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Impact of the future coastal water temperature 1 

scenarios on the risk of potential growth of 2 

pathogenic Vibrio marine Bacteria 3 

Habiba Ferchichi1,*, André St-Hilaire1, 2, Taha B.M.J Ouarda3, Benoît Levesque4, 5 4 

Vibrio (V), a genus of marine bacteria, are common inhabitants of warm coastal waters and 5 

estuaries. Vibrio includes V. parahaemolyticus and V. vulnificus species that can cause human 6 

infections through the consumption of contaminated shellfish (as bivalve molluscs). The 7 

growth of pathogenic Vibrio is related to ambient water temperature and seems to increase at 8 

15 °C and over. The expansion of Vibrio infection outbreak is increasing worldwide due to the 9 

increase of the sea surface temperature as a result of ocean warming. Canada’s coast is not an 10 

exception to this worldwide Vibrio spread. Faced with this issue, this study focuses on 11 

modelling the future potential Vibrio growth risk along the coasts of the St. Lawrence Gulf and 12 

Estuary, where the shellfish industry is well developed. This is done using the adequate 13 

machine learning model with explanatory variables that include air temperature and wind 14 

speed for predicting future water temperatures. Based on the predicted future water 15 

temperature scenarios and a threshold of 15 °C to determine the conditions favorable to the 16 

growth of Vibrio bacteria, we modelled the Vibrio growth risk indicator, i.e. the number of 17 

days exceeding the minimum temperature for Vibrio pathogenic growth (15 °C), in the horizon 18 

2040-2100. Simulations show that the number of days, where the minimum temperature 19 

(15 °C) will be reached ,will increase spatially and even seasonally and all the shellfish beds 20 

would meet the temperature condition for Vibrio growth regardless of the climate scenario 21 

(optimistic and pessimistic). 22 
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1. Introduction 46 

Vibrio (V.) parahaemolyticus and Vibrio vulnificus belong to the family of 47 

Vibrionacea, a group of aquatic microorganisms that includes other human 48 

pathogens such as V. cholera. They are natural inhabitants of warm coastal waters 49 

(>15 °C) and estuaries with low salinity (<25 ppt) (Baker-Austin et al., 2010; Heng 50 

et al., 2017; Kaspar and Tamplin, 1993; Motes et al., 1998; Vezzulli et al., 2013).  51 

V. parahaemolyticus (Vp) is recognised as a leading cause of gastroenteritis 52 

associated with seafood consumption worldwide (Martinez-Urtaza et al., 2010) and 53 

it was the cause of significant outbreaks of infections in North America. For example, 54 

the largest outbreak of Vp in Canadian history, associated with the consumption of 55 

raw oysters, occurred in summer 2015 in British Colombia and resulted in the 56 

highest reported Vp cases (82 cases) (Taylor et al., 2018) since the 1997 outbreak 57 

(Fyfe et al., 1997).  58 

V. vulnificus (Vv) infections are less frequent. However, Vv is a lethal opportunistic 59 

human pathogen responsible for the majority of deaths related to seafood 60 

consumption worldwide. For instance, in the USA, more than 95% of seafood-61 

related deaths are caused by this bacterium (Oliver, 2013). Consumption of raw or 62 

undercooked bivalve shellfish (oysters, mussels, clams, etc.) contaminated with Vv 63 

can lead to major infections such as septicemia, with subsequent highest mortality 64 

(sometimes exceeding 50%) than any foodborne pathogen (Dechet et al., 2008; 65 

Feldhusen, 2000; Oliver, 2005). In the USA, the CDC estimates an average of 100 66 
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foodborne infections associated to Vv annually, resulting in 50 fatalities per year 67 

(Mead et al., 1999). 68 

The growth of pathogenic Vibrio species causing human illness is directly related to 69 

the exceedance of a threshold of water temperature (about 15 °C) (Baker-Austin et 70 

al., 2013; Jacobs et al., 2015; Martinez-Urtaza et al., 2010; McLaughlin et al., 2005). 71 

Because most of bivalves are filter feeders, Vibrio bacteria may concentrate in their 72 

tissues. When the water temperature exceeds a certain threshold, shellfish are more 73 

likely to be contaminated with Vibrio. These contaminated shellfish transmit, in 74 

turn, the Vibrio bacteria to humans through consumption of raw or undercooked 75 

shellfish (Baker-Austin et al., 2017; Davis et al., 2017; McLaughlin et al., 2005; Motes 76 

and DePaola, 1996; Zimmerman et al., 2007).  77 

Several reports and scientific researches show that the incidence of Vibrio infections 78 

has increased significantly worldwide (Centers for Disease and Prevention, 2013; 79 

Martinez-Urtaza et al., 2010; Newton et al., 2012). For instance, during the Canadian 80 

Vp outbreak, the number of reported cases was 2.5 times the number of expected 81 

cases and the outbreak unusually occurs earlier than expected (June-July) (Taylor et 82 

al., 2018). This unusual outbreak emergence was associated with abnormally high 83 

sea surface temperatures (SST>15°C) and the human Vp incidence decreased when 84 

the SST decreased below 15°C (Taylor et al., 2018). Numerous studies on this 85 

Canadian Vp outbreak show that the sea surface temperature is the most significant 86 

environmental predictor of the Vp proliferation in oysters and the Vp illness 87 
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incidence is strongly associated with the increase of SST and the exceedance of the 88 

temperature threshold (Galanis et al., 2020; Konrad et al., 2017; Taylor et al., 2018). 89 

In addition to the increase of spatial spread worldwide, sudden Vibrio outbreaks had 90 

emerged in new temperate and even cold regions including Peru (Martinez-Urtaza 91 

et al., 2008), Europe (Baker-Austin et al., 2010), Chile (Narjol et al., 2005) and 92 

Alaska (McLaughlin et al., 2005). This unusual outbreak emergence of Vibrio 93 

infections coincides with water temperatures anomalies (SST>15°C) (Baker-Austin 94 

et al., 2017; Martinez-Urtaza et al., 2010). Many microbiologists agree that climate 95 

change may explain this increase of Vibrio infections spread worldwide as well as 96 

the likelihood of its geographical expansion in new areas (Baker-Austin et al., 2012; 97 

Deeb et al., 2018; Martinez-Urtaza et al., 2010; McLaughlin, 2005; Vezzulli et al., 98 

2013; Vezzulli et al., 2016). They have even considered Vibrio pathogens as 99 

microbial barometer of climate change (Baker-Austin et al., 2017).  100 

The global average land-ocean temperature has risen by approximately 0.85 °C 101 

since the late nineteenth century (IPCC, 2013). This increase in SST, caused by 102 

atmospheric warming, heavily affects the coastal ecosystems (Baker-Austin et al., 103 

2017; Burge et al., 2014; Halpern et al., 2008), resulting in significant warming of 104 

70% of the world’s coastline (Baker-Austin et al., 2017; Lima and Wethey, 2012). 105 

In order to evaluate and manage the Vibrio infection risk, various models have been 106 

developed. Among these models, some are related to the prediction of Vibrio 107 

concentration, which is based either on only sea surface temperature (SST) (Chu et 108 

al., 2011) or both SST and salinity (Jacobs et al., 2014; United States Food and Drug 109 
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Administration (FDA), 2005). Another category includes models developed to 110 

explain the relation of Vibrio infections exposure in response to SST 111 

threshold exceedances (Semenza et al., 2017). Given the paucity of Vibrio 112 

concentration and Vibrio infection data, the aim of this study is to evaluate the Vibrio 113 

growth risk through its relation with SST threshold exceedances.  114 

The harvesting of molluscs is an important part of the Canadian economy. It is well 115 

developed in the provinces of Quebec, and Prince Edward Island (PEI). PEI is 116 

Canada’s top shellfish producer with about 49434 tons in 2018 between wild 117 

shellfish and aquaculture, while Quebec produces about 1840 tons (Statistics 118 

Canada, 2019). The shellfish beds are distributed over coastal zones of the Estuary 119 

and Gulf of St. Lawrence (GSL), located in the eastern part of Canada, including 120 

Rimouski, Gaspe, Baie des Chaleurs, the Quebec North Shore, Magdalen Islands and 121 

PEI (Fig 1).  122 

As the rest of worldwide marine ecosystems affected by ocean warming, the SST of 123 

GSL has increased by 1 to 1.5 °C during 1982-2011 by calculating the annual 124 

average of temperatures from May to November (Galbraith et al., 2012). The 125 

predicted SST in Eastern Canada, through climate scenarios projections, indicate a 126 

possible rise by more than one degree Celsius during the next century (Galbraith et 127 

al., 2012). Therefore, this increase of water temperature could lead to the 128 

proliferation of Vibrio pathogens as well as shellfish contamination and human 129 

infections. 130 
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In fact, a recent surveillance study on the diversity and dynamics of the Vibrio 131 

communities in Canada’s coasts (British Columbia [Pacific Coast], Nova Scotia 132 

[Atlantic Coast] and Gaspe) highlights the emergence of V. cholerae in temperate 133 

Canadian estuaries and the detection of pathogenic strains of V. parahaemolyticus in 134 

bivalve molluscs harvested in Canada (clams, mussels and oysters) with increasing 135 

trend during the warmest months of 2006-2016 (Banerjee et al., 2018).  136 

In order to protect the shellfish industry as well as human health, modelling the 137 

future scenarios of SST in the Estuary and the GSL, with the aim of mapping future 138 

potential risk areas, is primordial. Predicting SST in GSL has been generally realized 139 

through deterministic model, based on physical and mathematical representation of 140 

the climatic and ocean processes, such as the three-dimensional coastal ice-ocean 141 

model called CANOPA (CANadian Océan PArallélisé) (Long et al., 2015; Saucier, 142 

2003). Recently, we used machine learning models (Artificial Neuron Networks-143 

ANN, and Random Forest-RF) in predicting daily SST in the GSL by entering a 144 

combination of predictors (also known as features) explaining most of SST 145 

variation: 3-day trailing Moving Average (MA) of daily mean air temperature (i.e. 146 

average of daily mean air temperature of the present and two previous days), the 30 147 

day-MA of daily mean wind speed, the 30 day-MA of maximum daily tidal range, 120 148 

day-MA mean St. Lawrence freshwater runoff and 60 day-MA of North Atlantic 149 

Oscillation (Ferchichi et al., 2019). The MAs are used as filters for smoothing 150 

predictors’ data and detecting a better association between the dependent (SST) 151 

and independent variables. The results showed that Random Forests provided the 152 

best SST prediction accuracy of historical SST in the GSL (Ferchichi et al., 2019). In 153 
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the same study, it has been demonstrated that both of the air temperature and wind 154 

speed are the most relevant predictors by explaining more than 70% of SST 155 

variation for most of the stations (Ferchichi et al., 2019). A recent study, focusing on 156 

coastal water temperature prediction, shows the impact of daily maximum and the 157 

average air temperature of previous 1 and 2 days on the daily water temperature 158 

variation. Considering this lag time factor and entering these variables as predictors 159 

improved significantly the daily coastal temperature prediction (Trinh et al., 2019). 160 

In this paper, we present the future scenarios of Vibrio growth risk in the GSL by 161 

modelling the future water temperatures under different climate scenarios 162 

(optimistic and pessimistic). By entering the most relevant and readily available 163 

predictors (air temperature and wind speed) to the machine learning models (ANN 164 

and RF), we test their performance predictions and select the best inputs for each 165 

model using the backward selection method (Recursive Feature Elimination-RFE). 166 

After choosing the best model and entering the climate projections of the selected 167 

predictors, we produce the future water temperature in both of optimist and 168 

pessimist climatic scenarios. Finally, we map the future potential Vibrio growth risk 169 

area in the Estuary and GSL by interpolating the calculated risk indicator, in relation 170 

to the theoretical proliferation of pathogenic Vibrio, over our study area. 171 

2. Study Area 172 

The St. Lawrence River is the second largest river in North America (El-Sabh and 173 

Murty, 1990), with an average flow of approximately 12100 m3/s (Galbraith et al., 174 
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2017). Originating from the Great Lakes, it reaches a vast estuary, where the fresh 175 

water of the river and salt water from the Atlantic Ocean mix. It flows over 176 

approximately 250 km to Pointe-des-Monts where it becomes the Gulf of St-177 

Lawrence, opened to the Atlantic Ocean through the straits of Cabot and Belle-Isle. 178 

The GSL is one of the largest and most diverse marine ecosystems in the world 179 

covering an area of 225000 km2. 180 

The study region, as shown in (Fig 1), covers the coastal areas of the Estuary 181 

(downstream limit near Rimouski) and the Gulf of St-Lawrence (the Quebec North 182 

Shore, Gaspe, Baie-des-Chaleurs, PEI and Magdalen Islands). 183 

 184 

Figure 1. Geographic location of the thermographs and buoys in the Estuary and Gulf 185 
of Saint Lawrence 186 

 187 
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The most abundantly harvested shellfish in the GSL are oysters, mussels, clams and 188 

scallops (Statistics Canada, 2019). The major shellfish aquaculture techniques are 189 

the intertidal, subtidal and suspended cultures. The shellfish produced using the 190 

intertidal method are growing directly in the substrate. Since the clams and the 191 

oysters may be farmed intertidally, they are more exposed to higher water 192 

temperature at low tide, which increases the risk of Vibrio proliferation. In order to 193 

provide assurance of bivalve molluscs’ safety for human consumption, a Canadian 194 

Shellfish Sanitation Programme (CSSP) was established (Sauvé, 2010). The aim of 195 

this program is to monitor the shellfish growing areas, classify them with regard to 196 

environmental conditions and water quality to determine the safety of shellfish 197 

consumption, to monitor the marine biotoxins and to control the shellfish 198 

harvesting and processing in these areas (Sauvé, 2010). 199 

 200 

3. Material and methods 201 

3.1 Data collection 202 

For modelling daily mean water temperature, we use the 3 day-MA mean air 203 

temperature and 30 day-MA wind speed as they present the most relevant 204 

explanatory variables of SST variation in the most of stations. The daily air 205 

temperature and wind speed data are available online from the Government of 206 

Canada through this site: 207 

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html. 208 
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The daily sea surface temperatures of the buoys and costal thermographs were 209 

supplied by Fisheries and Oceans Canada and the Maurice-Lamontagne Institute. 210 

The daily sea surface temperatures of coastal thermographs, located at shellfish 211 

beds, were provided by MERINOV-Québec Centre for Innovation in Aquaculture and 212 

Fisheries.  213 

The predictor projections (daily air temperature and the 30-day MA wind speed) 214 

come from eight climate simulations obtained from Ouranos-a climate-science 215 

consortium based in Quebec (Martynov et al., 2013; Šeparović et al., 2013), and the 216 

CORDEX program (Giorgi et al., 2009). These simulations are generated through 217 

regional climate models driven by global climate model under one of the two 218 

Representative Concentration Pathways (RCPs; RCP4.5 (Knutti and Sedláček, 2013) 219 

or RCP8.5 (Meinshausen et al., 2011)). 220 

The scenarios used in this study were the average of the regional model outputs 221 

mentioned in the Table 1.  222 

Table 1. List of the Regional Climate Models (RCMs) used in simulations.  223 

Sources of RCMs Modelling groups Regional Climate 
Model (RCM) 

Ouranos _ CRCM5 

 
 
 
 
CORDEX 

DMI (Danish 
Meteorological 
Institute) 

HIRHAM5 

UQUAM (L'Université 
du Québec à Montréal) 

CRCM5 
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CCCma (Canadian 
Centre for Climate 
Modelling and 
Analysis) 

CanRCM4 

 224 

3.2 Modelling water temperature 225 

We model the target variable (the daily water temperature of each buoy and coastal 226 

thermograph) by entering the selected predictors (3 day-MA air temperature and 227 

30-day MA wind speed) into tested models (RF and ANN). The RFE was selected as 228 

feature selection method in order to choose the best subset of the predictors. In this 229 

case, only two combinations of the predictors were likely to be selected, either the 230 

air temperature as the sole input variable, or both air temperature and wind speed.  231 

80% of original data are used for training and the remaining data serve as test data 232 

to evaluate the model predictive power. We use the k-fold cross validation (10-fold 233 

cross validation) as model validation technique.  234 

3.2.1 Artificial Neural Network Model 235 

In this study, we use a Multilayer Perceptron (MLP), a feedforward Artificial Neural 236 

Network, trained by using the supervised learning based on the error gradient back-237 

propagation algorithm. This class of model is composed of three layers: the input 238 

layer includes the predictors which are standardized by subtracting each variable by 239 

its means and dividing by its standard deviations, the output layer, composed of 240 

single node, produces the response variable (water temperature) and the hidden 241 
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layer connects both of the input and output layers. At the state of hidden layer, the 242 

ANN attributes weights to the set of inputs (��) and applies an activation function 243 

(��) on the weighted sum of inputs. Then, a linear function (��) is applied on the 244 

output of the hidden layer to produce the desired output (O), given by: 245 

 	 =  �� �� 
�� ��� �� 
���� + ��
�

��� ���
��� + ��� 

     (1) 

Where 
�� is the weight between the input ��  and hidden neuron j,  ��is the bias 246 

associated to each hidden neuron �, 
�� is the weight between the hidden neuron � 247 

and the output neuron �, and �� is the bias associated to the output neuron .  248 

The activation function (��) used in this study is the sigmoid, given by: 249 

 ��(�) = 11 + ���      (2) 

The used MLP is composed by one hidden layer holding only one neuron. A single 250 

hidden layer is sufficient to approximate any continuous function, but there is no 251 

general rule for selecting the appropriate number of hidden nodes in the hidden 252 

layer (Haykin, 1994; Piotrowski et al., 2015). The ANN architecture selection is done 253 

via the trial-error method. It tests the model performance by using a grid search of 254 

hidden neurons number (1 to 10 hidden nodes). Adding more than one neuron does 255 

not improve significantly the prediction accuracy.  256 
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3.2.2 Random Forests Model  257 

Random Forests (RF) is a recent machine learning algorithms (2000) developed by 258 

Braiman (Breiman, 2001). The RF is a tree-based ensemble method that randomly 259 

selects a subset of predictors to build a binary tree based on bootstrap samples of 260 

the training data (Breiman, 2001). The overall prediction is the average of the 261 

predictions from all the generated decision trees (Aggregation). 262 

The RF generalization error is estimated by averaging the prediction error of each 263 

tree using the Out-Of-Bag (OOB) samples, i.e. samples that are not included in the 264 

bootstrap training sets (1/3 bootstrap samples of the training sets). This OOB error 265 

is computed with a Mean Square Error (MSE) as shown below: 266 

 �� !!" = 1# × �[&'((�) − &�]��
���  

 

 

     (3) 

Where n is the size of the OOB sample, &'((�) corresponds to the RF output given the 267 

input sample (�, and &� represents the actual output. 268 

The parameters set are: the number of trees, the number of bootstrap input 269 

variables at each split of a tree (Ntry) and the minimum node size of each tree. The 270 

minimum node size of each tree, recommended by RF creators, and used in many 271 

studies is 5. The smaller the minimum node size is, the deeper that the tree is. The 272 

Ntry, recommended by the RF developers, is the number of input variables divided 273 

by three (Breiman, 2001) (Ntry=1). The number of trees would be experimentally 274 
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set through plotting the OOB error plot in function of tree numbers (number of 275 

trees=50).  276 

3.2.3 Feature Selection  277 

The Recursive feature Elimination (RFE) presents a backward selection technique 278 

used in selecting the best subset of input variables (features) that contribute the 279 

most in model accuracy during the training process. The RFE consists in training the 280 

model by entering all the features then removing the variables with the lowest 281 

contribution in model accuracy, i.e., based on variable importance. Using the new 282 

reduced feature subset, it retrains the model (Guyon et al., 2002). The best selected 283 

subset is the one that optimizes the most of the chosen performance criteria. In this 284 

study, we chose the RMSE as performance criterion for best subset features 285 

selection.  286 

We use the k-fold cross validation (k=10) in performance prediction assessment of 287 

the possible feature subsets. In fact, the goodness of models fit, according to each 288 

feature subset, is assessed by computing the 10-fold cross validated RMSE 289 

(RMSECV), i.e. the average of the ten RMSE computed over the 10 validation sets:  290 

The (RMSECV) is given by: 291 

 +�� ,- = 1� � +�� �
�

���  
 

(4) 

Where the RMSE calculated for each fold j is given by: 292 
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 +�� � = .� (/�,1 − /�,234)�56
���  

 

(5) 

Where the k is the number of folds (10 in this example), j is one of the k folds, N is 293 

the sample size of the fold j, yi, p are predicted data and yi, obs are the observed data. 294 

3.2.4 Performance evaluation of models 295 

In this paper, we compare the prediction accuracy of tested models (ANN and RF) 296 

according to three performance criteria: the Root Mean Square Error (RMSE), Nash-297 

Sutcliffe coefficient (Nash) and Relative mean bias (rBias). 298 

•  Root Mean Square Error (RMSE) 299 

 +�� = .� (/�,234 − /�,1)�#�
���  

 

     (6) 

• Nash-Sutcliffe coefficient (Nash) 300 

 578ℎ = 1 − ∑ (/�,234 − /�,1)�����∑ (/�,234 − /;234)�����   

     (7) 

• Relative mean bias (rBias) 301 

 <=>78 =  100# × � /�,234 − /�,1/�,234
�

���       (8) 
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Where /�,234 is the observed data, /�,1 is the predicted data, /;234 corresponds to the 302 

means of observed data and n is the size of observed data. Generally, a computed 303 

value of Nash greater than 0.5 indicates a relative satisfactory model performance, 304 

with a value of 1 corresponding to an ideal model (N. Moriasi et al., 2007). Low 305 

values of RMSE and rBias indicate better performing models. 306 

3.3 Trend Analysis  307 

After selecting the best model for all the stations, we generate the projections of the 308 

daily water temperature for the horizon 2040-2100. In order to cover the range of 309 

plausible water temperature scenarios, we select two different climatic scenarios: a 310 

relatively optimistic scenario (RCP4.5) and a pessimistic scenario (RCP8.5), known 311 

as “Business as usual” (i.e. continuous rise in GHG emissions). These scenarios lead 312 

to a warming of average air temperatures of 2.5 °C to 5 ° C around 2100. We 313 

perform a trend analysis of the predicted water temperature for each station under 314 

pessimistic scenario during the horizon 2040-2100 by using the Modified Mann 315 

Kendall (MMK) test, which takes into account the serial correlation. Then, we 316 

compute the trend slope of each station using the Theil-Sen’s slope estimator. 317 

3.3.1 Modified Mann Kendall test (MMK) 318 

The non-parametric Mann-Kendall (MK) test is commonly used for detecting 319 

monotonic trends in time series (Kendall, 1975; Mann, 1945). The null 320 

hypothesis H0 of this test is that there is no trend in the series.  321 

The MK test statistic S is calculated as follows: 322 
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 � = � � 8@#(�� − �� )�
���A�

���
���  

 

 

     (9) 

Where xi and xj denote the values of observations for the respective periods i and j 323 

(j> i), n is the length of the times series and sgn(xi-xj) presents the sign function 324 

given by: 325 

 8@#B�� − �� C D    1 >� �� − �� > 1   0 >� �� − �� = 0−1 >� �� − �� < 1  
 

 

 

 (10) 

 326 

Mann (1945) and Kendall (1975) have noted that for large values of n (n≥8), the 327 

distribution of the S statistic is approximately normal (Kendall, 1975; Mann, 1945), 328 

with the mean E and variance V of the statistic S, are defined as follows: 329 

 
 (�) = 0 

  (11) 

 330 

 G(�) = #(# − 1)(2# + 5) −  ∑ J�(> − 1)(2> + 5)K���18  
 

  (12) 

Where m represents the number of tied groups in the data set and the ti represents 331 

the number of values in the ith tied group. 332 
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The standardized statistic ZS is calculated by: 333 

 MN =  
OPQ
PR � − 1SG(8)    >� � > 0     0        >� � = 0� + 1SG(8)    >� � < 0 

 

   

 

(13) 

The sign of the statistic ZS indicates the direction of the trend whether it is upward 334 

(positive ZS) or downward (negative ZS). The standardized statistic ZS follows the 335 

standard normal distribution with a mean of 0 and variance of 1. The null 336 

hypothesis would be rejected, implying the presence of a significant trend, when ZS 337 

is higher than a critical value Z1-α/2, where α represents the chosen significance level 338 

(5% in this study) and Z1-α/2 could be deduced from the standard normal cumulative 339 

distribution tables. 340 

In order to account for the autocorrelation that may exist in the time series, Hamed 341 

and Rao proposed to modify the variance of the MK test (Hamed and Rao, 1998). 342 

The variance is corrected through multiplying by the factor n/n*, where n* presents 343 

the effective sample size. Yue and Yang have demonstrated that incorporating the 344 

effective sample size in variance correction limits effectively the effect of serial 345 

correlation on the MK test (Yue and Wang, 2004). 346 

 ##∗ = 1 +  2#(# − 1)(# − 2) �(# − >)(# − > − 1)(# − > − 2) U4
1

��� (>) 
 

   

  (14) 
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Where n is the actual sample size, n* is the effective sample size to account for 347 

autocorrelations in the data, ρs presents the autocorrelation function of the ranks of 348 

the observations for lag i and p is the maximum of time lags taking into account. 349 

In this paper, the variance is corrected through considering complete 350 

autocorrelations (all lags) in the effective sample size computation, proposed by Yue 351 

and Wang (2004), and applied by using the mmky R package. 352 

3.3.2 Theil-Sen’s slope estimator 353 

Theil-Sen’s slope estimator, proposed by Theil (1950) (Theil, 1950) and Sen (1968) 354 

(Sen, 1968), allows to capture the direction and the strength of significant trend 355 

slope. It has been considered as robust estimate of the magnitude of trend’s slope 356 

(Yue and Wang, 2004). 357 

It is given by the following equation:  358 

 � = V�W>7# X�� − ��� − > Y ∀ > < � 
 

      

(15) 

3.4  Mapping future potential risk growth Vibrio  359 

In order to evaluate the potential risk of Vibrio growth, we chose as thermal metric: 360 

the number of days above the minimum known temperature for Vibrio growth 361 

(15 °C). This thermal metric, selected as Vibrio growth risk indicator, is computed 362 

from the produced daily future water temperatures for both of optimistic and 363 

pessimistic scenarios. 364 
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We calculate the monthly average of this risk indicator, during the study period 365 

(June-October), averaged over twenty years during the study horizon 2040-2100. 366 

Subsequently, we interpolate the risk indicator computed for the available stations 367 

over the study area using the Inverse Distance Weighting (IDW) method, using 368 

ARCGIS. As a result of a comparison between IDW and kriging, we select IDW 369 

interpolation as it is the simplest method, given similar interpolation errors to 370 

kriging. We produce maps for two selected future horizons 2040-2060 and 2080-371 

2100 under both climate change scenarios (optimistic-RCP4.5 and pessimistic-372 

RCP8.5) in order to compare the level of potential Vibrio expansion risk over the 373 

study area.  374 

We compute the root mean squared error (RMSE) of the interpolation using a leave-375 

one-out procedure. The relative RMSE is calculated by dividing the RMSE of the IDW 376 

interpolation, produced for every month i of study period, by the areal average of 377 

the risk indicator for the same month. Sometimes the relative error is quite strong, 378 

which may be due to the large spatial variation of the selected variable. For cases 379 

that are too uncertain (relative error>50%), interpolation is useless. 380 

3.4.1 Inverse Weighted Distance (IWD) interpolation method 381 

The IDW method, a deterministic spatial interpolation approach, allows to compute 382 

an average of a selected variable in ungauged sites using values from nearby 383 

weighted sites. 384 

The weights, accorded to gauged locations, are proportional to the distance between 385 

the gauged and ungauged sites and determined by the IDW power coefficient. The 386 
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larger the power coefficient is, the stronger the weights are attributed to the closest 387 

locations. The estimated variable at ungauged location (zj*) is defined by the 388 

following equation: 389 

 [�∗ = ∑ 
��������∑ 
������  
 

           

(16) 

Where: 390 

 
�� = 1W��1  
 

           

(17) 

Where xi is the variable value of a neighboring gauged site, wij is the weight assigned 391 

to the gauged sites (i), dij is the distance between the gauged (i) and ungauged sites 392 

(j), n is the number of gauged sites and p is the exponent of the distance. In this 393 

study, the interpolation was performed using the ArcGIS software and a default 394 

value of p = 2 was chosen. 395 

4 Results 396 

After applying the Recursive Feature Elimination (RFE) on the selected potential 397 

predictors, air temperature and wind speed, we found that the ANN uses only the air 398 

temperature as input for most of the stations while the RF uses both predictors. 399 

Table 2 presents the results of performance criteria for ANN and RF in SST 400 

prediction of the tested dataset. 401 
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  402 

Table 2. Performance criteria results of tested models (RF and ANN) 403 

Models Stations RMSE (°C) Nash rBiais(%) 

  Grande Rivière 1.7 0.708 -2.05 

  Borden 1.991 0.585 -1.529 

  Blanc Sablon 2.437 0.331 -13.774 

  Courant de Gaspé 1.368 0.84 -1.235 

  Havre St Pierre 2.435 0.29 -12.67 

  Ile Shag 2.097 0.651 -4.008 

ANN  Montlouis 1.323 0.854 -1.647 

(Artificial Neural Network) Natashquan 2.028 0.709 -6.409 

  Rimouski 1.139 0.827 -0.779 

  Rivière aux Tonnerre 2.015 0.627 -7.809 

  Romaine 1.345 0.816 -2.929 

  Tabatière 2.342 0.391 -9.577 

  Sept-Îles 1.957 0.702 -3.175 

  Shediac Valley 1.056 0.893 -0.568 

  Mean 1.802 0.659 -4.868 

  Grande Rivière 1.654 0.708 -1.877 

  Borden 1.837 0.585 -0.66 

  Blanc Sablon 2.29 0.331 -10.614 

  Courant de Gaspé 1.37 0.84 -1.018 

  Havre St Pierre 2.519 0.29 -10.844 

  Ile Shag 1.958 0.685 -3.478 

RF Montlouis 1.418 0.687 -1.407 

(Random Forests) Natashquan 2.082 0.693 -4.756 

  Rimouski 1.157 0.827 -0.794 

  Rivière aux Tonnerre 2.08 0.627 -6.377 

  Romaine 1.404 0.816 -2.496 

  Tabatière 2.323 0.391 -7.193 

  Sept-Îles 1.982 0.702 -3.676 

  Shediac Valley 1.02 0.893 -0.43 

  Mean 1.792 0.648 -3.973 
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 404 

By using the paired t-test (DF=13, t-value=0.436) on RMSE values at all of our sites 405 

for both models, we note that there is no significant difference between the 406 

performances of models in terms of RMSE (p-value=0.67) at a significance level of 407 

5%. The average RMSE performance for all the stations is approximately 1.8 °C for 408 

both of RF and ANN. Both models present good performing results in terms of Nash-409 

Sutcliff criterion, i.e. higher than 0.5, and low relative mean bias (<5%). Given that 410 

there is no significant difference between RF and ANN, we choose the ANN as it is 411 

the most parsimonious model for modelling future water temperatures. Then, we 412 

proceed to generate future daily mean water temperature for each station for the 413 

horizon 2040-2100 for a pessimistic climate scenario, RCP8.5, and a more optimistic 414 

one (RCP4.5), by using the projections of air temperature. 415 

We proceed with a trend analysis of the predicted water temperature for each 416 

station under pessimistic scenario during the horizon 2040-2100 by using the 417 

Modified Mann Kendall (MMK) test, which takes into account the serial correlation. 418 

Significant positive trends (p-value<1%) in future daily mean SST, for the period 419 

from June to October in the horizon 2040-2100, were revealed in all the tested 420 

stations at a significance level of 5%. Table 3 presents the results of Theil Sen’s slope 421 

computed for each station after applying the MMK test. By averaging the trend 422 

slopes of all the stations over the horizon (2040-2100), we found that the water 423 

temperatures are likely to increase by 0.4 °C per decade, for a total of 2.5 °C up to 424 

2100.425 
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Table 3. Theil-Sen’s slope for projected daily mean water temperature times series 426 
during the horizon (2040-2100) 427 

Stations 

Theil-

Sen’s 

slope 

aSlope-10 

years 

bSlope-

60years 

Natashquan 4.59E-04 0.711 4.266 

Baie Cascapedia 1.69E-04 0.262 1.57 

Baie Trascapedia 1.73E-04 0.269 1.613 

Sept-Îles 2.42E-04 0.376 2.255 

Baie Plaisance 1.34E-04 0.208 1.245 

Lagune Havre 3.31E-04 0.513 3.079 

Bassin Havre 3.71E-04 0.575 3.447 

Lagune Grande 3.16E-04 0.489 2.935 

Belles Amours 2.81E-04 0.436 2.618 

Blanc Sablon 2.64E-04 0.41 2.458 

Borden 1.49E-04 0.232 1.39 

Grande Rivière 1.66E-04 0.257 1.54 

Iles Shag 1.50E-04 0.233 1.4 

Havre St Pierre 1.75E-04 0.271 1.624 

Rivière aux 
Tonnerre 

4.10E-04 0.635 3.813 

Romaine 4.49E-04 0.696 4.176 

Tarbatière 3.30E-04 0.512 3.072 

Rimouski 3.77E-04 0.584 3.506 

Courant Gaspé 2.57E-04 0.399 2.391 

Gyre Anticosti 2.02E-04 0.312 1.875 
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Montlouis 2.63E-04 0.407 2.443 

Shediac Valley 2.03E-04 0.315 1.889 

Mean 2.67E-04 0.414 2.482 

a Slope-10 years: the average of Theil-Sen’s slope for 10 years for the time period between 428 
June and October 429 
b Slope-60years: the average of Theil-Sen’s slope for 60 years for the time period between 430 
June and October 431 

 432 

After generating the future daily means of SST, we calculate the number of days 433 

exceeding the threshold of 15 °C, the minimum temperature for Vibrio growth, as a 434 

risk indicator. Then, we interpolate the values of this risk indicator, averaged for 435 

each month over 20 years. We present the results of August and September as 436 

examples of spatial interpolation of the risk indicator over the study area in Figures 437 

2 and 3 respectively. 438 
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Figure 2. Inverse Distance Weighting (IDW) interpolation of risk indicators (number of days exceeding the threshold (15 °C)) over the Estuary and Gulf of 

St. Lawrence under pessimistic and optimistic climatic scenario for the horizons (2040-2060) and (2080-2100) in August. (a) IDW interpolation of the risk 

indicator in August during the horizon (2040-2060) under optimistic scenario (RCP4.5). (b) IDW interpolation of the risk indicator in August during the 

horizon (2040-2060) under pessimistic scenario (RCP8.5). (c) IDW interpolation of the risk indicator in August during the horizon (2080-2100) under 

optimistic scenario (RCP4.5). (d) IDW interpolation of the risk indicator in August during the horizon (2080-2100) under pessimistic scenario (RCP8.5). 

(a)  (c) 

(b)  (d) 
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439 

  

Figure 3. Inverse Distance Weighting (IDW) interpolation of risk indicators (number of days exceeding the threshold (15 °C)) over the Estuary and Gulf of 

St. Lawrence under pessimistic and optimistic climatic scenario for the horizons (2040-2060) and (2080-2100) in September. (a) IDW interpolation of the 

risk indicator in September during the horizon (2040-2060) under optimistic scenario (RCP4.5). (b) IDW interpolation of the risk indicator in September 

during the horizon (2040-2060) under pessimistic scenario (RCP8.5). (c) IDW interpolation of the risk indicator in September during the horizon (2080-

2100) under optimistic scenario (RCP4.5). (d) IDW interpolation of the risk indicator in September during the horizon (2080-2100) under pessimistic 

scenario (RCP8.5).  

(a) 

(b) 

 (c) 

 (d) 
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Figure 2(a) shows that, during the horizon 2040-2060, under an optimistic scenario 440 

(RCP4.5), the waters in the shellfish beds of Magdalen Islands, PEI, the Gaspe 441 

Peninsula and Baie des Chaleurs are likely to be at high risk of infection as the risk 442 

indicator (number of days above the 15 °C) exceeds 25 days. The risk indicator of 443 

some stations in the Quebec North Shore coast along the GSL varies between 20 and 444 

25 days, so the shellfish beds in this area might also be under high risk of Vibrio 445 

growth. For the same horizon, but under a pessimistic scenario as shown in Figure 446 

2(b), most shellfish beds would probably be at high risk of Vibrio growth since the 447 

calculated risk indicator exceeds 25 days for approximately 67% of coastal areas. 448 

By comparing the interpolation maps of August (Fig 2(c) and Fig 2(d)) during the 449 

horizon 2080-2100 for both scenarios, we note that the risk indicator, exceeding 25 450 

days, covers between 64% (scenario RCP4.5) and 95% (scenario RCP8.5) of the total 451 

coastal area. Therefore, by 2100, most of the stations located in shellfish beds, 452 

where harvesting occurs, are likely to be at high risk of Vibrio growth whatever the 453 

considered scenario. 454 

During September (Fig 3), the risk indicator at the shellfish beds of the Magdalen 455 

Islands and PEI exceeds 20 days for both climate scenarios and horizons. So, they 456 

might be at a higher risk of Vibrio growth. During the horizon (2080-2100) under a 457 

pessimistic scenario (Fig 3(d)), we note that in addition to the Magdalen Islands and 458 

PEI, the shellfish beds of Gaspe Peninsula and Baie des Chaleurs would probably be 459 

at high risk of Vibrio growth as the number of days above the 15 °C threshold 460 

exceeds 20 days. 461 
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Table 4 presents the results of the risk indicator calculated for the month of October 462 

for some stations under a pessimistic scenario during the horizon 2080-2100. It was 463 

not possible to perform a spatial interpolation because too few stations had non-464 

zero values. Table 4 shows that the risk of Vibrio growth may also occur during 465 

October on the coasts of PEI and Magdalen Islands. Therefore, the risk of Vibrio 466 

growth would probably expand both spatially and temporally (i.e. into the fall for 467 

some regions).  468 

Table 4. The number of days exceeding the minimum temperature threshold (15 °C) 469 
for the growth of pathogenic Vibrio during October in the horizon (2080-2100) under 470 

pessimistic scenario (RCP-8.5) 471 

Localisation stations October 

PEI Borden 19 

 
Magdalen 
Islands 

Baie Plaisance 
Bassin Havre 
Lagune Havre 
Lagune Grande 
Ile Shag 

6 
20 
16 
14 
4 

 472 

The risk assessment was not just limited to one risk indicator. We also compute the 473 

number of days exceeding a threshold of 20 °C. In fact, the increasing water 474 

temperature trend under the pessimistic scenario results in exceedance of the 475 

higher temperatures thresholds (20 °C) associated with higher abundance of Vibrio, 476 

in contrast with the optimistic scenario where the water temperature does not 477 

exceed the 20°C threshold. Table 5 presents the stations that would be at high risk 478 

of pathogenic Vibrio growth. For the rest of the stations, the number of days 479 

exceeding 20 °C is zero so they have not been included in the table. Table 5 shows 480 

that during 2080-2100 under a pessimistic scenario, the threshold of 20 °C would be 481 
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exceeded along the coast of the Magdalen Islands , where the blue mussels, clams 482 

and scallops are harvested, the threshold of 20 °C would be exceeded for about 31 483 

days in August against an average of 18 days in September”.  484 

The shellfish beds of mussels and scallops in the Gaspe Peninsula could be at the 485 

same degree of risk with about 30 days in August while the shellfish beds of PEI 486 

(mussels, oysters and clams) and North Shore would be under a lower risk with an 487 

average of 16 days.  488 

Table 5. The number of days exceeding the threshold (20 °C) in the horizon (2080-489 
2100) under pessimistic scenario (RCP 8.5) 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

5 Discussion  500 

By using one or both of the most relevant predictors, air temperature and wind 501 

speed, the results show that the SST prediction performance of ANN and RF were 502 

similar. However, RF requires more predictors than ANN to achieve similar 503 

prediction performance. Thus, we select the ANN for SST prediction and used the 504 

Localisation stations August September 

North Shore Natashquan 17 0 

Magdalen Islands 

Bassin Havre 31 22 

Lagune Havre 31 16 

Lagune Grande 31 16 

Gaspé Havre Gaspé 30 4 

PEI Borden 16 0 Jo
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mean of climate models projections of air temperature, as input for ANN model, 505 

without exploring the variability between the projections.  506 

Modelling future water temperature through ANN constitutes a useful tool to 507 

predict the plausible future water temperatures in the coastline of the Estuary and 508 

GSL where shellfish beds occur. The trend analysis results for daily mean water 509 

temperature, using the MMK test, indicates that our study area exhibits a significant 510 

increasing trend by 2.5 °C up to 2100 under a pessimistic scenario. This positive 511 

trend in water temperature implies a rise in risk indicator of Vibrio growth. This 512 

result is demonstrated in the interpolation maps between the horizons 2040-2060 513 

and 2080-2100. In fact, by comparing the interpolation maps in August for both of 514 

the horizons under the pessimistic scenario (RCP8.5), we note an expansion of 515 

Vibrio growth risk from 64% to 95% of the total coastal area of the Estuary and the 516 

Gulf of Saint Lawrence. The risk indicator distribution during July was similar to 517 

August so the shellfish beds would be exposed to a similar risk as in August under 518 

both scenarios. Whereas, in June the risk of Vibrio growth would be less severe than 519 

August and July except over the horizon (2080-2100) under pessimistic scenario, 520 

where all the shellfish beds on the coasts of North Shore, Gaspe Peninsula, Baie des 521 

Chaleurs, Magdalen Islands and PEI would be under high risk of Vibrio growth. Their 522 

risk indicator could exceed an average of 20 days. 523 

The results of risk indicator interpolation in August, suggest that Vibrio growth risk 524 

may increase under both of pessimistic or optimistic scenario so all the shellfish 525 

beds practically (on the coasts of North Shore, Gaspe Peninsula, Baie des Chaleurs, 526 
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Magdalen Islands and PEI) would be at risk of Vibrio growth regardless the scenario. 527 

In addition to this spatial spread, the Vibrio growth risk would extend seasonally by 528 

occurring out of the summer time during September and even October, especially on 529 

the coasts of Magdalen Islands and PEI. 530 

The lowest temperature threshold for the Vibrio growth, based on the literature, is 531 

15 °C. Computing the number of days exceeding a higher temperature threshold 532 

(20 °C) allowed to locate the shellfish beds that would be at higher risk of Vibrio 533 

growth, like the Magdalen Islands and PEI. 534 

This study focused on surface temperatures (average depth of 1.5 m). Wild molluscs 535 

can be found or harvested at this depth, e.g. on the foreshore or near the islands. 536 

However, in some cases, molluscs harvesting occurs in deeper water (e.g. oysters).  537 

The risk maps produced may be biased, i.e. the risk of Vibrio growth may be 538 

overestimated, as there may be significant thermal stratification in some coastal 539 

sites. Molluscs that are found under the thermocline may not be as much as risks as 540 

those in shallow, well mixed areas.  541 

In this study, we focused on water temperature as the main factor affecting Vibrio 542 

growth. However, it should be noted that many studies confirm the importance of 543 

salinity in Vibrio growth. So, future work on Vibrio risk management should 544 

concentrate of the combined effects of water temperature and salinity on the 545 

proliferation of pathogenic Vibrio and use the projections of both variables to better 546 

locate the potential risk areas followed by sampling of water and shellfish to 547 

confirm the presence of Vibrio. 548 
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The highlights are: 

• The statistical modelling (Random forest and Artificial Neural Network) of the 

coastal water temperature from air temperature and wind speed. 

• Future coastal water temperature scenarios were produced under optimistic and 

pessimistic climate scenarios, using Artificial Neural Network model. 

• Maps of the future Vibrio growth risk indicator were produced, from the future 

water temperature scenarios.  

• Maps show that the Vibrio risk will increase spatially and seasonally regardless 

the climate change scenario.  
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