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Abstract: In Nordic watersheds, estimation of the dynamics of snow water equivalent (SWE)
represents a major step toward a satisfactory modeling of the annual hydrograph. For a multilayer,
physically-based snow model like MASiN (Modèle Autonome de Simulation de la Neige), the number
of modeled snow layers can affect the accuracy of the simulated SWE. The objective of this study was
to identify the maximum number of snow layers (MNSL) that would define the trade-off between
snowpack stratification and SWE modeling accuracy. Results indicated that decreasing the MNSL
reduced the SWE modeling accuracy since the thermal energy balance and the mass balance were
less accurately resolved by the model. Nevertheless, from a performance standpoint, SWE modeling
can be accurate enough with a MNSL of two (2), with a substantial performance drop for a MNSL
value of around nine (9). Additionally, the linear correlation between the values of the calibrated
parameters and the MNSL indicated that reducing the latter in MASiN increased the fresh snow
density and the settlement coefficient, while the maximum radiation coefficient decreased. In this
case, MASiN favored the melting process, and thus the homogenization of snow layers occurred from
the top layers of the snowpack in the modeling algorithm.

Keywords: snow modeling; multilayer snow model; MASiN

1. Introduction

In northern watersheds, snowfall constitutes a significant proportion of the total precipitation [1,2].
When rainfall happens at a low rate, water infiltrates until the soil becomes saturated, at which point
surface runoff occurs. In contrast, when snowfall takes place, water is stored on the ground surface
in solid form, modifying the soil water dynamic throughout the watershed [3]. The snowpack starts
melting as it absorbs the amount of energy required for phase change to occur. Although this process
can happen partially during winter, the atmospheric warming during spring will gradually melt the
entire snowpack. Thus, accumulation and gradual snowmelt processes temporally alter a significant
proportion of the total precipitation to flow toward the river network or recharge the groundwater [4–6].

Various snow modeling approaches exist. Some models such as CROCUS [7,8] emphasize the
internal properties of the snow cover (e.g., snowpack stratigraphy), which can provide helpful
information with respect to snowpack stability. This information becomes valuable, for instance,
to predict snow avalanches in mountainous regions. Other types of snow models solely focus on snow
water equivalent (SWE) in order to determine the timing and amount of melt. Snow models can be
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classified into two main categories: models that represent snow cover conceptually and those where
snow cover is represented physically. Conceptual models include those where snow melt is simulated
based on a degree-day equation such as CEMANEIGE [9] or the model developed by Kokkonen
et al. [10]. A degree-day equation is an equation that expresses the amount of melt as the product
of a melting rate per temperature unit and the difference between the daily air temperature and a
temperature threshold triggering the melt. Physically-based snow models, on the other hand, attempt to
quantify the interaction between the atmospheric states and snow cover. This is done through the
application of empirical and theoretical (i.e., physical) laws. SNOBAL [11], SNOWPACK [12], and DSM
(Distributed Snow Model) [13] are a few examples of such models. Other snow models including the
snow module of HYDROTEL, a semi-distributed hydrological model [14] or SNOW-17 [15] attempt to
hybridize the degree-day equations with the energy balance. In addition, each snow model category
can stratify the snowpack into a certain number of snow layers, which are considered as conceptual
or actual. The snow module used in HYDROTEL, SNOW-17, and CEMANEIGE are examples of
monolayer models. SNOBAL treats the snowpack as a bi-layer system, while DSM does so through a
three-layer system. Meanwhile, SNOWPACK treats snow cover as a multilayer system.

As mentioned previously, several physically-based models use multiple layers to simulate
snowpack dynamics for either fundamental reasons or for numerical reasons. However, it is
noteworthy that stratification directly affects the energy and mass balances of the snowpack.
The modeled stratification modifies the distribution of water masses in the snowpack through
the development of large or small snow layers. However, when the vertical profile of snow density is
not well simulated, it causes a bias in the thermal properties of the snowpack given the non-linear
relationships among them [16]. Above all, accurate modeling of the thermal properties of the snowpack
(e.g., thermal conductivity) is crucial for modeling a groundwater budget [17]. For all these reasons,
physically-based models account for snowpack stratification to accurately model the snowmelt period
and ensuing intensity.

Sensitivity analyses of snow models can shed some light on both the most influential parameters
and the prominent phenomena with the most significant impacts on the output variables. Indeed,
Essery et al. [18] studied 1701 snow model combinations and showed that accounting for snow density
change and albedo change as well as storage and refreezing of liquid water improved the modeling
results, although the model complexity did not necessarily guarantee good performance. When it
comes to SWE modeling, Magnusson et al. [19] confirmed that there was no relationship between
the model complexity and model performance. Moreover, they found that physically-based models
were barely better than temperature-index models. He et al. [20] performed a sensitivity analysis
of the SNOW-17 model parameters and showed that the snow correction factor, the maximum melt
factor, and the threshold temperature discriminating rainfall from snowfall were the most influential
parameters. Houle et al. [21] compared the parameter sensitivities of the SNOW-17 model and the snow
module (a bilayer physically-based snow model) of the variation infiltration capacity (VIC) model.
While neither model outperformed the other, they concluded that the two most sensitive parameters
of the VIC snow model were the albedos of the accumulation and thaw periods. For the multilayer
physically-based snow model GEOtop 2.0, Engel et al. [22] determined that the snow correction factor,
the snow aging coefficient, and the extinction of snow albedo during the melting period were the most
influential parameters. Globally, the most significant parameters are linked to the determination of the
snow input, the albedo estimation, and the melt period. Meanwhile, Arduini et al. [23] showed that
the multilayer, physically-based, snow model of the ECMWF integrated forecasting system was an
improvement over its antecedent single-layer version.

Snow modeling provides information about the snow cover properties such as snowpack height or
its water content. A snow model that simulates the melting process can be paired with a hydrological
model for streamflow modeling. To this end, we paired the aforementioned distributed hydrological
model, HYDROTEL, with MASiN (Modèle Autonome de Simulation de la Neige) [24], which is a
physically-based multilayer model. MASiN performs the modeling procedure by taking into account a
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unique set of valid parameters at nearby snow sites. This is an advantage when it comes to pairing
MASiN with a hydrological model for flow modeling, particularly when the hydrological model is
semi-distributed or distributed because it is necessary to model the snow melt dynamics in different
parts of a watershed.

Before pairing MASiN with any hydrological model such as HYDROTEL [25,26] for pragmatic
reasons, it is noteworthy to account for the computational budget of model calibration and the
operational application for inflow forecasting. Both procedures are indeed directly affected by the
value of the maximum number of snow layers (MNSL). In MASiN, the MNSL value can be specified by
the user. Mas et al. [24] considered a MNSL value of 70 to discretize the mass-energy transfer between
snow layers. In HYDROTEL, the watershed is discretized into hillslopes referred to as relatively
homogeneous hydrological units (RHHUs). Similarly, HYDROTEL discretizes the river network
into different reaches that are fed by two or three RHHUs, the latter in the case of headwater reach
(i.e., stream order 1 in a Strahler reference system). The number of RHHUs is not bounded, thus,
from a computational standpoint, this would majorly impact the computational budget of MASiN for
snowmelt simulation given the MNSL to simulate per RHHU.

Since MASiN is a physically-based snow model, the MNSL value can be analogous to the number
of snow layers observed in nature. For example, in Antarctica, Arndt et al. [27] estimated the variability
of snow cover properties at various sites. They observed that the plurennial snow cover had eight
layers, while the seasonal snow cover had four layers. In Italy, Monti et al. [28] observed between seven
and 20 layers at different times based on snow grain type, size, hardness, and density. Brun et al. [8]
studied the operational forecasting of avalanches by simulating snow cover stratification and observed
up to 13 layers with different types of snow grains in the French Alps. Finally, Armstrong [29] studied
the compressive stress in the snow cover between neighboring layers and observed six different layers
in Colorado, USA. Thus, in this study, in order to consider a coherent maximum number of layers
to simulate, the MNSL in MASiN was set between one and 20 in comparison with the full-extent
configuration of the original model, that is, a maximum of 70 snow layers.

Identifying the MNSL value is identical to modifying the total number of interactions in the model
by reducing the number of computations of the energy and mass balances. In order to have an acceptable
computational budget and to contribute to the development of this snow model, the flexibility, provided
by this parameter, was investigated. This was done by evaluating the influence of the MNSL on model
performance for snowmelt (expressed in snow water equivalent; SWE) modeling. When reducing
the MNSL, bearing in mind a reasonable computational budget while maintaining a decent level of
estimation accuracy, we assumed that this knowledge might prove to be helpful when pairing MASiN
with any other distributed or semi-distributed hydrological model. To this end, parameter sets of
MASiN were calibrated using the dynamically dimensioned search (DDS) optimization algorithm [30]
at various snow stations by setting the MNSL value. It is also possible to compare the performance
of MASiN, depending on the choice of the MNSL value, to simulate and compare its impact on the
calibrated value of each parameter. Furthermore, modifying the MNSL value changes the number
of interactions between snow layers, which in turn may impact on the value of another calibration
parameter in the model. Hence, this study also investigated the extent to which other parameters
were influenced when modifying the MNSL for SWE simulation. Based on this analysis, the user
could thus adjust the MNSL value when it is required to amplify or reduce any modeled physical
processes to improve SWE modeling performance. Moreover, while most modeling studies have
generally focused on snowpack stratification from a snow properties point of view such as thermal
conductivity or snow density (for instance, [17]) or on snow characteristics for preventing avalanche
hazard (for instance, [31]), our study focused on snowpack stratification from a hydrological modeling
point of view, and to our knowledge, this represents an original contribution.
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2. Materials and Methods

2.1. Study Watersheds

Two watersheds were considered to test the model in different regions with diverse physical
and regional characteristics. The locations of the watersheds within Canada are shown in Figure 1.
Necopastic is a sub-watershed of the James Bay watershed with an area of 244 km2. The watershed
is covered by coniferous forest (55%), bogs (35%), and outcrops and open water (10%). Data from
the meteorological station located at the La Grande Rivière airport indicate that the average annual
precipitation is 697 mm, 35% of which falls in the form of snow (true for 1981–2010 data from
Environment and Climate Change Canada [32]). During this period, the average annual temperature
over the watershed is −2.9 ◦C, and minimum and maximum average monthly temperatures are −28 ◦C
in January and 20.4 ◦C in July, respectively. The Upper Yukon, on the other hand, has an area close
to 20,000 km2, covered by coniferous forests (41.1%), bare ground/grass/shrub (42.4%), and ice and
open water (16.4%). Data from the meteorological station located at the Whitehorse airport indicate
that the average annual precipitation is 262 mm, 39% of which falls in the form of snowfall (true for
1981–2010 data from Environment and Climate Change Canada [33]. During this period, the average
annual temperature over the watershed is −0.1 ◦C, and the minimum and maximum average monthly
temperatures are −19.2 ◦C in January and 20.6 ◦C in July, respectively.

Figure 1. Location of the Upper Yukon (left) and Necopastic watersheds (upper right) in Canada as
well as the location of the meteorological and snow stations in each watershed. LF stands for Lower
Fantail, LL for Lower Llewellyn, W for Wheaton, and Neco for Necopastic.
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2.2. Meteorological Data

Input data including hourly air temperature, relative humidity, wind speed, and daily precipitation
provided by the meteorological stations located near the snow stations are provided in Table 1
(see Figure 1 for the station locations).

Table 1. Meteorological stations at each study basin used in this study. Data for the Necopastic
watershed came from Oreiller et al. [34] and data for the Upper Yukon watershed came from
Yukon Energy.

Station Name Station
Code

Temporal
Period

Temporal
Resolution

Station
Type Basin

Necopastic Meteo_Neco 2006–2011 Daily & hourly Auto Necopastic
Lower Fantail Meteo_LF 2014–2017 Daily & hourly Auto Upper Yukon

Lower Llewellyn Meteo_LL 2014–2017 Daily & hourly Auto Upper Yukon
Wheaton Meteo_W 2014–2017 Daily & hourly Auto Upper Yukon

Ground precipitation measurements were intermittent during the observation period in the
Upper Yukon, and, therefore, the precipitation time series had to be reconstructed for each snow
station. For this, daily increases in observed SWE time series were considered as an input to the
snowpack modeling. The source of these observed water inputs was assumed to be solely provided by
the precipitation caused because of a lack of data about wind-induced snow drifting, and therefore,
daily increase in the observed SWE time series were obtained from daily precipitation amounts of
equal water depth.

2.3. Snow Data

Outputs from MASiN were compared to the observed SWE time series from snow stations,
also called GMON (Gamma MONitor) stations. A GMON station is an automatic equipment developed
by Choquette et al. [35] that continuously measures the snow cover (in mm of SWE) by estimating the
natural ground gamma emission absorbed by the water content of the snow cover. As this study was
based on the potential pairing of MASiN with HYDROTEL, the modeling performance was estimated
using daily GMON time series for the different stations presented in Table 2 and shown in Figure 1. It is
noteworthy that all available data were used for the calibration as suggested by Arsenault et al. [36].
The sensor at Necopastic is a GMON3 sensor, which is the same as the GMON instrument used by
Choquette et al. [35], who estimated the measurement uncertainty to be in the order of 5–10% (for a
SWE of less than 400 mm). In the Upper Yukon, a Campbell Scientific CS275 sensor was used at each
station, with an uncertainty estimated to be in the order of ±15 mm (when the measured SWE is less
than 300 mm), and ±15% otherwise.

Table 2. Metadata for the snow stations at each study watershed used in this study. Data for the
Necopastic watershed came from Oreiller et al. [34] and those for the Upper Yukon were from
Yukon Energy.

Station Name Station Code Temporal
Period

Temporal
Resolution

Station
Type Watershed

Necopastic GMON Neco 2006–2011 6 h Auto Necopastic
Lower Fantail GMON LF 2014–2017 6 h Auto Upper Yukon

Lower Llewellyn GMON LL 2014–2017 6 h Auto Upper Yukon
Wheaton GMON W 2014–2017 6 h Auto Upper Yukon

2.4. Model Description: MASiN Snow Model

MASiN (Modèle Autonome de Simulation de la Neige) is a physically-based, multi-layer,
snow model where the mass and energy balance for different snow layers are calculated while
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accounting for a maximum number of snow layers (MNSL) with a minimum snow layer depth of
1 cm (to conserve the stability of the iterative scheme). The MNSL value was set to 70 in the original
version of the model in order to reduce the computational budget while conserving a certain inertia
for energy and mass transfers in the snowpack. The energy balance takes into account the shortwave
radiation according to the potential solar radiation theory of Lee [37] and is computed by considering
the effect of cloud cover and vegetation as well as partitioning of the solar radiation into diffusive and
direct shortwave radiations. The partitioning is done to model as accurately as possible the albedo and
radiation absorption by the snowpack. The model also considers longwave radiation, sensible and
latent turbulent heat fluxes, liquid water infiltration heat flux, and conduction flux. Table 3 summarizes
the main physical processes simulated by MASiN as well as the related sub-processes and associated
model parameters.

Table 3. Physical processes simulated by MASiN and associated model parameters (N/A, stands for
not applicable).

Main Processes Sub Processes MASiN Parameters

Shortwave radiation

Extraterrestrial irradiation N/A

Effect of cloud and vegetation

kSWmin (Minimum radiation coefficient)
kSWmax (Maximum radiation coefficient)

LAImin (Minimum Leaf Area Index)
LAImax (Maximum Leaf Area Index)

Separation of direct and diffuse radiations

kdir,min (Minimum ratio of direct shortwave radiation
to total shortwave radiation)

kdir,max (Maximum ratio of direct shortwave radiation
to total shortwave radiation)

Net shortwave radiation adir,min (Minimum albedo for direct radiation)
adiff,min (Minimum albedo for diffuse radiation)

Energy balances

Shortwave radiation βdir (Absorption coefficient for direct radiation)
βdif (Absorption coefficient for diffuse radiation)

Longwave radiation N/A

Turbulent heat fluxes ktur (Reduction coefficient of the turbulent transfer)
z0 (Snow cover surface roughness)

Liquid water input N/A

Conduction fluxes Qground→pack (Ground heat flux)

Mass balances

Liquid water content update kLWHC (Maximum retention capacity of the snow layer)

New snow layer
ρns (Fresh snow minimum density)

Tρns (Atmospheric temperature threshold associated to
the fresh snow minimum density)

Snowmelt N/A

Settling Settling
ρs,meta,max (Snow layer density triggering the

metamorphism phenomenon of the snow layer)
Kd (Settlement coefficient)

Layer management Layer management N/A

Due to the non-linearity of energy transfer between the snow layers, the internal computational
time step was set to 30 s. While precipitation forcing is available at daily time steps, MASiN can only
receive total precipitation values, or precipitation input partitioned into liquid and solid components.
The case of the latter component, the model discretizes daily precipitation data into hourly time
steps. For known rainfall and snowfall time series, rainfall data are discretized equally into 24 time
steps, whereas snowfall amounts are discretized to as many hours as required while maintaining the
minimum snow layer height (1 cm). If total daily precipitation data are only available, snowfall is
assumed to occur when the hourly temperature is below 1 ◦C. To meet the minimum snow layer height
requirement, snow can be redistributed into hourly time steps with temperature values below 1 ◦C.
The temporal resolutions of the different input/output data are provided in Table 4.
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Table 4. Temporal resolution of the input/output data.

Data Type Parameter Units Temporal Resolution

Input

Precipitation mm Daily/Hourly
Air Temperature ◦C Hourly

Relative Humidity Hourly
Wind Speed m.s−1 Hourly

Output

Snow Layer Depth mm Hourly
Snow Layer SWE mm Hourly

Snow Layer Temperature ◦C Hourly
Snow Layer Density kg.m−3 Hourly

Water Outflow mm Hourly
Evapotranspiration mm Hourly

2.5. Methodology

2.5.1. Sensitivity Analysis: Impact of the Number of Snow Layers

As previously mentioned, the objective of this study was to analyze the impact of the MNSL on
snowpack (expressed in mm of SWE) modeling. The study was performed in two stages, as presented
in Figure 2.

Figure 2. General methodology (MNSL for maximum number of snow layer; SWE for snow
water equivalent).

In the first stage, MASiN was calibrated by specifying the MNSL. For each GMON station, a total
of 21 calibrations were undertaken in order to simulate one to 20 MNSLs. The results were then
compared against the full-extent configuration of MASiN (with a MNSL of 70). The rationale for this
simulation was to reveal the existence of a threshold for the MNSL value, at which the modeling
performance would not drop. This threshold was assumed to provide a limit for reducing the amount of
interaction between the snow layers while avoiding any drop in SWE modeling performance. For this,
the equifinality was studied to test the reliability of MASiN after decreasing the MNSL. This was
achieved by selecting the top 10 best performances for each calibration of MASiN, at each GMON
station, for all MNSL values.

In the second stage, the impact of the MNSL value on the MASiN’s parameter set was analyzed
based on the equifinality results obtained in the first stage. The equifinality analysis provides a range
of values for different calibrated parameters for each value of the MNSL. Thus, the Pearson correlation
coefficient between the 10 best calibrated parameters against the MNSL was calculated to estimate
the possibility of a linear correlation between them. Here, the null hypothesis was defined as “there
exists no correlation between each model parameter and the MNSL”. When linear correlation exists,
it would be possible to determine a more accurate range of variation for any future calibration where
the MNSL value is modified.

2.5.2. Calibration

Table 5 presents the model parameters along with their upper and lower bounds and further
highlights those that were kept for calibration as suggested in the literature [24].
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Table 5. MASiN (Modèle Autonome de Simulation de la Neige) parameters and those calibrated
(shaded entries) as suggested by the model developers. The upper and lower bounds of each parameter
are provided in the last two columns.

Parameter Description Units Lower
Bound

Upper
Bound

ρs,meta,max
Snow layer density triggering the

metamorphism phenomenon of the snow layer kg.m−3 150 350

ρns Fresh snow minimum density kg.m−3 3 200

Tρns

Atmospheric temperature threshold associated
to the fresh snow minimum density

◦C −20 0

kLWHC Maximum retention capacity of the snow layer % 0 20
Kd Settlement coefficient h−1 0 0.05
Qground→pack Ground heat flux w.m−2 0 20
z0 Snow cover surface roughness m 0 0.01
ktur Reduction coefficient of the turbulent trade 0 10
kSWmin Minimum radiation coefficient 0 1
kSWmax Maximum radiation coefficient 0 1
adir,min Minimum albedo for direct radiation 0.35 0.35
adiff,min Minimum albedo for diffuse radiation 0.45 0.45
βdir Absorption coefficient for direct radiation cm−1 0.4 0.4
βdif Absorption coefficient for diffuse radiation cm−1 4 4

kdir,min
Minimum ratio of direct shortwave radiation to

total shortwave radiation 0.35 0.35

kdir,max
Maximum ratio of direct shortwave radiation

to total shortwave radiation 0.85 0.85

LAImin Minimum Leaf Area Index m2
leaf.m−2

area 0 0
LAImax Maximum Leaf Area Index m2

leaf.m−2
area 0 0

To pair MASiN with HYDROTEL, daily total precipitation (Pt) values were partitioned into
rainfall (R) and snowfall (S) using the following algorithm available in HYDROTEL, which is based on
a temperature threshold (Tthres), the minimum (Tmin), and maximum daily temperatures (Tmax):

R = Pt, S = 0, if Tmin > Tthres

R = 0, S = Pt, if Tmax < Tthres

R = Pt
[Tmax−Tthres

Tmax−Tmin

]
, S = Pt

[Tthres−Tmin
Tmax−Tmin

]
, otherwise

, (1)

It is noteworthy that the temperature threshold (Tthres) was calibrated while testing the performance
of MASiN. As mentioned previously, in order to calibrate the MASiN parameters for a given MNSL,
the dynamically dimensioned search (DDS) optimization algorithm was used. DDS can provide a set
of calibrated parameter values, which is required to investigate the effect of equifinality. Based on
the guidelines suggested by Tolson et al. [30], for each GMON station and each value of the MNSL,
the calibration was grouped into 33 trials of 100 iterations and executed using a MATLAB DDS routine.
Kling-Gupta efficiency (KGE) [38], given as follows, was then used as the objective function to quantify
the goodness-of-fit between the measured and simulated SWEs:

KGE = 1−

(1− µs

µo

)2

+
(
1−

σs

σo

)2
+ (1− r)2

1/2

(2)

where µs and µo are the average values of the simulated (subscript s) and observed (subscript o) time
series, respectively; σs and σo are the standard deviations of the simulated and observed time series,
respectively; and r is the Pearson correlation coefficient. The larger is the KGE value, the more accurate
the simulated series is, when compared to the observed series. At the end of each calibration, the top
10 best sets of parameter values were retained based on the final KGE value for each GMON station
and the given MNSL value.
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3. Results

In this section, the results of the study are presented in two separate subsections. Section 3.1
provides a comparison of the simulated SWE values as a function of MNSL. These results reveal
whether any MNSL threshold value exists at which model performance could be maintained. Therefore,
when comparing the results, the two major criteria of importance considered were SWE modeling
accuracy and the required number of snow layers to simulate. The results are displayed using boxplots,
where the MNSL values are shown on the abscissa, and the modeling performances are displayed
on the ordinate. As the calibrated parameters directly affect different physical processes, studying
their correlations with the MNSL values can provide valuable insights on how MASiN operates under
different parameterizations. Thus, Section 3.2 investigates the correlations between the calibrated
parameter values and MNSL values in order to identify how the latter can affect the individual physical
processes modeled by MASiN when the MNSL decreases. This could ultimately provide information
on how MASiN resolves the physical processes when the number of modeled snow layers varies.

3.1. Snow-Water Equivalent (SWE) Modeling

The top 10 best performances were compared against the MNSL values (see Figure 3). For each
GMON station and all the simulation years pooled together, calibrations with a MNSL value of 1
provided a negative KGE value, and therefore are not shown in here.

Figure 3. Modeling performance in terms of Kling-Gupta efficiency (KGE) values for different maximum
number of snow layer (MNSL) values for each snow station: (a) Lower Fantail, (b) Lower Llewellin,
(c) Wheaton, and (d) Necopastic.

Figure 3 indicates that, in general, it can be concluded that the MNSL value does not drastically
influence the performance of the model, that is, all stations had KGE values of at least greater than
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0.7 (Lower Llewellin), while the other three had values greater than 0.84 (Lower Fantail, Wheaton,
and Necopastic), except when the model was run with a MNSL value of one. The best SWE modeling
performance for all MNSL values was consistently in the ballpark of a KGE value of 0.88 for the Lower
Fantail station, 0.75 for Lower Llewellyn, 0.90 for Wheaton, and 0.88 for Necopastic. This indicates
that the modeling performance can be maintained at all stations for a lower MNSL value than the one
originally considered in the fully-configured model.

The behavior of the model with respect to each station can also be examined. For Lower Fantail
(Figure 3a), the full model configuration (i.e., with MNSL of 70) provided a median KGE value of
0.97. When reducing the MNSL value to 20 and down to nine, the modeling performance dropped
only marginally from a median value of 0.92 to a median value of 0.89. When the MNSL was less
than nine, the median KGE value varied between 0.87 and 0.89. Since all median KGE values were
larger than 0.87, the best compromise to reduce the maximum number of simulated layers from a KGE
value standpoint can be set to a value between two and nine for the GMON station at Lower Fantail.
For the Lower Llewellyn station (Figure 3b), all median KGE values for any MNSL value including
the fully-configured model (i.e., with 70 snow layers) were all in the range of 0.72 to 0.78. Therefore,
it can be argued that from a KGE value point of view, a MNSL value of two can maintain the modeling
performance at the same level for the full configuration of MASiN. For the Wheaton GMON station
(Figure 3c), an almost similar profile to that of Lower Fantail was observed. The fully-configured
model, however, provided a slightly higher median KGE of 0.97. The median KGE performances were
achieved (0.92 to 0.96) for a range of nine to 20 layers. Below the MNSL value of nine, the median
performance dropped to around 0.90 (MNSL values of five to seven), and then stabilized around 0.93 for
the MNSL values of two to four. Therefore, any MNSL value between two and 20 can be considered to
provide an acceptable modeling outcome. As shown in Figure 3d, for Necopastic, the fully-configured
model was slightly outperformed by the model configuration with MNSL values between 15 and 20.
Below this range of MNSL values, the modeling performance decreased slightly to reach a median
performance of around 0.85 for a MNSL value of three. Similarly, for the Wheaton station, any MNSL
value could be considered for a slight reduction in the modeling performance.

For the Lower Llewellyn, the relationship between KGE values and MNSL was quite different
than those depicted at the other sites and counter intuitive from that viewpoint. In other words,
while the relationships for the other sites could be characterized by a nearly parabolic shape, for Lower
Llewellyn, it was almost linear with a negative slope. This suggests that there might be something not
properly resolved with the GMON values.

To illustrate the uncertainties associated with each MNSL value, Figures 4–7 (for each GMON
station, respectively) provide the simulated SWE time series for the top 10 calibrated parameter
sets for MNSL values of 1, 2, 9, and 70 for a winter where the fully-configured MASiN performed
well (i.e., 2016/2017 for the Upper Yukon stations, and 2009/2010 for Necopastic). While the model
performances presented in Figure 3 were calculated using the whole calibration period of each GMON
station, the KGE values provided in the captions of the aforementioned figures were solely calculated
for the displayed winters. Thus, low KGE values, obtained for some parameter sets, can be explained
by the compensation of the modeling for the other winters. Moreover, the negative KGE values for a
MNSL of one can be explained by the underestimation of the modeled SWEs. In general, the larger the
MNSL value, the better the simulation. This means that for the fully-configured model, the uncertainty
is reduced, which is synonymous to an increasingly narrow equifinality. The timing of the dominant
melting period was also improved, which was the best for the full model configuration (MNSL of 70).

As suggested earlier, the behavior of MASiN for the different configurations suggests that the
observed SWEs at Lower Llewellyn might not be reliable, and overall not accurate enough to be
considered for this study. However, they were kept here to demonstrate that a physically-based
model can be quite useful to detect instrumentational errors or to infer other external factors that may
corrupt observations.
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Figure 4. Snow-water equivalent (SWE) modeling uncertainties provided by the top 10 best calibrated
parameter sets for the Lower Fantail snow station during winter 2016/2017 with the maximum number
of snow layer (MNSL) values of: (a) 1 ([−0.25; −0.22]), (b) 2 ([0.35; 0.89]), (c) 9 ([0.76; 0.88]), and (d) 70
([0.79; 0.97]). The range of the Kling-Gupta efficiency values is provided between brackets.

Figure 5. Snow-water equivalent (SWE) modeling uncertainties provided by the top 10 best calibrated
parameter sets for the Lower Llewellyn snow station during the calibration period with a maximum
number of snow layer (MNSL) value of: (a) 1 ([−0.43; −0.38]), (b) 2 ([0.34; 0.73]), (c) 9 ([0.50; 0.74]),
and (d) 70 ([0.09; 0.70]). The range of Kling-Gupta efficiency values is provided between brackets.
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Figure 6. Snow-water equivalent (SWE) modeling uncertainties provided by the top 10 best calibrated
parameter sets for the Wheaton snow station during the calibration period with a maximum number
of snow layer (MNSL) value of: (a) 1 ([−0.28; −0.25]), (b) 2 ([0.82; 0.94]), (c) 9 ([0.84; 0.92]), and (d) 70
([0.80; 0.99]). The range of Kling-Gupta efficiency values is provided between brackets.

Figure 7. Snow-water equivalent (SWE) modeling uncertainties provided by the top 10 best calibrated
parameter sets for the Necopastic snow station during the calibration period with a maximum number
of snow layer (MNSL) value of: (a) 1 ([−0.34; −0.19]), (b) 2 ([0.64; 0.87]), (c) 9 ([0.83; 0.98]), and (d) 70
([−0.12; 0.98]). The range of Kling-Gupta efficiency values is provided between brackets.
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Figure 8 shows, for each GMON station, the relative difference between the observed and
simulated maximum SWE values for the top 10 best calibrated parameter sets for the calibration period
for MNSL values of two, nine, and 70. Calibrations with MNSL values of nine (for Lower Fantail,
Lower Llewellyn, and Necopastic) and two (for Lower Llewellyn) provided more accurate simulations
of the maximum SWE. Thus, since the maximum SWE value reached over winter should lead to
a more accurate annual hydrograph, these MNSL values can be referred to as thresholds. For the
aforementioned GMON stations, and thus, the threshold values of the MNSL, the median values of the
relative differences between the observed and simulated maximum SWE values were −4% at Lower
Fantail, −13% at Lower Llewellyn, 2% at Wheaton, and 6% at Necopastic.

Figure 8. Relative differences between the observed and simulated maximum snow-water equivalent
(SWE) values for the top 10 best calibrated parameter sets during the calibration period for maximum
number of snow layer (MNSL) values of 70, 9, and 2, for (a) Lower Fantail, (b) Lower Llewellyn,
(c) Wheaton, and (d) Necopastic.

Based on the above analysis for the GMON stations, a trade-off between the MNSL value and
the SWE modeling accuracy could be obtained. In most cases, the fully-configured model with a
MNSL value of 70 provided the best overall modeling performance as it could accurately outline the
energy profile and mass transfer between the snow layers in the snowpack. Nevertheless, reducing
the number of snow layers can still preserve a satisfactory level of SWE modeling performance in
terms of the KGE. Depending on the required SWE modeling accuracy, any MNSL more than one can
be considered as appropriate, even if a slight drop in performance can be observed at some GMON
stations when the MNSL value is reduced below a certain threshold (e.g., MNSL of 9).

3.2. Influence of the Maximum Number of Snow Layer on the Calibrated Parameters

For each GMON station, the top 10 best performances provided a range of calibrated parameter
values for each MNSL investigated. These sets of calibration parameter values were compared against
the MNSL values in order to verify how they could influence the calibrated parameter values (refer to
the Supplementary Document provided in the online version of this article). Thus, Pearson correlation
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coefficients between each calibrated parameter against the MNSL value were calculated and are shown
in Table 6, along with the associated p-values. The p-values were compared against the significance
level of 0.05.

Table 6. Correlations of the top 10 best calibrated parameter sets (see Table 5 for the nomenclature)
against the maximum number of snow layer (MNSL)value for each snow station when including all
the snow stations (Global column). The values shown within the parentheses represent the p-values.
Grey shaded cells indicate cases where the null hypothesis is not rejected, while blue shaded cells
identify the parameters with significant Pearson correlation. Parameters with an absolute correlation
superior to 0.3 were analyzed for their influence in MASiN.

Variable Lower
Fantail

Lower
Llewellyn Wheaton Necopastic Global

ρs,meta,max
0.148 0.055 0.112 0.071 0.096
(0.03) (0.4) (0.1) (0.3) (0.005)
−0.479 −0.270 −0.383 −0.329 −0.356ρns

(2 × 10−13) (8 × 10−5) (1 × 10−8) (1 × 10−6) (2 × 10−26)

Tρns
−0.078 0.008 0.202 −0.255 −0.029

(0.3) (0.9) (0.003) (2 × 10−4) (0.4)

kLWHC
0.110 0.092 0.119 0.178 0.123
(0.1) (0.2) (0.1) (0.01) (3 × 10−4)
0.212 0.129 0.517 0.230 0.220

Kd (0.002) (0.06) (9 × 10−16) (8 × 10−4) (1 × 10−10)

Qground→pack
−0.268 −0.221 0.089 −0.202 −0.131

(8 × 10−5) (0.001) (0.2) (0.003) (1 × 10−4)

z0
0.037 0.078 0.132 −0.091 0.037
(0.6) (0.3) (0.06) (0.2) (0.3)

ktur
0.273 −0.027 0.185 0.256 0.169

(6 × 10−5) (0.7) (0.007) (2 × 10−4) (8 × 10−7)

kSWmin
−0.015 −0.076 0.031 0.029 −0.003

(0.8) (0.3) (0.7) (0.7) (0.9)
−0.262 −0.350 −0.229 −0.299 −0.238

kSWmax (1 × 10−4) (2 × 10−7) (8 × 10−4) (1 × 10−5) (2 × 10−12)

Tthres
0.121 −0.020 0.136 0.112 0.078
(0.08) (0.8) (0.05) (0.1) (0.02)

Globally, either the null hypothesis is not rejected for the correlations (shown as the shaded cases
in Table 6), and so the linear correlation is not statistically different than zero, or the correlations are too
low for describing a linear relationship between the parameters and the given MNSL. Consequently,
the following discussion deliberated on the absolute correlations between the calibrated parameters
and the MNSL values for correlations greater than 0.3.

The fresh snow minimum density (ρns) showed a negative correlation for each GMON station
when including all the stations in the linear regression. These correlations ranged from weak (Lower
Llewellyn station) to moderate (Lower Fantail station), which indicates that the more snow layers are
considered in MASiN, the less dense the fresh snow would be. This correlation is explained by the
criteria for merging snow layers, which is based on the height of the layers [24]. As this criterion is met
earlier in each winter for the smallest values of MNSL, MASiN considers that the height of the fresh
snow layer is lower than the height of the fresh snow layer for the same meteorological conditions
given the highest value of MNSL. Consequently, for the smallest values of MNSL, the fresh snow layer
has a greater probability of being homogenized into older snow layers than staying distinct from the
bottom layers.

For the settlement coefficient (Kd), there was a moderate positive correlation observed at Wheaton
GMON station (R > 0.5). This positive correlation was also observed at Lower Fantail and Necopastic
when including all the stations, but was weak (R > 0.2) at each of these stations. For Lower Llewellyn,
the null hypothesis was not rejected. In MASiN, when the settlement coefficient increases, the height
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of the snow layer decreases. Thus, a positive correlation means that the compaction of the snow layers
for the smallest values of MNSL is weaker than for the largest values of MNSL. So, by considering
that the merging of the snow layer occurs earlier in each winter for the smallest values of MNSL,
this compaction favors the homogenization of the snowpack from the top snow layers.

Finally, the maximum radiation coefficient (kSWmax) had a weak negative correlation for the Lower
Llewellyn GMON station (R < −0.3), while for other GMON stations and when including all the
GMON stations, this negative correlation was weaker, but was not zero (R < −0.2). Increasing the
maximum radiation coefficient in MASiN would increase the net direct shortwave radiation and the
net diffuse shortwave radiation, which would favor the input of energy. This increase provides an
additional amount of energy for each snow layer for the smallest values of MNSL compared to the
largest ones, which can facilitate the melting process.

All in all, reducing the MNSL value would cause the fresh snow density and the maximum
radiation coefficient to increase and the settlement coefficient to decrease. Accordingly, the melting
process would be favored due to more input of energy from the shortwave radiation. Moreover,
the top snow layers have a higher probability of being homogenized than the bottom layers. This is a
phenomenon that is highlighted when the melting process induces a mass transfer between the snow
layers, thus decreasing the layer heights when merging the snow layers with the smallest thickness.
When compared to the acknowledged most sensitive phenomena reported in the literature (e.g.,
discrimination of rainfall and snowfall, albedo estimation, and the melting period), the correlation
found for the radiation confirmed the significance of the melting period for an improved modeling
performance. For MASiN, the influences of the fresh snow density and the settlement coefficient were
not linked to a particular physical phenomenon, but are relevant for merging the smallest snow layers,
and thus responsible for decreasing the number of snow layers to simulate, which was the motivation
behind this study.

4. Discussion and Conclusions

Simulated SWE values are the main criteria when evaluating the performance of a snow model,
whether it is used as a standalone module or as part of a hydrological model. Such an evaluation was
undertaken in this study to ensure that a reasonable performance and modeling accuracy would be
maintained by modifying the stratification of the modeled snowpack. In this study, the performance of
the physically-based snow model MASiN was studied for a potential future integration in HYDROTEL.
Modifying the MNSL was conceivable as it would decrease the modeling interactions within the
snowpack. With this in mind, the objective of this study was to analyze the influence of the MNSL on
model performance, namely SWE estimation.

The first part of the study compared the influence of the MNSL value on the SWE in terms of the
KGE performance metric. The fully-configured MASiN (i.e., with a MNSL value of 70) provided the
best overall performance, while reducing the MNSL to one caused the performance to drop significantly.
However, globally speaking, using a MNSL value between two and 20 (rather than 70) would only
marginally decrease the modeling performance to an acceptable level as the corresponding KGE values
only dropped by less than 0.1 below that of the fully-configured model. In terms of the median value
of the relative differences between the observed and simulated maximum SWEs, a slight performance
drop could be observed for MNSL values less than or equal to nine. This was true for three GMON
stations out of four analyzed in this study. Indeed, this study illustrated that a physically-based model
can be quite useful to detect potential instrumental errors.

In the second part of the study, the impact of the MNSL value on the calibration parameter values
was assessed. The analysis provided information on how the modeled physical processes behave
when reducing the MNSL value. Thus, it becomes possible to adjust the MNSL value more adequately
when the user assesses the need to amplify or reduce a modeled physical process to improve the SWE
modeling. By taking into account each individual GMON station or by considering all of them together,
it was shown that only some moderate correlation (|R| > 0.5) and weak correlation (|R| > 0.3) existed
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between the calibrated parameters and the MNSL values. Reducing the MNSL caused the fresh snow
density and the maximum radiation coefficient to increase, while the settlement coefficient decreased.
Consequently, by considering the influence of the MNSL on the fresh snow density and the settlement
coefficient, MASiN preferentially reduces the height of the top snow layers. This means that it would
preferentially homogenize the snow layers from the top of the snowpack since the snow layer merging
condition is based on the minimum height, when compared to the fully configured version of the
model. Moreover, the influence of a reduced MNSL value on the maximum radiation coefficient favors
the melting process by adding more net shortwave radiation in the snowpack.

Finally, reducing the MNSL makes it possible to maintain a level of SWE modeling performance
similar to that provided by the fully configured MASiN, when using the KGE performance metric.
Indeed, although the modeling performances remained within an acceptable range, it was not possible
to clearly identify the affected modeled physical processes. Meanwhile, the second part of this study
showed that reducing the MNSL did affect a few model parameters, allowing the identification of the
modeled processes influenced by the change in the MNSL values. Consequently, the losses in modeling
accuracy were primarily associated with snow inputs (i.e., fresh snow density), snow layer settlement,
and melting process (i.e., maximum amount of radiation). While snow inputs and melting process
have already been identified as significant processes in previous studies ([18,20–22]), this study showed
that the settlement process was identified as an additional phenomenon affected by the reduction of
the MNSL values. However, the influence on the settlement process was related in all likelihood to
the snow layer merging conditions, which are specific to MASiN. Moreover, Domine et al. [16,17]
noticed that the modeling accuracy of the vertical profile of snow density, which are associated with
the snowpack thermal properties, was paramount in the modeling of the groundwater budget. Indeed,
the vertical profile of snow density simulated by MASiN was directly affected by the fresh snow density
and the settlement coefficient; the latter parameters were influenced by a reduction of the MNSL values,
causing a drop in modeling performance. Meanwhile, before pairing MASiN with HYDROTEL, first,
it is important to consider a methodology to spatially extrapolate some of the input data like hourly
relative humidity and wind speed. Once a methodology is developed to spatially extrapolate the input
data for MASiN, and after pairing the model with HYDROTEL, the runoff modeling accuracy can be
estimated. Finally, the framework introduced in this paper has the potential to be applied to other
physically-based snow models that provide a means to adjust the number of simulated snow layers
and as long as possible to save the model results for comparison purposes.

Supplementary Materials: The following information can be found online at http://www.mdpi.com/2073-4441/
12/12/3449/s1, Figure S1: Snow layer density triggering the metamorphism phenomenon of the snow layer against
the MNSL at GMON LF station, Figure S2: Snow layer density triggering the metamorphism phenomenon of the
snow layer against the MNSL at GMON LL station, Figure S3: Snow layer density triggering the metamorphism
phenomenon of the snow layer against the MNSL at GMON W station, Figure S4: Snow layer density triggering
the metamorphism phenomenon of the snow layer against the MNSL at GMON Neco station, Figure S5: Fresh
snow minimum density against the MNSL at GMON LF station, Figure S6: Fresh snow minimum density against
the MNSL at GMON LL station, Figure S7: Fresh snow minimum density against the MNSL at GMON W station,
Figure S8: Fresh snow minimum density against the MNSL at GMON Neco station, Figure S9: Maximum retention
capacity of the snow layer against the MNSL at GMON LF station, Figure S10: Maximum retention capacity of
the snow layer against the MNSL at GMON LL station, Figure S11: Maximum retention capacity of the snow
layer against the MNSL at GMON W station, Figure S12: Maximum retention capacity of the snow layer against
the MNSL at GMON Neco station, Figure S13: Settlement coefficient against the MNSL at GMON LF station,
Figure S14: Settlement coefficient against the MNSL at GMON LL station, Figure S15: Settlement coefficient
against the MNSL at GMON W station, Figure S16: Settlement coefficient against the MNSL at GMON Neco
station, Figure S17: Ground heat flux against the MNSL at GMON LF station, Figure S18: Ground heat flux
against the MNSL at GMON LL station, Figure S19: Ground heat flux against the MNSL at GMON W station,
Figure S20: Ground heat flux against the MNSL at GMON Neco station, Figure S21: Atmospheric temperature
threshold associated with the fresh snow minimum density against the MNSL at GMON LF station, Figure S22:
Atmospheric temperature threshold associated with the fresh snow minimum density against the MNSL at GMON
LL station, Figure S23: Atmospheric temperature threshold associated with the fresh snow minimum density
against the MNSL at GMON W station, Figure S24: Atmospheric temperature threshold associated with the fresh
snow minimum density against the MNSL at GMON Neco station, Figure S25: Snow cover surface roughness
against the MNSL at GMON LF station, Figure S26: Snow cover surface roughness against the MNSL at GMON LL
station, Figure S27: Snow cover surface roughness against the MNSL at GMON W station, Figure S28: Snow cover
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surface roughness against the MNSL at GMON Neco station, Figure S29: Reduction coefficient of the turbulent
trade against the MNSL at GMON LF station, Figure S30: Reduction coefficient of the turbulent trade against
the MNSL at GMON LL station, Figure S31: Reduction coefficient of the turbulent trade against the MNSL at
GMON W station, Figure S32: Reduction coefficient of the turbulent trade against the MNSL at GMON Neco
station, Figure S33: Minimum radiation coefficient against the MNSL at GMON LF station, Figure S34: Minimum
radiation coefficient against the MNSL at GMON LL station, Figure S35. Minimum radiation coefficient against
the MNSL at GMON W station, Figure S36: Minimum radiation coefficient against the MNSL at GMON Neco
station, Figure S37: Maximum radiation coefficient against the MNSL at GMON LF station, Figure S38: Maximum
radiation coefficient against the MNSL at GMON LL station, Figure S39: Maximum radiation coefficient against
the MNSL at GMON W station, Figure S40: Maximum radiation coefficient against the MNSL at GMON Neco
station, Figure S41: Threshold temperature of precipitation separation against the MNSL at GMON LF station,
Figure S42: Threshold temperature of precipitation separation against the MNSL at GMON LL station, Figure S43:
Threshold temperature of precipitation separation against the MNSL at GMON W station, Figure S44: Threshold
temperature of precipitation separation against the MNSL at GMON Neco station.
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