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Abstract 

This study evaluates the effectiveness of a modelling and optimization methodology based on 

artificial neural networks and genetic algorithms in the prediction of the behaviour of an 

electrolysis process of active chlorine production from a synthetic saline effluent. Multilayer 

perceptrons feedforward neural networks were developed for the active chlorine production and 

energy consumption based on the following inputs: electrolysis time, current intensity, 

hydrochloric acid concentration, and chloride ion concentration. In order to diagnose and prevent 

the over-fitting problem during the learning process, learning curves and the regularization factor 

were utilized. The trained ANN models were able to successfully predict the active chlorine 

production and energy consumption of the process (R2=0.979 and MSE=3.826 for active 

chlorine production and R2=0.985 and MSE=6.952 for energy consumption). Multi-objective 

optimization for maximizing active chlorine production and minimizing energy consumption was 

carried out by a genetic algorithm using the best derived ANN models. The Pareto front obtained 

led to multiple non-dominated optimal points, which result in insights regarding the optimal 

operating conditions for the process.   
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1 INTRODUCTION 

In recent years, electrochemical processes have been gaining attention as an alternative method 

for water and wastewater treatment. These processes are considered as eco-friendly and green 

technologies since the leading reagent involved, the electron, is considered a clean reagent and 

takes advantage of coupling chemistry (in situ generation of oxidant) with electronic science 

(electron transfer). Other attractive advantages include versatility, high energy efficiency, 

amenability to automation, and cost-effectiveness.[1,2] Several studies focusing on the use of 

electrolysis with different electrochemical methods such as electrooxidation, electrocoagulation, 

electroflotation, electro-Fenton reaction, and electrodialysis have been published over the last 

decade for improving the treatment performance of wastewaters and drinking waters.[3-6]  

In literature, phenomenological and empirical modelling approaches are generally used for 

mathematical modelling of electrochemical water and wastewater treatment processes. Although 

phenomenological (white-box) modelling provides valuable insights into the behaviour of the 

process and has the ability of extrapolation, heat and mass transport phenomena along with 

detailed knowledge of the reaction kinetics are required. First principles related to the underlying 

science and engineering laws lead to governing equations that ultimately arrange these models.[7] 

In empirical modelling, the structure of the data-fitting model should be specified a priori which 

makes it challenging as one needs to choose a suitable model structure among the many available 

ones, especially for non-linear processes.[8] Electrochemical processes for water and wastewater 

treatment are generally complicated non-linear systems and dependent on many factors such as 

the influent concentration of contaminants,[9] the applied current density and electrical 

potential,[10] the types of electrodes,[11] the electrolyte type and concentration,[12] and chemical 

interactions between contaminants.[13,14] It is thus difficult to use phenomenological or empirical 

models to model, simulate, and optimize the processes.  

In this context, artificial intelligence methods such as artificial neural networks (ANNs) along 

with genetic algorithms (GAs) have emerged as attractive alternative approaches for modelling 

and optimization of these non-linear processes in case phenomenological or conventional 

regression models are not practical.[15] These black-box (data-driven) models are based on 

empirical data and relationships among input and output variables of the process. Artificial 

intelligence methods, such as ANNs, have the role of discovering relationships in which patterns 
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of input data can be linked to the associated output data. These data-driven tools model the 

system behaviour solely from mapping the input-output data rather than from process 

knowledge. As the complexity of engineering problems increases, the development of faster 

computers along with more advanced computational algorithms and availability of cost-efficient 

sensors results in a noticeable paradigm shift from white-box to black-box modelling.[7,16,17] 

Various types of problems in science can be cast in the form of such pattern-matching, and 

among the methods within machine learning tools, ANNs are one of the most effective 

methods.[18-20] Some recent publications illustrate successful application of ANN models in 

various electrochemical processes.[21-25] 

GAs belong to the category of evolutionary algorithms that are used for the optimization of 

objective (fitness) functions by means of parameter space coding. Through the algorithm, a GA 

can obtain acceptable results by using three stochastic operators: selection, crossover, and 

mutation.[26] Detailed information about the theory of GAs and the combination of ANNs with 

GAs can be found in the literature.[27,28] 

The present study is focused on investigation and analyses of the effectiveness of AI methods for 

modelling and optimization of an electrolysis process. The database used in this paper was taken 

from a series of experiments for active chlorine production from a synthetic saline effluent by 

electrolysis, from the authors’ lab and previously published in the literature.[29] Chlorine is one of 

the most commonly synthetically produced chemicals worldwide and, due to its oxidizing power, 

has been used as a disinfectant for potable water, wastewater, and swimming pools.[30] Other 

uses of chlorine products by electrolysis have been reported for the treatment of dye-containing 

effluents[31] and as electrolyzed oxidizing water in the food industry.[32] It is worth mentioning 

that studies are still being conducted about the production of undesirable active chlorine species 

during electrolysis.[33] 

While the production of chlorine is commercially dependent on the electrolysis of highly 

concentrated solutions of sodium chloride (NaCl),[34,35] alternative approaches are being 

introduced. These approaches include seawater[36] and deep ocean water electrolysis.[37,38] In 

addition, desalination plants produce brine effluents, which are highly concentrated in salts. One 

of the techniques for managing this saline concentrate can be to use it as a saline resource for 
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chlorine production. This would lead to a reduction in chemical costs for the process of chlorine 

production.[39,40]  

The ANN-GA approach for modelling and optimization of electrochemical processes has been 

applied before. Picos and Peralta-Hernández[41] utilized ANN models to predict the behaviour of 

an electro-oxidation pilot press-type reactor, which treats synthetic wastewater prepared with a 

synthetic Violet 54-B dye. Single-objective GA optimization was linked to their ANN model to 

find the best operational conditions for discoloration efficiency. Tuning ANN models, falling 

into the domain of hyper-parameter (e.g., number of hidden neurons) optimization, is a crucial 

task to obtain neural networks with the best performance possible and a strong ability of 

generalization. In this regard, usually, a trial-and-error procedure is used to derive the best 

configured network.[42]  

In this work, modelling and optimization of active chlorine production by combining ANNs and 

GAs will be studied. This method includes feedforward neural networks and considers the 

impacts of learning curves and the regularization factor to improve the training process. It is 

followed by a multi-objective GA for the optimization process regarding active chlorine 

production and energy consumption. Learning curves help to acquire an insight throughout the 

modelling problem in order to diagnose the problem as high-variance or high-bias, which can 

then help to optimally select the most suitable configuration of the network. Regularization is 

also utilized to prevent over-fitting, which can occur with too complex a model. These 

techniques can give an insight into the ANN modelling process and can be used instead of or 

along with a trial-and-error procedure during training of neural networks. To the best of our 

knowledge, learning curves and the impact of the regularization factor in the cost function of 

ANNs have not been studied before for modelling of electrochemical processes. Further, Pareto 

optimal solutions obtained by multi-objective optimization using a GA can help to identify 

optimal operating conditions regarding the production of active chlorine and energy consumption 

of the process.  

2 EXPERIMENTAL PROCEDURE 

The database used in our work was acquired from the experiments of a published study of our 

group entitled “Statistical optimization of active chlorine production from a synthetic saline 

effluent by electrolysis”.[29] To prepare the synthetic saline effluent (SSE) used in these 
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experiments, sodium chloride (NaCl, Fisher Scientific, ACS reagent) was added to distilled 

water to produce solutions at different concentrations from 0.05 mol/L-0.105 mol/L. It was 

observed that produced chlorine gas could be converted to hypochlorous acid (HClO) and 

hypochlorite ion (ClO−) after a value of pH = 2.0. Therefore, the initial pH of the solution was 

adjusted by hydrochloric acid (from 0.02 mol/L-0.14 mol/L) in the range of 0.9-1.3. A batch 

electrolytic cell was designed for conducting the assays using a power supply, an air diffuser, a 4 

L glass tank, and a peristaltic pump. An expanded metal Ti/IrO2 anode and a stainless steel 

cathode in the form of plates were utilized as electrodes. A 400 mL (135 mm ×35 mm ×140 mm) 

PVC electrolytic reactor was used to carry out the experiments.  

The Wessler reaction was used to estimate the hypochlorous acid production which is based on 

the oxidation of iodide ions (I− ) to iodine (I2 ) in the presence of active chlorine. Then tri-iodide 

(I3−) can be formed by the reaction of surplus iodide ions with iodine.[43] A Carry UV 50 

spectrophotometer (Varian, Canada) was used to analyze the tri-iodide ion by measuring the 

absorbance at 353 nm. The electrical intensity and voltage were applied via an Enduro 250 V 

power supply.  

Response surface methodology (RSM) approach was utilized to design the experimental assays 

using a factorial design (FD) followed by a central composite design (CCD). The experiments 

consisted of 16 experiments for FD and an extra 14 experiments for CCD, a total of 30 

experiments. Table 1 represents the experimental region for gas chlorine production. 

3 PROCESS MODELLING AND OPTIMIZATION 

3.1 ANNs modelling 

As the name implies, ANNs, commonly referred to as neural networks, imitate the essential 

characteristics of the human brain (which itself is a highly non-linear, complex, and parallel 

computer), such as self-adaptability, self-organization, and error tolerance.[44,45] ANNs can 

explore many competing hypotheses simultaneously using a massively parallel network 

composed of non-linear computational elements (neurons or nodes) that are interconnected by 

links with variable weights. The mentioned interconnected set of weights contains the knowledge 

generated by the network.[46] Each neuron at certain times examines its inputs and computes an 

output called an activation. The new activation is then passed along those connections to other 

neurons. 
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One of the most common architectures of ANNs, considering how the different neurons are 

positioned and connected to each other as well as the composition of layers, is the multilayer 

percepterons (MLP) feedforward network. These networks are usually applied to diverse 

problems, including function approximation, pattern classification, system identification, process 

control, process optimization, and so on.[47,48] The nature and complexity of the problem in 

addition to the desired accuracy and the available data determine the number of hidden layers 

and the corresponding number of neurons in each hidden layer. In addition, the configuration of 

the MLP network including the number of hidden layers and hidden neurons, can be derived by a 

trial-and-error procedure.[49] 

The standard learning algorithm for MLP neural networks for any pattern recognition or function 

fitting process is known as the back-propagation (BP) algorithm.[48] The BP algorithm can be 

viewed as a generalization of the least mean square procedure that can be used for the training of 

multilayer neural networks. In the BP algorithm, data enter the network via the input layer which 

merely transfers the data value to the hidden layer over weighted connections. The hidden and 

output neurons process their inputs by multiplying each input by its weight, adding the product to 

a total amount, and then passing it through a (transfer or activation) function to generate its 

result. The whole aim of the BP algorithm is to change the values of the network weights to 

achieve the minimum error between the predicted output and actual targets. 

Figure 1 shows the MLP neural network used for the modelling and optimization of the active 

chlorine production from a synthetic saline effluent by electrolysis. In continuation of the work 

of Zaviska et al,[29] current intensity, electrolysis time, chloride ion concentration, and 

hydrochloric acid concentration were selected as the input neurons, whereas the output layer 

contains the active chlorine production or the energy consumption. 

The gradient descent algorithm has been selected as the learning algorithm for training the neural 

network with the tansig and purelin transfer function in the hidden and output layer, respectively.  

3.2 Learning curves 

Learning curves of model performance on the training and validation datasets can be used to 

diagnose an underfit (high bias), overfit (high variance), or well-fit model. 
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At first, the data were split into two sets: training and validation. One single example from the 

training set was taken and used to fit a model. The error related to the model on the validation set 

and that single training example were measured. The error related to this training instance would 

be 0, since it is not too overwhelming to fit a single data point perfectly. Since the model is built 

around a single instance, the error related to the validation set will be quite large. This is due to 

the lack of generalization ability to the data that it has not seen before. Then the number of 

training samples is gradually increased until the entire training set is used. As the training set 

changes, the error values will vary more or less. Thus, two error values have to be monitored: 

one for the validation set, and one for the training set. If the evolution of the two error values is 

plotted as the training sample sets change, two curves (so-called learning curves) are obtained. In 

brief, a learning curve demonstrates how the error varies with an increase in the training set size 

and demonstrates if one needs a more complex model for the predictions or not.  

In this work, learning curves will be plotted for the training samples. To avoid the uncertainty 

related to the selection of the training sample, each training sample selection was replicated 50 

times and the overall mean value has been calculated for that training sample batch.  

3.3 Regularization factor 

The regularization parameter (lambda) is an input to the objective function to reduce overfitting. 

This reduces the variance of the estimated regression parameters. In other words, this technique 

discourages learning a more complex or flexible model, so as to avoid the risk of overfitting. It is 

defined as a term added to the cost function of the model: 

J(θ) =
1

2m
���hθ�x(i)� − y(i)�2 + λ�θj2

n

j=1

m

i=1

�                                                                                   (1) 

where J(θ) is the cost function (error), m is the number of data points used for training, x are the 

input neurons, hθ�x(i)� is the predicted value of sample i, y(i) is the actual value of sample i, λ is 

the regularization parameter, and θ are the network parameters (weights). In fact, to have control 

of the fitting parameters, a regularization parameter is used. With any increase in the magnitudes 

of the network parameters, an increasing penalty will be applied on the cost function. As can be 

seen, this penalty is relevant on the magnitude of lambda and the squares of the weights. Any 

increase in lambda can be advantageous up to a certain point, since it reduces the variance which 
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avoids overfitting. But after this point, important properties of the model start to be lost, 

introducing more bias into the model (underfitting problem). This implies the importance of the 

selection of the lambda value. In this study, different lambda values have been tested each time 

to obtain the best training and cross-validation errors and to present these errors versus the 

lambda value. The optimum lambda value was selected from this graph by considering the cross-

validation and training errors. 

3.4 Relative importance of input variables 

The weights obtained from ANN training are coefficients between artificial neurons that are 

analogous to synaptic strengths between the axon and dendrites in a biological neuron in the 

brain. As in real life, the proportion of the incoming signal to be transmitted to the neuron’s body 

is decided by these weights.[50] Despite the black-box nature of ANNs, to estimate the influence 

of different independent variables on the output, it is possible to conduct a sensitivity analysis on 

the ANNs. The relative importance of each input independent variable on the desired output can 

be obtained through the neural connection weight matrix. First Garson[51] and then Goh[52] 

proposed a procedure for partitioning the connection weights to determine the relative 

importance of the various inputs. This method basically involves partitioning the hidden-output 

connection weights of each hidden neuron into components associated with each input neuron.[53] 

 Garson’s equation based on the partitioning of connection weights can be applied: 

 

  𝑅𝑅j =
∑ ���Wjm

jh �/∑ �Wkm
ih �Ui

k=1 �×�Wmn
ho ��m=Uh

m=1

∑ �∑ ��Wkm
ih �/∑ �Wkm

ih �Ui
k=1 �m=Uh

m=1 ×�Wmn
ho ��k=Ui

k=1

     (2) 

 

where 𝑅𝑅j is the relative importance of the jth independent variable on the output variable; Ui and 

Uh denote the number of input and hidden neurons, respectively; W is the connection weight 

value; and the superscripts i, h, and o refer to input, hidden, and output layers, respectively. Also, 

the subscripts k, m, and n refer to input, hidden, and output neurons, respectively. 

 

3.5 Genetic algorithm and multi-objective optimization 
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In recent years, evolutionary algorithms, and in particular GAs, have received growing attention 

among optimization techniques. Gas, with their good global searching ability and flexibility, ease 

of operation, and without the need for gradient information on the objective (fitness) functions, 

have become powerful techniques for optimization problems.[54,55] A GA starts with a primary 

population of candidate solutions and a fitness value is calculated for each solution. Through the 

algorithm, three stochastic operators are applied to each population which are analogous to 

chromosomes in a biological context. Selection is choosing the solutions with the highest fitness 

value to create an intermediate population. The next population is the result of crossover or 

mutation. By crossover, the selected members are mated in pairs and recombined through genetic 

manipulation of chromosomes to generate two new solutions (offsprings). Mutation acts as an 

assurance against lost genetic material and consists of replacing some of the chromosome’s 

genes with new genes. The generation of new populations and calculation of the fitness value for 

each population is repeated over and over in an iterative method. When a specific termination 

criterion is met (e.g.,when there is no more change in the population from one iteration to the 

next or when a satisfactory fitness value is achieved), this process ends.[56-58]   

When multiple objectives are specified to a problem, selecting a single solution with specific 

decision variables could not satisfy all the objectives in a single manner. In fact, objective 

functions could have non-linear and opposite behaviour to each other. Therefore, a trade-off 

between all these conflicting objective functions should be made to find the decision variables. 

This trade-off can be illustrated as Pareto front, which is based on the domination concept. Best 

solutions in the problem space will be represented in this front, which are the solutions for which 

there would be no other solution having better values regarding the objective functions. Having 

Pareto front helps obtain a clear insight throughout the trade-off between different objective 

functions. This would help to find and focus on promising solutions from a possibly large 

population of solutions and choose the suitable decision variables regarding the objective 

functions.[59]   

In this regard, the well-known non-dominated sorting genetic algorithm (NSGA-II)[60] has been 

utilized for multi-objective optimization, leading to a set of solutions (Pareto front), that are the 

experimental conditions, with respect to maximization of active chlorine production and 

minimization of energy consumption. The flowchart of the adopted ANN-GA approach in this 

study is shown in Figure 2. 
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4 RESULTS AND DISCUSSION 

4.1 ANN modelling 

After initial data collection, data preprocessing was necessary to manipulate the data into a 

usable format for processing by the ANNs. Feature normalization, Equation (3), has been 

selected and returns a normalized version of feature (input) X where the mean value of each 

feature is 0 and the standard deviation is 1:  

y= Xi-μi
Si

              (3) 

where y is the normalized value of Xi. The μi and the Si are the mean and standard deviation 

values of Xi, respectively. Normalization helps because it ensures both that the network’s 

learning regards all input features to a similar extent and that there are both positive and negative 

values used as inputs for the next layer, which makes learning more flexible.  

At the first step of the ANN modelling, a three-layer network was configured with the 16 FD 

experiments. The ANN model was constructed with five neurons in the hidden layer with tansig 

and purelin transfer functions in the hidden and output layer, respectively, and trained by the 

gradient descent algorithm. While the coefficient of determination for the FD was reported as 

R2=0.982, this value increased to R2=0.999 with the ANN model.    

Finding optimal conditions to produce active chlorine is a multi-objective optimization by taking 

into account the energy consumption of the process.This has been done by conducting 14 more 

experiments using a CCD.[29] In total, 30 experimental data points were used for ANN modelling 

for the purpose of training and validation, including sets of 24 and six samples for each, 

respectively.  

4.1.1 Learning curves and impact of regularization  

For an ANN model, it is necessary to have an overview of the state of the model in order to 

check whether there is a high bias (underfit) problem or high variance (overfit) issue. This helps 

decide whether a more complex model (with more hidden layers and neurons) is required or not. 

Figure 3 shows the mean learning curve obtained for different numbers of training examples. As 

explained in Section 3.2, learning curves show how the error changes as the training set size 

increases and demonstrate whether or not one needs a more complex model for the predictions. 
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In this figure, the training and cross-validation error have been plotted versus the number of 

training examples in the training set. This figure helps to have an overview of the type of 

problem dealt with. In case of a high bias model (underfit), there would be high errors for both 

training and cross validation data sets. For a high variance model (overfit), the training error 

would be low and the cross validation error would be much higher. Also, in case of a high 

variance problem, having more data along with not having a more complex model (e.g. adding 

more hidden layers or hidden neurons) would help the modelling process. As Figure 2 shows, 

there is a gap between the training and cross-validation error, with a very small error for the 

training set and a much higher error for the cross-validation set. Also, as the number of samples 

in the training set increases, the cross-validation error decreases, which proves that increasing the 

number of samples is a good solution for a high variance problems as diagnosed for this case. 

The ANN model for each point in the learning curve has been trained 50 times with random 

sampling from the available data and the mean, minimum, and maximum error values have been 

represented. Decision making based on the mean value of 50 times iterations for each training 

with random sampling helps to decrease the risk of uncertainty related to stochastic behaviour of 

ANN modelling. 

Figure 3 shows the mean learning curve for the validation samples with the minimum and 

maximum values obtained for the 50 iterations of training. As said before, for a high variance 

problem, having a more complex model does not help. This is shown in Table 2 where three 

different neural network configurations are presented with their correlation coefficients for the 

training, validation, and all data sets. It can be concluded that for this high variance problem 

there is no need for a more complex model that inherently would increase the overfitting issue.  

In the presence of the high variance problem, using the regularization factor can help. 

Regularization makes slight modifications to the learning algorithm such that the model 

generalizes better and the model’s performance on unseen data is improved. Therefore, a graph 

of error versus regularization factor (lambda) helps to optimally select the best lambda value. In 

our case, the best lambda value is 3 (Figure 4). 

Thus, a three-layer feedforward back-propagation network with five hidden neurons and a 

regularization factor value of 3 is selected for the optimization. 
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The selected network for active chlorine production has a coefficient of determination R2=0.979 

while this value for the RSM with the CCD was reported as R2=0.964.  

Also, for the multi-objective optimization, the selected neural network for predicting the energy 

consumption is configured with four hidden layers and a sigmoid transfer function at the hidden 

layer. This network has a performance of Rtrain
2 =0.997, Rvalidation

2 =0.951, and RAll
2 =0.985, which 

compares favourably to the RSM regression performance R2=0.990. Parity plots for ANN and 

RSM models regarding active chlorine production and energy consumption are represented in 

Figure 5.  

It should be mentioned that in RSM, all available data was used for the linear regression method 

for curve fitting. In ANN modelling, however the data is divided into training and validation sets. 

Table 3 represents the CCD experimental plan, actual and predicted values of the ANN, and 

RSM models for active chlorine production and energy consumption. Also, performance criteria 

(R2) and mean squared error (MSE) for each model and dependent variable are reported in Table 

3. As can be seen, the ANN method performs slightly better than RSM for predicting active 

chlorine prediction and energy consumption of the electrolysis process. 

4.1.2 Relative importance of input variables 

Using the factorial design method, the influence of four main experimental factors was 

investigated. Based on the sensitivity analysis results, electrolysis time and current intensity with 

82.8% contribution on the active chlorine production were the two most influential factors. In 

order to assess the relative importance of the input variables for the ANN model, the neural net 

weight matrix can be used. The relative importance of the various variables, calculated by 

Equation (2), is shown in Figure 6.  

Like the FD method, ANN weight analysis derived by Garson’s algorithm, described in Section 

3.4, illustrates that electrolysis time and current intensity are the most important factors for 

predicting the production of active chlorine. Garson’s algorithm investigation on neural network 

weights shows about 81.5% influence on active chlorine production for these two main 

independent variables (compared to an 82.8% influence in the FD analysis). The H3O+ and NaCl 

concentration represent the remaining 18.5% of the investigated response (active chlorine 

production). Figure 6 shows the compatible and reliable results of the ANN model, similar to the 

RSM outcomes. 
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4.1.3 Response surfaces of the RSM and ANN 

The effect of electrolysis time and current intensity on the production of active chlorine is 

illustrated in Figure 7. Note that the concentrations of acid and chloride are kept constant at the 

centre of the investigated experimental ranges (0.08 mol/L and 0.55 mol/L, respectively). In 

these conditions, by increasing the electrolysis time, the active chlorine concentration rises for all 

current intensities studied. As can be seen, the RSM response surface is a quadratic model that 

has to fit the predicted values on this surface, whereas the ANN model with its high ability for 

nonlinearity can fit the data in a much finer way. It can be concluded that active chlorine can be 

produced up to more than 33 mg/L at electrolysis times longer than 30 minutes and for current 

intensities at the higher values of 1.4 A. 

4.2 Multi-objective optimisation with GA 

Simultaneous optimization of hypochlorous acid production and the energy consumption is 

defined in the category of multi-objective optimization. No unique solution can be derived for a 

multi-objective optimization problem, except for Pareto front solutions which are inherently non-

dominated. A MATLAB script using two ANN models developed for the hypochlorous acid 

production and energy consumption was written to create a cost (fitness) function. The multi-

objective optimization was conducted by aiming for both maximizations of the hypochlorous 

acid production and minimization of energy consumption. The bounds of the four independent 

variables were chosen by the ranges of the experiments. The following NSGA-II algorithm 

options were set: 

 

• Population size: 50 

• Maximum number of iterations: 150 

• Selection function: Tournament selection 

• Crossover strength: 0.7 

• Mutation strength: 0.3 

• Distance measure function: Distance crowding 
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The maximum number of iterations was used as stopping criterion. For the purpose of 

comparison, Pareto fronts have also been generated using RSM models with the same NSGA-II 

algorithm. After 150 iterations, the Pareto front of Figure 8 is obtained. The decision variables of 

the electrolysis process corresponding to each of the ANN-GA Pareto front solutions are 

tabulated in Table 4. 

The general method used for RSM optimization is single optimization with multiple responses 

using desirability functions and weighting factors representing the importance of each response. 

In this approach, usually, just a single optimal point is reported based on the desirability value. 

No Pareto front will be provided. Since the RSM models are generated by linear regression 

method, the Pareto front provided by NSGA-II for this approach is linear. Each point on the 

Pareto front indicates that there is no other process decision variables that can have the same 

active chlorine production with lower cost or, in other words, with the same cost there are no 

other process decision variables that can produce higher active chlorine.  As reported in the paper 

on RSM,[29] the optimal conditions for the electrolytic reactor were obtained by 27 minutes of 

electrolysis time with the concentrations of hydrochloric acid and chloride sodium of 0.11 and 

0.8 mol/L, respectively. Under these conditions, it was mentioned that production of 30.60 mg/L 

of active chlorine could be possible with 0.54 kWh/m3 energy consumption. Conversely, in the 

ANN-GA approach of this paper, one of the solutions implies that with 0.53 kWh/m3 of energy 

consumption, 34.92 mg/L of active chlorine can be produced under different operating 

conditions. Also, production of 30.47 mg/L of active chlorine is achievable with 0.47 kWh/m3 

energy consumption. These imply more economic conditions for higher active chlorine 

production. Unfortunately, our results could not be verified by the experiments since the 

experimental set up was no longer available. However, by comparing Tables 3 and 4, at least one 

Pareto optimal point appears similar to an experimental assay (Solution number 1: Time=35 

minutes, current=1.6 A, [H3O+]=0.11 mol/L, and [Cl-]=0.8 mol/L). Under these conditions, 42.23 

mg/L of active chlorine can be produced with 0.75 kWh/m3 energy consumption compared to 

experimental values of 46 mg/L and 0.76 kWh/m3 for active chlorine and energy consumption, 

respectively. The relative error for this optimal point is 0.082 and 0.013 for active chlorine 

production and energy consumption, respectively.   

The ANN-GA approach introduced in this study provides optimal operational conditions based 

on active chlorine production and energy cost. The advantage of having a Pareto front for 
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industrial process designers and operators is that different operational conditions (decision 

variables) can be selected based on preference for each objective. This gives an insight on the 

trade-off between the different objective functions involved in this industrial process. 

Although some effort has been made in this study to obtain the best possible ANN models for 

describing the process, there remain some ANN hyper-parameters that can be optimized in 

further studies. These hyper-parameters, including transfer functions and learning rate, may have 

direct impact on the ANN modelling performance. 

5 CONCLUSIONS 

The ANN-GA methodology was successfully applied to an electrolysis process for active 

chlorine production. MLP feedforward neural networks were developed for actives chlorine 

production and enegy consumption. To diagnose whether there is a danger for high-variance or 

high-bias error and to prevent over-fitting of the model, learning curves along with regularization 

factor analysis were utilized during the training of the neural network models. Figure 7 indicated 

that the ANN model was able to describe the nonlinearities related to the experimental process 

better than the previously proposed RSM model with a coefficient of determination of 0.979 and 

0.985 for production of active chlorine and energy consumption, respectively. Analysis of the 

relative importance of the variables indicated that electrolysis time and current intensity are the 

two most influential parameters with a total effect of 81.5% on active chlorine production.  

To obtain a clear insight throughout the trade-off between different objective functions involved 

in the electrolysis process, the NSGA-II algorithm was used for multi-objective optimization of 

the process regarding active chlorine production and energy consumption. The Pareto front 

derived by GA led to the generation of non-dominated optimal points (operating conditions) for 

maximum active chlorine production at minimum energy consumption. The proposed ANN-GA 

methodology can give insight in how to efficiently choose the process operation parameters 

(decision variables) for the desired objectives. This approach can be adapted to other processes if 

the experimental data already exist.   
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Figure Captions 

FIGURE 1 Schematic of the multilayer percepterons (MLP) neural network used for the 

modelling and optimization of the active chlorine production  

FIGURE 2 Flowchart of ANN-GA (artificial neural network-genetic algorithm) methodology 

used for multi-objective optimization 

FIGURE 3 Mean learning curves for different numbers of training examples (Error bars are 

generated with 50 time training for each training set) 

FIGURE 4 Impact of regularization factor on model performance 

FIGURE 5 Parity plots of predicted versus experimental values of active chlorine production 

and energy consumption for ANN (artificial neural networks) and RSM (response surface 

methodology) models 

FIGURE 6 Importance (%) of the input variables on the electrochemical active chlorine 

production 

FIGURE 7 Response surface graph of active chlorine production versus electrolysis time and 

current intensity: (A) ANN, artificial neural networks and (B) RSM, response surface 

methodology 

FIGURE 8 Pareto fronts for multi-objective optimization of active chlorine production and 

energy consumption 
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Table Captions 

 

TABLE 1 Experimental operating conditions range 

 

Parameter Min. value Max. value 

Electrolysis time (min) 15 35 

Current intensity (A) 0.8 1.6 

[H3O+] (mol/L) 0.05 0.11 

[NaCl] (mol/L) 0.3 0.8 
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TABLE 1 Feedforward backpropagation networks 

Configuration R2 training R2 validation R2 All 

# Samples 24 6 30 

5 hidden neurons 0.9803 0.9701 0.9791 

6 hidden neurons 0.9404 0.9592 0.9453 

7 hidden neurons 0.9445 0.9562 0.9481 
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TABLE 2 Actual and predicted values of central composite designed experiments. 

Experimental assays Chlorine production (mg/l) Energy consumption (kWh/m3) 

Time 

(min) 

Current 

(A) 

[H3O+] 

(mol/L) 

[Cl-] 

(mol/L) 
Actual 

ANN   

predicted 

RSM 

predicted 
Actual 

ANN 

predicted 

RSM 

predicted 

15 1.6 0.05 0.3 5.04 5.34 4.57 0.250 0.280 0.279 

25 1.2 0.08 0.55 10.7 10.28 10.7 0.312 0.322 0.330 

15 1.6 0.11 0.3 5.32 6.84 9.09 0.300 0.302 0.297 

15 0.8 0.05 0.3 1.6 1.52 2.71 0.120 0.122 0.111 

25 1.2 0.08 0.55 9 10.28 10.7 0.310 0.322 0.330 

35 1.6 0.11 0.8 46 42.23 44.33 0.760 0.747 0.783 

25 2 0.08 0.55 46.6 42.39 41.24 0.708 0.706 0.726 

15 1.6 0.11 0.8 6.94 7.96 13.35 0.280 0.281 0.311 

15 0.8 0.11 0.8 0.56 1.57 0.61 0.120 0.114 0.143 

25 1.2 0.08 0.55 13.8 10.28 10.7 0.330 0.322 0.330 

25 1.2 0.08 0.55 13.76 10.28 10.7 0.323 0.322 0.330 

25 1.2 0.08 0.55 10.2 10.28 10.7 0.314 0.322 0.330 

15 0.8 0.05 0.8 1.54 1.52 0.61 0.120 0.115 0.125 

35 0.8 0.11 0.8 7.26 10.67 8.63 0.300 0.295 0.311 

25 1.2 0.08 0.05 13 11.88 9.62 0.375 0.342 0.316 

35 1.6 0.11 0.3 36.5 36.96 40.07 0.770 0.770 0.769 

25 1.2 0.08 0.55 9.4 10.28 10.7 0.318 0.322 0.330 

15 1.6 0.05 0.8 8.96 8.75 8.83 0.300 0.288 0.293 

25 1.2 0.08 1.05 13.4 13.28 11.78 0.308 0.315 0.344 

25 0.4 0.08 0.55 1.68 3.06 3.68 0.083 0.085 0.086 

25 1.2 0.02 0.55 4 5.77 8.44 0.375 0.363 0.312 

35 0.8 0.11 0.3 9.52 11.09 10.73 0.310 0.326 0.297 

5 1.2 0.08 0.55 0.1 1.52 -3.12 0.125 0.120 0.098 

35 1.6 0.05 0.8 37.2 38.01 39.81 0.780 0.785 0.765 

45 1.2 0.08 0.55 36 34.34 35.88 0.688 0.795 0.738 
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25 1.2 0.14 0.55 16.4 11.90 12.96 0.300 0.313 0.348 

35 1.6 0.05 0.3 34.4 34.39 35.55 0.820 0.794 0.751 

35 0.8 0.05 0.8 10.3 11.17 8.63 0.310 0.364 0.293 

15 0.8 0.11 0.3 1.74 1.62 2.71 0.120 0.145 0.129 

35 0.8 0.05 0.3 13.5 11.46 10.73 0.330 0.368 0.279 

          

R-squared (R2) - 0.979 0.964 - 0.985 0.990 

Mean squared error (MSE) - 3.826 6.952 - 6.903e-04 9.043e-04 
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TABLE 4 Decision variables of the electrolysis process corresponding to each of the Pareto 

front solutions presented in Figure 8 

Solution 

No. 

Time 

(min) 

Current 

(A) 

[H3O+] 

(mol/L) 

[Cl-] 

(mol/L) 

HClO 

production 

(mg/L) 

Energy 

consumption 

(kWh/m3) 

1 35.00 1.60 0.11 0.80 42.23 0.75 

2 15.00 0.80 0.08 0.80 1.53 0.11 

3 22.75 1.57 0.11 0.80 25.45 0.42 

4 20.70 1.45 0.11 0.80 13.69 0.33 

5 17.92 0.80 0.11 0.80 1.87 0.12 

6 18.81 0.80 0.11 0.80 2.16 0.13 

7 21.43 1.36 0.11 0.80 11.40 0.30 

8 33.27 1.60 0.11 0.80 41.49 0.70 

9 24.13 0.80 0.11 0.80 7.33 0.16 

10 20.33 1.53 0.11 0.80 16.89 0.35 

11 33.48 1.53 0.11 0.80 40.13 0.67 

12 27.36 1.05 0.11 0.80 10.62 0.28 

13 20.38 1.59 0.11 0.80 21.11 0.37 

14 25.29 0.80 0.11 0.80 8.34 0.17 

15 23.04 0.80 0.11 0.80 6.03 0.15 

16 23.81 1.59 0.11 0.80 28.84 0.45 

17 21.47 0.80 0.11 0.80 4.08 0.14 

18 26.53 0.96 0.11 0.80 9.72 0.24 

19 28.25 0.81 0.11 0.80 9.60 0.20 

20 28.75 1.59 0.11 0.80 37.21 0.57 

21 29.71 1.59 0.11 0.80 38.50 0.60 

22 28.56 0.93 0.11 0.80 10.12 0.25 

23 27.03 0.81 0.11 0.80 9.26 0.19 

24 19.61 0.80 0.11 0.80 2.48 0.13 

25 20.12 0.80 0.11 0.80 2.84 0.13 
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26 20.64 0.80 0.11 0.80 3.13 0.14 

27 19.92 0.80 0.11 0.80 2.71 0.13 

28 26.19 1.59 0.11 0.80 33.72 0.51 

29 21.90 0.80 0.11 0.80 4.52 0.14 

30 25.41 1.59 0.11 0.80 32.03 0.49 

31 21.12 0.81 0.11 0.80 3.71 0.14 

32 28.41 1.56 0.11 0.80 35.47 0.55 

33 30.77 1.60 0.11 0.80 39.76 0.63 

34 24.65 1.59 0.11 0.80 30.47 0.47 

35 20.97 1.55 0.11 0.80 19.53 0.37 

36 27.16 1.59 0.11 0.80 34.92 0.53 

37 22.15 0.80 0.11 0.80 4.82 0.15 

38 20.95 0.80 0.11 0.80 3.51 0.14 

39 17.36 0.80 0.11 0.80 1.77 0.12 

40 15.78 0.80 0.11 0.80 1.60 0.12 

41 20.80 0.80 0.11 0.80 3.27 0.14 

42 22.46 0.80 0.11 0.80 5.28 0.15 

43 19.31 0.80 0.11 0.80 2.29 0.13 

44 30.55 1.59 0.11 0.80 39.47 0.63 

45 22.57 0.81 0.11 0.80 5.50 0.15 

46 16.98 0.80 0.11 0.80 1.71 0.12 

47 16.45 0.80 0.11 0.80 1.65 0.12 

48 19.31 0.80 0.11 0.80 2.35 0.13 
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FIGURE 1 Schematic of the MLP neural network used for the modelling and optimization of the active 
chlorine production 
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FIGURE 2 Flowchart of ANN-GA methodology used for multi-objective optimization 
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FIGURE 3 Mean learning curves for different numbers of training examples (Error bars are generated with 50 
time training for each training set) 
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FIGURE 4 Impact of regularization factor on model performance 
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FIGURE 5 Parity plots of predicted versus experimental values of active chlorine production and energy 
consumption for ANN and RSM models 
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FIGURE 6 Importance (%) of the input variables on the electrochemical active chlorine production 
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FIGURE 7 Response surface graph of active chlorine production versus electrolysis time and current 
intensity, (A) ANN, (B) RSM 
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FIGURE 7 Response surface graph of active chlorine production versus electrolysis time and current 
intensity, (A) ANN, (B) RSM 
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FIGURE 8 Pareto fronts for multi-objective optimization of active chlorine production and energy 
consumption 
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