to perform a grid search

over all possible values of . However, a grid search approach has certain drawbacks. For example,

there is the inevitable off-grid problem which arises in practical situations where δ is not on the

sampling grid. Moreover, grid search can be computationally infeasible especially when δ is multi-

dimensional. In such cases, we can use iterative maximization solutions such as Newton Raphson or

the expectation-maximization (EM). Other non-iterative optimization solution can be envisioned

based on Pincus theorem and Monte Carlo method.

Expectation-Maximization

The EM algorithm is an iterative optimization technique that can be used to find maximum

of the likelihood function when the model depends on unobserved variables. At each iteration,

the algorithm alternates between two steps. The first step is an expectation (E) step where the

expectation of the log-likelihood is evaluated using the ML EM estimate of the previous iteration.

In the second step, the MLE are obtained by maximizing the expected log-likelihood found on the E

step and will serve as input for the next iteration. The Algorithm keeps iterating until it converges or

reaches the maximum number of iterations. As each EM iteration requires the MLE of the previous
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step, hence an initialization technique is required to trigger the EM algorithm, and which can have

an impact on the overall performance. Indeed, if the initialization technique provides poor initial

estimates, the EM algorithm can converge to local maximum instead leading to poor performances.

Pincus Theorem

The Pincus’ theorem can be used to finding the global maximum of any objective function. The

latter, in its most general form, states [59]:

Theorem: Let S be the closure of a bounded domain in an n−dimensional Euclidean space Rn

and denote the elements in S as x = [x1, x2, . . . , xn]T . Let F (x) be a continuous function on S that

attains its global maximum on S at a point z = [z1, z2, . . . , zn]T ∈ S. Then, zi (i = 1, . . . n) is given

by:

zi = lim
ρ→+∞

∫
· · ·
∫
xie

ρF (x)dx1 . . . dxn∫
· · ·
∫
eρF (x)dx1 . . . dxn

. (3.1)

Importance Sampling

In some cases, we aim to evaluate E {X} where the pdf exhibits approximately null values outside

a certain region. Random sampling from the distribution of X could fail to have even one point inside

the region of interest. To obtain some samples from that region, we can perform sampling from a

distribution that overweights the important region, hence the name of the technique: importance

sampling. Having oversampled the important region, we have to adjust the estimate to account for

the fact of using different distribution. Assume that we aim to compute the statistical expectation,

x̂ = E {X}. If we are able to generate R realizations, {x(r)}Rr=1 using the pdf, f(x), it will be very

accurate to approximate the expectation by its sample mean estimate as follows:

x̂ = 1
R

R∑
r=1

x(r). (3.2)

Clearly, as the number of realizations R increases, the variance of the sample mean estimate above

decreases. If f(x) is extremely non-linear, it cannot be practically used to generate the required

realizations. To sidestep this problem, we can resort to the importance sampling concept. In this

case vectors X can be alternatively regarded as distributed according to g(x) and the statistical
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expectation in (3.3) is equivalently interpreted as an expected value of the transformed random

variable [62]:

x̂ = 1
R

R∑
r=1

f(x(r))
g(x(r))

x(r). (3.3)

3.1.2 Channel parameter estimation

To ensure a reliable communication, the transceiver must gain knowledge about key channel

parameters. The latter can be categorized into three categories:

— Localization parameters such as the propagation delay and DoA are used to estimate the

MT position.

— Synchronization parameters such as the timing offset and frequency offset that stems from

the hardware impairments of local oscillators.

— Channel quality parameters such as the SNR and Ricean K-factor.

Multiple approaches to predict these parameters are available and categorized into four categories:

— Data aided (DA) techniques: These solutions rely on pilot symbols. They provide higher

accuracy at a significant cost, however, in terms of overhead.

— Non data aided (NDA): In this case, the receiver does not have a priori information about

the transmitted data. Therefore, NDA techniques do not incur any overhead at the cost,

however, of reduced accuracy.

— Hybrid approach (i.e., combine NDA and DA): These techniques occasionally or intermit-

tently operate an initialization step at much less frequent pilot insertion. Very often they

perform much better than full NDA approaches (i.e., with random initialization).

— Code aided (CA): The CA estimation takes advantage of the soft information delivered by

the decoder at each decoding iteration. Therefore, CA techniques provide lower overhead,

however, its performance is depended on multiple factors such as the coding scheme and the

coding rate.

3.1.3 Evaluation methods

To assess the performance of new estimation techniques, we can use different evaluation ap-

proaches such as:
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Component-level simulation

In the component-level simulations, the evaluation focus mainly on evaluating the accuracy of an

estimation technique. Metrics such as the mean square error (MSE), root mean sqaure error (RMSE)

are usually used to assess accuracy performances against other techniques from the literature and/or

the Cramer Rao low bound (CRLB). The latter is defined as:

CRLB(δ) = I−1(δ), (3.4)

where δ is the vector of channel parameters to estimate. I(δ) refers to the Fisher information matrix

(FIM) whose entries are expressed by:

[I(δ)]i,l = −E
{
∂2L(y; δ)
∂δi∂δl

}
(3.5)

where L(y; δ) = log(p(y; δ)) and p(y; δ) is pdf of the received vector y and parametrized by δ. At

the component-level, the computational complexity of the estimation technique can be also assessed

in terms of the total number of addition and multiplication operations.

Link-level simulation

At the link-level simulation, the estimation technique is integrated into a transceiver to assess

its performances in terms of bit error rate (BER), symbol error rate (SER), frame error rate (FER),

and link-level throughput. Usually, the link-level simulations includes features such as:

— channel coding,

— high modulation order,

— adaptive modulation,

— multi-carrier SISO, SIMO, MIMO systems,

— Etc.

The link-level simulation can reveal some insights that cannot be observed at the component-level.

Indeed, an improvement in accuracy does not always guarantee a gain in terms of FER or link-level

throughput.
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System-level simulation

The system-level simulation includes more complex scenarios that includes the deployment of

specific network architecture with multiple base stations (BSs) and mobile stations (MTs). Usually,

system-level simulation is used to assess the performance of:

— interference cancellation techniques,

— cooperative networks,

— scheduling algorithms,

— Etc.

It can also be used to assess the performance of channel estimation techniques. Indeed, the output

of the link-level simulation is fed directly to the system-level simulator to evaluate metrics such the

average spectral efficiency and 5th percentile user spectral efficiency.

Real data simulation

Real data evaluation can be performed in two different ways. For the first option, the estimation

solution is embedded directly into transceiver. The latter assess the robustness of the proposed

solution to hardware impairments. The second option is to conduct measurement campaigns where

the received signal or the channel state information (CSI) is captured in different scenarios and later

used to assess the performance of the estimation technique.

3.2 Thesis organization

The remainder of the thesis is structured as follows: In chapter 4, we focus on the problem

of fast time-varying frequency-selective (i.e., multipath) channel estimation over SIMO OFDM-

type transmissions. We do so by tracking the variations of each complex gain coefficient using a

polynomial-in-time expansion. To that end, we derive the log-likelihood function (LLF) both in the

DA and NDA cases. The DA ML estimates over fast SIMO OFDM channels are derived here for the

first time in closed-form expressions and hereby shown to be limited to applying over each receive

antenna the DA LS estimator tailored in [2] to fast SISO OFDM channels. This DA ML is used to

initialize periodically, over a relatively large number of data blocks (i.e., with further reduced and
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relatively close-to-negligible pilot overhead compared to DA ML), a new EM ML-type solution we

developed here in the NDA case to iteratively maximize the LLF. We also introduce an alternative

RDM initialization solution no longer requesting - in contrast to DA ML - more per-carrier pilot

frames than the number of paths to further reduce overhead without incurring significant perfor-

mance losses. Simulation results show that the proposed hybrid ML-EM estimator (i.e., combines all

new NDA ML-EM and DA ML or RDM versions) converges within few iterations, thereby providing

very accurate estimates of all multipath channel gains. Most importantly, this increased estimation

accuracy translates into very significant BER and link-level per-carrier throughput gains over the

best representative benchmark solution available so far for the problem at hand, the SISO DA LS

technique in [2] with its new generalization here to SIMO systems.

While chapter 4 focuses on the channel quality aspect, chapter 5 investigates maximum likelihood

(ML) time delay (TD) and carrier frequency offset (CFO) synchronization in multi-node decode-

and-forward (DF) cooperative relaying systems operating over time-varying channels (TVCs). This

new synchronization scheme is embedded into a distributed MIMO-relay beamforming transceiver

structure to avoid the drawbacks of multidimensional ML estimation at the destination and to

minimize the overhead cost. By accounting for a perfect Doppler spread value, the new synchroni-

zation solution delivers accurate TD and CFO estimates. For real-world operation, however, this

new technique can be jointly implemented with any Doppler spread estimator in a new iterative

scheme using a time-constant channel (TCC) based synchronization method at the initialization

step. The resulting TD and CFO estimates along with the channel estimates are then fed into a

distributed MIMO-relay beamforming transceiver of K single-antenna nodes, for pre-compensation

at each node of the transmitted signals, to ensure constructive maximum ratio combining (MRC)

at the destination. Simulation results show significant synchronization accuracy improvement over

previous distributed multi-node synchronization techniques assuming TCCs. The latter translates

into noticeable gains in terms of useful link-level throughput, more so at higher Doppler or with

more relaying nodes.

In chapter 6, we apply the IS technique along with the ML concept to the JADE problem over

both OFDM and single-carrier transmissions. More specifically, we propose a new non-iterative ML

estimator that enjoys guaranteed global optimality and enhanced high-resolution capabilities for

both single- and multi-carrier models. The new ML approach succeeds in transforming the original

multi-dimensional optimization problem into multiple two-dimensional ones thereby resulting in
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huge computational savings. Moreover, it does not suffer from the off-grid problems that are inherent

to most existing JADE techniques. By exploiting the sparsity feature of a carefully designed pseudo-

pdf that is intrinsic to the new estimator, we also propose a novel approach that enables the

accurate detection of the unknown number of paths over a wide range of practical signal-to-noise

ratios (SNRs). Computer simulations show the distinct advantage of the new ML estimator over

state-of-the art JADE techniques both in the single- and multi-carrier scenarios. Most remarkably,

they suggest that the proposed IS-based ML JADE is statistically efficient as it almost reaches

the Cramér-Rao lower bound (CRLB) even in the adverse conditions of low SNR levels. Using real-

world channel measurements collected from four access points (APs) with IEEE 802.11ac standard’s

setup parameters in an indoor environment, we also show that the proposed ML estimator achieves

a localization performance below 15 cm accuracy.

In chapter 7, we provide a summary of other contributions achieved during the PhD program

including the participation in the evaluation process of IMT-2020. In the latter, we provide details

about the valuation process. The evaluation by simulation covers 3GPP RIT and SRIT and we are

currently pursuing the same process with re-evaluation of DECT and NuFront. Next, we summarize

the most significant conclusions drawn at the end of last WP 5D # 35e meeting.

In chapter 8, we draw some concluding remarks and provide some insights on potential future

work related to each of the contributions mentioned in this thesis.
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Abstract

This chapter investigates the problem of fast time-varying frequency-selective (i.e., multipath)

channel estimation over single-input multiple-output orthogonal frequency-division multiplexing

(SIMO OFDM)-type transmissions. We do so by tracking the variations of each complex gain

coefficient using a polynomial-in-time expansion. To that end, we derive the log-likelihood function

(LLF) both in the data-aided (DA) and non-data-aided (NDA) cases. The DA maximum likelihood

(ML) estimates over fast SIMO OFDM channels are derived here for the first time in closed-form

expressions and hereby shown to be limited to applying over each receive antenna the DA least

squares (LS) estimator tailored in [2] to fast SISO OFDM channels. This DA ML is used to initialize

periodically, over a relatively large number of data blocks (i.e., with further reduced and relatively
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close-to-negligible pilot overhead compared to DA ML), a new expectation maximization (EM) ML-

type solution we developed here in the NDA case to iteratively maximize the LLF. We also introduce

an alternative regularized DA ML (RDM) initialization solution no longer requesting - in contrast

to DA ML - more per-carrier pilot frames than the number of paths to further reduce overhead

without incurring significant performance losses. Simulation results show that the proposed hybrid

ML-EM estimator (i.e., combines all new NDA ML-EM and DA ML or RDM versions) converges

within few iterations, thereby providing very accurate estimates of all multipath channel gains. Most

importantly, this increased estimation accuracy translates into very significant BER and link-level

per-carrier throughput gains over the best representative benchmark solution available so far for

the problem at hand, the SISO DA LS technique in [2] with its new generalization here to SIMO

systems.

4.1 Introduction

Orthogonal frequency-division multiplexing (OFDM) showed its effectiveness in current 4th ge-

neration wireless technology (4G). A scalable variety of CP-OFDM is already included in 5th gene-

ration (5G) new radio (NR) standards by the 3rd Generation Partnership Project (3GPP) [9]. The

adopted waveform will include multiple sub-carrier spacings that depend on the type of deploy-

ments and service requirements. Moreover, when coupled with the large-scale antenna technology

OFDM is poised to enable the 1000-fold increase in capacity that is required over the next few

years. Despite its attractive features such as robustness to frequency selective channels and spatial

diversity, OFDM-type radio interface technologies (RITs) are already very sensitive to channel time

variations since the latter break the crucial orthogonality between the subcarriers thereby introdu-

cing the so-called inter-carrier interference (ICI). Accurate channel estimation, hence, becomes a

daunting task at very high mobility [10].

So far, a number of channel estimation techniques have been reported in the literature. They can

be categorized in two major categories: i) the data-aided (DA) approaches where the transmitted

symbols are assumed to be perfectly known at the receiver. They provide highly-accurate channel

estimates at a significant cost, however, in terms of overhead; ii) the blind or non-data-aided (NDA)

approaches where the receiver has no a priori information about the transmitted data. Therefore,

NDA techniques do not incur any overhead at the cost, however, of reduced accuracy. Some NDA
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parameter estimation approaches available in the literature (mainly proposed by the authors’ group

e.g., see [5]-[6]) occasionally or intermittently operate an initialization step at much less frequent

pilot insertion instants (by an order or two of magnitude). Referred to as hybrid (i.e., combine NDA

and DA), these techniques very often perform much better than full NDA approaches (i.e., with

random initialization). While at the same time they require negligible overhead amounts compared

to DA solutions [7]. Hence, we shall advocate a hybrid approach in this work.

For fast time-varying channels, most of the DA techniques rely on a basis expansion model

(BEM) to estimate the equivalent discrete-time channel taps [11]-[12]. In fact, BEM methods such

as Karhunen-Loeve BEM were designed with low mean square error (MSE) [11]. They are, however,

sensitive to statistical channel mismatch. The complex-exponential BEM, also proposed in [11],

does not make use of the channel statistics but suffers from large modeling errors. The polynomial

BEM (P-BEM) investigated in [13] yields accurate channel estimates, but only at low Dopplers. In

[2], the complex gain variations of each path was approximated by a polynomial function of time

then estimated by least squares (LS) technique. This solution offers accurate performance even at

high Doppler. However, it requires that the number of paths to be smaller than the inserted pilot

symbols in each OFDM time slot. Moreover, it was derived in the single-input single-output (SISO)

case and its extension to single-input multiple-output (SIMO) systems has never been addressed.

Under the NDA category, time-varying channel estimation was also investigated in [14]. The

authors used the discrete Legendre polynomial BEM along with the space alternating generali-

zed expectation maximization (EM)-maximum a posteriori probability (SAGE-MAP) technique to

estimate the time-domain channel coefficients of OFDM channels. In [15], we used EM to esti-

mate the channel gains over a SISO configuration. However, both techniques have been tailored

for multi-carrier SISO systems and, hence, do not exploit the potential diversity gain achievable by

multi-antenna systems. Moreover, they require the number of pilots to be greater than the number

of channel paths. In [16], the instantaneous SNR estimation problem was investigated using the

EM approach, yet still over SISO configurations only. In [17] and [18], both the EM and LS tech-

niques were again leveraged, respectively, to estimate the SNR over single-carrier SIMO systems.

In [19],[20], iterative channel estimation with Kalman filtering and QR detection was first inves-

tigated under SISO multi-carrier channels and later generalized to multiple-input multiple-output

(MIMO) OFDM systems. Its performance was further enhanced in [21] by exploiting the statistics

of the channel estimation errors in an iterative estimation process. However, Kalman filter-based

techniques require perfect knowledge of the Doppler as well as the power-delay profile. Moreover,
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a high number of pilots per OFDM block is needed to obtain accurate estimates thereby affecting

the overall throughput of the system.

In this paper, we develop an iterative EM-based maximum likelihood (ML) estimator of fast

time-varying channels over SIMO OFDM-type radio interfaces. By relying on the polynomial ap-

proximation of the multipath channel gains [2] and resorting to the powerful EM technique [22]

instead of the LS approach, our solution offers a more accurate ML-type acquisition of the polyno-

mial expansion coefficients and the resulting time-varying channel gains. To avoid local convergence

that is inherent to iterative algorithms, we initialize the EM algorithm with a SIMO DA ML version

developed in this work for that sole purpose. We show that the latter boils down to applying SISO

DA LS in [2] over each receive antenna. Besides, coming back to our key contribution here, our

new SIMO NDA ML-EM solution, it yields as a byproduct MAP-based soft estimates of the unk-

nown symbols. The latter are leveraged to devise a dedicated ICI cancellation (ICIC) scheme that

works side by side with the EM-based time-varying estimator according to the turbo principle (e.g.,

see [8]). Furthermore, we introduce an alternative SIMO regularized DA ML (RDM) initialization

procedure that can still apply when the number of paths exceeds the number of available pilot

observations. This desirable feature renders the proposed solution robust to any rapid variations

in the propagation environment where the number of paths can change unpredictability due the

motion of mobile users. Hence we investigate the possibility of reducing the number of pilots in

each OFDM block down below the number of channel paths without significantly affecting the per-

formance. By doing so, we are able to reduce the overhead and eventually increase the throughput

quite significantly.

The rest of the paper is organized as follows: In Section 4.2, we introduce the system model. In

Section 4.3, we derive a new NDA EM-based ML solution for the underlying estimation problem.

In Section 4.4, we develop a new DA ML version of this estimator over fast SIMO OFDM channels

and demonstrate that it amounts to applying the SISO DA LS estimator in [2] separately over

each receive antenna. The latter is only run for the initialization of our NDA ML-EM solution at

relatively rare pilot insertion instants, resulting in the ultimately proposed new hybrid ML-EM esti-

mator of fast time-varying OFDM channels. In Section 4.5, we use exhaustive computer simulations

to assess and confirm the superior performance of the proposed channel estimator not only in terms

of component-level channel identification accuracy, but also in terms of much more compelling yet

rarely adopted link-level throughput. Finally, we draw out some concluding remarks in Section 4.6.

The notations adopted in this paper are as follows. Vectors and matrices are represented in
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lower- and upper-case bold fonts, respectively. Moreover, {.}T and {.}H denote the conjugate and

Hermitian (i.e., transpose conjugate) operators. The Euclidean norm of any vector is denoted as

||.||. For any matrix X, [X]q and [X]l,k denote its qth column and (l, k)th entry, respectively. For

any vector x, diag{x} refers to the diagonal matrix whose elements are those of x. Moreover, {.}∗,

∠{.}, and |.| return the conjugate, angle, and modulus of any complex number, respectively. Finally,

E{.} stands for the statistical expectation, j is the pure imaginary number (i.e., j2 = −1), and the

notation , is used for definitions.

4.2 System model

Consider a SIMO OFDM system with Nr receiving antenna elements, N subcarriers, and a cyclic

prefix (CP) of a length Ncp. The wireless link between the transmitter and the {rth}Nrr=1 antennas

is modeled as a multipath fading channel as follows:

hr(t, τ) =
Lr∑
l=1

αl,r(t)δ(τ − τl,rTs), (4.1)

where Lr is the number of paths of the rth wireless link. For each path, the delay τl,r is nor-

malized by the sampling period Ts and the complex gain αl,r(t) is modeled by a Rayleigh ran-

dom variable with zero mean and a variance σ2
l,r. The multipath power profile (i.e., the chan-

nel) is assumed to be normalized (i.e.,
∑Lr
l=1 σ

2
l,r = 1). For each of the Nr links, we approximate

the sampled complex gain of the lth path within the duration of Nc consecutive OFDM blocks,

αl,r = [αl,r(−NcpTs), . . . , αl,r(NbNc −Ncp − 1)]T , by a polynomial of order Nc − 1 as follows [2]:

αl,r(pTs) ≈
Nc∑
d=1

cd,l,rp
(d−1) + ζl,r[p], (4.2)

where p ∈ [−Ncp,−Ncp + 1, . . . , NbNc −Ncp − 1]. Moreover, cl,r = [c1,l,r, c2,l,r, . . . , cNc,l,r]T gathers

the approximating polynomial coefficients corresponding to the lth path between the transmitter

and the rth receiving antenna while ζl,r[p] is the approximation error. T = NbTs denotes the OFDM

block duration where Nb = N + Ncp. At the destination, after removing the CP and applying a

N−point fast Fourier transform (FFT), the collected OFDM symbols at each local approximation

window of Nc OFDM blocks (i.e., k = 1, 2, . . . , Nc), over the rth antenna element, can be written
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as follows:

ỹk,r = Hk,rak + wk,r, (4.3)

where ỹk,r =
[
yk,r[1], yk,r[2], . . . , yk,r[N ]

]T is the received kth OFDM block, and wk,r =[
wk,r[1], wk,r[2], . . . , wk,r[N ]

]T is the complex white Gaussian noise vector with covariance σ2IN
where IN is the N -dimensional identity matrix. The N transmitted symbols during the kth OFDM

block, ak =
[
ak[1], ak[2], . . . , ak[N ]

]T , are generated randomly from a M−ary constellation alpha-

bet, denoted CM , and are assumed equally likely, i.e., {Pr(am) = 1
M }am∈CM . The N × N matrix,

Hk,r, is the channel frequency response whose elements are given by:

[Hk,r]m,n = 1
N

Lr∑
l=1

e−j2π(n−1
N
− 1

2)τl,r
N−1∑
q=0

αk,l,r(qTs)ej2π
n−m
N

q

, (4.4)

where {αk,l,r(qTs)}kNb+N−1
q=kNb are the samples corresponding to the lth path within the duration of

the kth OFDM block over the rth receiving antenna. As shown in [2], with the above approximation

[2], the polynomial coefficients, cl,r can be obtained using the time average of the channel gain over

the effective duration of each OFDM time slot ({ᾱk,l,r = 1
N

∑kNb+N−1
q=kNb αk,l,r(qTs)}Nc−1

k=0 ) as follows:

cl,r = T−1ᾱl,r, (4.5)

where ᾱl,r = [ᾱ1,l,r, ᾱ2,l,r, . . . , ᾱNc,l,r]T and T is a (Nc ×Nc) matrix given by:

T=


1 N−1

2
(N−1)(2N−1)

6

1 N−1
2 +Nb

(N−1)(2N−1)
6 +(N − 1)Nb+N2

b

1 N−1
2 +2Nb

(N−1)(2N−1)
6 +2(N − 1)Nb+4N2

b

.

Using these coefficients, the samples of the complex gain of each channel path over the interval

[−Ncp, . . . , NbNc −Ncp − 1], cl = [c1,l,r, c2,l,r, . . . , cNc,l,r], can be obtained as follows:

αl,r = ST cl,r, (4.6)

where S is a (Nc ×NbNc) matrix whose elements are given by:

{{
[S]d,p′ = (p′ −Ncp − 1)d−1}NbNc

p′=1

}Nc
d=1

. (4.7)
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The channel gains can be estimated using (4.6) from the channel coefficient estimates whose esti-

mation in (4.5) ultimately requires an estimate for the channel gain time averages vector ᾱl,r.

In [2], ᾱl,r is estimated by SISO DA LS over Np per-carrier pilot frames inserted in each OFDM

block in the case of SISO systems (i.e., Nr = 1). Two more processing blocks of i) iterative ICIC and

ii) frequency-domain smoothing (to take advantage of the previous Nc−1 estimates of {ᾱk,l,1}Nc−2
k=0 )

then follow to improve estimation accuracy and speed up convergence. However, increasing per-

formance requires a relatively large number of pilot symbols per block. Moreover, the LS solution

requires the number of per-carrier pilot frames to be greater than the number of paths at each

antenna element.

In the following, we address the problem of estimating ᾱl,r in SIMO systems (i.e., Nr ≥ 1)

using all data symbols available at each OFDM block, not only pilots. By doing so, we develop a

new ML-type EM solution that is able to significantly improve performance while keeping the same

overhead or otherwise reducing it. Accuracy can be further enhanced as in [2] by suppressing the

ICI components from the received signal.

4.3 New NDA ML-EM estimator

We start by stacking the received samples at the output of all the antenna elements,{{
{yk,r(n)}Nn=1

}Nc−1
k=0

}Nr
r=1

, into vectors
{{

yk(n) = [yk,1(n), yk,2(n), . . . , yk,Nr(n)]T
}N
n=1

}Nc−1

k=0
. We also

define ϕ̄k = [ϕ̄Tk,1, ϕ̄Tk,2, . . . , ϕ̄Tk,Nr ] as the vectors containing all the time averages of the channel

gains of all {Lr}Nrr=1 paths with {ϕ̄k,r = [ᾱk,1, ᾱk,2, . . . , ᾱk,Lr ]T }
Nr
r=1. The probability density func-

tion (pdf) of the received samples {{yk(n)}Nn=1}
Nc−1
k=0 conditioned on the transmitted symbol ak[n]

and parametrized by ψk =
[
ϕ̄Tk , σ

2
]T

, is expressed as follows:

p(yk(n)|ak[n] = am;ψk)= 1
(2πσ2)Nr exp

{
−1
2σ2

Nr∑
r=1

∣∣yk,r(n)−am[Hk,r]n,n
∣∣2}, (4.8)

where:

[Hk,r]n,n = 1
N

Lr∑
l=1

e−j2π(n−1
N
− 1

2)τl,r
N−1∑
q=0

αl,k,r(qTs)

, (4.9)

Note that, for the time being, we absorb the effect of the ICI in the additive noise and we also

assume that normalized delays, {τl,r}Lrl=1, are perfectly known to the receiver. The nth diagonal
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element of the matrix Hk,r in (4.9) can then be written as follows:

[Hk,r]n,n = ϕ̄Tk,rFn,r, (4.10)

where Fn,r is a vector containing the elements of the mth row of the (N × Lr) matrix Fr which is

defined as:

[Fr]m,l = e−j2π(
m−1
N
− 1

2)τl,r . (4.11)

By injecting (4.10) back into (4.8), we obtain the following result:

p(yk(n)|ak[n] = am;ψk)= 1
(2πσ2)Nr exp

{
−1
2σ2

Nr∑
r=1

∣∣∣∣yk,r(n)− amϕ̄Tk,rFn,r

∣∣∣∣2
}
. (4.12)

Now, by averaging (4.12) over the alphabet, the pdf of the received samples can be written as

follows:

p(yk(n);ψk) =
M∑
m=1

Pr(am)p(yk(n)|ak[n] = am;ψk). (4.13)

As mentioned earlier, the transmitted symbols are generated from a normalizedM−ary constellation

(i.e., PAM, PSK or QAM). It follows that:

p(yk(n);ψk) = 1
M(2πσ2)Nr

M∑
m=1

exp
{
− 1

2σ2

Nr∑
r=1

∣∣∣∣yk,r(n)−amϕ̄Tk,rFn,r

∣∣∣∣2
}
. (4.14)

It is obvious at this stage that maximizing (4.14) with respect to ψk is analytically intractable.

Thus, we will resort to the EM concept to find the maximum of the multidimensional likelihood

function (LF). First, we define the log-LF (LLF), L(ψk|ak[n] = am) , ln(p(yk(n)|ak[n]=am;ψk)),

of yk(n) conditioned on the transmitted symbol ak[n] for the kth OFDM symbol which can be

written as:

L(ψk|ak[n]=am) = −Nr ln(2πσ2)− 1
2σ2

( Nr∑
r=1
|yk,r(n)|2

+
∣∣∣amϕ̄Tk,rFn,r

∣∣∣2−2<
{
yk,r(n)∗amϕ̄Tk,rFn,r

})
. (4.15)
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During the “expect step (E-STEP)” of the EM algorithm, we compute the expectation of the

LLF in (4.15) over all possible transmitted symbols, {am}Mm=1, using the previous estimates of the

underlying unknown parameters. Then, the resulting expectation is maximized with respect to the

unknown coefficient ψk during the “Maximization step (M-STEP)”. Starting with an initial guess,

ψ̂
(0)
k , of the channel estimates, the cost function to be maximized during the M-STEP at the ith

EM iteration is given by:

Q
(
ψk|ψ̂

(i−1)
k

)
=

N∑
n=1

Eam

{
L(ψk|ak[n] = am)

∣∣∣∣yk(n); ψ̂(i−1)
k

}
, (4.16)

where Eam{.} denotes the expectation over all possible transmitted symbols {am}Mm=1 and ψ̂(i−1)
k =[ ̂̄ϕ(i−1)

k

T
, σ̂2(i−1)

k

]T
contains the estimates of ψk and the noise variance at the (i− 1)th EM iteration.

The expression in (4.16) can be further simplified as follows:

Q
(
ψk|ψ̂

(i−1)
k

)
= −NNr ln(2πσ2)− 1

2σ2

( Nr∑
r=1

Zk,r +
N∑
n=1

γ
(i−1)
n,k

∣∣ϕ̄Tk,rFn,r

∣∣2 − 2β(i−1)
n,k,r

)
, (4.17)

where 1:

Zk,r=
N∑
n=1
|yk,r(n)|2, (4.18)

γ
(i−1)
n,k =Eam

{
|am|2

∣∣yk(n); ψ̂(i−1)
k

}
, (4.19)

β
(i−1)
n,k,r =Eam

{
<
{
yk,r(n)∗amϕ̄Tk,rFn,r

}∣∣yk(n); ψ̂(i−1)
k

}
. (4.20)

Using the Bayes formula, the a posteriori probability of am, P (i−1)
m,n,k = Pr

(
am|yk(n); ψ̂(i−1)

k

)
, at the

(i− 1)th iteration is given by:

Pr
(
am|yk(n); ψ̂(i−1)

k

)
=
Pr(am)P

(
yk(n)|am; ψ̂(i−1)

k

)
P
(
yk(n); ψ̂(i−1)

k

) . (4.21)

Since the transmitted symbols are equiprobable (i.e., Pr(am) = 1
M ), we have the following result:

P
(
yk(n); ψ̂(i−1)

k

)
= 1
M

N∑
n=1

P
(
yk(n)|am; ψ̂(i−1)

k

)
. (4.22)

1. For the particular case of normalized-energy constant-envelope constellations, note that we have γ(i−1)
n,k = 1.
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Exploiting the fact that ϕ̄k,r = <{ϕ̄k,r}+={ϕ̄k,r} and Fn,r = <{Fn,r}+={Fn,r}, the cost function

in (4.17) can be written as follows:

Q
(
ψk|ψ̂

(i−1)
k

)
=−NNr ln(2πσ2)− 1

2σ2

(Nr∑
r=1

Zk,r+
N∑
n=1

γ
(i−1)
n,k

×
(
FH
n,rG1,k,rFn,r+={Fn,r}TG2,k,r<{Fn,r}

+<{Fn,r}TG3,k,r={Fn,r}
)
− 2

M∑
m=1

P
(i−1)
m,n,kη

(m)
k,n,r

)
,(4.23)

where:

G1,k,r = <{ϕ̄k,r}<{ϕ̄k,r}T + ={ϕ̄k,r}={ϕ̄k,r}T ,

G2,k,r = <{ϕ̄k,r}={ϕ̄k,r}T −={ϕ̄k,r}<{ϕ̄k,r}T ,

G3,k,r = ={ϕ̄k,r}<{ϕ̄k,r}T −<{ϕ̄k,r}={ϕ̄k,r}T ,

η
(m)
k,n,r = <{yk,r(n)∗amFT

n,r}<{ϕ̄k,r}− ={yk,r(n)∗amFT
n,r}={ϕ̄k,r}. (4.24)

As per the M-STEP, we differentiate the cost function in (4.23) with respect to <{ϕ̄k,r} and ={ϕ̄k,r}

and set the result to zero to obtain the following results:

N∑
n=1

γ
(i−1)
n,k

(
J1,n,r<{ϕ̄k,r}−J2,n,r={ϕ̄k,r}

)
=

N∑
n=1
µ1,n,k,r,

N∑
n=1

γ
(i−1)
n,k

(
J1,n,r={ϕ̄k,r}+J2,n,r<{ϕ̄k,r}

)
= −

N∑
n=1
µ2,n,k,r,

where:

J1,n,r = <{Fn,r}<{Fn,r}T + ={Fn,r}={Fn,r}T ,

J2,n,r = <{Fn,r}={Fn,r}T −={Fn,r}<{Fn,r}T ,

µ1,n,k,r =
M∑
m=1

P
(i−1)
m,n,k<{yk,r(n)∗amFT

n,r},

µ2,n,k,r =
M∑
m=1

P
(i−1)
m,n,k={yk,r(n)∗amFT

n,r}.
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Now, using the identity ϕ̄k,r=<{ϕ̄k,r}+ j={ϕ̄k,r} leads to:

N∑
n=1

(J1,n,r + jJ2,n,r)γ(i−1)
n,k ϕ̄k,r =

N∑
n=1

µ1,n,r − jµ2,n,r. (4.25)

Hence, the ith EM update for time average of the channel gains at the ith iteration can be obtained

as follows:

̂̄ϕ(i)
k,r =

(
N∑
n=1

γ
(i−1)
n,k (J1,n,r+jJ2,n,r)

)−1 N∑
n=1

(
M∑
m=1

P
(i−1)
m,n,ky

∗
k,r(n)amFT

n,r

)H
. (4.26)

Similarly, by differentiating the cost function in (4.23) with respect to σ2 and setting the result to

zero, we obtain the following update for the noise variance:

σ̂2(i)
=

∑Nr
r=1Zk,r+

∑N
n=1

∣∣∣∣FT
n,r
̂̄ϕ(i−1)
k,r

∣∣∣∣2γ(i−1)
n,k −2β(i−1)

n,k,r

2NNr
. (4.27)

Finally, after IEM iterations of the EM algorithm, the channel estimates, corresponding to Nc

consecutive OFDM symbols over the rth antenna element, are obtained as follows:

α̂l,r = ST ĉl,r = STT−1 ̂̄α(IEM )
l,r , (4.28)

where ̂̄α(IEM)
l,r = [̂̄α(IEM)

1,l,r , ̂̄α(IEM)
2,l,r , . . . , ̂̄α(IEM)

Nc,l,r ]T is the EM-based ML vector estimate of the complex

channel gain time averages of the lth path over Nc OFDM data symbols. The channel gain estimates

in (4.28) can be further improved by implementing an iterative ICIC technique. Indeed, the channel

and symbol estimates provided by the EM algorithm can be used to reconstruct then remove the

ICI components from the received signal and the resulting samples can be re-injected once again as

new inputs to the EM algorithm to enhance accuracy. In this way, the entire process can be repeated

IICI iterations until no additional improvements can be achieved. ICIC requires decoding the data

symbols to be able to reduce the ICI level. Instead of implementing the successive interference

cancellation (SIC) at the output of each antenna element as in [2], we make use of the symbols’

posteriors, P (IEM)
m,n,k , already provided by the EM algorithm and decode the data symbols according

to the MAP criterion as follows:

â
(s)
k [n] = argmax

am∈CM

∣∣∣am −∑M
m′=1 P

(IEM)
m′,n,kam′

∣∣∣2 , (4.29)



54

where â(s)
k [n] is the detected symbol corresponding to the nth subcarrier of each kth OFDM block

after s ICIC iterations. At each sth ICIC iteration, the detected symbols are used to remove the

ICI component from the original received signal so as to provide the EM algorithm with less-ISI-

corrupted observations. The later is given by:

ỹ(s+1)
k,r = ỹk,r − (Ĥ(s,IEM )

k,r − diag{ĥ(d,s,IEM )
k,r })â(s)

k , (4.30)

where ĥ(s,IEM )
k,r is a vector containing the diagonal elements of Ĥ(s,IEM )

k,r . The latter is the estimate

of channel frequency response at the convergence of the EM technique.

4.4 Proposed hybrid ML-EM estimator

Due to its iterative nature, NDA ML-EM requires an initial starting point. One straightforward

solution is to settle on a random initial guess. By doing so, the proposed solution preserves its full

NDA characteristic. However, with random initialization, the algorithm’s convergence to a local

minimum becomes extremely high. Hence, we develop a SIMO DA ML version of this estimator for

the sole purpose of providing relatively reliable initial values that ensure global convergence of the

NDA ML-EM solution. We will show later in this section that this initialization step can be applied

at relatively rare pilot insertion instants, giving rise to the ultimately proposed new hybrid ML-EM

estimator of fast time-varying OFDM channels.

4.4.1 Initialization with new DA ML

As mentioned above, NDA ML-EM requires a good initial guess in order to return accurate esti-

mates of the channel gains. An intuitive solution for obtaining those initial values is to use the pilot

symbols injected at the subcarrier positions {p1, p2, . . . , pNp} within each OFDM block. In the SIMO

system, the received Np subcarriers at each OFDM block, y(p)
k,r = [yk,r(p1), yk,r(p2), . . . , yk,r(pNp)]T ,

corresponding to the pilot positions (by neglecting the ICI) are given by:

ỹ(p)
k,r = diag

{
a(p)
k

}
h(p)
k,r + w(p)

k,r, (4.31)
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where a(p)
k =[a(p)

k (1), a(p)
k (2), . . . , a(p)

k (Np)]T are the transmitted pilots within the kth OFDM block.

The channel frequency response and noise component corresponding to the pilot indices are given

by h(p)
k,r=

[
[Hk,r]p1,p1 , [Hk,r]p2,p2 , . . . , [Hk,r]pNP ,pNp

]T and w(p)
k,r=[wk,r(p1), wk,r(p2), . . . , wk,r(pNp)]T , res-

pectively. By stacking the received pilot samples at the output of the antenna elements into vectors,{
y(p)
k (pn)=[yk,1(pn), yk,2(pn), . . . , yk,Nr(pn)]T

}Np
n=1

, we rewrite (4.31) as follows:

y(p)
k = A(p)

k F(p)ϕ̄k + w(p)
k , (4.32)

where w(p)
k

=
[
w(p)
k,1

T
,w(p)
k,2

T
,...,w(p)

k,Nr

T ]T and A(p)
k is a diagonal matrix given by:

A(p)
k = INr ⊗ diag

{
a(p)
k

}
. (4.33)

The matrix F(p) is a (NrNp × L) block-diagonal matrix (L =
∑Nr
r=1 Lr) defined as follows:

F(p) = blkdiag{F(p)
1 ,F(p)

2 , . . . ,F(p)
Nr
}. (4.34)

in which F(p)
r contains the rows of the matrices Fr that corresponds to the pilot symbols’ indices(

i.e.,
{{

[F(p)
r ]m,l = [Fr]pm,l

}Np
m=1

}Lr
1

)
. The pdf in the DA case is given by:

p(y(p)
k |a(p)

k ;ψk)= 1
(2πσ2)NrNp exp

{−1
2σ2

(
yk−A(p)

k F(p)ϕ̄k
)H(

yk−A(p)
k F(p)ϕ̄k

)}
. (4.35)

The corresponding LLF is given by:

L(ψk) = −NrNp ln(2πσ2)− 1
2σ2

(
yk−A(p)

k F(p)ϕ̄k
)H(

yk−A(p)
k F(p)ϕ̄k

)
. (4.36)

By differentiating (4.36) with respect to ϕ̄k, we obtain the following initial ML-based DA estimates:

̂̄ϕ(0)
k =

(
F(p)HA(p)

k

H
A(p)
k F(p)

)−1
F(p)HA(p)

k

H
yk. (4.37)

Due to the linearity of the observation model in (4.31) and the Gaussianity of the noise, the new

SIMO DA ML estimator reduces in the SISO case to the DA LS estimator in [2], making the

former a generalized extension of the latter to SIMO configurations. More importantly, we reveal

that the solution in (4.37) requires the inversion of a block-diagonal matrix whose computation can

therefore be decoupled across the receive antennas by separately inverting the Nr antenna-specific
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blocks
{

F(p)
r

H
diag{a(p)

k
}{a(p)

k
}HF(p)

r

}Nr
r=1

. Hence, we prove that the SIMO DA ML solution actually boils

down to applying the SISO DA LS in [2] at the output of each receive antenna. Another point worth

mentioning here is that the number of pilots Np required to obtain initial estimates has to be larger

than the number of paths Lr. The initial estimate of the noise variance can also be obtained by

differentiating (4.36) with respect to σ2 as follows:

σ̂2(0)
= 1

2NpNr

∥∥∥yk−A(p)
k F(p)ϕ̄

(0)
k

∥∥∥2
. (4.38)

4.4.2 Reduction of pilot subcarriers

Usually, the solution in (4.37) requires that Np ≥ max{Lr}Nrr=1 otherwise the system of equations

is underdetermined and the matrix F(p)
r

H
diag{a(p)

k }{a
(p)
k }HF(p)

r is no longer invertible. In this case,

the overall throughput will be strongly dependant on the number of paths max{Lr}Nrr=1. Now since

the ML-EM solution relies on those estimates only to trigger the iteration process, we can settle

for less reliable initial estimates by reducing the number of pilots per OFDM blocks. Taking into

account the fact that the SIMO DA ML solution in (4.37) corresponds to an ill-posed problem, we

opt for a regularization technique to solve this problem. One attracting solution is the Tikhonov

regularization [78] which allows us to obtain the initial estimates as follows:

̂̄ϕ(0)
k =

(
F(p)HA(p)

k

H
A(p)
k F(p) + λIL

)−1
F(p)HA(p)

k

H
yk. (4.39)

The factor λ is a regularization factor, when set to zero, the solution in (4.39) becomes equivalent

to the one in (4.37). Mainly, the RDM is developed to improve the conditioning of the problem by

adding a regularization factor to the non-invertible matrix, F(p)
r

H
diag{a(p)

k }{a
(p)
k }HF(p)

r .

In Fig. 4.1, we show the effect of the regularization factor on the performance of the RDM

estimator. On one hand, if chosen too small (i.e., λ = 10e−16), the solution in (4.39) is close to the

original one given in (4.37). At this point, the RDM may suffer from the same instability issues

as the original DA ML solution. On the other hand, if chosen too large (i.e., λ = 4), the provided

solution will start moving away from the original problem defined in (4.35). It is worth mentioning

that the range of values over which RDM provides acceptable initial values is conveniently large.

Hence, an exhaustive search for the optimal regularization factor is not required. Note also that

other regularization techniques can be envisioned such as the least absolute shrinkage and selection
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Figure 4.1 – Channel path gain estimates versus time index over the first Nc = 3 OFDM blocks with
the SISO DA LS (8 pilots) and SISO RDM (4 pilots) initialization techniques at SNR = 30 dB for
Nr = 1 and multiple values of λ.

operator (LASSO) technique [79]. However, the latter, unavailable in a closed-form solution, is

usually found using optimization methods such as quadratic programming or convex optimization.

Such solution introduces additional computational complexity whereas the Tikhonov regularization

keeps the computational burden approximately the same of the original SIMO DA ML.

4.4.3 Extreme slow-up of pilot insertion rate

As mentioned earlier, an initial guess is always required to trigger NDA ML-EM. However, de-

pending on the receiver mobility, the EM technique may use the estimates of the previous OFDM

block channel gains as initial candidates for the current one. In the following, we discuss the possi-

bility of reducing the total number of per-carrier pilot frames and, hence, the overhead to achieve

higher per-carrier throughput. As depicted in Fig. 4.2, we show an example of pilots insertion and

processing tasks for all possible channel estimation techniques. In the DA case, i.e., Fig.4.2 (a), the

estimation relies on known per-carrier pilot frames at the receiver side. In this configuration, the DA

techniques provide better estimation performance at the expense of significant overhead. Indeed,

some subcarriers at each OFDM block are used as pilots for estimation purposes while (N − Np)

remaining ones carry the useful data. Such approach relies on a trade-off between overhead and es-
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Illustration Parameters

• N : Number of subcarriers

• Np = N
2 : Number of pilot-bearing subcarriers for

each OFDM block

• Ncp = N
8 : The cycle prefix

• T : OFDM block duration

• Nc: Polynomial order or pilot/data frame size

• RI = 3: Refreshment interval

Joint NDA channel and data estimation

DA channel estimation only

Data estimation only

Legend
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Figure 4.2 – Data structure and processing tasks for different estimation approaches: (a) SISO DA LS
[2] or its proposed SIMO DA ML extension, (b) the new NDA ML-EM, and (c) the advocated new
hybrid ML-EM solution (i.e., combines both new NDA ML-EM and DA ML versions).

timation performance since the estimation accuracy increases with the number of pilots. In the full

NDA case, i.e., Fig.4.2 (b), the estimation technique uses only the per-carrier data frames to estimate

the channel gains. Such technique enjoys zero overhead but suffers from performance degradation

especially in high mobility scenarios. With the new hybrid ML-EM, i.e., Fig.4.2 (c), the initializa-

tion technique (SIMO DA ML or its SIMO RDM equivalent at a low number of pilot subcarriers) is

performed only once each RI consecutive Nc OFDM blocks to trigger the NDA estimation process.

Since the channel, even a fast time-varying one, varies relatively slowly with respect to the high

sampling or processing rates that characterize new radio access technologies, more so at low and

moderate mobilities, there is no need for frequent initialization at each Nc OFDM blocks. Instead,

the EM technique relies on the same estimates provided by NDA ML-EM during the previous Nc

OFDM blocks. In other words, the first Nc OFDM blocks of a sequence of RI Nc blocks will be

initialized using the DA LS technique. And each of the remaining (RI − 1) Nc OFDM blocks will

be initialized with the channel gain estimates of their predecessors. Thus, the number of inserted

pilots can be significantly reduced (by an order or two of magnitude as will be shown later).

Note that the choice of RI, called hereafter as the refreshment interval, might vary depending on

some key parameters. Indeed, from an estimation accuracy point of view, RI depends mainly on the

Doppler frequency and the average per-carrier SNR. From a per-carrier throughput point of view,

performance deterioration is expected at higher RI values in high mobility scenarios. However, such

deterioration can have a negligible impact if not any, on decoding performance. Indeed, with the

adoption of adaptive modulation, QPSK is adopted at low per-carrier SNR values since it is more
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robust to estimation errors. At high per-carrier SNR values, the estimation error is less severe and

higher modulation orders can be considered since they perform well even with low pilot numbers.

By taking into account all the features mentioned above, the hybrid channel estimation tech-

nique can be summarized in Algorithm 1. Note that the “initialization” condition mentioned in

Algorithm 1 Joint hybrid ML-EM channel and data estimation
for k = 1 to Nc do
if initialization then
if Np ≥ max{Lr}Nrr=1 then
Estimate ̂̄ϕ(0)

k using (4.37)
else
Estimate ̂̄ϕ(0)

k using (4.39)
end if

else
Use ̂̄ϕ(k−1)

k as initial guess
end if
Estimate σ̂2(0)

using (4.38)
end for
while s < IICI do
for k = 1 to Nc do
while i < IEM do
Estimate ̂̄ϕ(i)

k using (4.26)
Estimate the noise variance σ̂2(i)

using (4.27)
end while
Decode the data âk using (4.29)

end for
Construct the channel frequency response using {α̂(IEM )

l,r }Lrl=1 as in (4.4)
Remove the ICI component using {âk}Nck=1 as in (4.30)

end while

Algorithm 1 controls the rate at which the SIMO RDM is run during the initialization phase.

4.5 Simulation results

In this section, we assess the performance of the new EM-based ML time varying channel

estimator i) at the component level in terms of the mean square error (MSE) of the channel gains

(averaged over all antennas), and ii) in terms of link-level bit error rate (BER) and per-carrier

throughput. In all simulations, we consider a SIMO OFDM RIT with N = 128 subcarriers, a

cyclic prefix Ncp = 16, and a central frequency fc = 5 GHz. The sampling period is Ts = 0.5 µs.
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The channel between the transmitter and each rth antenna element is modeled by a multipath

Rayleigh fading channel where the individual complex path gains, {αl,r(t)}Lrl=1, follow a uniform

Jake’s model. We assume, without loss of generality, that the links between the source and the Nr

receiving antennas have the same channel parameters used in [2] listed in Table 4.1. Unless specified

otherwise, the initialization step is executed at each OFDM block (i.e., RI = 1).

Table 4.1 – Channel parameters

Path Number 1 2 3 4 5 6
Average Power [dB] -7.219 -4.219 -6.219 -10.219 -12.219 -14.219
Normalized Delay 0 0.4 1 3.2 4.6 10

We start by investigating the effect of the number of EM iterations on the estimation accuracy.

To do so, we plot in Fig. 4.3 the MSE of our proposed estimator (referred to hereafter as hybrid

ML-EM) along with the MSE lower bound (LB) derived in [2] against REM at two different per-

carrier SNR levels and high Doppler (i.e., FDT = 0.1). The latter translates into a receiver speed

of v = 300 km/h (v = FDvc
fc

, vc being the speed of light).

Obviously, at a fixed per-carrier SNR level, the convergence rate of the hybrid ML-EM technique

(IEM ) is affected by the ICI level corrupting the received samples. In fact, the EM technique is

able to converge much faster when the ICI level is reduced with an ICIC technique. For instance,

when using QPSK modulation, ML-EM is able to provide the same accuracy either with 1 or 5

EM iterations when ICIC is applied. However, for high modulation order (i.g., 64-QAM) that are

usually more sensitive to ICI component, the same technique requires at least 3 EM iterations to

converge when ICIC is not implemented.

In Fig. 4.4, we investigate the influence of the number of receiving antenna elements on the

estimation performance. We compare the hybrid ML-EM estimator to the DA LS technique and

the LB both derived in [2] in the SISO case and to the generalized DA ML versions proposed here

in the SIMO case. We observe a clear advantage of hybrid ML-EM at both low (i.e., FDT = 0.02

or equivalently v = 60 km/h) and high (i.e., FDT = 0.01 or v = 300 km/h) Dopplers even in

the SISO case. As the number of antenna elements increases, hybrid ML-EM exhibits a better

estimation accuracy especially at low and medium per-carrier SNR levels. Since hybrid ML-EM

takes advantage of the diversity gain of multi-antenna systems, it is able to improve the channel

estimates per-antenna. Moreover, the noise variance estimate in (4.27), provided by hybrid ML-EM

is a more accurate as it is averaged over many antenna branches. At high per-carrier SNR, however,
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Figure 4.3 – MSE of the advocated new hybrid ML-EM vs the number of ICIC iterations for QPSK
and 64−QAM modulations with v = 300 km/h, Nc = 3, Nr = 2, and Np = 8 at: (a) SNR = 10 dB, and (b)
SNR = 30 dB.

we observe that increasing the number of antennas has almost no effect on the estimation accuracy

performance. This is due to the noise level being lower than the ICI components. At such per-carrier

SNR levels, the channel estimation accuracy is dictated mainly by ICIC capabilities of the proposed

design.

In Fig. 4.5, we evaluate the performance of the proposed technique at low and high mobilities

against the DA LS technique and the LB both derived in [2] in the SISO case and to the generalized

DA ML versions proposed here in the SIMO case. We observe a clear advantage of the hybrid

ML-EM technique at both low and high Dopplers. We also observe that the ICIC block enhances

the performance of both techniques. However, hybrid ML-EM benefits from much larger gains

and approaches the LB at high per-carrier SNR values. Moreover, we notice that the ICIC block

provides enhanced performances only at high per-carrier SNR values. This behavior stems from the

fact that noise level at low and medium SNRs is much higher than the ICI component. Hence, the

estimator performance is dictated by the noise level. At high per-carrier SNR, the ICI level becomes
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Figure 4.4 – MSE of the advocated new hybrid ML-EM, the SISO DA LS in [2] (i.e., Nr= 1), and its
proposed SIMO DA ML extension vs. the per-carrier SNR for different numbers of receiving antennas
with QPSK, Nc = 3 and Np = 8 at: (a) v = 60 km/h, and (b) v = 300 km/h.

comparable to the noise level it follows that more ICIC iterations are required to provide better

estimation accuracy.

In Fig. 4.6, we investigate the effect of the refreshment interval RI on the estimation accuracy of

the proposed technique at low and high mobilities. At low Doppler (i.e., at velocity v = 60 km/h),

the hybrid ML-EM technique exhibits the same performance when initialized with DA ML at each

OFDM block (i.e., RI = 1) or with less recurrent initialization (i.e., RI = 20). However, at high

Doppler (i.e., at velocity v = 600 km/h), we observe a significant deterioration when hybrid ML-EM

is initialized at the rates of 5 or 20. This is hardly surprising because the channel varies slowly at

low Doppler and the estimates provided during the previous Nc OFDM blocks become adequate

initial guesses for the current Nc blocks. At high Doppler, however, the channel varies rapidly in

time and the estimates of the previous blocks can no longer be considered as good candidates to

trigger the estimation process during the following blocks.

In Fig. 4.7, we investigate the impact of the regularization factor λ in initialization with SIMO
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Figure 4.5 – MSE of the advocated new hybrid ML-EM, the SISO DA LS in [2] (i.e., Nr= 1), and its
proposed SIMO DA ML extension vs. the per-carrier SNR with QPSK, Nc = 3, Nr = 2, and Np = 8 at:
(a) v = 60 km/h, and (b) v = 300 km/h.

RDM on the performance of the proposed hybrid ML-EM technique. With an arbitrarily small

regularization factor (i.e., λ = 10−16), its performance deteriorates since its initialization with

SIMO RDM suffers from the same instability issues of the SISO DA LS technique in [2] or its

proposed SIMO DA ML extension. By increasing λ, its performance improves and approaches the

estimation accuracy achieved with Np = 8 pilot tones. The latter corresponds to an overdetermined

problem. However, for higher values of λ, the performance of hybrid ML-EM starts to deteriorate

again since the SIMO RDM initialization solution departs significantly from the original one defined

in (4.36) and becomes less sensitive to the received samples.

In Fig. 4.8, we assess the robustness of the proposed technique to the number of available per-

carrier pilot frames. We see that the gap between the two techniques increases by reducing the

number of pilots per OFDM block from Np = 16 to Np = 8, more so at high Dopplers. Indeed, both

SISO DA LS in [2] and and its proposed SIMO DAML extension deteriorate in MSE performance by

reducing Np while the advocated hybrid ML-EM exhibits exactly the same performance at medium-
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Figure 4.6 – MSE of the advocated new hybrid ML-EM vs. the per-carrier SNR for different values of
RI with QPSK, Nc = 3, Nr = 2, and Np = 8 at: (a) v = 60 km/h, (b) v = 300 km/h, and (c) v = 600 km/h.

to-high per-carrier SNR thresholds. Actually, hybrid ML-EM performs nearly the same in BER 2

as the proposed SIMO DA ML extension, yet with less pilots. Consequently, the new technique

can achieve a higher per-carrier throughput by reducing the overhead by half. The number of

pilots can even be further reduced to Np = 4 (up to 75% reduction), below the number of paths.

In this configuration, both SISO DA LS in [2] and its proposed SIMO DA ML extension cannot

provide reliable estimates. Whereas, the advocated hybrid ML-EM solution still works properly when

initialized instead with SIMO RDM. As can be seen in Figs. 4.8 (a) and (c), the new technique

exhibits approximately the same MSE performance, except for some negligible deterioration at high

SNRs. Yet the latter does not affect the BER performance. Indeed, the proposed hybrid ML-EM

performs nearly the same in BER regardless of the different numbers of pilots considered in Figs.

4.8 (b) and (d).

2. In the proposed SIMO DA ML extension and its SIMO RDM variant, we implement maximum ratio combining
(MRC) over the Nr antenna branches prior to passing the resulting MRC output through an iterative SIC decoder
as in SISO DA LS in [2]. Whereas we implement the MAP decoder in (30) with the advocated hybrid SIMO ML-EM
solution or the proposed SIMO NDA ML version.
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Figure 4.7 – MSE of the advocated new hybrid ML-EM vs. the per-carrier SNR for different regula-
rization factors of RDM at initialization with QPSK, Nr = 2, and Nc = 3 at: (a) v = 60 km/h, and (b)
v = 300 km/h.

In Fig. 4.9, we plot the link-level per-carrier throughput curves of hybrid ML-EM. For a given

modulation order M , please note that the per-carrier throughput can be obtained from the symbol

error rate (SER) as follows:

Throughput = 1
T

log2(M)(1− SER)(1−∆), (4.40)

where ∆ is the overhead ratio computed as:

∆ = Np

N RI
, (4.41)

which becomes negligible at large values of RI. The latter cannot be, however, increased indefinitely

as the hybrid ML-EM technique requires more frequent up-to-date initial estimates in the case of

high mobility.

We see from Fig. 4.9 (a) that QPSK transmissions, among the considered modulations, provide
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Figure 4.8 – Performance of the advocated new hybrid ML-EM, the SISO DA LS in [2] (i.e., Nr= 1),
and its proposed SIMO DA ML extension vs. the per-carrier SNR with QPSK, Nc = 3 and Nr = 2 in
terms of: (a) MSE at v = 60 km/h, (b) BER at v = 60 km/h, (c) MSE at v = 300 km/h, and (b) BER
at v = 300 km/h.

higher per-carrier throughput at per-carrier SNR values below 4 dB. When the per-carrier SNR

ranges between 4 and 14 dB, 16-QAM becomes more suitable whereas 64-QAM dominates when the

per-carrier SNR exceeds 14 dB. The resulting per-carrier throughput curve assuming an adaptive

(i.e., SNR-dependent) modulation is depicted by the black curve. In Fig. 4.9 (b), we show the

performance of the hybrid ML-EM technique at a higher normalized Doppler FDT = 0.1. In this

scenario, QPSK, 16-QAM, and 64-QAM modulations provide higher per-carrier throughput over

the same SNR ranges reported above at low Doppler. We also observe that both 16- and 64-

QAM transmissions suffer from some performance degradation when compared to the low mobility

scenario. Indeed, at lower Doppler values, the hybrid technique provides accurate estimates since

the channel varies slowly during the same period. Hence, the decoder at the destination is able to

accurately decode the transmitted symbols. In the case of high mobility, the channel varies rapidly

during the same period, leading to a more severe degradation of the channel estimates. The latter

affects the decoding process, especially at higher-order modulations which are more sensitive to
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Figure 4.9 – Link-level per-carrier throughput vs. the per-carrier SNR of the advocated new hybrid
ML-EM with Nc = 3, Nr = 2, and Np = 8 at: (a) v = 60 km/h, and (b) v = 300 km/h.

phase shifts.

In Fig. 4.10, we plot the link-level per-carrier throughput curves of the hybrid ML-EM, the SISO

DA in [2], and the proposed SIMO DA ML extension assuming an adaptive (i.e., SNR-dependent)

modulation scheme. Here, we report a clear advantage in throughput performance of the hybrid

ML-EM technique, especially at higher mobility (i.e., FDT = 0.1) and modulation orders (i.e., 16-

and 64-QAM). As reported previously, the SISO DA LS technique in [2] and its proposed SIMO DA

ML extension provide less reliable channel estimates since both operate only at pilot symbols. These

estimates lead to higher BER when injected later at the data samples in the MRC-SIC decoding

process. Moreover, from Fig. 4.10 (b), we observe that the performance of both SISO DA in [2] and

its proposed SIMO DA ML extension significantly deteriorates when the number of pilots reduces

by half from 16 to 8. Such losses stem from the fact that poor channel gain estimates result in less

reliable ICIC, especially at higher modulation orders. Even though the proposed SIMO DA ML

extension takes advantage of antenna diversity, it still exhibits the same behaviour as the SISO DA

LS original version in [2] since the quality of channel estimates also deteriorates when the number

of pilots decreases. On the other hand, the advocated hybrid ML-EM maintains approximately the
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Figure 4.10 – Link-level per-carrier throughput vs. the per-carrier SNR of the advocated new hybrid
ML-EM, the SISO DA LS in [2] (i.e., Nr= 1), and its proposed SIMO DA ML extension with Nc = 3,
Nr = 2, and λ = 0.5 at: (a) v = 60 km/h, and (b) v = 300 km/h.

same performance in terms of MSE whether initialized with Np = 4, 8 or 16 Per-carrier pilot frame.

Hence, it exhibits higher link-level per-carrier throughputs, more so at medium or high per-carrier

SNR levels, with best performance achieved when Np = 4 pilots.

In Fig. 4.11, we plot the link-level per-carrier throughput curves of the advocated hybrid ML-

EM - when operated at multiple refreshment rates - and both SISO DA LS in [2] and its proposed

SIMO DA ML extension to assess more thoroughly their robustness to mobility. We see from Figs.

4.11 (a) and (b) that the per-carrier throughput increases with hybrid ML-EM at low to medium

Doppler once the refreshment interval RI jumps from 1 to 5. This is hardly surprising since the

channel varies slowly in time and, hence, the channel coefficients of the previous OFDM blocks

act as extremely reliable initial guesses for the current OFDM blocks. It follows that the pilot

subcarriers are no longer required at the current OFDM blocks and can be used to carry data

instead. Pilot insertion rate can be slowed down significantly, by at least as much as 20 times

(pilot to data or overhead ratio can become as low as 0.16%), while still reporting some noticeable
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Figure 4.11 – Link-level per-carrier throughput vs. the per-carrier SNR of the advocated new hybrid
ML-EM (with Np = 4) at multiple RI values, the SISO DA LS in [2] (i.e., Nr= 1), and its proposed
SIMO DA ML extension (with Np = 8) with Nc = 3, Nr = 2, and λ = 0.5 at: (a) v = 60 km/h, (b) v = 120
km/h, and (c) v = 240 km/h.

throughput gains instead of losses, more so at high per-carrier SNR! Whereas SISO DA LS in [2]

and its proposed SIMO DA ML extension still require the same amount of pilots to provide reliable

channel estimates. Therefore, no additional throughput gains can be achieved. At high Doppler,

however, the channel varies more rapidly and more frequent initialization is needed. As can be

observed in Fig. 4.11 (c), we start to measure increasingly significant per-carrier throughput losses

as the refreshment interval RI increases. Yet, most importantly, our new hybrid ML-EM technique

still outperforms both SISO DA LS in [2] and its proposed SIMO DA ML extension in all considered

scenarios, more so over increasingly faster time-varying channels. Here, we have to reduce RI at least

from 20 to 5 among three tested values, or ultimately to 1 in order to secure the highest reported

gains in throughput achievable among the three RI-dependent scenarios. Actually, one can reach

the maximum achievable throughput performance after offline optimization 3 of the refreshment

interval RI against mobility.

3. To obtain the optimal value of RI, the performance of the new hybrid ML-EM can be evaluated offline in
different scenarios over multiple combinations of the average per-carrier SNR, Doppler, and RI values. However, this
ad hoc offline optimization step is beyond the scope of this work.
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4.6 Conclusion

In this paper, we addressed the problem of time-varying channel estimation over SIMO OFDM

transmissions in multipath propagation environments. The proposed approach is based on a polyno-

mial approximation of the complex path gains and takes advantage of all the observation - both at

pilot and non-pilot positions - to enhance the channel estimation capabilities. To do so, we develop

a new SIMO DA ML estimator - which turns out to be a generalized extension of the SISO DA LS

estimator in [2] - for the sole purpose of initializing at relatively rare pilot insertion instants (pilot

to data or overhead ratio can be as low as 0.16%) of another new SIMO NDA ML version when

operated at the remaining data samples, resulting in the ultimately advocated new hybrid ML-EM

estimator of fast time-varying OFDM channels. Moreover, by further developing a new regularized

DA ML (RDM) variant of either SISO DA LS in [2] or its proposed SIMO DA ML extension, we

were able to further reduce the number of pilots and break the strict requirement of more pilots

than paths in [2], and, hence, decrease the overhead and increase the per-carrier throughput. We

show through exhaustive simulations that the proposed hybrid ML-EM solution outperforms both

SISO DA LS in [2] and its proposed SIMO DA ML extension in terms of component-level channel

identification accuracy. The latter translates into significant gains in terms of link-level BER and

per-carrier throughput performances, especially at medium-to-high per-carrier SNR values more so

at relatively higher Doppler or faster SIMO OFDM channel variations.
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Abstract

In this chapter, we investigate maximum likelihood (ML) time delay (TD) and carrier frequency

offset (CFO) synchronization in multi-node decode-and-forward (DF) cooperative relaying systems

operating over time-varying channels (TVCs). This new synchronization scheme is embedded into

a distributed multiple input multiple output (MIMO)-relay beamforming transceiver structure to

avoid the drawbacks of multidimensional ML estimation at the destination and to minimize the

overhead cost. By accounting for a perfect Doppler spread value, the new synchronization solution

delivers accurate TD and CFO estimates. For real-world operation, however, this new technique

can be jointly implemented with any Doppler spread estimator in a new iterative scheme using a

time-constant channel (TCC) based synchronization method at the initialization step. The resulting
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TD and CFO estimates along with the channel estimates are then fed into a distributed MIMO-

relay beamforming transceiver of K single-antenna nodes, for pre-compensation at each node of the

transmitted signals, to ensure constructive maximum ratio combining (MRC) at the destination.

Simulation results show significant synchronization accuracy improvement over previous distributed

multi-node synchronization techniques assuming TCCs. The latter translates into noticeable gains

in terms of useful link-level throughput, more so at higher Doppler or with more relaying nodes.

5.1 Introduction

Spatial diversity is a well-known concept allowing to combat the channel fading and increase the

overall throughput of communication systems. Such attracting advantage can be achieved through

multiple solutions. Cooperative networks provide a distributed solution that avoids some of the

difficulties related to traditional multiple input multiple output (MIMO) systems [23], [24]. Indeed,

in many situations, some user equipments are not able to embed multiple antenna sensors due to

size and power limitations. As such, users can cooperate with each other to form a virtual antenna

array. However, some challenges need to be addressed to ensure constructive cooperation between

the relays. One major problem in cooperative relaying systems is multi-node synchronization, both

in time and frequency. The latter is crucial for the proper implementation of energy-, spectrum-, and

area-efficient distributed MIMO-relay beamforming between a given source-destination link having

coverage limitations.

There are two basic approaches to alleviate the effect of time-varying channel (TVC) distor-

tions in time, frequency, phase, and amplitude: the closed-loop and the open-loop compensation

procedures. In the closed-loop approach, the destination performs the estimation of all the syn-

chronization parameters along with the channel coefficients. Those estimates are later fed to an

equalization block to combat time and frequency asynchronism as proposed in [25],[26]. To their

credentials, closed-loop approaches exhibit less overhead as the interaction among the relay nodes

is kept to minimal while the destination coordinates the synchronization process. However, it may

be difficult for wireless networks without the adequate infrastructure to handle highly-complex

multi-dimensional estimation algorithms. In open-loop approaches, however, the source signal to

be relayed is shifted in the temporal and frequency domains before transmission, as proposed in

[27]. By doing so, we ensure that replicas of the same transmitted signal, originating from different
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relay nodes, arrive at the same time and combine constructively at the receiver. In this scenario,

less complex estimation algorithms can be considered at the nodes with minimal signaling from the

destination.

As far as the estimation of the synchronization parameters is concerned, multiple techniques

exist in the open literature [28]. On one hand, the works in [29]-[30] investigate time delay (TD)

synchronization while neglecting the carrier frequency offset’s (CFO) effect. On the other hand,

the solutions introduced in [31]-[32] deal with multiple CFOs while neglecting the TD effect. Other

techniques perform joint estimation of all parameters at the destination in closed-loop cooperative

networks [25],[33],[34]. Although they could work well in practice, they suffer from high computa-

tional complexity since they require solving a multi-dimensional problem that increases with the

number of relaying nodes. Moreover, the synchronization task might become very costly in terms

of overhead. Indeed, after estimating the TDs and CFOs, the destination node needs to feed them

back to the relays. Such a step leads to an additional overhead problem along with quantization

errors since the estimated values are quantized before their feedback phase.

Alternative solutions can be considered by relying on distributed collaborative beamforming

(DCBF) schemes [35]. Many of these techniques focus on the optimal design of the beamformer’s

weights while assuming perfect synchronization that leave them extremely vulnerable in practice to

phase, frequency, and time offsets. Many other techniques focus on the other hand on combating the

misalignment effect at the destination caused by such offsets. In [36], the authors proposed a phase

compensation solution based on an iterative bit-feedback approach. In [37], a solution for frequency

synchronization in wireless sensor networks (WSN) using a round trip synchronization method was

proposed. In [38], a distributed synchronization method was proposed for dense wireless networks

using a correlation-based joint TD and CFO estimator. Yet, all the above-mentioned techniques

rely on the simplifying time-constant channel (TCC) assumption. In contrast, a broad range of

applications require that the terminals act as relaying nodes and, at the same time, fifth-generation

(5G) communication systems are expected to support reliable communications at very high veloci-

ties reaching 500 Km/h (e.g., in high-speed trains) [39]. For such systems, the conventional TCC

assumption leads to severe performance losses. Recently, some other works on DCBF [40], [41] had

tackled the challenging problem of multi-node synchronization under TVCs using enhanced versions

of one-bit feedback technique. However, they have only addressed phase compensation while assu-

ming perfect TD and CFO estimation.

Motivated by these facts, we develop in this paper a new decentralised maximum likelihood (ML)
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synchronization technique along with a distributed MIMO-relay beamforming design that tackles

the challenging TVC case over multi-node relaying transmissions. The proposed ML TVC solution

builds upon a very useful approximation of the channel covariance matrix by a two-ray propagation

model. It provides accurate ML estimates of the TDs and CFOs at a reduced computational cost

because it does not require any matrix inversion. We also develop an iterative version, referred to

as ML TVC-DE (Doppler estimate), that accounts for the practical need to estimate at each relay

node the Doppler spread upon which relies the initial version referred to hereafter as ML TVC-

PD (perfect Doppler). Simulation results show significant synchronization accuracy improvement

over previous distributed multi-node synchronization techniques assuming TCCs. The latter trans-

lates into noticeable gains in terms of useful (i.e., after accounting for incurred overhead) link-level

throughput, more so at higher Doppler or with more distributed MIMO-relay beamforming nodes.

The rest of the paper is organized as follows. In Section 5.2, we introduce the system model.

In Section 5.3, we derive the new ML solution of the underlying estimation problem. The pre-

compensation procedure and its corresponding distributed MIMO-relay design are presented in

Section 5.4. In Section 5.5, we run exhaustive computer simulations to assess the performance of

the proposed distributed synchronization and MIMO-relay beamforming solution both at the com-

ponent and link levels in terms of estimation accuracy and throughput, respectively. Finally, we

draw out some concluding remarks in Section 5.6.

The notations adopted in this paper are as follows. Vectors and matrices are represented in

lower- and upper-case bold fonts, respectively. The shorthand notation x ∼ CN (m,σ2) denotes a

complex normal (i.e., Gaussian) distribution with mean m and variance σ2. Moreover, {.}T and

{.}H denote the conjugate and Hermitian (i.e., transpose conjugate) operators and det{.} returns

the determinant of any square matrix. The Euclidean norm of any vector is denoted as ||.|| and IN
denotes the (N ×N) identity matrix. For any vector x, diag{x} refers to the diagonal matrix whose

elements are those of x. For any matrix X, [X]q and [X]l,k denote its qth column and (l, k)th entry,

respectively. The element-wise product between any two vectors x1 and x2 is denoted as x1 � x2.

Moreover, {.}∗, ∠{.}, and |.| return the conjugate, angle, and modulus of any complex number, res-

pectively. Finally, E{.} stands for the statistical expectation, j is the imaginary unit (i.e., j2 = −1),

and the notation , is used for definitions.
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5.2 System model

Consider a cooperative decode-and-forward (DF) communication system with a source, S, a

destination, D, and a MIMO relay of K randomly distributed nodes, R1, R2, . . . RK , as shown in

Fig. 5.1. The K relays are subject to CFOs and TDs due to the presence of different local oscillators.

We denote the CFOs of the K relays by (ν̄1, ν̄2, · · · , ν̄K) ⊂ [0, νmax]K and their respective TDs by

(τ̄1, τ̄2, · · · , τ̄K) ⊂ [0, τmax]K . The parameters, νmax and τmax, can be set as large as desired within

the vicinity of practical CFO and TD values. The true unknown parameters will also carry the
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Figure 5.1 – System model for the distributed MIMO-relay beamforming scheme illustrated during
the DT (data transmission) cycles.

superscripts (.)[sr] and (.)[rd] to indicate the communication link to which they belong, i.e., S to

Rk and Rk to D, respectively. Most importantly, in stark contrast to previous works on multi-

node synchronization which have only dealt so far with TCCs, all the nodes and/or the destination

are assumed in this work to be mobile, possibly with different velocities. Hence the second-hop’s

communication link between each relay node Rk and the destination has a TVC characterized by

the Doppler spread σDk .

During an initial synchronization period, the final destination starts by broadcasting a common

training sequence of L symbols, a[dr] , [a[dr][1], a[dr][2], . . . , a[dr][L]]T , to all the relays. Hence, every

relay node will be able to estimate its own synchronization parameters locally and independently of

all others. This approach, in contrast to [25], alleviates the hurdles of estimating closely-spaced TDs

and/or CFOs when implemented jointly at the destination. During this pilot transmission (PT)
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period, the destination broadcasts the following known signal to all the relays:

s[dr](t) =
L−1∑
l=0

a[dr][l + 1]g (t− lT ) , (5.1)

where g(t) is the pulse-shaping function and T is the symbol duration. The continuous-time received

signal at the kth relay is given by:

x
[dr]
k (t) = h

[dr]
k (t)s[dr]

(
t− τ̄ [dr]

k

)
ej2πν̄

[dr]
k

t + n
[dr]
k (t), (5.2)

where h[dr]
k (t) is a flat-fading Rayleigh channel and n[dr]

k (t) is the additive Gaussian noise component

assumed to be temporally white. Using its received signal in (5.2), each relay will find the estimates,

τ̂
[dr]
k and ν̂

[dr]
k , for its channel TD and CFO, τ̄ [dr]

k and ν̄
[dr]
k , respectively. The signal in (5.2) is

oversampled by a factor Q = T/Ts where Ts is the sampling period. The observation sequence

corresponding to the sampling time instants, {nTs}QL−1
n=0 , is given by:

x
[dr]
k (n) = h

[dr]
k (n)

L−1∑
l=0

a[dr][l+1]g
(
nTs−lT−τ̄ [dr]

k

)
e
j2πν̄[dr]

k
n
Q + n

[dr]
k (n), (5.3)

where the additive white Gaussian noise is denoted by n[dr]
k (n) ∼ CN (0, σ2

nk
). Notice in (5.3) that

we keep using the same notation, ν̄[dr]
k , as in (5.2) for the normalized (by Ts) CFO between Rk and

D, that is for the sake of simplicity.

In order to rewrite (5.3) in a matrix/vector form, we denote by x[dr]
k ,

[x[dr]
k (0),x[dr]

k (1), . . . , x[dr]
k (QL − 1)]T , h[dr]

k , [h[dr]
k (0), h[dr]

k (1), . . . , h[dr]
k (QL − 1)]T , and

n[dr]
k , [n[dr]

k (0), n[dr]
k (1), . . . , n[dr]

k (QL − 1)]T the vectors that contain, respectively, the recei-

ved samples, the channel coefficients, and the noise components. We also introduce the following

matrix that is parametrized by the generic TD variable τ :

G(τ),



g(0− T − τ) . . . g(0− LT − τ)

g(Ts − T − τ) . . . g(Ts − LT − τ)
...

...
...

g
(
(QL−1

)
Ts−T−τ) . . . g

(
(QL−1)Ts−LT−τ

)


.
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Starting from (5.3) and resorting to some straightforward algebraic manipulations, it can be shown

for k = 1, 2, . . . ,K that we have:

x[dr]
k = Λ

(
ν̄

[dr]
k

)
Ω
(
τ̄

[dr]
k

)
h[dr]
k + n[dr]

k , (5.4)

where:

Ω (τ) , diag
{
G (τ) a[dr]

}
, (5.5)

Λ(ν) ,



1 0 . . . 0

0 ej2πν 0 . . . 0
...

...
...

...
...

0 . . . . . . . . . ej2πν(QL−1)/Q


. (5.6)

For the sake of clarity, we will only focus on the second hop and assume the first hop’s estimation

and transmission tasks to be ideal. Indeed, as shown in Fig. 5.2, the proposed synchronization

algorithm can also be applied at each relay node to obtain the matched filtered samples required to

decode the data locally during the data transmission (DT) period. As such, we will drop in (5.4)
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Figure 5.2 – Block diagram of the DF receiver at the kth relay.

and in all the equations of the next section the [dr] superscript thereby leading to:

xk = Λ (ν̄k) Ω (τ̄k) hk + nk. (5.7)
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Yet for the sake of completeness, the entire processing and data signaling structure of the two-hop

MIMO-relay beamforming scheme is fully illustrated in Fig. 5.4. And its active building blocks, over

the second hop, will be discussed and clarified one by one in the following sections.

5.3 Joint TD and CFO ML estimator

5.3.1 TCC Case

Under the assumption of static channels, all nodes are stationary and as such the Doppler spread

is equal to zero. In this case, the system model in (5.7) reduces to:

xk = hkΛ (ν̄k) G (τ̄k) a + nk, (5.8)

where hk is the channel gain of the communication link between D and Rk. It can be shown that

the log-likelihood function (LLF) can be expressed as follows:

L
(
νk, τk, hk, σ

2
nk

)
= − 1

σ2
nk

||xk−hkΨ(νk, τk)a||2−QL ln(πσ2
nk

), (5.9)

where

Ψ(νk, τk) = Λ(νk)G(τk). (5.10)

First, we maximize L
(
ν, τ, h, σ2

nk

)
with respect to the noise variance. The partial derivative of (5.9)

with respect to σ2
nk

is given by:

∂
∂σ2
nk

L
(
νk, τk, hk, σ

2
nk

)
= 1

σ4
nk

∣∣∣∣xk − hkΨ(νk, τk)a
∣∣∣∣2 − QL

σ2
nk

.

Setting this result to zero and solving for σ2
nk

yields the ML estimate for the noise variance:

σ̂2
nk,ML = 1

QL

∣∣∣∣xk − hkΨ(νk, τk)a
∣∣∣∣2, (5.11)
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which is substituted back in (5.9) to obtain the following ML estimates for the remaining parameters

at each relay node:

[
ν̂k, τ̂k, ĥk

]
= argmin

ν,τ,h
L
(
ν, τ, h

)
, (5.12)

where:

L
(
ν, τ, h

)
=

∣∣∣∣xk − hΨ(ν, τ)a
∣∣∣∣2. (5.13)

For any given couple of values for ν and τ , the LLF optimization over hk reduces to a linear least

squares (LS) problem whose solution is given by:

ĥk = 1∣∣∣∣Ψ(ν, τ)a
∣∣∣∣2 aHΨ(ν, τ)Hxk. (5.14)

By substituting ĥk for hk back in (5.13) and after some algebraic manipulations, we obtain the

so-called compressed LLF (CLLF) which depends solely on ν and τ :

Lc
(
ν, τ

)
= 1∣∣∣∣Ψ(ν, τ)a

∣∣∣∣2 xHk Ψ(ν, τ)a aHΨ(ν, τ)Hxk.

= 1∣∣∣∣Ψ(ν, τ)a
∣∣∣∣2[aHΨH(ν, τ)xk

]H[
aHΨH(ν, τ)xk

]
. (5.15)

Hence, the joint ML estimates of νk and τk become the solution of the following optimization

problem:

[ν̂k, τ̂k] = argmax
ν,τ

Lc
(
ν, τ

)
. (5.16)

Moreover, noticing that aHΨH(ν, τ)xk is a scalar quantity, one can rewrite (5.15) as follows:

Lc
(
ν, τ

)
= 1∣∣∣∣Ψ(ν, τ)a

∣∣∣∣2 ∣∣aHG(τ)HΛH(ν)xk
∣∣2. (5.17)

Now, we define the vector v(τ) = G(τ)a whose elements are obtained by linearly convolving the

training sequence, a, with the delayed shaping pulse g(t− τ) and then sampling the output at time
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instants {mTs}QL−1
m=0 . Therefore, it follows that:

Lc
(
ν, τ

)
= 1∣∣∣∣d(ν, τ)

∣∣∣∣2∣∣v(τ)HΛH(ν)xk
∣∣2

= 1∣∣∣∣d(ν, τ)
∣∣∣∣2
∣∣∣∣∣∣
QL−1∑
m=0

v∗τ [m+1]xk[m+1]e−j2πνm/Q
∣∣∣∣∣∣
2

, (5.18)

where vτ (m) is the mth element of the vector v(τ). By closely inspecting the expression in (5.18),

we observe that the underlying CLLF can be evaluated at each TD candidate value, and all CFO

candidate values using fast Fourier transform (FFT) operation.

5.3.2 TVC Case

We start by deriving the LLF that depends on all the unknown parameters observed separately

at each relay, i.e., νk, τk, hk, σ2
nk
. Since the noise components are assumed to be temporally white and

Gaussian distributed, i.e., nk v CN (0, σ2
nk

IQL), each vector xk in (5.7) is also Gaussian distributed.

Hence, it can be shown that the actual LLF at each relay Rk is given by 1:

L
(
νk, τk, hk, σ

2
nk

)
= −ln (det{Rxkxk})−xHk R−1

xkxkxk, (5.19)

where Rxkxk = E
{
xkxHk

}
is the covariance matrix of the zero-mean observation vector xk whose

expression follows from (5.7) as:

Rxkxk =Λ (νk) Ω (τk) RhkhkΩ (τk)H Λ (νk)H+σ2IQL, (5.20)

where Rhkhk = E
{
hkhHk

}
. It is obvious that maximizing L

(
νk, τk, hk, σ

2
nk

)
requires the inversion of

a large-size (QL×QL) covariance matrix and the computation of its determinant. In the following,

we develop a new solution that avoids these costly calculations. Actually, the new solution relies

on the two-ray channel approximation 2 of the covariance matrix of the channel, as described in

[80],[81] (please refer to the Appendix in [80] for more details about the underlying second-order

Taylor series approximation), which leads to:

Rhkhk ≈
σ2
hk

2 WWH , (5.21)

1. After dropping the constant terms.
2. It is worth mentioning that the two-ray channel approximation holds only when LFDkT � 1.
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where σ2
hk

is channel variance and W is defined as follows:

W = [w w∗]. (5.22)

The vector w in (5.22) is given by:

w =
[
1 e−jσDkTs . . . e−j (QL−1)σDkTs

]T
.

Injecting (5.21) in (5.20) leads to the following overall covariance matrix approximation:

Rxkxk =
σ2
hk
2 Λ (νk) C(τk)CH(τk)Λ (νk)H+σ2

nk
IQL, (5.23)

in which the matrix C(τk) is defined as follows:

C(τk) , [c1(τk) c2(τk)] = Ω (τk) W. (5.24)

To find the inverse of Rxkxk and its determinant, we start by finding the analytical expressions for the

eigenvalues of C(τk)CH(τk) and their corresponding eigenvectors. Clearly, the matrix C(τk)CH(τk)

is of rank two (cf. Appendix) and has the same non-zero eigenvalues values as CH(τk)C(τk). Since

the latter is a 2 × 2 matrix, its eigenvalues can be computed analytically. Indeed, it can be shown

that:

CH(τk)C(τk) =

 α(τk) ϕ(τk)

ϕ(τk)∗ α(τk)

 , (5.25)

where:

α(τk) =
QL−1∑
n=0

(
Ωn,n(τk)

)2
, (5.26)

ϕ(τk) =
QL−1∑
n=0

(
Ωn,n(τk)

)2
e2σDk (n−1)Ts . (5.27)

From the roots of the characteristic polynomial of the matrix CH(τk)C(τk) in (5.25), the two

eigenvalues are obtained as follows:

λ1 = α(τk) + |ϕ(τk)| and λ2 = α(τk)− |ϕ(τk)|. (5.28)
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Hence the corresponding unit-norm eigenvectors are given by:

v1 = 1√
2

[
1 ϕ(τk)∗

|ϕ(τk)|

]T
and v2 = 1√

2

[
1 − ϕ(τk)∗

|ϕ(τk)|

]T
.

Since λ1 and λ2 are also the two non-zero eigen-values of C(τk)C(τk)H , the singular value decom-

position (SVD) of the matrix C(τk) is obtained as follows:

C(τk) = U(τk)Σ(τk)1/2V(τk)H , (5.29)

where:

Σ(τk) , diag{λ1, λ2} and V(τk) , [v1 v2]. (5.30)

Moreover, since V(τk)HV(τk) = I2, then U(τk) = [u1 u2] can be expressed as follows:

U(τk) = C(τk)V(τk)HΣ(τk)−1/2. (5.31)

Therefore, it follows that:

u1 = 1√
2λ1

(
c1(τk) + ϕ(τk)∗

|ϕ(τk)|

)
, (5.32)

u2 = 1√
2λ2

(
c2(τk)−

ϕ(τk)∗

|ϕ(τk)|

)
. (5.33)

Now, by injecting (5.29) back into (5.23), it follows that:

Rxkxk = σ2
nk

(
ρk
2 B (νk, τk) Σ(τk)B (νk, τk)H + IQL

)
, (5.34)

where B (νk, τk) = Λ (νk) U(τk) and ρk = σ2
hk
/σ2

nk
is the signal-to-noise ratio (SNR). Using the

Woodburry identity [82], the inverse of (5.34) can be computed analytically as follows:

R−1
xkxk = 1

σ2
nk

IQL −
1
σ2
nk

B
( 2
ρk

Σ−1 + BHB
)−1

BH, (5.35)

from which, the matrix and vector arguments have been removed for the sake of simplicity. Next,

exploiting the fact that u1 and u2 are orthogonal with unit norms, the inverse of the covariance
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matrix in (5.35) can be written as follows:

R−1
xkxk = 1

σ2
nk

IQL −
1
σ2
nk

B (νk, τk) Γ(τk)B (νk, τk)H , (5.36)

where:

Γ(τk) = diag
{

ρkλ1
2 + ρkλ1

,
ρkλ2

2 + ρkλ2

}
. (5.37)

Moreover, from (5.34), it can be shown that the determinant of Rxkxk is given by:

det{Rxkxk} =
(σ2
nk

)QL

4 (ρkλ1 + 2)(ρkλ2 + 2). (5.38)

Finally, by injecting (5.36) and (5.38) back into (5.19), the LLF reduces to:

L
(
νk, τk, σ

2
n

)
= − ln ((ρkλ1 + 2)(ρkλ2 + 2)) + 1

σ2
nk

∣∣∣∣∣∣Γ(τk)1/2B (νk, τk)H xk
∣∣∣∣∣∣2. (5.39)

By expanding the norm in (5.39), the LLF can be expressed as follows:

L
(
νk, τk, σ

2
nk

)
= − ln ((ρkλ1 + 2)(ρkλ2 + 2)) + 1

σ2
nk

2∑
i=1

ρkλi
2 + ρkλi

∣∣∣uHi Λ(νk)Hxk
∣∣∣2, (5.40)

or alternatively as:

L
(
νk, τk, σ

2
nk

)
=− ln ((ρkλ1 + 2)(ρkλ2 + 2)) + 1

σ2
nk

×

2∑
i=1

ρkλi
2 + ρkλi

∣∣∣∣∣∣
QL−1∑
m=0

u∗i [m+1]e−j2πν
m
Q xk[m+1]

∣∣∣∣∣∣
2

, (5.41)

and the joint ML estimates of νk and τk, assuming perfect knowledge of the Doppler spread σDk ,

are obtained as the solution to the following two-dimensional optimization problem:

[ν̂k, τ̂k] = argmax
ν,τ

L
(
ν, τ

)
. (5.42)

Note here that the estimates of the SNR, ρk, and the noise variance, σ2
nk
, are obtained using the same

approach adopted in [80]. Moreover, by closely inspecting the expression in (5.41), we observe that

the underlying cost function can be easily evaluated at each candidate value, τ , and all candidate
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(normalized) CFO values by taking the FFT of the following vector:

zi(τ) =
[
u∗i [1]xk[1], u∗i [2]xk[2], ..., u∗i [QL]xk[QL]

]T
. (5.43)

Note as well that the candidate values, ν = [ν1, ν2, . . . , νNFFT ]T , for the unknown CFO parameter

are dictated by the size, NFFT, of the underlying FFT:

νn = n− 1
NFFT

, n = 1, 2, . . . , NFFT. (5.44)

A larger NFFT allows a more refined sampling of the CFO grid and, therefore, a more accurate

estimation. Hence, we can easily use the FFT algorithm to evaluate the LLF for all candidate CFO

values, ν, at any given candidate delay value, τ [r], as follows:

dr = − log ((ρλ1 + 2)(ρλ2 + 2)) + 1
σ2
n

2∑
i=1

ρλi
2 + ρλi

|FFT (ui � xk)|2 , r = 1, 2, . . . , Nτ . (5.45)

Hence, the function in (5.41) is evaluated for all possible TD and CFO values at each relay. The

result is a NFFT ×Nτ matrix defined as:

D = [d1,d2, . . . ,dNτ ]. (5.46)

Finally the estimates ν̂k and τ̂k are obtained by fetching the global maximum of the matrix D.

5.3.3 Cramer rao lower bound (CRLB)

In the TVC case, the CLRB was previously derived in [83] for the Doppler spread estimation. In

the following, we extend it to joint CFO and TD estimation for performance benchmarking. Recall

that the covariance matrix of the received signal is given by:

Rxkxk = Λ (ν̄k) Ω (τ̄k)E
{
hkhHk

}
Ω (τ̄k)HΛ (ν̄k)H+σ̄2

nk
IQL. (5.47)

Let ζ = [τ̄k, ν̄k, σ̄2
nk

]T be a vector that contains all the parameters of interest, then the (k, l)th

element of the Fisher information matrix (FIM) can be written as follows:

[J(ζ)]k,l = trace
[
R−1

xkxk
∂Rxkxk
∂ζk

R−1
xkxk

∂Rxkxk
∂ζl

]
. (5.48)
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The CRLBs for the TD and CFO parameters are obtained by finding the inverse of the FIM in

(5.48) and then taking its first and second diagonal entries, respectively.

5.3.4 Joint synchronization and Doppler spread estimation

The LLF in (5.41) depends on both the target TD and CFO, but also on the Doppler spread. The

latter was assumed thus far to be perfectly known. However, in real life scenarios, the Doppler spread

has to be estimated. To reduce the complexity of the tri-dimensional estimation problem, we use a

similar approach to the one proposed in [25] in order to find the minimum of some cost function. This

approach allows to separate the Doppler estimation problem from the joint synchronization one. As

far as the initialization step is concerned, we opt for the TCC technique developed in Subsection 5.3.1

to get initial TD and CFO estimates, i.e., τ̂ (0)
k and ν̂(0)

k . The latter are then injected into the LLF

of (5.41) to obtain an initial Doppler spread estimate. This preliminary guess is in its turn injected

in the very same LLF function to jointly estimate the TD and CFO. The TCC-based technique

is suitable for initialization since it provides good initial estimates for the TVC-based technique.

Hence, the latter converges quickly, in few iterations only. The overall estimation technique at each

relay Rk is summarized in Algorithm 2. Note that the Doppler estimates can be obtained using

Algorithm 2 Joint estimator for the Doppler, TD, and CFO at each relay RK
Initialization: Estimate τ̂ (0)

k and ν̂(0)
k using (5.18)

for j = 1 to J do
Estimate σ̂(j)

Dk

Estimate τ̂ (j)
k and ν̂(j)

k using (5.41)
end for

(5.41) after injecting the τ̂ (j−1)
k and ν̂(j−1)

k . Unfortunately, at high Doppler values, the TCC CFO

estimates may not be reliable and could affect the performance of the overall algorithm. In such

a scenario, we can adopt the technique proposed in [80] which is robust to the CFO and, hence,

provides accurate Doppler estimates for injection into the next processing iteration.

5.4 Distributed MIMO-relay beamfroming

Very often, the synchronization process is performed at the destination where the receiver ex-

tracts the estimates of all the parameters. This approach could perform well in practice. However,
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it can suffer from prohibitive computational costs since it requires solving a multi-dimensional pro-

blem with a cardinality increasing with the number of relaying nodes [84]. Many techniques opt for

sub-optimal iterative implementations [25], [85] that could become ineffective in the case of dense

networks. In such a case, open-loop synchronization architectures should be adopted instead. Accor-

dingly, the proposed synchronization technique is run at each relay node along with the distributed

MIMO-relay beamforming transceiver structure illustrated in Fig. 5.3. During a PT period, each

node performs a channel parameter estimation task. During the DT period, each relay will transmit

the useful data to the destination while ensuring that the signal is modified properly using the TD,

CFO and channel estimates made available during the PT period. Full details of the processing

and data signaling structure are shown in Fig. 5.4. Note that the synchronization parameters are

{
b̂
(k)
p,l

}Ldata

l=1

x
[dr]
k (t)

PT

DT

×

TD and CFO
Joint

Estimator

e−j2πν̂
[dr]
k t

τ̂
[dr]
k

Pulse Shape

ĥ
[dr]
k,p

∗

||ĥ[dr]
p ||2 or ĥ

[dr]
k,p

∗

K

Channel

×

.

.

y
[rd]
k (t)

.

Channel Precompensation

ν̂
[dr]
k

Estimation

Filter

Figure 5.3 – Block diagram of the DF transceiver at the kth relay.

expected to vary with time, but actually at a rate much slower than the channel time-variations.

Therefore, as shown in Fig. 5.4, the synchronization parameters will be refreshed once each P conse-

cutive DT periods.

For more details about the proposed communication protocol, we provide an example on how

the processing time and data signaling are organized in the time domain. In fact, during the first

period, i.e., step (1), the destination broadcasts a training sequence,
{
a

[rd]
l

}Lsync

l=1
, to all K relaying

nodes. Then, the source node starts transmitting its own training sequence,
{
a

[sr]
l

}Lsync

l=1
, to the re-

laying nodes during steps (2) and (3). Each relay node estimates the channel parameters (τ̂ [rd]
k , ν̂

[rd]
k )

and (τ̂ [sr]
k , ν̂

[sr]
k ) during steps (4) and (5), respectively. At steps (6) and (7), the destination node

broadcasts another training sequence,
{
a

[rd]
l

}Lch

l=1
, dedicated to channel estimation. At the same time,

the source node performs the same procedure by sending the sequence {bp,l}Ldata
l=1 during steps (8)
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Figure 5.4 – Processing and data signaling structure of the two-hop MIMO-relay beamforming scheme
assuming ideal (inactive) first-hop communication.

and (9). At step (10), each relay node uses τ̂ [sr]
k and ν̂[sr]

k along with ĥ[sr]
k,p to estimate

{
b̂
(k)
p,l

}Ldata

l=1
.

The latter will be used along with τ̂
[rd]
k , ν̂

[rd]
k , and ĥ

[rd]
k,p to generate the transmitted signal y[rd]

k (t)

as described in (5.53). The signal y[rd]
k (t) is transmitted during step (11). Finally, the destination

node performs a simple decoding procedure during step (12). During the next P − 1 periods (i.e.,

1 < p < P ), steps (1) to (5) are ignored since the channel parameters (τ̂ [rd]
k , ν̂

[rd]
k ) and (τ̂ [sr]

k , ν̂
[sr]
k )

are assumed to be the same over P periods. At the P th period, however, we execute the same steps

(6) to (11) but slightly change the final step (12) and, hence, denote it as (12’). In step (12’), once

the destination node completes the decoding process, it starts broadcasting again the very same

training sequence
{
a

[rd]
l

}Lsync

l=1
.

Now, as explained above, the destination periodically transmits to all the relays, at each pth period,

a training sequence ap that only contains Lch pilot symbols, i.e., a[dr] = {a[dr]
l }

Lch
l=1. The latter are

exploited by each relay to update its channel state information (CSI) with respect to the destina-

tion. More specifically, the corresponding oversampled signal denoted 3 here as x̃[dr]
k is processed by

relay Rk to find the ML estimate of its own complex-valued channel coefficient of the D−to−Rk

3. Note here that x̃[dr]
k is equivalent to x[dr]

k in (5.7) using, however, another training sequence transmitted speci-
fically for channel estimation purposes.
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link during the {pth}Pp=1 period, as follows :

ĥ
[dr]
k,p = 1∣∣∣∣r(ν̂k, τ̂k)∣∣∣∣2 rH

(
ν̂k, τ̂k

)
x̃[dr]
k , k = 1, 2, . . . ,K, (5.49)

where:

r(ν, τ) = Λ(ν)G(τ)a[dr]. (5.50)

To ensure that the signals from all the relays arrive at the receiver coherently and thus combine

constructively, the relays must adjust their carrier frequencies, carrier phases, and symbol timings

as follows:

— The signal carrying the useful data to be transmitted by the kth relay is delayed as follows:

s(t− τ̂ (comp)
k ) =

Ldata−1∑
l=0

bp,l+1 g
(
t− lT − τ̂ (comp)

k

)
, (5.51)

where {bp,l}Ldata
l=1 are the symbols containing the useful data during the pth period assuming

here perfect transmission links between the source and the relays, and τ̂ (comp)
k = τmax− τ̂ [dr]

k .

— The relay node pre-compensates its CFO by de-rotating the signal in (5.51) as follows:

e−j2 π ν̂
[dr]
k

t s
(
t− τ̂ (comp)

k

)
. (5.52)

— By relying on the channel reciprocity property of time-division duplex (TDD) schemes, we

pre-compensate the channel phase and match its amplitude with the complex channel esti-

mate to generate the following transmit signal yk(t) at each relay:

yk(t) =
ĥ

[dr]
k,p
∗∣∣∣∣∣∣ĥ[dr]

p

∣∣∣∣∣∣2 e−j2 π ν̂kt s
(
t− τ̂ (comp)

k

)
, (5.53)

where ĥ
[dr]
k,p is the channel estimate at the kth relay obtained from (5.49) and ĥ

[dr]
p =

[ĥ[dr]
1,p , ĥ

[dr]
2,p , . . . , ĥ

[dr]
K,p]T . In (5.53), we need to have the channel estimates over all D − R

links available at each relay node for the sole purpose of calculating the square norm of the

K-dimensional D−R vector channel. The latter can be fed back by the destination. Alterna-

tively, to avoid any additional overhead, it can be simply approximated by its average value

K as follows:

yk(t) ≈
ĥ

[dr]
k,p
∗

K
e−j2 π ν̂kt s

(
t− τ̂ (comp)

k

)
. (5.54)
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At the destination, the received signal, x[rd]
p (t), which is the superposition of all the pre-synchronized

signals transmitted by the K relays, can be expressed as follows:

x[rd]
p (t) =

K∑
k=1

h
[rd]
k,p (t) e−j2 π νkt yk(t− τk) + w(t), (5.55)

where h[rd]
k,p (t) is the true TVC pertaining to the kth relay and w(t) is the additive Gaussian noise

component received at the destination node. By substituting yk(t) in (5.55) with its expression in

(5.53), the received signal stemming from our decentralized multi-node synchronization scheme and

distributed MIMO-relay beamforming design is rewritten as follows:

x[rd]
p (t) =

K∑
k=1

h
[rd]
k,p (t)

ĥ
[dr]
k,p
∗∣∣∣∣∣∣ĥ[dr]

p

∣∣∣∣∣∣2 ej2 π (ν̂[dr]
k
−ν[dr]

k
)ts
(
t− τ̂ (comp)

k − τ [dr]
k

)
+ w(t). (5.56)

5.5 Simulation results

In the following, we discuss our simulation results at both the component and link levels when all

previous works would stop short from moving to the more time consuming yet much more insightful

link level. In all our simulations, we assume as would be expected in practice that the K relays are

co-located at about the same distance and moving at the same relative speed from the destination

whether the latter is stationary or also in motion itself. Under this assumption, the average SNR and

the Doppler frequency are assumed to be the same over all R-D and D-R links. Please note that only

in the simulations section did we make the choice of considering the simple case of nearly equal SNR

and Doppler values over all second-hop channels that could arise in practice in the case for instance

of co-located nodes. We did so only for the sake of simplifying our presentation and discussion of the

simulation results. Nevertheless, our solution was designed to cope well with the general case where

both the SNR and Doppler frequency values could be different from one second-hop link to another.

Beyond the above considerations, co-location could become a required feature among collaborating

nodes. For example, it was shown in [86], that multi-hop transmission with co-located cooperating

nodes exhibits better coverage especially for higher path loss exponents. Moreover, we know that

sensors usually have limited-capacity batteries. And one way to extend their life and allow longer

network operation without human intervention is by exploiting wireless energy harvesting (WEH)

[87]. Such a solution requires that the sensors be co-located and clustered. In the following, we will
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investigate in different scenarios the estimation accuracy of the tested synchronization parameter

estimators in terms of the normalized mean square error (NMSE) before assessing their link-level

throughput performance.

5.5.1 Component-level simulations

In all component-level simulations, we consider a training sequence, a[dr], of Lsync = 128 QPSK

symbols and a square root raised-cosine shaping-pulse filter (SRRC) with a roll-off factor ρ = 0.3.

In Fig. 5.5, we compare the proposed technique under its two variants with idealized and active

Doppler frequency estimation, i.e., ML TVC-PD and ML TVC-DE, against the space alternating

generalized expectation maximization (SAGE) algorithm in [25], the sole benchmark available in

the literature dealing with multi-node TD and CFO synchronization, and the CRLBs derived in

Section III.B in terms of NMSE performance. We observe that all tested techniques perform nearly
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Figure 5.5 – CRLB and NMSE vs SNR of the ML TVC, ML TCC, and SAGE techniques vs the SNR
with FDk = 15 Hz and uniform Jakes’ model for: (a) the TDs and (b) the CFOs.

the same at FDk = 15 Hz with a small advantage for both TVC-PD and TVC-DE measured at high

SNR values. On the other hand, SAGE and ML TCC - which perform exactly the same because
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they both rely on the TCC assumption - see their performance slightly degrade at high SNR be-

cause the channel is not totally constant (i.e., FDk 6= 0 Hz). Besides, we observe that the practical

ML TVC-DE version matches its idealized ML TVC-PD counterpart in terms of TD estimation

accuracy whereas it exhibits slightly lower CFO estimation performance. In fact, this degradation

stems from the Doppler estimation errors that increase at higher Doppler values with an even more

detrimental impact on CFO estimation.
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Figure 5.6 – CRLB and NMSE vs SNR of the ML TVC, ML TCC, and SAGE techniques vs the SNR
with FDk = 100 Hz and uniform Jakes’ model for: (a) the TDs and (b) the CFOs.

In Fig. 5.6, we tackle a more challenging case with a significantly higher Doppler frequency

FDk = 100 Hz. Here again, we can report the very same qualitative observations made in Fig. 5.5,

yet with more prominent performance gaps this time in terms of CFO and TD estimation accuracies,

more so at high SNR values, between on one hand ML TVC and the TCC-based techniques (i.e.,

SAGE and ML TCC) and on the other hand between ML TVC-PD and ML TVC-DE. This is hardly

surprising because on one hand SAGE and ML TCC fail to reach the global maximum and exhibit

poor performance since the TCC assumption no longer holds at high Doppler. And because, on the

other hand, the Doppler estimator selected for joint operation with the new ML TVC technique

to illustrate its applicability in real-world operating conditions is specifically tailored to cope with

the far more challenging estimation of low Doppler frequencies. Hence, the additional performance
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losses resulting from the joint estimation of high Doppler frequencies can be reduced to the same

small if not negligible amounts observed at low Doppler in Fig. 5.5; that is by the simple integration

of alternative Doppler estimation solutions easily prone to be made relatively much more accurate

at high Doppler.
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Figure 5.7 – CRLB and NMSE vs FDk of the ML TVC, ML TCC, and SAGE techniques with SNR = 10
dB and uniform Jakes’ model for: (a) the TDs, and (b) the CFOs.

To better investigate the effect of Doppler frequency on the synchronization accuracy, we plot

in Fig. 5.7 the NMSE of all techniques against the Doppler. Obviously both ML TVC-PD and ML

TVC-DE outperform the TCC-based techniques (i.e., SAGE and ML TCC) over a wide Doppler

range (i.e., FDk ≤ 300 Hz). As the Doppler increases, the TCC-based techniques start experiencing

serious difficulties to converge to the global maximum that translate into extremely poor TD and

CFO estimation accuracies.

In Fig. 5.8, we assess the performance variations of the same tested techniques against the trai-

ning sequence length. We observe that TVC-PD outperforms both ML TCC and SAGE algorithms

in terms of CFO estimation accuracy no matter the number of symbols. Recall that both TVC-PD

and TVC-DE rely on a two-ray channel approximation (cf. Section 5.3.2) that holds only when

LsyncFDkT � 1 [80]. Hence, when increasing the training sequence’s size at small Doppler values,

both techniques see their NMSE performance improve. However, the approximation becomes inac-
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Figure 5.8 – CRLB and NMSE vs the number of pilot symbols Lsync of the ML TVC, ML TCC, and
SAGE techniques with SNR = 10 dB, FDk = 100 Hz, and uniform Jakes’ model for: (a) the TDs, and
(b) the CFOs.

curate with even longer sequences, more so at higher Doppler, thereby resulting beyond some best

trade-off length in counter-effect accuracy losses.

5.5.2 Link-level simulations

Our link-level simulations were run using the key setup parameters listed in Table 5.1.

Table 5.1 – Simulation parameters

Parameters Symbol Values
Symbol period T 1/14 ms
Number of relays K {1, 2, 4, 8}
Maximum Doppler shift {FDk}Kk=1 {15, 100, 200, 300} Hz
Oversampling factor Q 2
Roll-off factor ρ 0.3
TDs τk Uniformly random (i.i.d.)
CFOs νk Uniformly random (i.i.d.)
Rk −D channel hk Rayleigh random (i.i.d.)
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Fig. 5.9 depicts the resulting throughput for three different modulation orders (QPSK, 16-QAM

and 64-QAM) and K relays. We consider in Figs. 5.9 (a) and 5.9 (b) the case where all K relay-

destination links have the same maximum Doppler frequency shift of 15 and 100 Hz, respectively.

For a given modulation order M , the throughput is obtained from the symbol error rate (SER) as

follows:

Throughput = 1
T

log2(M)(1− SER)(1−R), (5.57)

where R is the overhead ratio. Note here that the latter is computed over a period that spans Lsync

symbols for synchronization and P periods each of which includes Lch = 2 pilot symbols followed

by Ldata = 12 information-bearing symbols. As such, the overhead ratio is given by:

R = Lsync + LchP

Lsync + (Lch + Ldata)P . (5.58)

Our simulations were obtained for Lsync = 128 and P = 100. Note here that the overhead ratio

associated with the synchronization period becomes negligible for such large value of P . The latter

cannot, however, be increased indefinitely as it is dictated by the required refreshment rate P that

better copes with the time variations of the synchronization parameters.

We see from Fig. 5.9 (a) that QPSK transmissions, among the different considered modulations,

provide higher throughput for SNR values below 11 dB. When the SNR ranges between 11 dB and

16 dB, 16-QAM becomes more suitable whereas 64-QAM dominates when the SNR exceeds 16 dB.

The resulting throughput curve assuming an adaptive (i.e., SNR-dependent) modulation is depicted

by the black curve.

In Fig. 5.9 (b), we show the performance of the proposed distributed beamforming scheme at a

higher Doppler FDk = 100 Hz (i.e., fast TVCs). In this scenario, QPSK and 16-QAM modulations

provide higher throughput over the same SNR ranges reported above at low Doppler whereas 64-

QAM dominates when the SNR exceeds 21 dB. We also observe that 64-QAM transmissions suffer

from a noticeable performance degradation. Indeed, at lower Doppler values, the phase estimates of

(5.49) provide accurate values since the channel varies slowly during the same period. Hence, the

decoder at the destination is able to accurately estimate the transmitted symbols. In the case of high

mobility, the channel varies rapidly during the same period, leading to a more severe degradation

of the channel estimates. The latter affects the decoding process, especially at higher modulations

which are more sensitive to phase shifts.

In Fig. 5.10, we compare the performance of ML TVC-PD and ML TVC-DE in terms of through-
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Figure 5.9 – Link-level throughput vs SNR for ML TVC-PD at K = 2 relays and a refreshment rate
P = 100 for: (a) {FDk}

K
k=1 = 15 Hz, and (b) {FDk}

K
k=1 = 100 Hz.

put. The former sees its performance deteriorate against the former only at high SNR. Measured

losses are almost negligible at low Doppler, but become noticeable at high Doppler. Yet, as reported

previously when discussing the component-level simulation results, such link-level throughput gap

can be easily bridged by the integration of an alternative high-range Doppler estimator, thereby

making ML TVC-PD an equivalent version to ML TVC-DE and a meaningful one for further com-

parisons in what follows with existing Doppler-independent TCC-based benchmarks.

In Fig. 5.11, we assess the performance of ML TVC-PD in the more realistic case of an active

first-hop scenario, that is to gauge in comparison the usefulness of the results obtained in the idea-

lized case of perfect D −R transmissions. Actually, the impact of active first-hop links is emulated

by inserting erroneous symbols at each relay. The latter are generated with a probability resulting

from an SNR level 5 dB higher than the one measured at the destination. This is to reflect the fact

that relays are expectedly selected at more favorable locations than the destination. We see that

the throughput curve of the two-hop scenario exhibits approximately the same performance as the

one considering an idealized first-hop communication. Such a result confirms that the throughput

of the MIMO-relay beamforming system is mainly dictated by the performance of the relatively



96

−10 −5 0 5 10 15 20 25 30
0

10

20

30

40

50

60
(a)

SNR [dB]

T
h
ro
u
g
h
p
u
t
[K

b
/
s]

 

 

−10 −5 0 5 10 15 20 25 30
0

10

20

30

40

50

60
(b)

SNR [dB]

T
h
ro
u
g
h
p
u
t
[K

b
/
s]

 

 
ML TVC-PD
ML TVC-DE
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Hz.

weaker-SNR second-hop.

In Fig. 5.12, we compare the performance of ML TVC-PD, ML TCC, and SAGE in terms of

throughput for four different numbers of relays (K = 1, K = 2, K = 4, and K = 8) and four

different Doppler frequencies (i.e., {FDk}Kk=1 = 15 Hz, {FDk}Kk=1 = 100 Hz, {FDk}Kk=1 = 200 Hz,

and {FDk}Kk=1 = 300 Hz). We see under the TCC assumption (i.e., FDk = 15 Hz) that all tech-

niques perform nearly the same in terms of link-level throughput. They do so the best with QPSK

transmissions when the SNR is below 11 dB whereas 16-QAM becomes more suitable at SNR values

ranging between 11 and 16 dB. When the SNR exceeds 16 dB, 64-QAM transmissions ultimately

become the best choice. At a higher Doppler frequency (i.e., FDk = 100 Hz), we can always report

noticeable and constantly increasing throughput gains of ML TVC over TCC-based SAGE and ML

TCC at both medium and high SNR levels when increasing the number of relays from 1 to 8. At

lower SNR values, all techniques exhibit the same NMSE and consequently the same throughput

performances. At even higher Doppler values (i.e., FDk = 200 Hz or FDk = 300 Hz), the relative

throughput gains of ML TVC over SAGE and ML TCC become even more significant, again more
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Figure 5.11 – Link-level throughput vs SNR for ML TVC-PD at K = 2 relays and a refreshment rate
P = 100 for: (a) {FDk}

K
k=1 = 15 Hz, and (b) {FDk}

K
k=1 = 100 Hz.

so when the number of relays also increases. These key observations come as a solid confirmation

of the very important performance benefits of the proposed distributed MIMO-relay beamforming

and multi-node synchronization schemes.

5.6 Conclusion

In this paper, we addressed the problem of time and frequency synchronization in cooperative

systems over TVCs. We proposed two different estimation techniques. The first operates under the

TVC assumption while the second one works with TCCs. In the first ML TVC-PD approach, we

assume perfect knowledge of the Doppler spread to provide accurate TD and CFO synchronization

estimates. Whereas we exploit the second ML TCC technique as an initialization scheme for prelimi-

nary synchronization then embed both ML TVC-PD and some Doppler estimator in a new iterative

version, ML TVC-DE. That is to account for the practical need to estimate at each relay node the

Doppler spread upon which relies ML TVC-PD. We also developed a new distributed MIMO-relay
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Figure 5.12 – Link-level throughput vs SNR for ML TVC-PD at a refreshment rate P = 100 and
different Doppler frequencies for: (a) K = 1, (b) K = 2, (c) K = 4, and (d) K = 8.

beamforming design that embeds the proposed synchronization technique at each relay node. We

showed under the TCC assumption that all techniques exhibit approximately the same performance.

However, when the Doppler increases, the TCC-based techniques exhibit poor performance while

the new ML TVC continues to provide accurate estimates. Link-level simulations confirm the net

advantages of the proposed ML TVC multi-node synchronization technique and the MIMO-relay

beamforming scheme in terms of throughput gains, especially at medium and high SNRs, more so

at relatively higher Doppler frequencies or with more distributed MIMO-relay beamforming nodes.

Future work could investigate a more complex system that includes multiple antennas at each relay

nodes and/or multiple receivers.
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5.7 Appendices

Appendix 1: [Relationship between the rank of C(τk)CH(τk) and the two-ray ap-

proximation]

As stated in [80], by adopting the two-ray approximation model, the approximate channel

covariance matrix, R̂hkhk , is of rank two. However, introducing the diagonal matrix Ω (τk) (i.e.,

C(τk)CH(τk) = Ω (τk) R̂hkhkΩ (τk)H) does not guarantee that C(τk)CH(τk) remains of rank two.

To find the rank of C(τk)CH(τk), we start with the following:

rank(C(τk))=rank(Ω (τk)W)≤min{rank(Ω(τk)), rank(W)}. (5.59)

We have also:

rank(Ω (τk))+rank(W)−QLsync≤rank(Ω(τk)W)=rank(C(τk)).

(5.60)

If Ω (τk) is a full rank matrix, then by using (5.59) and (5.60), it follows that:

rank(C(τk)) = rank(W). (5.61)

Since Ω (τk) is a diagonal matrix, by establishing that {[Ω (τk)]qq 6= 0}QLsync
q=1 , we can prove that

Ω (τk) is a full rank matrix. Now, recall that:

Ω (τ) , diag
{
G (τ) a[dr]

}
. (5.62)

Hence, the diagonal elements of Ω (τ) are given by:

[Ω (τ)]qq =
Lsync∑
l=0

a[dr][l + 1]g(qTs − LsyncT − τ), (5.63)

which are always non-zero elements due to the omnipresence in time of ISI components. It follows

that Ω (τ) is a diagonal matrix with non-zero elements and, hence, full rank. As seen in Fig. 5.13,

the probability that the absolute values of the diagonal element be equal to zeros is zero. Besides,

W = [w w∗] was proved to be of rank two in [81]. It follows from (5.61) that C(τk) is also of rank



100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a)

x

P
r(
m
in
(d
ia
g(
|Ω

(τ
k
)|
))

<
x
)

 

 

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

x

P
r(
m
in
(d
ia
g(
|Ω

(τ
k
)|
))

<
x
)

 

 

QPSK
64 QAM
16 QAM

L = 64
L =128
L = 256

Figure 5.13 – CDF of the minimum of absolute value of diag{Ω (τk)} for: (a) multiple modulation
orders, and (b) multiple sequence lengths.

two. And since for any matrix we have:

rank(C(τk)C(τk)H) = rank(C(τk)HC(τk))=rank(C(τk))=rank(W), (5.64)

we establish that C(τk)CH(τk) is of rank two as well and also prove by the same token that this

rank value is entirely related to the two-ray approximation, indeed.



Chapitre 6

Maximum Likelihood Joint Angle and

Delay Estimation from Multipath and

Multicarrier Transmissions With

Application to Indoor Localization

Over IEEE 802.11ac Radio

Faouzi Bellili, Souheib Ben Amor, Sofiène Affes, and Ali Ghrayeb

IEEE Transactions on Mobile Computing, vol. 18, no. 5, May 2019

Abstract

In this chapter, we tackle the problem of joint angle and delays estimation (JADE) of multiple

reflections of a known signal impinging on multiple receiving antennae. Based on the importance

sampling (IS) concept, we propose a new non-iterative maximum likelihood (ML) estimator that

enjoys guaranteed global optimality and enhanced high-resolution capabilities for both single- and

multi-carrier models. The new ML approach succeeds in transforming the original multi-dimensional

optimization problem into multiple two-dimensional ones thereby resulting in huge computational

savings. Moreover, it does not suffer from the off-grid problems that are inherent to most existing
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JADE techniques. By exploiting the sparsity feature of a carefully designed pseudo-pdf that is in-

trinsic to the new estimator, we also propose a novel approach that enables the accurate detection

of the unknown number of paths over a wide range of practical signal-to-noise ratios (SNRs). Com-

puter simulations show the distinct advantage of the new ML estimator over state-of-the art JADE

techniques both in the single- and multi-carrier scenarios. Most remarkably, they suggest that the

proposed IS-based ML JADE is statistically efficient as it almost reaches the Cramér-Rao lower

bound (CRLB) even in the adverse conditions of low SNR levels. Using real-world channel measu-

rements collected from four access points (APs) with IEEE 802.11ac standard’s setup parameters

in an indoor environment, we also show that the proposed ML estimator achieves a localization

performance below 15 cm accuracy.

6.1 Introduction

In parametric multipath propagation models, a source signal impinges on an antenna array

through a number of rays, each described by an angle-of-arrival (AoA), a time delay (TD), and a

path gain. The JADE problem consists then in jointly estimating all the AoAs and their correspon-

ding TDs from a finite number of received samples. The JADE problem arises in many practical

situations ranging from military applications (e.g., radar and sonar) to broadband wireless com-

munication systems. Typically, the power to characterize each path with its own angle and delay

endows the system with stronger sensorial capabilities leading, for instance, to more robust beam-

forming techniques [42] and enhanced equalization performance [43]. Moreover, as location-aware

services for handhelds are likely to be in high demand for future wireless communication systems,

the information about the AoAs and the TDs can be used to design highly-accurate localization

techniques [44]-[45]. In this context, in order to cope with dense multipath environments, the so-

called fingerprinting paradigm which recasts source localization into a pattern recognition problem

was envisaged in [46]-[47]. In particular, it was recently shown that fingerprinting with location

signatures that are characterized by the AoAs and TDs of each candidate location leads to substan-

tial improvements against location signatures that are characterized by the received signal strength

(RSS) [48]. In fact, contrarily to the RSS which varies substantially over a wavelength distance

(due to constructive and destructive multipath interference), the AoAs together with the associated

TDs form a unique fingerprint for each location [47]. Hence, accurate and low-cost estimation of
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such multipath parameters can be used along with the fingerprinting paradigm to develop very

efficient localization algorithms Alternatively, if multiple access points (APs) are available, they

can cooperate to localize a mobile user by using the estimated time difference of arrivals (TDOAs)

and AoAs (see [49] an [50] for more details). In this paper, we apply for the very first time the IS

technique along with the ML concept to the JADE problem over both OFDM and single-carrier

transmissions. Roughly speaking, the major difficulty with IS consists in generating multiple (i.e.,

vector) realizations according to a given (multi-dimensional) pdf. Much like all the aforementioned

IS-based works, we succeed in designing a separable (i.e., factorable) joint angle-delay pseudo-pdf

which allows a very easy generation of the required vector realizations. Even more, by exploiting the

sparsity of the proposed pseudo-pdf, we derive a simple and yet very accurate approach to estimate

the number of paths which is also a priori unknown in practice and needs to be estimated even

before proceeding to angles and delays acquisition. Computer simulations will show the superiority

of the proposed IS-based ML estimator over state-of-the-art ML-type and subspace-based JADE

techniques in terms of estimation accuracy, resolution capabilities, and computational complexity.

Real-world channel measurements collected using IEEE 802.11ac standard’s setup parameters in an

indoor environment were also used to investigate the online localization capabilities of the proposed

algorithm. Results show a localization performance below 15 cm accuracy.

We organize the rest of this paper as follows: We discuss the related background works in Section

2. In section 3, we introduce the OFDM system model. In section 4, we derive the concentrated

likelihood function (CLF) of the system whose global maximization is detailed in section 5. In sec-

tion 6, we derive the IS-ML technique in the special case of single-carrier systems. In section 7,

we detail the process of generating the required realizations via the IS concept. In section 8, we

provide the necessary implementation details for the proposed IS-based estimator. In section 9, we

develop a new approach for the estimation of the number of paths that is inherent to the proposed

IS-based JADE algorithm. In section 10, we assess through exhaustive computer simulations the

performance of the new estimator and benchmark it against a variety of existing JADE techniques.

There, we also assess the localization capabilities of the proposed algorithm using real-world channel

measurements. Finally, we draw out some concluding remarks in section 11.

We define beforehand some of the common notations that will be adopted in this paper. Vectors

and matrices are represented in lower- and upper-case bold fonts, respectively. Moreover, {.}T and

{.}H denote the conjugate and Hermitian (i.e., transpose conjugate) operators and det{.} returns

the determinant of any square matrix. The Euclidean norm of any vector is denoted as ||.|| and
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IN denotes the (N ×N) identity matrix. For any matrix X, [X]q and [X]l,k denote its qth column

and (l, k)th entry, respectively. The kronecker product of any two matrices X and Y is denoted as

X � Y. In addition, {.}∗, ∠{.}, and |.| return the conjugate, angle, and modulus of any complex

number, respectively. The complementary cumulative distribution function (CCDF) of a given ran-

dom variable (RV), X, is denoted as Fc(x) , Pr
[
X ≥ x

]
. Finally, E{.} stands for the statistical

expectation, j is the pure complex number that verifies j2 = −1, and the notation , is used for

definitions.

6.2 Overview of related works

Unlike JADE, the separate (or disjoint) estimation of either the time delays or the directions of

arrival (DOA) has been heavily investigated for decades now. For prior works on DOA-only and TD-

only estimation, see [51], [52] and [53], [54] and references therein, respectively. In comparison with

disjoint estimation techniques which first estimate the delays and then the corresponding angles,

the joint estimation of these space-time parameters (i.e., JADE) is more accurate in cases where

multiple rays have nearly equal delays or angles [42]. Moreover, contrarily to JADE, the number of

estimated angles in DOA-only estimation schemes must be smaller than the number of antennae.

Thus DOA-only estimators would require large-size antenna arrays in highly dense multipath envi-

ronments.

So far, a number of JADE techniques have been reported in the literature , except the unitary

matrix pencil (UMP)-based approach proposed recently [49], all the existing solutions are geared

toward single-carrier systems. Roughly speaking, they can be broadly categorized into two major

categories: subspace-based and ML-based estimators. Most of the subspace-based techniques are

built upon the well-known MUSIC and ESPRIT algorithms [55]-[56]. In practice, subspace-based

approaches are more attractive due to their reduced computational load. However, they are usually

suboptimal and suffer from severe performance degradation (both in terms of resolution and es-

timation accuracy) for low SNR levels and/or closely-spaced paths. ML approaches, however, are

known to enjoy higher accuracy and enhanced resolution capabilities. Yet, despite their promising

advantages, their computational complexity has been often considered as the major culprit for a

widespread reluctance of designers to their implementation in practice.

In the specific JADE context, to the best of our knowledge only two ML estimators have been so
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far introduced but only for narrowband signals. The very first ML solution was proposed by Wax

et al. in [57] which is iterative in nature and thus will be referred to, hereafter, as the iterative

ML (IML) estimator. The other ML solution introduced later in [58] is also iterative and based

on the space-alternating generalized expectation maximization (SAGE) algorithm. However, like

any iterative approach, the performance of these two ML estimators is closely tied to the initial

knowledge about the unknown parameters, i.e., they will not converge to the global maximum of

the log-likelihood function (LLF) if their initial guesses are not reliable. Besides, for both iterative

ML estimators, a fixed sampling grid is selected to serve as a possible set of all candidate estimates

for the unknown TDs and AoAs. Then, by assuming all true (unknown) parameters to be exactly

on the selected grid, IML and SAGE attempt to maximize the LLF iteratively. Consequently, they

suffer from the inevitable off-grid problem which arises in practical situations where some of the

true TDs and/or AoAs do not lie on the sampling grid. For accurate estimation, it is compulsory to

use a densely-sampled grid since it reduces the gap between the true parameters and their nearest

points on the grid. However, as “there is no free lunch”, the cost of a dense grid sampling is the

excessive increase in computational complexity.

These problems, among many others, have spurred a widespread belief that resorting to suboptimal

subspace-based solutions is inevitable by trading estimation accuracy for lower complexity. This

paper challenges that basic percept by introducing a novel ML JADE technique that beats state-of-

the-art subspace-based methods both in terms of accuracy and complexity. Most remarkably, the

new ML estimator is statistically efficient since it reaches the CRLB at SNR levels as low as −10

dB.

The proposed estimator builds upon the global maximization theorem of Pincus [59] and the im-

portance sampling (IS) concept [60]. In particular, owing to a very accurate approximation of the

concentrated likelihood function (CLF), we transform the original multi-dimensional optimization

problem into multiple two-dimensional optimization ones resulting thereby in tremendous com-

putational savings. Even more, the underlying two-dimensional optimization problems are totally

disjoint and, as such, they can be performed separately in practice. From this perspective, the new

IS-based ML estimator lends itself to a very attractive parallel computing implementation that can

be efficiently executed on nowadays multiprocessor platforms.

The combination of Pincus’ theorem and IS concept has been previously applied to many fundamen-

tal estimation problems. To the best of our knowledge, however, this elegant combination was first

pioneered by S. Kay and S. Saha in [61] in the context of multiple frequencies estimation. There,
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it was shown for the very first time that joint ML estimation of multiple frequencies boils down to

the computation of sample mean estimates from a number of realizations generated according to a

carefully designed importance function (or pseudo-pdf). Pincus’ theorem along with the IS concept

were later on applied by S. Kay et al. to the estimation of chirp signals’ parameters [62], sources’

DOAs estimation with antenna arrays [52], as well as, joint angle and Doppler estimation in [63].

They were also successfully applied in the context of joint CFO and channel estimation under: i)

single-user OFDMA communications [64], and ii) multiuser MIMO-OFDM communications with

optimal training sequences design [65]. More recently, these powerful tools were leveraged in the

context of TDOA-based source localization [66], non-data-aided (NDA) timing recovery [67], as well

as, time delays acquisition in multipath environments [54]. In all these works, the combination of

Pincus’ theorem with the IS approach resulted in remarkable improvements both from estimation

performance and computational complexity viewpoints.

6.3 System model

We will derive our estimator for multi-carrier transmissions and the minor changes that need

to be accounted for when dealing with a single-carrier system will be briefly highlighted in Section

6.6. To start with, consider an antennae array consisting of P antenna elements immersed in a

homogeneous medium in the far field of one source that is transmitting a planar wave. The known

transmitted signal is modulated over M + 1 subcarriers. After undergoing multiple reflections, it

impinges on the receiving antenna array from Q̄ different angles (ᾱ1, ᾱ2, · · · , ᾱQ̄) with associated

time delays (τ̄1, τ̄2, · · · , τ̄Q̄) ⊂ [0, τmax]Q̄ where τmax can be as large as desired. Note here that we

use the overbar symbol to distinguish the true AoAs and TDs, ᾱq and τ̄q, from the unknown generic

variables, αq and τq, that will be used later in the algorithm 1. We also denote the actual channel

frequency response (CFR) over the {mth}M/2
M=−M/2 subcarrier and {pth}PP=1 antenna element as

h̄p(m) whose expression was derived in [49] as follows (for more details, the reader is referred to

[88]):

h̄p(m) =
Q̄∑
q=1

ξ̄qe
−j2πfcτ̄qe−j2πm∆fτ̄qe−j2πϕp,m(ᾱq). (6.1)

1. For the same reasons, we use Q̄ to denote the true unknown number of paths that will be estimated later in
Section VII.
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In (6.1), fc and ∆f stand, respectively, for the carrier frequency and subcarrier spacing while {ξ̄q}Q̄q
stand for the actual path gain coefficients which are assumed to be unknown as well. Moreover,

the functions ϕp,m(α) represent some real-valued angular transformations that depend on the array

geometry. Typically, uniform linear arrays (ULAs) and uniform circular arrays (UCAs) remain by far

the most studied cases in the open literature. For these two popular configurations, the underlying

angular transformations are given by:

ϕp,m(α) =


d (fc +m∆f)

c
(p− 1) sin(α), (ULA)

d (fc +m∆f)
c

cos
(
α− 2[p− 1]π/P

)
2 sin(π/P ) , (UCA)

where d = λ/2 is the separation between consecutive antenna elements, and c is the speed of light.

Given the transmitted signal and the received data, an estimate, hp(m), for the actual CFR h̄p(m)

in (6.1) can be readily obtained by applying any data-aided (DA) channel estimation technique,

e.g., the least-squares method. By doing so, one has access to the following implicit observation

model:

hp(m) =
Q̄∑
q=1

γ̄qe
−j2πm∆fτ̄qe−j2πϕp(ᾱq) + wp(m), (6.2)

in which we defined γ̄q , ξ̄qe
−j2πfcτ̄q for q = 1, · · · , Q̄ that are some unknown but constant coeffi-

cients across all the subcarriers and antenna elements. Moreover, wp(m) are the residual estimation

noise components which are assumed to be spatially white and uncorrelated between subcarriers.

Statistically, they are modeled by zero-mean complex Gaussian random processes with independent

real and imaginary parts each of variance σ2/2.

For mathematical convenience, we now group all the unknown multipath parameters in the following

three vectors: ᾱ = [ᾱ1, ᾱ2, · · · , ᾱQ̄]T , τ̄ = [τ̄1, τ̄2, · · · , τ̄Q̄]T , and γ̄ = [γ̄1, γ̄2, · · · , γ̄Q̄]T . We further

gather the channel estimates in (6.2) across all the antenna elements at each mth subcarrier into a

single vector, h(m) = [h1(m), h2(m), · · · , hP (m)]T , given by:

h(m) =
Q̄∑
q=1

am(ᾱq)γ̄q e−j2πm∆fτ̄q + w(m), (6.3)
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where w(m) = [w1(m), w2(m), · · · , wP (m)]T is the corresponding noise vector and:

am(α),
[
e−j2πϕ1,m(α), e−j2πϕ2,m(α), · · · , e−j2πϕP,m(α)]T, (6.4)

is the array steering vector defined for any direction α. Our goal in the remainder of this paper

is to jointly estimate the parameters {ᾱq}Q̄q and {τ̄q}Q̄q along with Q̄ given the M + 1 vectors{
h(m)

}M/2
m=−M/2.

6.4 Derivation of the concentrated likelihood function (CLF)

In this section, we will derive the concentrated likelihood function (CLF) that depends on the

parameters of interest only [89], namely τ̄ , ᾱ. In fact, since w(m) v N (0, σ2IP ), it can be shown

that the actual LLF (after dropping the constant terms) is given by 2:

L
(
α, τ ,γ

)
=

M
2∑

m=−M2

∣∣∣∣∣∣
∣∣∣∣∣∣h(m)−

Q̄∑
q=1

am(αq)γqe−j2πm∆fτ̄q

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (6.5)

where τ , α, and γ stand for any candidate values for τ̄ , ᾱ, and γ̄, respectively. Now, define the

(MQ̄× Q̄) matrix:

Φ(τ ) ,
[
Φ−M/2(τ )T Φ−M/2+1(τ )T · · · ΦM/2(τ )T

]T
, (6.6)

with {Φm(τ )}M/2
m=−M/2 being the following (Q̄× Q̄) diagonal matrix:

Φm(τ ) , diag
(
e−jωmτ1 , e−jωmτ2 , · · · , e−jωmτQ̄

)
, (6.7)

2. Note here that, for ease of notation, we do not show explicitly the dependence of the LLF on {h(m)}M/2m=−M/2
in the left-hand side of (6.5).



Chapitre 6. Maximum Likelihood Joint Angle and Delay Estimation 109

and ωm = 2πm∆f . Therefore, by letting Am(α) , [am(α1) am(α2) · · · am(αQ̄)] and defining the

following array steering matrix:

A(α)=



A−M/2(α) 0 . . . 0

0 A−M/2+1(α)
...

... . . . 0

0 . . . 0 AM/2(α)


, (6.8)

it can be shown that (6.5) is equivalent to:

L
(
α, τ ,γ

)
=

∣∣∣∣∣∣h−A(α)Φ(τ )γ
∣∣∣∣∣∣2, (6.9)

where h ,
[
h(ω−M/2)Th(ω−M/2+1)T · · · h(ωM/2)T

]T
. Maximizing (6.9) jointly with respect to τ , α,

and γ is extremely challenging. Yet, significant computational savings follow from the observation

that for any given τ and α, the problem of finding the optimal γ becomes a linear least squares

(LS) problem [90] whose solution is given by:

̂̄γMLE =
[
A(α)Φ(τ )︸ ︷︷ ︸

, D

]†
h, (6.10)

where D† is the Moore-Penrose pseudo-inverse of D given by D† =
(
DHD

)−1DH . Note here that

D has full column rank and, therefore,
(
DHD

)−1 always exists. Now, by substituting ̂̄γMLE for γ

back in (6.9) and resorting to some straightforward algebraic manipulations, we obtain the so-called

concentrated likelihood function (CLF) which depends solely on α and τ :

Lc
(
α, τ

)
= hHD(DHD)−1DHh, (6.11)

The joint ML estimates of ᾱ and τ̄ are then obtained as the solution to the following reduced-

dimension optimization problem:

[ ̂̄αMLE, ̂̄τMLE] = argmax
α,τ

Lc
(
α, τ

)
. (6.12)

Once ̂̄αMLE and ̂̄τMLE are obtained, they can be substituted back in (6.10) in order to find the

MLEs for all the unknown path gains, i.e., ̂̄γMLE.
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6.5 Global maximization of the CLF

6.5.1 Pincus’ theorem and the IS concept

As done previously within the framework of other estimation problems (see [52], [61]-[67], and

references therein), we will resort to Pincus’ theorem [59] and the powerful IS concept [91] in order

to solve the multidimensional optimization problem in (6.12). The theorem proposed by Pincus in

[59] simply states that the global maximum of any continuous Q̃−dimensional function, f(θ), is

reached at the vector θ̂ = [θ̂1, θ̂2, · · · , θ̂Q̃] whose {qth}Q̃q=1 entry is given by:

θ̂q = lim
ρ→+∞

∫
· · ·
∫
θqe

ρf(θ)dθ∫
· · ·
∫
eρf(θ)dθ

. (6.13)

The limit involved in (6.13) is approximated for some sufficiently high value ρ0 of ρ as follows:

θ̂q =

∫
· · ·
∫
αqe

ρ0f(θ)dθ∫
· · ·
∫
eρ0f(θ)dθ

. (6.14)

Applying this general result to our estimation problem with θ , [α, τ ]T and f(θ) , Lc(α, τ ) leads

to the following expressions for the required MLEs (each in terms of 2Q̄-dimensional integrals) for

q = 1, 2, · · · , Q̄:

̂̄τ q,MLE =
∫
· · ·
∫
τq L̄c

(
α, τ

)
dαdτ , (6.15)

̂̄αq,MLE =
∫
· · ·
∫
αq L̄c

(
α, τ

)
dαdτ , (6.16)

where L̄c(α, τ ) is the normalized CLF defined as:

L̄c(α, τ ) , eρ0Lc(α,τ )∫
· · ·
∫
eρ0Lc(α,τ )dαdτ

. (6.17)

Intuitively, as ρ0 tends to infinity, L̄c(α, τ ) becomes a Dirac-delta function centered at the true

maximum of Lc(α, τ ) whose location is indeed given by the set of integrals in (6.15) and (6.16).

In our attempt to avoid multi-dimensional grid search, it may appear here at first sight that we
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have we ended up dealing with a multi-dimensional integration bearing the very same practical

difficulties. By closely inspecting (6.17), however, it turns out that the normalized CLF, L̄c(α, τ ),

has all the properties of a pdf since it is nonnegative and integrates to one. Consequently, we will

term it in the sequel as “pseudo-pdf ” since strictly speaking the involved working variables α and τ

are not truly random. Yet, by hypothetically assuming them to be random vectors that are jointly

distributed according to L̄c(α, τ ), the MLEs in (6.15) and (6.16) can be alternatively regarded as

statistical expectations, i.e., for q = 1, 2, · · · , Q̄, we have:

̂̄τ q,MLE = Eα,τ {τq} and ̂̄αq,MLE = Eα,τ {αq} . (6.18)

Thus, if one is able to generate R realizations, {τ (r)}Rr=1 and {α(r)}Rr=1, using the joint pseudo-pdf

L̄c(τ ,α), then it will be very accurate to approximate the expectations in (6.18) by their sample

mean estimates as follows:

̂̄τ q,MLE = 1
R

∑R
r=1 τ

(r)
q and ̂̄αq,MLE = 1

R

∑R
r=1 α

(r)
q . (6.19)

Clearly, as the number of realizations R used in (6.19) increases, the variances of the two sample

mean estimates above decrease making them approach the global maximum of the CLF [91]. Un-

fortunately, the pseudo-pdf L̄c(α, τ ) is extremely non-linear and as such cannot be practically used

to generate {τ (r)}Rr=1 and {α(r)}Rr=1. To sidestep this problem, one can resort to the importance

sampling concept [52], [61] and rewrite (6.15) and (6.16) in the following equivalent forms:

̂̄τ q,MLE =
∫
· · ·
∫
τq
L̄c(α, τ )
Ḡ(α, τ )

Ḡ(α, τ )dαdτ , (6.20)

̂̄αq,MLE =
∫
· · ·
∫
αq
L̄c(α, τ )
Ḡ(α, τ )

Ḡ(α, τ )dαdτ . (6.21)

for some Ḡ(α, τ ) which is another pseudo-pdf — called importance function — to be designed as close

as possible to L̄c(α, τ ) while allowing at the same time the easy generation of the required vector

realizations {τ (r)}Rr=1 and {α(r)}Rr=1. By doing so, the MLEs in (6.20) and (6.21) are interpreted as

expected values of transformed RVs, i.e.:

̂̄τ q,MLE = Eα,τ
{
η(τ ,α)τq

}
(6.22)

̂̄αq,MLE = Eα,τ
{
η(α, τ )αq

}
, (6.23)
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where η(α, τ ) is defined as the following ratio:

η(α, τ ) , L̄c(α, τ )
Ḡ(α, τ )

. (6.24)

If Ḡ(α, τ ) is carefully designed, the expectations in (6.22) and (6.23) can be computed at any

desired degree of accuracy
(
by increasing R

)
using the corresponding sample mean estimates. The

appropriate choice of the importance function, Ḡ(α, τ ), will be discussed in the following subsection.

But before delving into details, we mention beforehand that it must be separable in terms of the Q̄

angle-delay pairs
{
(αq, τq)

}Q̄
q=1 in order to facilitate the process of generating the required R vector

realizations. In other words, our ultimate goal is to design Ḡ(α, τ ) in a way that allows it to be

factorized as follows:

Ḡ(α, τ ) =
Q̄∏
q=1

ḡq(αq, τq). (6.25)

This will allow us to interpret Ḡ(α, τ ) as a multivariate pseudo-pdf that corresponds to a set of

independent bivariate random variables. Hence, instead of generating realizations for Q̄−dimensional

random vectors α and τ directly using Ḡ(α, τ ), one can easily generate independent realizations

for bivariate random variables {(αq, τq)}Q̄q=1 using
{
ḡq(αq, τq)

}Q̄
q
. In order to reduce the variance of

estimation errors, however, it is preferable to design Ḡ(α, τ ) upon an appropriate approximation of

L̄c(α, τ ).

6.5.2 Approximation of the CLF and appropriate choice for Ḡ(α, τ )

First, by revisiting (6.11), one can easily recognize that the original CLF, Lc
(
α, τ

)
, cannot

be directly expressed as a separable function due to the presence of the matrix inverse (DHD)−1.

Fortunately, though, we show in the sequel that DHD can be accurately approximated by a diagonal

matrix. In fact, by recalling the expression of D in (6.10), we notice that the delay coming from the

antenna array is negligible when compared with τl (i.e., p d sin(αl)/c≪ τl), it follows that:

D =
[
IM � A0(α)

]
Φ(τ ). (6.26)



Chapitre 6. Maximum Likelihood Joint Angle and Delay Estimation 113

By using some basic properties of the Kronecker product, the matrix DHD can be written as:

DHD = Φ(τ )H
[
IM+1 � A(α)H

][
IM+1 � A(α)

]
Φ(τ ),

= Φ(τ )H
(
IM+1 �

[
A(α)HA(α)

])
Φ(τ ). (6.27)

Then, by noticing that IM+1 �
[
A0(α)HA0(α)

]
is a block-diagonal matrix, it can be shown that:

DHD =
∑M/2
m=−M/2 Φm(τ )HA0(α)HA0(α)Φm(τ ). (6.28)

Next, by recalling that the lth column of the steering matrix is
[
A0(α)

]
l

= a0(αl) and since Φm(τ )

is a diagonal matrix, we immediately have:

[A0(α)Φm(τ )]l = [Φm(τ )]l,l [A0(α)]l

= e−jωmτla0(αl).

The (l, k)th entry of DHD is thus obtained as:

[DHD]l,k =
M/2∑

m=−M/2

(
[A0(α)Φm(τ )]l

)H [A0(α)Φm(τ )]k ,

=
M/2∑

m=−M/2
ejωm(τl−τk)a0(αl)Ha0(αk),

=
M/2∑

m=−M/2
ejωm(τl−τk) ×

P∑
p=1

e−j2π[ϕp(αk)−ϕp(αl)]. (6.29)

In particular, all the diagonal elements are expressed as:

[DHD]k,k = P (M + 1). (6.30)

Due to the destructive superposition (for l 6= k) of the complex exponentials 3 in (6.29), one could

expect the off-diagonal entries of DHD to be very small compared to the diagonal ones thereby

allowing the following much useful approximation:

DHD ≈ P (M + 1) IQ̄. (6.31)

3. This is reminiscent of multipath fading in wireless channels.
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To see this, we define:

βl,k,

 M/2∑
m=−M/2

ejωm(τl−τk)

 P∑
p=1

e−j2π[ϕp(αk)−ϕp(αl)]


P (M + 1) , (6.32)

as the ratio of the off-diagonal over diagonal entries of DHD. Then, we generate a large number

of couples (τl, τk) v U [0, τmax]2 and (αl, αk) v U [−π/2, π/2]2 and inject them into (6.32) in order

to compute the CCDF, Fc(x) = Pr
[
|βl,k| ≥ x

]
, depicted in Fig. 6.1. There, it can be seen that

x
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
c
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)
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1

Figure 6.1 – CCDF of the magnitude of the ratio between the off-diagonal and diagonal entries of
the matrix DHD, using M + 1 = 245 subcarriers and a ULA configuration of P = 6 receiving antenna
elements.

the off-diagonal elements of DHD can indeed be neglected in front of its diagonal ones since |βl,k|

has an almost-zero probability to exceed 0.1 for all l 6= k. Therefore, (6.31) is a valid and accurate

approximation for DHD which is used in (6.11) to obtain the following accurate approximation

Lc
(
α, τ

)
≈ 1

P (M+1)h
HDDHh. (6.33)

Recalling from (6.10) that D = A(α)Φ(τ ), it follows that:

Lc
(
α, τ

)
≈ 1

P (M+1)

∣∣∣∣∣∣Φ(τ )HA(α)Hh
∣∣∣∣∣∣2 . (6.34)
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Now, by recalling that:

h =
[
h(−M/2)T h(−M/2 + 1)T · · · h(M/2)T

]T
, (6.35)

and using (6.6) it can be shown that:

Φ(τ )HA(α)Hh =
M/2∑

m=−M/2

[
Am(α)Φm(τ )

]Hh(m). (6.36)

Therefore, it follows from (6.34) that:

Lc
(
α, τ

)
≈ 1
P (M + 1)

Q̄∑
q=1

∣∣∣∣∣∣
M/2∑

m=−M/2

[
Am(α)Φm(τ )

]H
q

h(m)

∣∣∣∣∣∣
2

. (6.37)

Starting form (6.37) and resorting to some straightforward algebraic manipulations, we obtain the

following much useful approximation for the CLF:

Lc(α, τ ) ≈ 1
P (M + 1

Q̄∑
q=1

I(αq, τq), (6.38)

where I(α, τ) is the periodogram of the signal given by:

I(α, τ)=

∣∣∣∣∣∣
P∑
p=1

M/2∑
m=−M/2

e−j2πϕp,m(α)h∗p(m)e−j2πτωm
∣∣∣∣∣∣
2

, (6.39)

in which hp(m) is the pth element of the vector h(m). Owing to the decomposition of the approximate

CLF in (6.38) as the superposition of the separate contributions pertaining to the Q̄ angle-delay

pairs, we exploit it below as the importance function (upon normalization):

Ḡ(α, τ ) =
exp

{
ρ1
∑Q̄
q=1 I(αq, τq)

}
∫
· · ·
∫

exp
{
ρ1
∑Q̄
q=1 I(α′q, τ ′q)

}
dα′dτ ′

. (6.40)

Note here that the factor 1
P (M+1) involved in (6.38) is absorbed in the new design parameter,

ρ1 6= ρ0, whose appropriate choice will be discussed later in section 6.10. Note as well that Ḡ(α, τ )

is separable in terms of the angle-delay pairs as originally required. Indeed, it can be easily shown
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that Ḡ(α, τ ) factorizes as follows:

Ḡ(α, τ ) =
Q̄∏
q=1

ḡᾱ,τ̄ (αq, τq), (6.41)

where

ḡᾱ,τ̄ (α, τ) = eρ1I(α,τ)∫∫
eρ1I(α′,τ ′)dα′dτ ′

. (6.42)

is a common bivariate distribution for all angle/delay pairs. Therefore, in order to generate vector

realizations α(r) and τ (r) using the multidimensional distribution Ḡ(α, τ ), one can easily generate

Q̄ independent couples (α(r)
q , τ

(r)
q ) using ḡᾱ,τ̄ (α, τ) then construct α(r) =

[
α

(r)
1 , α

(r)
2 , · · · , α(r)

Q̄

]
and

τ (r) =
[
τ

(r)
1 , τ

(r)
2 , · · · , τ (r)

Q̄

]
. The process of generating

{
(α(r)

q , τ
(r)
q )

}Q̄
q=1 using ḡᾱ,τ̄ (α, τ) is explained

in some depth later in Section 6.7.

6.6 Special case of single-carrier systems

Assume that a known modulated signal s(t) is transmitted by the source. After sampling the

continuous-time received signal at time instants {tm = mTs}(M−1)
m=0 where Ts is the sampling period,

one obtains the following M samples over each pth antenna:

xp(tm) =
Q̄∑
q=1

ξ̄qs(tm − τ̄q)ejπϕp(ᾱq) + wp(tm), (6.43)

for m = 0, 2, . . . ,M − 1. By collecting the samples across all the antenna elements at each mth time

index, x(tm) = [x1(tm), x2(tm), · · · , xP (tm)]T , one obatins:

x(tm) =
Q̄∑
q=1

a0(ᾱq)ξ̄qs(tm − τ̄q) + w(tm), (6.44)

in which a0(ᾱq) obtained from (6.4) by setting m = 0. Then, by using Parseval’s identity, it can be

shown that the actual LLF is expressed as follows in the case of single-carrier systems:

LSC
(
α, τ ,γ

)
≈

M−1∑
m=0

∣∣∣∣∣∣
∣∣∣∣∣∣x(ωm)−

Q̄∑
q=1

a0(αq)γqe−jωmτqs(ωm)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, (6.45)
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where {x(ωm)}m and {s(ωm)}m are, respectively, the DFTs of {x(tm)}m and {s(tm)}m and
{
ωm =

m
MTs

}M−1
m=0 is the mth frequency bin. By following the same derivations as done in the OFDM model

in the previous sections, it can be shown that the CLF of SC systems is expressed as follows:

LSC
c

(
α, τ

)
= xHD(DHD)−1DHx, (6.46)

where x ,
[
x(ω1)Tx(ω2)T · · · x(ωM )T

]T
and the matrix D is given by:

D =
[
IM � A0(α)

]
Φ(τ ). (6.47)

Then, it is easy to show that DHD can also be approximated by a diagonal matrix thereby leading

to the same expression for the importance function already obtained in and (6.41) and (6.42). The

only difference being in the expression of the periodogram which is now given by:

Isc(α, τ) =

∣∣∣∣∣∣
P∑
p=1

ejπϕp(α)
M−1∑
m=0

s(ωm)x∗p(ωm)e−j2πτωm
∣∣∣∣∣∣
2

, (6.48)

in which xp(ωm) is the pth element of the vector x(ωm). The remaining derivations hold exactly the

same for both single- and multi-carrier systems.

6.7 Generation of the required realizations

A well-known general result from probability theory is that the joint distribution, ḡᾱ,τ̄ (α, τ), can

be factorized as the product of marginal and conditional pdfs, in two equivalent forms, as follows:

ḡᾱ,τ̄ (α, τ) = ḡτ̄ (τ)ḡᾱ|τ̄ (α|τ), (6.49)

ḡᾱ,τ̄ (α, τ) = ḡᾱ(α)ḡτ̄ |ᾱ(τ |α), (6.50)

where ḡτ̄
[
resp., ḡᾱ(α)

]
is the marginal pdf of τ

[
resp. α

]
and ḡτ̄ |ᾱ(τ |α)

[
resp., ḡᾱ|τ̄ (α|τ)

]
is the

conditional pdf of τ given α
[
resp., α given τ

]
. The two identities in (6.49) and (6.50) suggest the

following two respective alternatives to generate the required realizations:

1. alternative 1: generate τ (r)
q using ḡτ̄ (τ) and then use ḡᾱ|τ̄

(
α|τ = τ

(r)
q
)
to generate α(r)

q .
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2. alternative 2: generate α(r)
q using ḡᾱ(α) and then use ḡτ̄ |ᾱ

(
τ |α = α

(r)
q
)
to generate τ (r)

q .

In practice, however, “alternative 2”, is not a good option since ḡᾱ(α) cannot allow resolution of

closely-spaced angles inevitably embodied by a single main lobe even in the total absence of noise.

Fig. 6.2(b) illustrates this phenomenon in single-carrier systems for a modulated signal (with symbol

duration T ) propagating via two paths with delays τ̄1 = 4T and τ̄2 = 5T and angular separation

|ᾱ1 − ᾱ2| = 6◦.

τ

T

3 4 5 6

ḡ
τ̄
(τ
)

0

0.01
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0.03
(a)
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-25 -4 0 6 10 25
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(

α
|τ

=
τ
(r
)

1

)

0
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0.1
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0.1

0.15

0.2
(d)

1st shifted maximum 2nd shifted maximumtrue delay τ̄1 true delay τ̄2

ᾱ2 ᾱ1

ᾱ2ᾱ1

Figure 6.2 – Marginal and conditional pdfs illustrated in a single-carrier system, ULA, P = 5, Q̄ = 2
and SNR = 30 dB: (a) marginal pdf of τ , (b) marginal pdf of α, (c) conditional pdf of α given τ

(r)
1 , and

(d) conditional pdf of α given τ
(r)
2 .

In contrast, it is found that ḡτ̄ (τ) always exhibits Q̄ main lobes around the true unknown TDs,

{τ̄q}Q̄q=1, even if the latter are associated to closely-spaced angles as depicted in Fig. 6.2(a). Moreover,

as will be seen in Section VIII, ḡτ̄ (τ) is able to resolve closely-spaced delays even if the two paths are

also extremely closely spaced in the angular domain (typically, |ᾱ1− ᾱ2| = 0.5◦). For these reasons,

we opt for “alternative 1” and first evaluate ḡτ̄ (τ) as follows:

ḡτ̄ (τ) =
∫
ḡᾱ,τ̄ (α, τ)dα, (6.51)

which is then used to generate the rth vector of delay realizations, τ (r) =
[
τ

(r)
1 , τ

(r)
2 , · · · , τ (r)

Q̄

]T , as
will be explained shortly. Now, for the same angular separation (i.e., |α1−α2| = 6◦) and as depicted

in Figs. 6.2(c) and (d), each {qth}Q̄q=1 conditional angle pdf:

ḡᾱ|τ̄
(
α|τ = τ (r)

q

)
=

ḡᾱ,τ̄
(
α, τ

(r)
q
)

ḡτ̄
(
τ

(r)
q
) , (6.52)
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is found to exhibit exactly a single main lobe around the true angle ᾱq associated to τ̄q. Next, we

recall the following lemma [92] that will be used to generate the required realizations:

Lemma 1: Let X ∈ X be any RV with pdf fX(x) and CDF FX(x) and denote the inverse CDF

as F−1
X (.) : [0, 1] −→ X , u −→ x s.t. FX(x) = u. Then, for any uniform RV, U ∈ [0, 1], the RV

X̃ = F−1
X (U) is distributed according to fX(.).

In principle, ḡτ̄ (τ) can be used along with the result of Lemma 1 to generate the required delay

realizations {τ (r)
q }Rr=1 ∼ ḡτ (τ) for every q = 1, 2, · · · , Q̄ as follows:

1. Generate R realizations
{
u

(r)
q
}R
r=1 ∼ U [0, 1],

2. Obtain τ (r)
q = Ḡ−1

τ̄ (u(r)
q ) where Ḡτ̄ (.) is the CDF associated to ḡτ̄ (τ).

However, depending on the SNR level, the direct use of the marginal pdf ḡτ̄ (τ) faces the following

major problems in practice:

— At low SNR levels, ḡτ̄ (τ) exhibits non-negligible secondary lobes, as depicted in Fig. 6.3(b)

with SNR = −5 dB, which translate into spurious slopes in the CDF, Ḡτ̄ (τ), as seen from

Fig. 6.3(a). Consequently, any realization u ∼ U [0, 1] that falls within the range of such

spurious slopes (along the y−axis) will result in a delay realization τ = Ḡ−1
τ̄ (u) that does

not correspond to any of the true delays (i.e., an outlier). This phenomenon is also illus-

trated in Fig. 6.3(a) for the two typical realizations u′ and u′′. Such outliers affect severely

the performance of the estimator. In order to obtain outliers-free realizations, it is possible

to rid ḡτ̄ (τ) from its secondary lobes by choosing a sufficiently large value for the design

parameter ρ1
[
cf. (6.42)

]
. Taking a large value for ρ1, however, renders the main lobes in

ḡτ̄ (τ) extremely narrow making it more likely that the true delays lie outside their very short

spans. Consequently, all the outliers-free realizations will be shifted, thereby resulting in an

inevitable estimation bias.

— At sufficiently high SNR levels, however, the secondary lobes are naturally absent and thus

a small value for ρ1 can be chosen. Yet, the difference in main lobes’ sizes results in out-

of-proportion slopes in the CDF. As such, an unbalanced number of realizations will be

generated under the different main lobes. As a brute-force remedy, one could be tempted by

choosing an extremely large value of R to guarantee that a sufficient number of realizations

be generated under each main lobe; not without having to pay a significant extra cost in

terms of increased complexity though.

To sidestep all the aforementioned problems, we describe hereafter a simple procedure that allows

one to generate all the realizations around the true delays and angles thereby avoiding systematically
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Figure 6.3 – Pseudo-pdfs in a single-carrier system illustrated for Q̄ = 2 and SNR = −5 dB: (a) marginal
CDF of τ , (b) marginal pdf of τ , (c) local pdf of τ around τ̄1, (d) local pdf of τ around τ̄2, (e) local
CDF of τ around τ̄1, and (f) local CDF of τ around τ̄2.

the problem of outliers. Moreover, it ensures that the realizations are generated in exactly the same

number under each of the main lobes irrespectively of their relative sizes. To do so, we begin by

extracting — through a broad line search — some initial estimates of the unknown true TDs as

follows:

[̂̄τ (0)
1 , ̂̄τ (0)

2 , · · · , ̂̄τ (0)
Q̄ ] = argmaxQ̄

τ

ḡτ̄ (τ), (6.53)

where argmaxQ̄{.} returns the positions of the Q̄ largest peaks of any objective function. This initial

broad line search is performed using a relatively large grid step ∆τ̄ . Since the main lobes of ḡτ̄ (τ)

are shifted [cf. Fig. 6.2(a)], note that (6.53) does not provide the delay MLEs even by taking an

arbitrarily small value for ∆τ̄ . Then, initial estimates for the associated AoAs are obtained as:

̂̄α(0)
q = argmax

α
ḡᾱ|τ̄

(
α|τ = ̂̄τ (0)

q

)
, q = 1, · · · , Q̄. (6.54)

Likewise, the initial line search in (6.54) is performed with a large grid step ∆ᾱ. To force {τ (r)
q }Rr=1

and {α(r)
q }Rr=1 to be generated in the vicinity of τ̄q and ᾱq, respectively, we fix the following Q̄ local
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intervals:

D̂̄τ (0)
q

=
[̂̄τ (0)
q − δτ̄ , ̂̄τ (0)

q + δτ̄
]
,

D̂̄α(0)
q

=
[̂̄α(0)

q − δᾱ, ̂̄α(0)
q + δᾱ

]
,

which are centered at ̂̄τ (0)
q and ̂̄α(0)

q . The sizes of such local delay and angle intervals are governed

by the design parameters δτ̄ and δᾱ whose values will be specified in Section VIII. We also define

the associated delay and angle impulse functions as follows:

ĥ̄τ (0)
q

(τ) =


hqτ̄ for τ ∈ D̂̄τ (0)

q

,

0 otherwise;
(6.55)

ĥ̄α(0)
q

(α) =


hqᾱ for α ∈ D̂̄α(0)

q

,

0 otherwise;
(6.56)

In the specific case of Q̄ = 2, the two delay impulse functions are illustrated in Fig. 6.3(b) with

dotted and circled lines. The qth delay and angle pseudo-pdfs
(
referred to hereafter as local pseudo-

pdfs
)
that will be used to generate the realizations in D̂̄τ (0)

q

×D̂̄α(0)
q

are given by:

ḡτ̄,q(τ) = hqτ̄ (τ)ḡτ̄ (τ), (6.57)

ḡᾱ|τ̄,q(α|τ) = hqᾱ(α)ḡᾱ|τ̄ (α|τ), (6.58)

for q = 1, 2, · · · , Q̄. The constants hqτ̄ and hqᾱ in (6.55) and (6.56) are computed such that the local

pseudo-pdfs in (6.57) and (6.58) sum up to one thereby yielding:

hqτ̄ =

∫ ̂̄τ (0)
q +δτ̄̂̄τ (0)
q −δτ̄

ḡτ̄ (τ)dτ

−1

. (6.59)

hqᾱ =

∫ ̂̄α(0)
q +δᾱ̂̄α(0)
q −δᾱ

ḡᾱ|τ̄ (α|τ)dα

−1

. (6.60)
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Note here that by applying the impulse functions in (6.57) and (6.58) we obtain a separate (i.e.,

isolated) local angle/delay pseudo-pdf for each qth path. Therefore, in practice, the processes of

generating the required realizations locally around each true delay/angle couple, (ᾱq, τ̄q), can be

implemented separately and run in parallel with a much faster and less complex execution.

For better illustration, the isolated local delay pseudo-pdfs, ḡτ̄,1(τ) and ḡτ̄,2(τ), in the specific case of

Q̄ = 2 are depicted in Figs. 6.3(c) and (d), respectively. Further, as seen from Figs. 6.3(e) and 6.3(f),

the associated local CDFs, Ḡτ̄,1(τ) and Ḡτ̄,2(τ), exhibit a single slope that is located around the

corresponding true delay. Therefore, by applying the result of Lemma 1, every uniform realization

u
(r)
q ∈ [0, 1] will yield a delay realization τ

(r)
q ∈ D̂̄τ (0)

q

[
i.e., in the vicinity of τ̄q

]
. For the same

reasons, all the angle realizations that are generated using the qth isolated conditional pdfs fall in

in the vicinity of ᾱq.

6.8 Implementation details

6.8.1 Local generation of the required realizations

In this section, we give all the necessary details for an easy and practical implementation of the

newly proposed IS-based ML JADE algorithm. Without loss of generality, we consider the case of

a ULA with α = 0 corresponding to the broadside axis. Hence, the candidate angles are confined

within [−π/2, π/2] and recall that τ ∈ [0, τ̄max] where τ̄max can be freely chosen as high as desired.

The starting point of the algorithm is the evaluation of the periodogram, I(αi, τj) at multiple grid

points (αi, τj) with relatively large discretization steps ∆broad
ᾱ and ∆broad

τ̄ . Then, by approximating

integrals with discrete sums, we evaluate the joint pdf in (6.42), ḡᾱ,τ̄ (α, τ), at every grid point
(
i.e.,

∀(αi, τj) ∈ [−π/2, π/2]× [0, τ̄max]
)
as follows:

ḡᾱ,τ̄ (αi, τj) =
exp

{
ρ1I(αi, τj)

}∑
i

∑
j exp

{
ρ1I(αi, τj)

}
∆broad
τ̄ ∆broad

ᾱ

, (6.61)

from which the marginal delay pdf is computed as follows:

ḡτ̄ (τj) =
∑
i

ḡ(αi, τj)∆broad
ᾱ , ∀ τj ∈ [0, τmax]. (6.62)
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The initial delay estimates, {̂̄τ (0)
q }

Q̄
q=1, are the discrete delay points that correspond to the largest Q̄

maxima of (6.62). Then, for every q = 1, 2, · · · , Q̄, the conditional pdf of the qth angle corresponding

to ̂̄τ (0)
q is directly obtained as:

ḡᾱ|τ̄
(
αi|τ = ̂̄τ (0)

q

)
=

ḡᾱ,τ̄
(
αi, ̂̄τ (0)

q

)
ḡτ̄ (̂̄τ (0)

q )
, ∀ αi ∈ [−π

2 ,
π
2 ]. (6.63)

The initial estimate, ̂̄α(0)
q , for the qth AoA is the discrete point, αi, that corresponds to the maximum

of (6.63). Then, the process of generating the realizations in the intervals D̂̄τ (0)
q

and D̂̄α(0)
q

amounts

to performing the following steps for every q = 1, 2, · · · Q̄:

— step 1: Evaluate the joint pdf, ḡᾱ,τ̄ (α, τ), locally at new discrete points (α′i, τ ′j)∈D̂̄α(0)
q

×D̂̄τ (0)
q

as in (6.61); yet with smaller grid steps ∆small
τ̄ < ∆broad

τ̄ and ∆small
ᾱ < ∆broad

ᾱ .

— step 2: Compute the qth local marginal delay pdf at every point τ ′j ∈ D̂̄τ (0)
q

as in (6.62), i.e.:

ḡτ̄,q(τ ′j) =
∑
i

ḡ(α′i, τ ′j)∆small
ᾱ ∀ τ ′j ∈ D̂̄τ (0)

q

. (6.64)

— step 3: Compute the qth local delay CDF as follows:

Ḡτ̄,q(τ ′j) =
∑
l≤j

ḡτ̄,q(τ ′l )∆small
τ̄ ∀ τ ′j ∈ D̂̄τ (0)

q

. (6.65)

— step 4: Generate R realizations {u(r)
q }Rr=1 ∼ U [0, 1] and invert Ḡτ̄,q(.) via linear interpolation

in order to obtain the local delay realizations τ (r)
q = Ḡ−1

τ̄,q(u
(r)
q ) for r = 1, 2 . . . R.

— step 5: For r = 1, 2, · · · , R, obtain immediately the local pdf of the qth AoA conditioned on

τ
(r)
q from the local joint pdf

(
already evaluated in “step 1”

)
as follows:

ḡᾱ|τ̄
(
α′i|τ = τ (r)

q

)
=
ḡᾱ,τ̄

(
α′i, τ

(r)
q
)

ḡτ̄,q
(
τ

(r)
q
) , ∀ α′i ∈ D̂̄α(0)

q

.

— step 6: Evaluate the qth local angle CDF, Ḡᾱ,q(α′i), similarly to Ḡτ̄,q(τ ′j) in (6.65) and

generate the rth angle realization, α(r)
q = Ḡ−1

ᾱ,q(u
(r)
q ), using linear interpolation as well.
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6.8.2 Estimations of the TDs and AoAs

Using the same arguments of [52], [61], after generating all the required realizations, more

accurate IS-based parameter estimates are obtained by applying the circular instead of the linear

sample mean estimate. In fact, the latter simply averages out all the realizations and outlier seeds

will result in an inevitable estimation bias. As will be shown later in this paper, however, the circular

mean succeeds in selecting the best angle and delay realizations in terms of Euclidean distance to

the true multipath-resolution parameters. The circular mean [93], ch. 2,3 of any transformation

f(Φ) of a given random variable Φ ∈ [−π, π] with distribution pΦ(φ) is obtained as follows:

̂̄
φ = ∠

1
R

R∑
r=1

f
(
φ(r))ejφ(r)

, (6.66)

where φ(r) ∼ pΦ(.) are R realizations of Φ. Note here that the original realizations τ (r)
q and α

(r)
q

are, respectively, in [0, τmax] and [−π/2, π/2] for ULAs
(
[0, 2π] for UCAs

)
. Therefore, one needs to

transform both of them into the interval [−π, π] in order to successfully apply the circular mean.

To that end, we use the transformations φ1(τ (r)
q ) = 2π (τ (r)

q /τmax − 1/2) ∈ [−π, π] and φ2(α(r)
q ) =

2α(r)
q ∈ [−π, π] for ULAs 4. The circular mean is first applied using φ1(τ (r)

q ) and φ2(α(r)
q ) and the

true TDs and AoAs are then estimated using the inverse transformations φ−1
1 (x) = τmax

(
1
2 + 1

2πx
)

and φ−1
2 (x) = 1

2x as follows:

̂̄τq = τmax

 1
2π∠

 R∑
r=1

η
(
α(r), τ (r))ej2π( τ(r)

q
τmax

−1
2

)+ 1
2

, (6.67)

̂̄αq = 1
2∠

 R∑
r=1

η
(
α(r), τ (r))ej

(
2α(r)
q −π

) . (6.68)

Now by using (6.17) and (6.40) in (6.24), the weighting coefficient η
(
α(r), τ (r)) can be explicitly

expressed as follows:

η
(
α(r), τ (r)) =

µ exp
{
ρ0Lc

(
α(r), τ (r))}

exp
{
ρ1
∑Q̄
q=1 I

(
α

(r)
q , τ

(r)
q
)} , (6.69)

4. Note here that we will keep presenting the AoA estimates for ULA configurations and the results for UCAs are
quite similar. The only difference is that the corresponding transformation is φ2(α(r)

q ) = α
(r)
q − π and its inverse in

(6.68) is φ−1
2 (x) = x+ π.
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where

µ =

∫
· · ·
∫

exp
{
ρ1
∑Q̄
q=1 I(αq, τq)

}
dαdτ∫

· · ·
∫

exp {ρ0Lc(α, τ )} dαdτ
. (6.70)

Actually, by defining the quantity:

Ψ(α, τ ) , ρ0Lc
(
α, τ

)
− ρ1

Q̄∑
q=1

I
(
αq, τq

)
, (6.71)

and using the same arguments in [52], one can use the following normalized weighting coefficient:

η
(
α(r), τ (r)) = exp

{
Ψ
(
α(r), τ (r))− max

1≤r≤R
Ψ
(
α(r), τ (r))},

(6.72)

instead of η
(
τ (r),α(r)) in order to greatly reduce the computational load with no changes in the

final results. Actually we further show in this paper the following interesting result:

Lemma 2: The circular-mean estimates, ̂̄τ = [̂̄τ1, ̂̄τ2, . . . , ̂̄τ Q̄] and ̂̄α = [̂̄α1, ̂̄α2, . . . , ̂̄αQ̄], obtained in

(6.67) and (6.68) by using the normalized factor in (6.72) correspond to the vector realizations that

jointly minimize the Euclidean distance to the true delay and angle parameters, i.e.:

[̂̄τ , ̂̄α] = argmin
τ (r), α(r)

(∣∣∣∣τ (r) − τ̄
∣∣∣∣2 +

∣∣∣∣α(r) − ᾱ
∣∣∣∣2). (6.73)

Proof : see Appendix A.

In the sequel, we shall suggest other tricks that result in tremendous additional computational

savings and make the proposed estimator always reach the CRLB. In fact, it is found that the

initial estimates ̂̄τ (0)
q and ̂̄α(0)

q are shifted, respectively, by at most ετ and εα from the true delays

and angles 5 (i.e., |̂̄τ (0)
q − τ̄q| ≤ ετ and |̂̄α(0)

q − ᾱq| ≤ εα
)
. In principle, the IS-based estimates in (6.67)

and (6.68) are able to return the exact (non-shifted) MLEs by using an extremely large number of

realizations. Indeed, using exhaustive simulations, it was found that the exact MLEs are obtained

with R0 = 20000 realizations that are generated locally using δτ̄ = 2ετ and δᾱ = 2εα. These typical

values for δτ̄ and δᾱ are chosen so that the corresponding local intervals D̂̄τ (0)
q

=
[ ̂̄τ (0)

q −δτ̄ , ̂̄τ (0)
q +δτ̄

]
5. Note here that ετ and εα depend on the bandwith of the known transmitted signal and their expressions will

be given later in Section 6.10 for both single- and multi-carrier systems.



126

andD̂̄α(0)
q

=
[ ̂̄α(0)

q −δᾱ, ̂̄α(0)
q +δᾱ

]
include the true values of the unknown parameters since they verify

|̂̄τ (0)
q − τ̄q| ≤ δτ̄/2 and |̂̄α(0)

q − ᾱq| ≤ δᾱ/2. This ensures that a portion of the R0 = 20000 realizations

are indeed generated on both sides of each true TD and AoA as required by the IS concept. However,

using such a very large number of realizations results in a very high computational load. In order

to greatly reduce complexity, the algorithm is run in a two-stage 6 multi-resolution implementation

where, in each stage, a far smaller number of realizations is generated over a far narrower lock span

around the target parameters.

— stage I: Generate R1 � R0 realizations,
{
τ

(r)
q
}R1
r=1 and

{
α

(r)
q
}R1
r=1, in the aforementioned

local intervals D̂̄τ (0)
q

and D̂̄α(0)
q

and obtain the estimates ̂̄τq and ̂̄αq as in (6.67) and (6.68).

— stage II: Regenerate R2 � R0 new realizations
{
τ ′q

(r)}R2
r=1 and

{
α′q

(r)}R2
r=1 over narrower

intervals that are centered around the estimates ̂̄τq and ̂̄αq obtained in “stage I”, i.e., D′̂̄τq =

[̂̄τ q−δ′τ̄ , ̂̄τ q+δ′τ̄ ] and D′̂̄αq = [̂̄αq−δ′ᾱ, ̂̄αq+δ′ᾱ] with δ′τ̄ = δτ̄/10 and δ′ᾱ = δᾱ/10. Then, compute

the AoA MLEs using the new angle realizations,
{
α′(r) = [α′1

(r), α′2
(r), · · · , α′

Q̄
(r)]
}R2
r=1, and

the delay estimates, ̂̄τ = [̂̄τ1, ̂̄τ2, · · · , ̂̄τQ̄]T , obtained in “stage I” as follows:

̂̄αq,MLE = 1
2∠

 R2∑
r=1

η
(
α′(r), ̂̄τ )ej(2α′q(r)−π

). (6.74)

All the AoA MLEs obtained in (6.74), i.e., ̂̄αMLE = [̂̄α1,MLE, ̂̄α2,MLE, · · · , ̂̄αQ̄,MLE]T , are then

used in conjunction with the new delay realizations,
{
τ ′(r) = [τ ′1

(r), τ ′2
(r), · · · , τ ′

Q̄
(r)]
}R2
r=1, to

find the TD MLEs as follows:

̂̄τq,MLE = τmax

 1
2π∠

 R2∑
r=1

η
(
τ ′(r), ̂̄αMLE

)
ej2π

( τ ′(r)q
τmax

− 1
2

)+ 1
2

. (6.75)

Finally, we emphasize the fact that the generated angle and delay realizations are not constrained to

be on the grid points due to the use of the linear interpolation in “step 4” and “step 6”. Therefore,

unlike all the existing JADE estimators, the new IS-based ML technique does not suffer from the

off-grid problems as the MLEs obtained in (6.74) and (6.75) are not also constrained to be on the

considered sampling grid (cf. Section I for more details).

6. An N -stage multi-resolution extension would be straightforward.
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6.9 Estimating the number of paths

All the existing JADE techniques as well as the new IS-based one require the a priori knowledge

of the number of paths Q̄. In practice, however, this parameter is also unknown and needs to be

estimated even before proceeding to AoAs and TDs acquisition. In this contribution, we also propose

a new heuristic approach that allows the exact estimation of Q̄ over a wide range of practical SNRs.

As will be seen shortly, the new approach is intrinsic to the new IS-based estimator and entails almost

no additional complexity. In fact, it relies on the sparsity feature inherent to the marginal delay pdf,

ḡτ̄ (τi), depicted in Fig. 6.3(b). Indeed, by properly selecting the sparsity-promoting design parameter

ρ1, it is possible to reduce the sizes of the secondary lobes that are due to the noise contribution.

In this way, one obtains a pseudo-pdf whose energy is almost totally concentrated under the main

lobes that are located around the true delays. Precisely, just after evaluating ḡτ̄ (τi) in (6.62) over

[0, τmax], the following two simple steps are performed:

1. step 1: Get the points, { ◦τq}Qtot.
q , corresponding to all the peaks in

{
ḡτ̄ (τi) ∀τi ∈ [0, τmax]

}
with Qtot. being the total number of peaks. Note here that Qtot. is always greater than Q̄

due to the presence of secondary lobes.

2. step 2: Sort the squared magnitudes, {|ḡτ̄ ( ◦τq)|2}Qtot.
q , corresponding to { ◦τq}Qtot.

q and obtain

an estimate, ̂̄Q (for the actual number of paths) as the first number of peaks, Q, whose

combined energy fractions is above a certain threshold, i.e.:

ρ(Q) =
∑Q
q |ḡτ̄ ( ◦τq)|2∑Qtot.

q |ḡτ̄ ( ◦τq)|2
≥ κ, (6.76)

ρ(Q− 1) =
∑Q−1
q |ḡτ̄ ( ◦τq)|2∑Qtot.
q |ḡτ̄ ( ◦τq)|2

< κ, (6.77)

where κ is some threshold level to be designed offline as explained subsequently.

First, it is worth mentioning here that the procedure described above could not be deduced from

any of the existing JADE estimators since none of them has a sparsity-promoting design parameter

like our new IS-based estimator. In practice, they are hence compelled to use one of the traditional

more complex signal detection schemes like [94] in order to estimate Q̄.

As mentioned above, the threshold level, κ, can be easily optimized offline in order to obtain the

lowest possible Q̄−estimation error for all the practical values of Q̄. To do so, for each Q̄, the

mean value of the ratio in (6.76), denoted here as ρ̄(Q) , E
{
ρ(Q)

}
, is evaluated by Monte-Carlo
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simulations for all 1 ≤ Q ≤ Qtot.. Then, the appropriate value for κ is selected based on these mean

values as suggested by Fig. 6.4 (note here that Fig. 6.4(b) depicts a zoom of Fig. 6.4(a) around

the specified region along the y−axis). These results are obtained from 10000 Monte-Carlo runs for

every Q̄ at an SNR = −10 dB.
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Figure 6.4 – The mean value of ρ(Q) for different values of Q̄, SNR = −10 dB, ULA with P = 5 receiving
antennas.

As suggested by Fig. 6.4(b), at such extremely low SNR level, an appropriate choice for the threshold

level would be κ = 0.96. In fact, with such threshold, it is seen for Q̄ = 2 that the first value Q at

which ρ(Q) exceeds κ = 0.96 (on average) is Q = 2, i.e., “exact estimation”. The same observation

holds for Q̄ = 3, 4, 5 and 6 as seen from Fig. 6.4(b). For Q̄ = 7, however, the first value Q that

verifies (6.76) on average is Q = 6, i.e., “under-estimation” and the same observation holds as well

for Q̄ = 8 and Q̄ = 9. It will be seen later that the proposed path detection technique outperforms

the two well-known existing solutions, namely MDL and AIC [94], especially when the number of

paths to be detected is larger then the number of receiving antennas.

6.10 Simulation results

6.10.1 Impact of parameters ρ0 and ρ1

We first provide some hints about the appropriate choice of the parameters ρ0 and ρ1. We

mention beforehand that (unlike ρ0) ρ1 is actually a design parameter that should be carefully

chosen.
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— Choice of ρ0: As suggested by Pincus’ theorem, the value of this parameter should be infinite

so as to reflect the infinite limit involved in Pincus’ theorem [59]. In practice, however, one

needs to work with a finite yet sufficiently high value which is optimized offline depending

on the observed behaviour of the estimator. In fact, it is found that for low values for ρ0, the

estimator exhibits very poor estimation performance as seen in Fig. 6.5 below for both single-

and multi-carrier systems. By increasing ρ0, the estimation accuracy improves remarkably.

And starting from a lower threshold, ρ̄0, the performance holds the same; any value for

ρ0 > ρ̄0 can be used. As seen from Fig. 6.5 (a) and (b), the lower threshold on ρ0 is found

to be ρ̄0 = 300; above which the estimator performs well (i.e., close to the CRLB) both in

terms of TDs and AoAs estimation.

— Choice of ρ1: The main role of this design parameter is to control the spans of the main

lobes in ḡτ̄ (τ) and ḡᾱ|τ̄ (α|τ) that appear, respectively, around the true (unknown) AoAs and

TDs, {ᾱq}Q̄q=1 and {τ̄q}Q̄q=1. Taking a large value for ρ1 renders the main lobes in ḡτ̄ (τ), for

instance, extremely narrow making it more likely that the true delays lie outside their very

short spans. Since the realizations pertaining to each qth delay, τ̄q, are generated under the

associated main lobe, they will be all shifted from τ̄q resulting in an inevitable estimation

bias. Therefore, contrarily to ρo, there is an upper threshold, ρ̄1, that should not be exceeded

by ρ1 as shown in Fig. 6.6 below. There, we see that the upper threshold on ρ1 is ρ̄1 = 40

as the performance of the estimator deteriorates greatly for ρ1 > 40; especially in terms of

delay estimation.
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Figure 6.5 – Impact of the parameter, ρ0, on the performance of the proposed IS-based estimator at
SNR = −10 dB: (a) and (b) multi-carrier, M = 244.
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Figure 6.6 – Impact of the parameter, ρ1, on the performance of the proposed IS-based estimator at
SNR = −10 dB: (a) and (b) multi-carrier, M = 244.

In Fig. 6.7, we gauge our proposed approach for estimating the number of paths, Q̄, against the

two widely used signal detection schemes, namely MDL and AIC [94]. There, it is seen that the

proposed approach outperforms both benchmarks in terms of the probability of detection error.

This is mainly due to the use of the sparsity-promoting design parameter, ρ1, whose appropriate

selection allows to reduce the contributions of the spurious lobes stemming from the background

noise. We emphasize, however, the fact that both MDL and AIC are applicable only when the actual

number of paths, Q̄, is smaller than the number of receiving antenna elements P since their cost

functions can be evaluated for 1 ≤ Q ≤ P only.

In the remaining simulations, we assess the performance of the proposed IS-based ML estimator in

terms of the root mean square error (RMSE) which is defined for each qth TD and AoA as follows:

RMSE =

√∑Mc

m=1

(̂̄τ [m]
q,MLE−τ̄q

)2

Mc
,

RMSE
(
deg.

)
=

√∑Mc

m=1

(̂̄α[m]
q,MLE−ᾱq

)2

Mc
,

where Mc = 5000 is the total number of Monte-Carlo runs, in all simulations, and ̂̄τ [m]
q,MLE and̂̄α[m]

q,MLE are, respectively, the estimates of τ̄q and ᾱq during the mth Monte-Carlo run.
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Figure 6.7 – Error Probability on detecting the number of paths for a multicarrier-carrier system
employing M + 1 = 245 subcarriers at SNR = 0 dB with P = 5 and ρ1 = 4.

6.10.2 AoA and TD estimation accuracies: multi-carrier case

We consider the IEEE 802.11ac standard’s setup parameters with a bandwidth B = 80MHz and

P = 6 antenna elements. In this case, the subcarrier spacing is ∆F = 312.5 KHz thereby leading to

M + 1 = 245 useful subcarriers within the considered bandwidth. According to the IEEE 802.11ac

standard, there are 8 subcarriers allocated for other purposes that cannot be exploited for JADE.

That is why we are left with only 245 useful subcarriers out of the 256 available in the considered

setup.

MATLAB-based simulations

We will compare our estimator the unitary matrix pencil (UMP) JADE algorithm introduced

recently in [49], [50] and which remains so far the only technique that is geared specifically towards

multicarrier systems. The two estimators will also be gauged against the CRLB developed in [50]

and used here as an overall benchmark that reflects, for every considered setup, the best achievable

performance ever. The design parameter, ρ1, required by our algorithm was ρ1 = 4, and ρ0 which

must be sufficiently high was set to ρ0 = 8000. Moreover, we fix δτ̄ = 0.2/B and δτ̄ = 0.2° . It was

also found that R1 = R2 = 1000 generated realizations
(
during “stage I” and “stage II”

)
provide
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sufficiently accurate IS-based MLEs for both the TDs and AoAs as will be seen from the subsequent

simulations.

We begin by simulating the two estimators in a relatively comfortable situation where the paths are

widely separated both in time and space. The results are shown in Fig. 6.8 for two equi-powered

paths that are located at directions ᾱ1 = 20◦ and ᾱ2 = 45◦ with respective delays τ̄1 = 2/B and

τ̄2 = 5/B. There it is seen that the proposed IS-based ML estimator (referred to here as “New
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Figure 6.8 – RMSE for the TDs and AoAs with M + 1 = 245 subcarriers, for large angular and delay
separations.

IS-ML”) outperforms UMP in terms of TDs estimation, although the two estimators exhibit almost

the same performance in terms of angle estimation over the entire SNR range. Most remarkably, the

proposed IS-based ML estimator reaches the CRLB both in terms of delay and angle estimations

thereby confirming its statistically efficiency.

We also assess the performance of both estimators in a more challenging scenario where the paths

have closely-spaced angles or delays. To do so, we consider in Fig. 6.9 three paths in a situation

where the two paths that have small angular separation are well separated in the delay line and vice

versa. More specifically, the paths are located at directions ᾱ1 = 10◦, ᾱ2 = 44.5◦ and ᾱ3 = 45◦ with
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Figure 6.9 – RMSE for the TDs and AoAs with M = 245 subcarriers, for paths with closely-spaced
angles and large delay separations and vice versa.

respective delays τ̄1 = 2/B, τ̄2 = 3/B and τ̄3 = 8/B. Here again, its seen that the proposed IS-based

ML estimator exhibits a huge performance advantage in terms of delays estimation as compared to

UMP.

Localization with real-world measurements

Here, we evaluate the localization performance of the proposed algorithm using real-world mea-

surements in the form of measured channel frequency responses (CFRs) that were obtained in [50]

using the IEEE 802.11ac standard’s setup parameters. In the tested scenario, a multilateral loca-

lization system is considered wherein a mobile unit (MU) broadcasts a reference/known signal to

a number of access points (APs). Each AP forwards the recorded observations to a central unit

(CU). The latter extracts the required CFR measurements (corresponding to each AP) and then

feeds them to the new IS-based ML JADE technique which is itself executed locally at the CU.

The obtained IS-based AoA and TDOA estimates from all APs are then blended together to find
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the physical location of the MU. If the need be, the computed coordinates can be fed back to the

MU from the central unit. According to the measurement setup depicted in [50], Fig. 5], the APs

(denoted as AP1, AP2, AP3, and AP4) and the MU were positioned at (146.2, -172.6) cm, (841.6,

-213.2) cm, (907.7, 338.2) cm, (19.1, 333.4) cm, and (462.1, 161.4) cm, respectively. It is worth

mentioning here that two of the APs have no line of sight (LOS) component to the MU. Moreover,

as explained in [50], 310 different channel measurements were collected over a bandwidth of B = 80

MHz using the Agilent ENA E5071C network analyzer and a uniform linear array of six antennas

at each AP, all configured according to the IEEE 802.11ac standard’s setup parameters.

To localize the MU, we consider the hybrid Time Difference of Arrival (TDOA) and AoA localization

technique proposed in [50], Section IIV] with the TDOA being time difference of arrival between

each AP and a reference AP (here chosen to be AP1). Indeed, it was shown that the hybrid TDOA

and AoA localization procedure outperforms the procedures that are based on either AoA or TDOA

only. This hybrid localization approach, however, requires the knowledge of the covariance matrix

Q of all the estimated angles and delays in order to reduce the effect of outlier AoA or TDOA

estimates. In [50], Q was obtained from the different estimates corresponding to the different 310

channel measurements. In the sequel, we shall refer to this procedure as the covariance-based locali-

zation technique. It should be emphasized, however, that this is a somewhat non practical solution

since the MU needs to be localized using a single set of channel measurements. In this situation,

one can use the same hybrid localization procedure by simply setting Q = I which is referred to

hereafter as the covariance-free procedure in the sequel. If the underlying JADE algorithm is already

outlier free, then the more practical covariance-free method will also be accurate.

Fig. 6.10 depicts the location estimates obtained from the TDOA and AoA estimates returned by

both UMP and the proposed IS-based ML estimator. By inspecting Figs. 6.10(a) and (c), it is

seen that both UMP and the new IS-ML algorithms yield accurate location estimates when used in

conjunction with the covariance-based localization procedure. Indeed, all the corresponding location

estimates are scattered in the close vicinity of the true MU position. A distinct advantage for the

proposed IS-ML algorithm over UMP is, however, observed when the more practical covariance-free

localization procedure is used (i.e., using a single channel measurement). In fact, as seen from Figs.

6.10(b) and (d), while all IS-based estimated locations remain very close to the true MU position,

UMP exhibits many outlier locations which are roughly 80 cm and 30 cm away from the MU along

the x− and y− axes, respectively. This is mainly due to some inaccurate TDOA and AoA estimates

for UMP.
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Figure 6.10 – Constellation of the location estimates in the XY plane for: (a) UMP with weighting
matrix, (b) UMP without weighting matrix, (c) IS ML with weighting matrix, (d) IS ML without
weighting matrix.

For better illustration, we plot in Fig. 6.11 the empirical complementary distribution function (CDF)

of the position error:

ez =
√

(x̂− x)2 + (ŷ − y)2. (6.78)

where (x, y) and (x̂, ŷ) are the true coordinates of the MU and their estimates, respectively.

As seen from Fig. 6.11 (a), both UMP and IS ML techniques yield remarkably small localization

errors which are smaller than 10 cm at all times, when used with the covariance-based localization

procedure. Fig. 6.11 (b) depicts the CDF when the more practical covariance-free localization pro-

cedure is applied using the TDOA and AoA estimates provided by each algorithm. There, its is seen

that IS-ML still provides a localization error smaller than 10 cm in 90% of the cases (and never

exceed 15 cm) while UMP localization errors are higher than 70 cm in 10% of the cases.
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Figure 6.11 – CDF of the position error ez for both IS-ML and UMP: (a) covariance-based localization
procedure (b) covariance-free localization procedure.

6.10.3 AoA and TD estimation accuracies: single-carrier case

In what follows, we will compare our new IS-based ML estimator to the most known JADE

techniques that were developed for single-carrier systems. Specifically, we consider the two most

powerful subspace-based methods, namely, TST-MUSIC [55] and SI-JADE [56] along with the only

two existing ML-type methods which are IML [57] and SAGE [58]. All the estimators are also gau-

ged against the CRLB [56] as an overall benchmark that reflects, for every considered setup, the

best achievable performance ever. In all subsequent simulations, we consider a ULA consisting of

P = 5 receiving antenna elements with half-wavelength spacing, and M = 128 received samples.

Moreover, as a fast visual reminder, subspace-based and ML techniques are plotted with dashed

and solid lines, respectively.

As done for the multicarrier case, we begin by simulating all the estimators in a relatively com-

fortable situation where the paths are widely separated both in time and space. The results are

shown in Fig. 6.12 for a linear chirp signal that is sampled at its Nyquist rate and we consider —

as representative example — two equi-powered paths that are located at directions ᾱ1 = −15◦ and
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Figure 6.12 – RMSE for the TDs and AoAs with M = 128 samples for large angular and delay separa-
tions.

Table 6.1 – Complexity assessment of the considered JADE algorithms (cf. Table 6.2).

Algorithm Complexity Complexity ratio
IS-ML (P + 1)M log(M) + (G1 +G2)PM + (G1 +G2)P (K1 +K2) + 2

[
(K1 +K2) +M

]
+ (G2 + 1)2 +Q

[
(K2 + 1)2 + 6

]
+ 3R

[
2(MPQ+Q2) +Q3]+ 12R 1.00

SAGE
[
(2PM + 2P + 1)K +Q (M(2P + 1)) (G+ 1) + 2Q

]
Q+ N̄SAGE

iter Q
[
2(Q+ 1)P + 2(Q+ 3)(P +M) +Q+K +M(2P + 1)(K + 2 +G) +Q+ 2

]
12.19

IML (P + 1)M log(M) +Q
[
((2P + P 2) +M(Q+ P + P 2 + 1) + (P 3 + P ))K + N̄ IML

iter (M(G+ 2PQ2 +Q3 + 2QP +Q+ 2 +Q2) +Q3 + PQ3 + 2PK)
]

2.99
TST-MUSIC NS-MUSIC

[
NburstP

2Mburst + P 3 + (P + P 3)K + P 3Mburst
]

+NT-MUSIC
[
NburstM

2
burstP +M3

burst + (M3
burst +Mburst)G+ PM3

burst
]
. 22.40

SI-JADE (P + 1)M log(M) +
[
P1m2 + (m1P1m2(M −m1 + 1))

]
m2m1 +m2(M −m1 + 1)(2m1P 2

1 + 4m1P1)4N2
rowNcol + 2N3

col + 4(m1P1)2Q+ 7Q3 3.29
UMP (WU)2(P −W + 1)(M − U + 1) + 17W 3U3/3 + 2W 2U2(P −W + 1)(M − U + 1) + 8/3Q3 + 2Q2(2WU −W − U) + 17Q3 1.15

ᾱ2 = 0◦ with respective delays τ̄1 = 2.5 T and τ̄2 = 5 T wherein T = Ts.

For such large angle/delay separations, ML-type SAGE offers an AoA estimation performance as

superior as ours, at the cost, however, of about 13 times higher complexity as will be shown at the

end of this section. The other ML-type solution (i.e., IML), on the other hand, is severely affected

in performance at lower SNR values due to noise amplification since it requires the division of the

frequency-domain received signal by s(ωm). To circumvent this problem, it was suggested in [57]

that only the frequency bins
{
ωm
}
m

for which
{
|s(ωm)|2

}
m

are significantly greater than the noise

power σ2 be used. Typically, the authors impose a threshold of 30 dB, i.e., only the frequency-

domain observations,
{
x(ωm)

}
m
, for which 10 log10

(
|s(ωm)|2/σ2) ≥ 30 dB are exploited during
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the estimation process. Obviously, as the SNR decreases (i.e., σ2 increases), the number of useful

observations decreases affecting thereby the overall performance of IML.

In the following, the known transmitted signal is a block of K = 64 BPSK symbols — each of

period T — that are pulse-shaped with a raised-cosine filter of excess bandwidth ∆f = 0.3. In

this case, Ts = T/2 is the largest sampling period that verifies the Nyquist rate for all the excess

bandwidth values (or roll-off factors). We then assess the performance of all the estimators in a more

challenging scenario where the paths have closely-spaced angles or delays. To do so, we consider

in Fig. 6.13 three paths in a situation where the two paths that have small angular separation are

well separated in the delay line and vice versa. More specifically, the paths are located at directions

ᾱ1 = −3◦, ᾱ2 = 0◦ and ᾱ3 = 0.5◦ with respective delays τ̄1 = 2.25 T , τ̄2 = 2.5 T and τ̄3 = 5 T .
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Figure 6.13 – RMSE for the TDs and AoAs with M = 128 samples for paths with closely-spaced angles
and large delay separations and vice versa.

It is seen that the behavior of TST-MUSIC remains almost unchanged compared to the comfortable

situation of Fig. 6.12. This is hardly surprising since TST-MUSIC was designed specifically for such

type of situations [55]. In fact, it applies the traditional MUSIC algorithm several times by alter-
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nating between temporal and spatial spectral estimations in order to use the angular (resp. delay)

separation to resolve multipath components that are closely spaced in the delay (resp. angular)

domain. The performance of SI-JADE, however, deteriorate at low SNR levels. The improvements

of IML in terms of AoA estimation as compared to Fig. 6.12 (at low SNR values) is due to the

improved spectral content, s(ω), of the RRC waveform as compared to the chirp signal of Fig. 6.12.

In contrast, our new IS-based estimator is oblivious to the shape of the transmitted waveform and

continues to achieve the CRLB over the entire SNR range.

6.10.4 Complexity assessment

In Table 6.1, we computed the total number of operations (i.e., +,×, ÷) required by each

technique. Please refer to Table 6.2 for the definition of the various parameters. For SAGE and IML,

which are iterative in nature, we computed the average number of iterations, N̄SAGE
iter and N̄ IML

iter ,

they took until convergence by means of Monte-Carlo simulations at a fixed SNR = 0 dB. Then,

N̄SAGE
iter and N̄ IML

iter are used as multiplicative factors to their complexities measured over a single

iteration. For the sake of clarity, we introduced P1 = m1(P −m2 + 1), Nrow = m1(P −m2 + 1),

and Ncol = 2m2(M − m1 + 2). The results in Table 6.1 were obtained by fixing the number of

generated realizations required by the proposed IS-ML JADE to R = 1000 as was the case in all

experiments discussed in the simulations section. The number of samples and antenna elements

were set to M = 128 and P = 5, respectively.

Table 6.2 – Definition of the Complexity Analysis Parameters in Table 6.1

Parameter Description
K1, G1, K2, G2 Number of grid points for IS-ML

R Number of generated realizations for IS-ML
Nburst, Mburst Number and size of the data bursts for TST-MUSIC

NS-MUSIC, NT-MUSIC Number of MUSIC blocks in the space and time domains
N̄SAGE

iter Number of iterations for IML
N̄SAGE

iter Number of iterations for SAGE
K, G Number of grid points for IML and SAGE
m1, m2 Stacking parameters for SI-JADE
U , W Pencil parameters for UMP

We see from Table 6.1 that the new IS-based ML JADE estimator exhibits remarkable computational

savings compared to TST-MUSIC and the two existing ML estimators. For instance, with the
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simulation setup considered in Fig. 6.12 (i.e., P = 5, M = 128, and Q̄ = 2), IML, SAGE, and

TST-MUSIC are, respectively, 3, 12, and 22 times more complex than IS-ML.

6.11 Conclusion

In this paper, we proposed a new non-iterative and statistically efficient ML solution for the

joint estimation of the time delays and angles-of-arrival of overlapping reflections of a signal with

a known waveform. Based on the importance sampling concept, this new ML JADE technique

applies to both single- and multi-carrier models and enjoys guaranteed global optimality with super-

resolution capabilities. Typically, it is able to resolve multipath components with simultaneous angle

and delay separations as low as ∆ᾱ = 0.5◦ and ∆τ̄ = 0.25 T while achieving the CRLB even at

SNR levels as low as -10 dB. By exploiting the sparsity feature of a pseudo-pdf that is intrinsic to

the new algorithm, we also proposed a new approach that can accurately estimate the unknown

number of paths. Computer simulation results show the clear superiority of the new IS-based ML

estimator over state-of-the-art JADE techniques both in accuracy and complexity. Simulations with

real channel measurements in an indoor an environment also show the high accuracy of the IS-based

ML JADE technique in real-world localization applications.

6.12 Appendices

Appendix 1: [Proof of Lemma 2]

Owing to the very essence of maximum likelihood theory, among all generated realizations

{α(r)}Rr=1 and {τ (r)}Rr=1, it is the closest (in Euclidean distance) pair of vector realizations, α(r0)

and τ (r0), to the true angle-delay parameters, that maximizes the CLF. In other words, we have:

Lc
(
α(r0), τ (r0)) > Lc(α(r), τ (r)), for 1 ≤ r 6= r0 ≤ R (6.79)

with

r0 = argmin
1≤r≤R

(∣∣∣∣α(r) − ᾱ
∣∣∣∣2 +

∣∣∣∣τ (r) − τ̄
∣∣∣∣2). (6.80)
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Now, recall that ρ0 can be freely chosen as high as desired. Therefore, after optimizing the choice

of ρ1 as discussed previously, a sufficiently high value of ρ0 can be chosen such that:

ρ0Lc
(
α(r), τ (r)) >> ρ1

Q̄∑
q=1

I
(
α(r)
q , τ (r)

q

)
for 1 ≤ r ≤ R. (6.81)

Note here that Lc(α, τ ) = xHD(DHD)−1DHx is always strictly positive since D(DHD)−1DH is a

positive definite matrix and I
(
α

(r)
q , τ

(r)
q
)
is also always positive. Therefore, a choice of ρ0 that satisfies

the condition in (6.81) is always possible. Under such particular choice of ρ0 and as suggested by

(6.81), we have from eq. (56) in the main paper:

Ψ(α(r), τ (r)) = ρ0Lc
(
α(r), τ (r))− ρ1

Q̄∑
q=1

I
(
α(r)
q , τ (r)

q

)
,

≈ ρ0Lc
(
α(r), τ (r)). (6.82)

Therefore, by recalling (6.79), it follows that:

max
1≤r≤R

Ψ
(
α(r), τ (r)) = ρ0Lc

(
α(r0), τ (r0)). (6.83)

Hence, using (6.82) and (6.83) back into eq. (57) of the main paper, it follows that:

η
(
α(r), τ (r)) = eρ0β(r)

, (6.84)

where

β(r) , Lc
(
α(r), τ (r))− Lc(α(r0), τ (r0)). (6.85)

Now, since we have:

β(r0) = Lc
(
α(r0), τ (r0)) − Lc(α(r0), τ (r0)) = 0, (6.86)

it follows form (6.84) that:

η
(
α(r0), τ (r0)) = 1. (6.87)
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Owing to (6.79), however, we have:

β(r) < 0, for all r 6= r0. (6.88)

And since ρ0 >> 1, it immediately follows that:

η
(
α(r), τ (r)) = eρ0β(r)

≈ 0, for all r 6= r0. (6.89)

In conclusion, we have for all 1 ≤ r ≤ R:

η
(
α(r), τ (r)

)
=

 1 for r = r0

0 otherwise.
(6.90)

Then, injecting (6.90) in eqs. (52) and (53) of the main paper, the circular-mean estimates for the

angle and delay parameters are obtained as follows:

̂̄τq = τmax

 1
2π∠

{
ej2π

( τ(r0)
q
τmax

− 1
2

)}
+ 1

2

 , (6.91)

̂̄αq = 1
2∠

{
e
j

(
2α(r)
q −π

)}
. (6.92)

But owing to the transformations applied right after eq. (51) in the main paper, we always have:

2π
(
τ

(r0)
q

τmax
− 1

2

)
∈ [−π, π], (6.93)

2α(r)
q − π ∈ [−π, π], (6.94)

and hence it follows that:

∠
{
ej2π

( τ(r0)
q
τmax

− 1
2

)}
= 2π

(
τ

(r0)
q

τmax
− 1

2

)
, (6.95)

and

∠
{
e
j

(
2α(r)
q −π

)}
=
(
2α(r)

q − π
)

(6.96)
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Plugging (6.95) and (6.96) back into (6.91) and (6.92), it immediately follows that:

̂̄τq = τ (r0)
q , q = 1, 2, . . . , Q̄ (6.97)

̂̄αq = α(r0)
q , q = 1, 2, . . . , Q̄. (6.98)

By recalling (6.80), it turns out that the vector realizations τ (r0) = [τ (r0)
1 , τ

(r0)
2 , . . . , τ

(r0)
Q̄

] and α(r0) =

[α(r0)
1 , α

(r0)
2 , . . . , α

(r0)
Q̄

] selected by the circular mean as ML estimates, in (6.97) and (6.98), minimize

the combined Euclidean distance to all the true angle/delay parameters. In other words, under

appropriate choice of ρ0, the circular mean succeeds in selecting the best angle/delay realizations

instead of simply averaging all the realizations as in the linear mean.
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Thesis

Abstract

During my Ph.D. program, i had the chance to be involved in the IMT-2020 evaluation process

of the 5G SRITs and RITs technologies. The Wireless Lab was one of the few if not the only

academic team in Canada to have been involved in ITU-R WP 5D activities for the evaluation of

candidates for 4G standards (IMT-Advanced) in 2009-2010 and 5G (IMT-2020) in 2018-2020. Most

recent mandate covered the RITs and/or SRITs of 3GPP, TSDSI, ETSI DECT, and NuFront and

we are currently continuing with re-evaluation of DECT and NuFront. We were actually among the

few independent evaluation groups (IEG)s to have demonstrated that these two candidates could

not pass step 4 of the evaluation process. I also have been given an opportunity by my supervisor,

Prof. Sofiène Affes, to mentor graduate and undergraduate students in their research projects.
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7.1 Evaluation of radio interface technology (RIT) and set of RITs

(SRITs) candidates to the new ITU-R WP 5D IMT-2020 (5G)

standards within the CEG 1 and ISED 2 mandates

7.1.1 Introduction

One of the strongest driving forces for wireless technology evolution today is 5G, also known

as IMT-2020 [1], which promises to encompass several radio interface technologies (RITs) or sets

thereof (SRITs), including 3GPP and ETSI/DECT among others. These IMT-2020 standard can-

didates, made available very recently for evaluation, are to be assessed for compliance to minimum

requirements [68],[69]. 5G promises to deliver by 2020 ultra-high-speed wireless data transmission

services at much lower costs and latencies while providing much higher rates, spectrum efficien-

cies, and coverage. In order to ensure the most cost/spectrum-efficient deployment of these new-

generation wireless technologies in a few years from now, their performance has to be reliably as-

sessed by simulations in the more realistic way. The capabilities of IMT-2020 also include: very

high peak data rate, very high and guaranteed user experienced data rate, and quite high mobility

while providing satisfactory quality of service. It also includes features such as enabling massive

connections in very-high-density scenarios, very high energy efficiency for network and device side,

high spectrum and bandwidth flexibility, and ultra-high reliability. Multiple key features are to be

assessed such as packet throughput, cell spectrum efficiency, packet loss rate, and latency. These

features will give valuable insights to identify i) areas where enhancements can be made, ii) intro-

duce these enhancements and evaluate them, iii) support equipment manufacturers and operators

in their standardization effort to integrate these enhancements if deemed valuable. The comparison

of the selected 5G technologies is performed on a fair basis using a common simulation platform.

It is from this perspective, that the Wireless Lab team (mandated by ISED and CEG), has

worked on developing a common simulation platform design for the 3GPP and ETSI/DECT RIT

candidates for 5G. The characteristics chosen for evaluation by simulation include peak 5th percen-

tile user spectral efficiency, average spectral efficiency, connection density, reliability, and mobility

1. Canadian Evaluation Group
2. Innovation, Science, and Economic Development Canada
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[68]. The obtained results were included in the final report of the CEG contribution to the working

party 5D (WP 5D) meetings.

7.1.2 Simulation process

Usage scenarios and test environments

There are three usage scenarios for IMT-2020 as follows:

— eMBB: This usage scenario will come with new application areas and requirements in addition

to existing mobile broadband applications for improved performance and an increasingly

seamless user experience. This usage scenario covers a range of cases, including wide-area

coverage and hotspot, which have different requirements.

— mMTC: This usage scenario is characterized by a very large number of connected devices

typically transmitting a relatively low volume of non-delay-sensitive data.

— URLLC: This usage scenario has stringent requirements for capabilities such as throughput,

latency and availability. Some examples include wireless control of industrial manufacturing

or production processes, remote medical surgery, distribution automation in a smart grid,

transportation safety, etc.

A test environment reflects a combination of geographic environment and usage scenario. There are

five selected test environments for IMT-2020 as follows:

— Indoor Hotspot-eMBB: An indoor isolated environment at offices and/or in shopping malls

based on stationary and pedestrian users with very high user density.

— Dense Urban-eMBB: An urban environment with high user density and traffic loads focusing

on pedestrian and vehicular users.

— Rural-eMBB: A rural environment with larger and continuous wide area coverage, supporting

pedestrian, vehicular and high-speed vehicular users.

— Urban Macro–mMTC: An urban macro environment targeting continuous coverage focusing

on a high number of connected machine type devices.

— Urban Macro–URLLC: An urban macro environment targeting ultra-reliable and low latency

communications.
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Network layout

The guidelines in [95] describe multiple use cases which were all implemented in the system-level

simulator.

— Indoor scenario: The documentation in [95] gives the details about the indoor placement

of the hotspots. However, no details were provided about the network layout nor the UEs

placement. In our simulator, it is assumed that the UEs are uniformly distributed over the

whole area and each site include 1 TRxPs.

— Hexagonal one-layer layout: Following [95], the dense urban-eMBB rural-eMBB, urban

macro-mMTC and urban macro-URLLC are evaluated using macro-layer base stations that

are placed in a regular grid with a hexagonal layout (with three TRxPs per site). In our

simulator both, TRxP per site or 3 TRxPs per site are available.

— Hexagonal two-layer layout: This configuration contains Two layers. The macro-layer base

stations are placed in a regular grid, following hexagonal layout with three TRxPs per site.

For the micro layer, there are 3 micro sites randomly dropped in each macro TRxP area. In

our simulator both, TRxP per site or 3 TRxPs per site are available.

— Dense Urban-eMBB (500km/h mobility): In the case of high mobility (500 km/h), additional

evaluations can be envisaged using linear cell layout configuration(s) as defined in Annex 2

of [95].

Evaluation criteria

The evaluation criteria that requires system- and link-level simulations are listed below. Note

that the ITU requires other evaluation criteria (analytical and by inspection) that can be found in

[68].

— 5th percentile user spectral efficiency: the 5% point of the CDF of the normalized user

throughput. It is defined for the purpose of evaluation in the eMBB usage scenario. The

minimum requirements for various test environments are summarized in Table 7.1.

Table 7.1 – 5th percentile user spectral efficiency

Test environment Downlink (bit/s/Hz) Uplink (bit/s/Hz)
Indoor Hotspot – eMBB 0.3 0.21
Dense Urban – eMBB 0.225 0.15
Rural – eMBB 0.12 0.045
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— Average spectral efficiency: the aggregate throughput of all users over a certain period

of time divided by the channel bandwidth and the number of TRxPs. It is measured in

bit/s/Hz/TRxP and the minimum requirements for various test environments are summari-

zed in Table 7.2.

Table 7.2 – Average spectral efficiency

Test environment Downlink (bit/s/Hz/TRxP) Uplink (bit/s/Hz/TRxP)
Indoor Hotspot – eMBB 9 6.75
Dense Urban – eMBB 7.8 5.4
Rural – eMBB 3.3 1.6

— Connection density: the total number of devices fulfilling a specific quality of service (QoS)

per unit area (per km2). The target QoS is to support delivery of a message of a certain

size within a certain time and a success probability, as specified in [95]. This requirement

is defined for the purpose of evaluation in the mMTC usage scenario and the minimum

requirement for connection density is 1 000 000 devices per km2.

— Reliability: the success probability of transmitting a packet within a required maximum time.

This requirement is defined for the purpose of evaluation in the URLLC usage scenario and

the minimum requirement for the reliability is 1− 10−5 success probability.

— Mobility: is the maximum mobile station speed at which a defined QoS can be achieved. The

minimum requirements for various test environments are summarized in Table 7.3.

Table 7.3 – Traffic channel link data rates normalized by bandwidth.

Test environment Normalized traffic channel
link data rate (bit/s/Hz) Mobility

Indoor Hotspot – eMBB 1.5 10
Dense Urban – eMBB 1.12 30

Rural – eMBB 0.8 120
0.45 500

Evaluation summary

Multiple standard candidates were submitted to WP 5D for evaluation. In Table 7.4, we pro-

vide summary of the performance criteria evaluated for each submitted technology. To be approved,

each candidate needs to fulfill the minimum requirement of each of the evaluation criteria mentioned

above.
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Table 7.4 – Technologies covered by the CEG for WP 5D

IMT-2020 SUBMISSION
Proponent 3GPP China South Korea TSDSI ETSI-DECT NuFront
Document Reference RIT [70] SRIT [71] [72] [73] [74] [75] [76]

Status Evaluated Evaluated

Not evaluated
(WP 5D has determined that
the 3GPP evaluation
applies to this candidate)

Not evaluated
(WP 5D has determined that
the 3GPP evaluation
applies to this candidate)

Not evaluated
(After de-activation of
certain features, TSDSI RIT
became sufficiently
similar to 3GPP RIT)

Partial evaluation
(only the DECT
component RIT)

Partial evaluation

Average spectral efficiency X X N/A Missing data
5% spectral efficiency X X N/A Missing data
Mobility X X N/A Missing data
Reliability X N/A X Missing data
Connection density X X Missing data Missing data

In table 7.5, we provide the 3GPP NR RIT technology compliance template for technical Per-

formance requiring evaluation by simulation. We concluded that 3GPP NR RIT satisfies all of the

minimum requirements. Moreover, as mentioned in [96], the CEG believes that the NR RIT submis-

sion satisfies all of the minimum requirements (including analytical and by inspection evaluations)

as specified in Reports ITU-R M.2410 [68], M.2411 [69], and M.2412 [95].

In table 7.6, we provide the 3GPP SRIT technology compliance template for technical performance

requiring evaluation by simulation. The SRIT submission of 3GPP includes two components: LTE

RIT and NR RIT. We concluded that 3GPP SRIT satisfies all of the minimum requirements. Note

that the LTE component does not support URRLC scenario and hence the reliability was not eva-

luated. Moreover, as mentioned in [96], the CEG believes that the SRIT submission satisfies all of

the minimum requirements (including analytical and by inspection evaluations).

In table 7.7, only the DECT component RIT of the ETSI-DECT SRIT submission was evaluated

and the following observations were drawn:

— The DECT component applies only to UMa-URLLC and UMa-mMTC. Therefore, no eva-

luations applying to the eMBB usage scenario could be implemented (eMBB is covered by

3GPP NR RIT in the ETSI-DECT submission).

— The DECT component RIT fulfils the reliability criterion for the UMa-URLLC test environ-

ment.

— The assumptions required to simulate mMMTC environment are very specific to the DECT

component RIT and in spite of several e-mail exchanges with the proponent, proved to be

too numerous and too complicated to execute. These assumptions certainly go far beyond

what is provided as an evaluation methodology in report ITU-R M.2412. Ultimately, with

the network going from cellular layout to mesh layout, and interactions required between

the two, we were not able to perform simulations before the WP 5D 34th meeting. Some

examples of the assumptions required to be made:
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— Device-to-device channel and interference models for shortest path selection and data

relaying.

— Criteria required to establish the number of hops and path from the user equipment via

other user devices to reach the base stations.

— RSSI sensitivity threshold to determine device-to-device connectivity.

— Device-to-device data relaying, modulation, coding, and resource allocation schemes.

In the final report, the CEG was not able to conclude whether the DECT component RIT passes

the connection density requirements, which in turn implies that it is unclear if this component

meets the overall criterion of fulfilling the requirements of at least two test environments.

After the de-activation of additional features such as pulse shaping and power boosting (decision

made during the WP 5D meeting # 33), TSDSI became sufficiently similar to the 3GPP RIT. It

was also decided during the same meeting that the evaluation configuration with bandwidths such

as 60 MHz at a frequency of 3.5 GHz and an inter-site distance of 12 km were not directly relevant

to the evaluation process.
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Table 7.5 – Compliance template for technical performance requiring evaluation by simulation for
3GPP NR RIT technology

Minimum technical performance
requirements, ITU-R M.2410-0

Category Required value Value Requirement met? Comments 3

Usage scenario Test environment Downlink or uplink

5.2.4.3.4 5th percentile user
spectral efficiency (bit/s/Hz) (4.4)

eMBB Indoor Hotspot – eMBB Downlink 0.3 0.380 X� Yes
� No FDD/ TDD

Table 11.2.12-1
Conf. AUplink 0.21 0.357 X� Yes

� No

eMBB Dense Urban – eMBB Downlink 0.225 0.307 X� Yes
� No FDD/ TDD

Table 11.2.12-3
Conf. AUplink 0.15 0.288 X� Yes

� No

eMBB Rural – eMBB Downlink 0.12 0.201-0.334 X� Yes
� No FDD/ TDD

Table 11.2.12-5
Conf. AUplink 0.045 0.093-0.108 X� Yes

� No

5.2.4.3.5 Average spectral
efficiency (bit/s/Hz/ TRxP) (4.5)

eMBB Indoor Hotspot – eMBB Downlink 9 9.120 X� Yes
� No

Uplink 6.75 7.538 X� Yes
X� No

eMBB Dense Urban – eMBB Downlink 7.8 7.923 X� Yes
� No

Uplink 5.4 6.756 X� Yes
� No

eMBB Rural – eMBB
Downlink 3.3 10.664-12.027 X� Yes

� No FDD/ TDD
Table 11.2.12-5
Conf. A

X� Yes
� No

Uplink 1.6 2.041-5.037 X� Yes
� No

3.836 X� Yes
� No

5.2.4.3.9 Connection density
(devices/km2) (4.8) mMTC Urban Macro – mMTC Uplink 1 000 000

34 378 000 (ISD=500m)

1 422 700 (ISD=1 732m)

X� Yes
� No 11.2.13

5.2.4.3.11 Reliability (4.10) URLLC Urban Macro –URLLC Uplink or Downlink

1− 10−5 success probability
of transmitting
a layer 2 PDU (protocol data unit)
of size 32 bytes
within 1 ms in channel quality
of coverage edge

99.999%
or greater on the DL and UL

X� Yes
� No 11.1.14

5.2.4.3.13 Mobility: Traffic channel
link data rates (bit/s/Hz) (4.11)

eMBB Indoor Hotspot – eMBB Uplink 1.5 (10 km/h) LoS: 2.297 X� Yes
� No

FDD/ TDD

Conf. A
Table 11.2.15-1

eMBB Dense Urban – eMBB Uplink 1.12 (30 km/h)
LoS: 1.746

NLoS: 1.457

X� Yes
� No

FDD/ TDD
Conf. A Table
11.2.15-3

eMBB Rural – eMBB Uplink 0.8 (120 km/h)
LoS: 2.718

NLoS: 1.924-2.495

X� Yes
� No

FDD/ TDD
Conf. A Table
11.2.15-5

0.45 (500 km/h) Not evaluated X� Yes
� No
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Table 7.6 – Compliance template for technical performance requiring evaluation by simulation for
3GPP SRIT technology

Minimum technical performance
requirements, ITU-R M.2410-0

Category Required value Value Requirement met? Comments 4

Usage scenario Test environment Downlink or uplink

5.2.4.3.4 5th percentile user
spectral efficiency (bit/s/Hz) (4.4)

eMBB Indoor Hotspot – eMBB Downlink 0.3 0.380 X� Yes
� No

11.1.12.2
for LTE comp RIT

Uplink 0.21 0.357 X� Yes
� No

eMBB Dense Urban – eMBB Downlink 0.225 0.307 X� Yes
� No

Uplink 0.15 0.288 X� Yes
� No

eMBB Rural – eMBB Downlink 0.12 0.201-0.334 X� Yes
� No

Uplink 0.045 0.093-0.108 X� Yes
� No

5.2.4.3.5 Average spectral
efficiency (bit/s/Hz/ TRxP) (4.5)

eMBB Indoor Hotspot – eMBB Downlink 9 9.120 X� Yes
� No

11.1.12.2
for LTE comp RIT

Uplink 6.75 7.538 X� Yes
� No

eMBB Dense Urban – eMBB Downlink 7.8 7.923 X� Yes
� No

Uplink 5.4 6.756 X� Yes
� No

eMBB Rural – eMBB
Downlink 3.3 10.664-12.027 X� Yes

� No
� Yes
� No

Uplink 1.6 2.041-5.037 X� Yes
� No

LMLC 3.836 X� Yes
� No

5.2.4.3.9 Connection density
(devices/km2) (4.8) mMTC Urban Macro – mMTC Uplink 1 000 000

34 378 000 (ISD=500m)

1 422 700 (ISD=1 732m)

X� Yes
� No 11.1.13

5.2.4.3.11 Reliability (4.10) URLLC Urban Macro –URLLC Uplink or Downlink

1− 10−5 success probability
of transmitting
a layer 2 PDU (protocol data unit)
of size 32 bytes
within 1 ms in channel quality
of coverage edge

NR component RIT: 99.999%
or greater on the DL and UL

LTE component RIT: N/A

X� Yes
� No 11.1.14

5.2.4.3.13 Mobility: Traffic channel
link data rates (bit/s/Hz) (4.11)

eMBB Indoor Hotspot – eMBB Uplink 1.5 (10 km/h) LoS: 2.297 X� Yes
� No 11.1.15

eMBB Dense Urban – eMBB Uplink 1.12 (30 km/h)
LoS: 1.746

NLoS: 1.457

X� Yes
� No

eMBB Rural – eMBB Uplink 0.8 (120 km/h)
LoS: 2.718

NLoS: 1.924-2.495

X� Yes
� No

0.45 (500 km/h) Not evaluated � Yes
� No

Table 7.7 – Compliance template for technical performance requiring evaluation by simulation for
ETSI-DECT SRIT technology

Minimum technical performance
requirements, ITU-R M.2410-0

Category Required value Value Requirement met? Comments 5

Usage scenario Test environment Downlink or uplink

5.2.4.3.4 5th percentile user
spectral efficiency (bit/s/Hz) (4.4)

eMBB Indoor Hotspot – eMBB Downlink 0.3 � Yes
� No

Uplink 0.21 � Yes
� No

eMBB Dense Urban – eMBB Downlink 0.225 � Yes
� No

Uplink 0.15 � Yes
� No

eMBB Rural – eMBB Downlink 0.12 � Yes
� No

Uplink 0.045 � Yes
� No

5.2.4.3.5 Average spectral
efficiency (bit/s/Hz/ TRxP) (4.5)

eMBB Indoor Hotspot – eMBB Downlink 9
� Yes

� No

Uplink 6.75 � Yes
� No

eMBB Dense Urban – eMBB Downlink 7.8 � Yes
� No

Uplink 5.4 � Yes
� No

eMBB Rural – eMBB
Downlink 3.3

� Yes
� No
� Yes
� No

Uplink 1.6

� Yes

� No
� Yes
� No

5.2.4.3.9 Connection density
(devices/km2) (4.8) mMTC Urban Macro – mMTC Uplink 1 000 000 Unable to evaluate

too many assumptions required.
� Yes
� No

Mesh- and cellular-network
layouts have to be synchronized somehow.
No procedure in ITU-R M.2412

5.2.4.3.11 Reliability (4.10) URLLC Urban Macro –URLLC Uplink or Downlink

1− 10−5 success probability
of transmitting
a layer 2 PDU (protocol data unit)
of size 32 bytes
within 1 ms in channel quality
of coverage edge

>99.999% X� Yes
� No DECT component RIT only.

5.2.4.3.13 Mobility: Traffic channel
link data rates (bit/s/Hz) (4.11)

eMBB Indoor Hotspot – eMBB Uplink 1.5 (10 km/h) � Yes
� No

eMBB Dense Urban – eMBB Uplink 1.12 (30 km/h) � Yes
� No

eMBB Rural – eMBB Uplink 0.8 (120 km/h) � Yes
� No

0.45 (500 km/h) � Yes
� No

Outcome of WP 5D meeting #35e

A total of fourteen independent evaluation groups (IEGs), including the CEG, were expected

to be involved in the evaluation process. One IEG did not provide an evaluation report, and hence
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thirteen final evaluation reports (including the CEG’s [96]) were submitted and recorded at ITU-R

under Steps 4 and 5 of the evaluation process. The Wireless Lab participated, as a member of

Canadian delegation (c.f., Fig. 7.1), in the WP 5D meeting #34 in Geneva. The latter took place

in February 2020 to discuss and summarize the final evaluation results submitted by the IEGs. The

Figure 7.1 – INRS Professor Sofiène Affes and his two students Oussama Ben Smida and Souheib Ben
Amor (2nd to 4th from the right), accompanied by Venkatesh Sampath from Ericsson Canada (right)
and Serge Bertuzzo from Bell Canada (left), at the ITU meeting in Geneva in February 2020. [3]

WP 5D meeting #35e reviewed the results of Step 4 (Evaluation of candidate RITs or SRITs by

independent evaluation groups). It was agreed during the meeting that the 3GPP RIT and SRIT

proposals, China, Korea, and TSDSI are considered as qualified RIT/SRITs of Step 6. Hence, they

were forwarded to further consideration in Step 7.

In the following is the outcome of Step 7:

— The RITs and SRITs proposed by 3GPP, China and Korea are grouped into the technology

identified in ITU as “3GPP 5GSRIT" and “3GPP 5GRIT” as developed by 3GPP. Both

technologies passed Step 7.

— The TSDSI RIT also passed Step 7 as “TSDSI RIT”.

— The WG Technology Aspects failed to reach an agreement on how to summarize the Step 4

results for ETSI-DECT and Nufront submissions. In the closing plenary of WP 5D Meeting
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#35e (23 June – 9 July), the meeting agreed on option 2 (Fig. 7.2) and provide a one-time

extension on an exception basis for both candidates

Figure 7.2 – Next steps for the development of IMT-2020 radio interface Recommendations [4]

7.2 Contributions to students’ mentoring within this thesis

During my Ph.D. program, I have been given an opportunity by my supervisor, Prof. Sofiène

Affes, to mentor three undergraduate and two graduate students. The research topics cover multiple

fields from signal processing to hardware implementation.

7.2.1 Blind maximum likelihood jade in multipath environment using impor-

tance sampling

In this project, Mrs. Maha Abdelkhalek, PhD student at INRS and recipient of a PhD Excellence

Grant from the Government of Tunisia, was able to solve the problem of joint angles and time delays

estimation (JADE) in a non-data aided (NDA) scenario where the transmitted signal is unknown

at the receiver. The importance sampling (IS) technique is used to reduce the multidimensionality

of the maximization problem without recurring to an iterative option. This work was published in a

conference version in [97]. Right now, we are working on the submission of a journal paper version

and simultaneously trying to exploit the importance sampling technique to solve more complex

problems related to synchronization and localization applications.
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7.2.2 Terahertz propagation performance evaluation for indoor environment

In this project, Mrs. Nagma Elburki, PhD student at INRS and recipient of a CBIE Excellence

PhD Grant, was able to evaluate the path-loss models that can be adopted for indoor communi-

cations in the Terahertz (THz) frequency band. Three different models were investigated versus

distance; namely, the ITU, the log-distance (LD), and the multi-wall COST 231 models. This work

was published in a conference version in [98]. Right now, we are investigating the use of machine

learning tools for pathloss prediction in the THz frequency band.

7.2.3 Synchronization of UAV swarms for indoor applications under obstacle-

avoidance restrictions

This project, incepted for the initiation of undergraduate students to research, involved Mr.

Sheevam Sharma, BSc student at UBC and recipient of one of only two yearly INRS 2020 Research

Excellence Scholarship Program for Undergraduate Internships. Mr. Sharma was able to get quickly

acquainted with a novel research-oriented UAV equipment (crazyflie drones) recently made available

at the Wireless Lab. He was able to work with multiple UAV frameworks to ensure full synchro-

nization between the UAVs in swarm flight. Right now, we are investigating new synchronization

techniques for UAV swarm flights.

7.2.4 Implementation of D2D communication between multiple IoT devices

This project, incepted for the initiation of undergraduate students to research, involved Mr.

Nicholas Andrianos, BSc student at UBC and recipient of one of only two yearly INRS 2020 Research

Excellence Scholarship Program for Undergraduate Internships. Mr. Andrianos was able to get

quickly acquainted with an already established research field that includes WSN (Micaz sensors,

c.f., experimental demonstration [99] in [100]). He was able, using a simulation platform, to unicasts

the RSSI values from multiple nodes to the BS 7.3. Once received at the base station, the sink

displays the RSSI and source to a console. The RSSI can then be extracted to an external file for

analysis or as an input for a further calculation at the base. Right now, we are trying to upload the

solution directly into the Micaz sensors. During the internship, Mr. Andrianos also was able to get

quickly acquainted with a novel research-oriented IoT equipment (Arduino rovers) recently made
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Figure 7.3 – BS receiving RSSI values from multiple nodes: (a) Network topology and (b) RSSI values
displayed at the BS

Figure 7.4 – Real-world demo using Arduino rovers

available at the Wireless Lab. He was to extract the RSSI from multiple nodes and at the same

time send a predefined path, in broadcast mode, to all the rovers in the network 7.4. Right now, we

are investigating new localization techniques using the RSSI values gathered at the BS.

7.2.5 Online indoor localization techniques of mobile units over non-line-of-sight

transmission links

This project was an initiation to research for undergraduate students, Mrs. Wen Xin, BSc student

at McGill University and recipient of an NSERC USRA/INRS Research Excellence Scholarship

Program for Undergraduate Internships, was able to provide a new solution to the problem of

joint angles and time delays estimation (JADE) in a data aided (DA). An alternative Monte-

Carlo technique, instead of the IS approach, was used to reduce the multidimensionality of the
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maximization problem without recurring to an iterative option. Right now, we are in the process of

preparing a scientific paper related to this topic.



Chapitre 8

Conclusion and Future Work

8.1 Major research contributions

In this thesis, we proposed multiple joint estimation techniques to acquire the information of

key channel parameters. Mainly, we made three contributions.

In chapter 4, we addressed the problem of time-varying channel estimation over SIMO OFDM

transmissions in multipath propagation environments. The proposed approach is based on a polyno-

mial approximation of the complex path gains and takes advantage of all the observation - both at

pilot and non-pilot positions - to enhance the channel estimation capabilities. To do so, we develop

a new SIMO DA ML estimator - which turns out to be a generalized extension of the SISO DA LS

estimator in [2] - for the sole purpose of initializing at relatively rare pilot insertion instants (pilot

to data or overhead ratio can be as low as 0.16%) of another new SIMO NDA ML version when

operated at the remaining data samples, resulting in the ultimately advocated new hybrid ML-EM

estimator of fast time-varying OFDM channels. Moreover, by further developing a new regularized

DA ML (RDM) variant of either SISO DA LS in [2] or its proposed SIMO DA ML extension, we

were able to further reduce the number of pilots and break the strict requirement of more pilots

than paths in [2], and, hence, decrease the overhead and increase the per-carrier throughput. We

show through exhaustive simulations that the proposed hybrid ML-EM solution outperforms both

SISO DA LS in [2] and its proposed SIMO DA ML extension in terms of component-level channel

identification accuracy. The latter translates into significant gains in terms of link-level BER and
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per-carrier throughput performances, especially at medium-to-high per-carrier SNR values more so

at relatively higher Doppler or faster SIMO OFDM channel variations. This contribution resulted

in the publication of the work [C6] for SISO configuration and [C7,J6] for SIMO configuration.

In chapter 5, we addressed the problem of time and frequency synchronization in cooperative

systems over TVCs. We proposed two different estimation techniques. The first operates under the

TVC assumption while the second one works with TCCs. In the first ML TVC-PD approach, we

assume perfect knowledge of the Doppler spread to provide accurate TD and CFO synchroniza-

tion estimates. Whereas we exploit the second ML TCC technique as an initialization scheme for

preliminary synchronization then embed both ML TVC-PD and some Doppler estimator in a new

iterative version, ML TVC-DE. That is to account for the practical need to estimate at each relay

node the Doppler spread upon which relies ML TVC-PD. We also developed a new distributed

MIMO-relay beamforming design that embeds the proposed synchronization technique at each re-

lay node. We showed under the TCC assumption that all techniques exhibit approximately the

same performance. However, when the Doppler increases, the TCC-based techniques exhibit poor

performance while the new ML TVC continues to provide accurate estimates. Link-level simula-

tions confirm the net advantages of the proposed ML TVC multi-node synchronization technique

and the MIMO-relay beamforming scheme in terms of throughput gains, especially at medium and

high SNRs, more so at relatively higher Doppler frequencies or with more distributed MIMO-relay

beamforming nodes. Future work could investigate a more complex system that includes multiple

antennas at each relay nodes and/or multiple receivers. This contribution resulted in the publica-

tion of the work [C3] for time and frequency synchronization in cooperative systems over TVCs and

[C5,J4] for the development of new distributed MIMO-relay beamforming design.

In chapter 6, we proposed a new non-iterative and statistically efficient ML solution for the

joint estimation of the time delays and angles-of-arrival of overlapping reflections of a signal with

a known waveform. Based on the importance sampling concept, this new ML JADE technique

applies to both single- and multi-carrier models and enjoys guaranteed global optimality with super-

resolution capabilities. Typically, it is able to resolve multipath components with simultaneous angle

and delay separations as low as ∆ᾱ = 0.5◦ and ∆τ̄ = 0.25 T while achieving the CRLB even at

SNR levels as low as -10 dB. By exploiting the sparsity feature of a pseudo-pdf that is intrinsic to

the new algorithm, we also proposed a new approach that can accurately estimate the unknown

number of paths. Computer simulation results show the clear superiority of the new IS-based ML



Chapitre 8. Conclusion and Future Work 161

estimator over state-of-the-art JADE techniques both in accuracy and complexity. Simulations with

real channel measurements in an indoor an environment also show the high accuracy of the IS-

based ML JADE technique in real-world localization applications. This contribution resulted in the

publication of the work [C4] for the detection of the number of paths over Wireless channels and

[J5] for the joint angle and delay estimation from multipath and multicarrier transmissions.

In chapter 7, we summarize other achievements accomplished during the PhD program. The lat-

ter include the work mandated by Innovation, Science and Economic Development Canada (ISED)

and the Canadian Evaluation Group (CEG). During this project, we covered the RITs and SRITs of

3GPP and we are currently continuing with re-evaluation of DECT and NuFront. Our work during

this project was included in the CEG final report submitted to the WP 5D 34th meeting.

8.2 Future research directions

Our research work in this thesis tackles the problem of joint estimation of multiple channel

parameters. The following research directions can be further investigated.

8.2.1 Channel coefficient estimation

Massive MIMO technology is already included in 5G standards such as 3GPP 5G NR. A possible

extension of the EM solution to mmWave massive MIMO technology is worth investigating as it

provides accurate estimates with low overhead.

8.2.2 Multi-node time and frequency synchronization with multiple destination

nodes

Synchronization in a distributed network is a crucial task which becomes more challenging in

the presence of multi-destination nodes. Monte Carlo approaches such as Markov chain Monte Carlo

(MCMC) methods can be used to solve the resulting multi-dimensional synchronization problem.
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8.2.3 Joint azimuth, elevation and, delay estimation

Generally, the joint estimation of the azimuth, elevation angles and TDs can provide a 3D

positioning of the target. To reduce the high dimensionality of the optimization problem, we can

opt for the IS technique to provide accurate estimates at a reduced complexity.
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