

# Investigating the geothermal potential of northern mines and communities

Kuujjuaq Mining Workshop

jasmin.raymond@inrs.ca

April 26th, 2017

Institut nordique du Québec Ensemble pour le Nord



## Energy production and utilization in the North, Province of Québec

## Communities

•Electricity supplied by Hydro-Québec with local grids feed by diesel generators

•Heat produced individually with fossil fuel furnaces

## Mines

•Electricity produced independently with diesel generators

•Heat produced with fossil fuels and/or recovered from generators





UNIVERSITÉ DE RECHERCHE

## Energy cost in northern Québec

### Hydro-Québec local grids over the Plan Nord territory

- •21 diesel generators
- •52.4 MW power
- •0.43 \$/kWh and more

## Arctic diesel for space heating

- •1 to 2 \$/L
- •Furnace efficiency ~80%
- •0.16 \$/kWh thermal for diesel at 1.4 \$/L









## Geothermal energy, a local solution for heat production in North?

•Thermal energy sustainably extracted from the Earth

- •Low Carbon emissions
- •Shallow resources short-term solution
  - Reduce energy consumption (~50 %)
  - 100-200 m deep boreholes
  - Low temperature <0 °C (possible operation in permafrost)</li>
  - Gas and electric heat pumps (HP) available

•Deep resources - medium-term solution

- Direct utilization of hot aquifers >60 °C
- 2-5 km deep boreholes
- Power plants and district systems







## **Geothermal systems examples in northern environments**

rockenergy.no

5000 m wells, Rock Energy, Oslo - Norway



### Cold Climate Housing Research Center, Fairbanks - Alaska



## Cost and impact of heat production in the north

## Cost of heat production (\$/KWh)

| Diesel         |       |      | 0.16 |
|----------------|-------|------|------|
| Natural gas    |       | 0.14 |      |
| GHP absorption | 0.09  |      |      |
| GHP electric   | 0.1   | 2    |      |
| GHP electric - | solar |      | 0.19 |

## GHG emissions (tCO2/10 MWh )



## Hypothesis - cost

- •Diesel 1.4 \$/L
- •Natural gas 1.2 \$/m<sup>3</sup>
- Electricity
  - 0.43 \$/kWh (diesel)
  - 0.70 \$/kWh (solar PV)

## **Coefficient of performance**

- •Diesel furnace 0.8
- •Natural gas furnace 0.8
- •GHP absorption 1.5
- •GHP electric 3.5





#### **Electricity generation in Northern Quebec**

ONTALINGTIE DE REOTEROTE





## Permafrost

#### Legend



Lemieux, J.-M., et al., 2016. Groundwater occurrence in cold environments: examples from Nunavik, Canada. Hydrogeology Journal, Volume 24, Issue 6, pp 1497–1513.







## Geology

#### Legend





## Conductivity

#### Legend



#### Thermal conductivity (W/m·K)



## Research to identify geothermal resources and adapt existing technologies to the North

## Mines – FRQ-NT – 3 years

Inventory of resources available at northern mine sites
Case study at Éléonore to replace propane burners heating the underground mine



www.goldcorp.com

## Communities – INQ – 3 years

•Adapt technologies to heat buildings, including greenhouses for northern agriculture

- Cases studies
  - Jamésie Geothermal potential of flooded abandoned mines
  - Kuujjuaq Shallow and deep geothermal resources of the most important Inuit community in Québec



## **Dewatering geothermal potential to heat the Éléonore Mine**

**Objective:** Evaluate the potential contribution of a geothermal heat pump system to the heating requirements of the mine



Method: energy balance calculation, design of a geothermal system using mine water, numerical modeling

**Results:** heating costs could be reduced by at least 20%



## Northern greenhouse heating provided by underground thermal storage systems



 Cucumber 100 **Optimal growth [%]** 75 50 25 0 20 30 10 40 0 Temperature [°C] Hot water supply Heating element Hot water supply Baffles Hot water Moto Heating element Hot water return Van Nguyen et al. (2015) UNIVERSITÉ DE RECHERCHE

125

Lettuce

Tomato

a)

## Training of highly qualified personnel to solve northern energy issues

- Geothermal resources for mines of the Plan Nord
  - Felix-Antoine Comeau (Research associate)
- •Geothermal potential of the Eleonore Mine
  - Edgardo Alvarado (M.Sc. INRS)
- Geothermal potential of flooded mines in Jamésie
  - Andrea Morgan (M.Sc. Reykjavik University)
- Geothermal heat pumps in Kuujjuaq
  - Inès Kanzari (M.Sc. INRS)
- Nunavik deep geothermal resources
  - Mafalda Miranda (Ph.D. INRS)
- Inventory of geothermal technologies for northern climate
  - Patrick Belzile (Postdoc ÉTS)
- Underground thermal storage and greenhouse
  - Nicoló Giordano (Postdoc INRS)



lapresse.ca





## **Geothermal open lab (GOL)**

### **CFI** support – Leaders fund

- •Development of a core lab
- •Apparatus to measure thermal and hydraulic properties of rocks
  - Infrared scanner
  - Heat flux meter -10 to 100 °C
  - Porosimeter and permeameter 10 000 PSI











## **Research partnerships**







LPSS Société Makivik Makivik Corporation





Le génie pour l'industrie











**Englobe** 

Landsvirkjun





Reykjavik – 8 octobre 2016