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ABSTRACT:  22 

Flood quantile estimation at sites with little or no data is important for the adequate 23 

planning and management of water resources. Regional Hydrological Frequency Analysis 24 

(RFA) deals with the estimation of hydrological variables at ungauged sites. Random 25 

Forest (RF) is an ensemble learning technique which uses multiple Classification and 26 

Regression Trees (CART) for classification, regression, and other tasks. The RF technique 27 

is gaining popularity in a number of fields because of its powerful non-linear and non-28 

parametric nature. In the present study, we investigate the use of Random Forest 29 

Regression (RFR) in the estimation step of RFA based on a case study represented by data 30 

collected from 151 hydrometric stations from the province of Quebec, Canada. RFR is 31 

applied to the whole data set and to homogeneous regions of stations delineated by 32 

canonical correlation analysis (CCA). Using the Out-of-bag error rate feature of RF, the 33 

optimal number of trees for the dataset is calculated. The results of the application of the 34 

CCA based RFR model (CCA-RFR) are compared to results obtained with a number of 35 

other linear and non-linear RFA models. CCA-RFR leads to the best performance in terms 36 

of root mean squared error. The use of CCA to delineate neighborhoods improves 37 

considerably the performance of RFR. RFR is found to be simple to apply and more 38 

efficient than more complex models such as Artificial Neural Network-based models.  39 

 40 

Keywords:  41 

Random Forest Regression, Canonical Correlation Analysis, Regional Flood Frequency 42 

Analysis, Ungauged basin, Machine Learning, Regional estimation.  43 



 44 

Highlights: 45 

• Random Forest Regression (RFR) is used for regional flood frequency analysis 46 

(RFA). 47 

• RFR is also combined with Canonical Correlation Analysis (CCA): CCA-RFR. 48 

• The two techniques are compared to other linear and non-linear RFA models.  49 

• CCA-RFR leads to the best performance in terms of root mean squared error.  50 

• RFR is simple to apply and more efficient than more complex models. 51 

  52 
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1. Introduction 82 

Floods represent one of the most commonly occurring natural disasters (Stefanidis and 83 

Stathis, 2013). Floods cause significant environmental, economic and social damages. In 84 

spite of all flood protection measures being taken, from 1990 to 2013, floods have caused 85 

damages of about 600 billion US dollars and close to 7 million deaths worldwide (Wang 86 

et al., 2015). Thus, it is of the utmost importance to adequately predict the characteristics 87 

of such events at all sites.  88 

 89 

However, hydrological information may not be available at certain sites of interest. At these 90 

“ungauged sites”, Regional Frequency Analysis (RFA) can be used to develop estimates 91 

of flood characteristics. RFA allows transfer of information from gauged sites to the 92 

ungauged site of interest. RFA usually consists of two main steps. The first step is the 93 

delineation of homogeneous regions. In this step, sites that are similar according to some 94 

homogeneity criteria are grouped together. The rationale here is that as the sites within a 95 

given homogenous region are similar, information can reasonably be transferred from 96 

gauged to ungauged sites. The second step is the application of a regional estimation model 97 

within each delineated region (Ouarda, 2013; Wazneh et al., 2015). The regional estimation 98 

models are then trained to establish functional relationships between physio-99 

meteorological basin characteristics and flow characteristics at ungauged basins.  100 

 101 

Delineation can be done on the basis of geographical proximity, but that does not guarantee 102 

that such regions are homogenous in regards to their hydrologic response. In contrast, “Site 103 

focused” regionalization techniques (also called neighborhood-based techniques) have 104 
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received much attention due to their effectiveness (Ouarda, 2016; Rahman et al., 2019). In 105 

“Site focused” techniques, each site has a prospective set of catchments which form a 106 

homogenous region for that particular site. One such technique is the Region of Influence 107 

(ROI) approach which identifies sites in a homogeneous region based on the distances in 108 

aS multidimensional space of catchment attributes from the target site to the contributing 109 

catchments. Haddad et al. (2012) showed that the ROI approach leads to more efficient and 110 

accurate flood quantile estimates compared to the fixes regions approach. Another such 111 

technique, Canonical Correlation Analysis (CCA), has been used for delineating 112 

homogenous regions in a number of studies ( See for instance Ouarda et al., 2000; Han et al., 113 

2020). In the present study, CCA is used to delineate homogenous regions as Ouarda et al. 114 

(2008) indicated that it leads to superior performances.  115 

 116 

Among the large number of RFA estimation methods proposed in the literature, linear 117 

models and their variants are commonly adopted because of their simplicity and the speed 118 

in which they can be trained as well as deployed. However, hydrological systems are 119 

characterized by complex processes and it is unrealistic to assume a linear relationship 120 

between physio-meteorological basin characteristics and flow characteristics. Sivakumar 121 

and Singh (2012) showed that the relationship between these variables is characterized by 122 

dominant non-linear relationships. Pandey and Nguyen (1999) and Grover et al. (2002) 123 

showed that non-linear regression models provide better performances for RFA.  124 

 125 

Several non-linear techniques have been proposed in the literature. An Artificial Neural 126 

Network (ANN), a non-linear and a non-parametric approach modelled on the neurons 127 
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present in the human brain, was used for solving several hydrological problems such as 128 

regional flood frequency analysis, streamflow forecasting, rainfall-runoff modelling, flood 129 

forecasting, etc. (Aziz et al., 2014; Chokmani et al., 2008; Huo et al., 2012; Khalil et al., 130 

2011; Kumar et al., 2015; Ouarda and Shu, 2009; Tiwari and Chatterjee, 2018). 131 

Generalized Additive Models (GAM) due to their considerable flexibility, are used in 132 

regional flood frequency analysis, water quality estimation, river discharge modeling, etc. 133 

(Chebana et al., 2014; Iddrisu et al., 2017; Morton and Henderson, 2008; Ouarda et al., 134 

2018; Rahman et al., 2017). Other non-linear approaches used RFA include Projection 135 

Pursuit Regression (Durocher et al. (2015), Non-Linear CCA Ouali et al. (2015), and 136 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) (Shu and Ouarda, 2008).  137 

 138 

Random Forest (RF), first proposed by Breiman (2001), is one such non-linear and non-139 

parametric technique. It is a popular technique for classification, regression, variable 140 

selection, outlier detection and variable importance. When random forest is used for the 141 

purpose of function approximation or regression, it is called Random Forest Regression 142 

(RFR) or Regression Forests. In RFR, from a given set of data, multiple samples are 143 

randomly drawn and Classification and Regressions Trees (CART) are built. Eventually, 144 

the results of all such trees are combined and an estimate of target variables is obtained by 145 

averaging the outputs of individual trees.  146 

 147 

A number of studies have been conducted in the field of hydrology using RFs. Chen et al. 148 

(2012) used RF to build a drought forecast model. Nguyen et al. (2015) used RF to forecast 149 

daily water levels. Monira et al. (2010) and Taksande and Mohod (2015) respectively used 150 
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RF for daily and monthly rainfall forecasting. Wang et al. (2015) developed a flood hazard 151 

risk assessment model based on RF. RF represents a good alternative to Support Vector 152 

Machines (Meyer et al., 2003; Verikas et al., 2001) and possesses a number of advantages 153 

including a reasonable amount of tolerance towards noise and outliers, high accuracy in 154 

forecasting and no overfitting problems. 155 

 156 

The aim of the present study is to introduce the RF technique for regional flood quantile 157 

estimation. RFR is used to establish non-linear relationships between physio-158 

meteorological basin characteristics and flow characteristics, and to estimate flood 159 

characteristics at ungauged sites. RFR is also applied to hydrological neighborhoods 160 

derived using CCA (CCA-RFR) for flood quantile estimation. A comparative analysis is 161 

carried out with several other approaches based on the application to a case study of data 162 

derived from the Province of Quebec, Canada. 163 

 164 

The paper is organized as follows. In section 2, the theoretical background of RFR and 165 

CCA is presented along with the evaluation procedure and brief information about the 166 

models to be compared. The case study is presented in section 3 and the results are 167 

presented and discussed in section 4. Finally, the conclusions and recommendations for 168 

further research are presented in section 5. 169 

 170 

2. Methodology 171 

2.1. Random Forest Regression 172 

2.1.1. RFR Principle 173 
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Random Forest is an ensemble learning technique proposed by Breiman (2001). RF is one 174 

of the most accurate general-purpose learning algorithms. Random Forest has been shown 175 

to give a very good performance while using few computational resources. RF exhibits 176 

great performance improvement over single tree algorithms like CART. It is fast and has 177 

error rates comparable to more traditional and resource intensive algorithms.  178 

 179 

In Random forest for regression, the tree predictors ℎ(𝑥, 𝜃𝑘), k = 1….K take on numerical 180 

values depending on the random vectors {𝜃𝑘} (Breiman, 2001). It is important to note that 181 

{𝜃𝑘} are identically distributed and independent random vectors. The training data is 182 

randomly and independently drawn from a joint distribution of (𝑋, 𝑌), where the random 183 

vector 𝑋 is the observed input and the random vector 𝑌 is the expected numerical output. 184 

Individual trees are grown using the Classification and Regression Trees (CART) 185 

algorithm. Below is the algorithm for Random forest for regression as presented in Trevor 186 

et al. (2009). 187 

(1) For 𝑏 =  1 to 𝐵: 

(a)Draw a bootstrap sample 𝑍∗ of size N from training data. 

(b)Grow a random-forest tree 𝑇𝑏 to the bootstrapped data by recursively repeating 

the following steps for each terminal node of the tree, until the minimum node size 

𝑛𝑚𝑖𝑛 is reached. 

(i) Select m variables at random from p variables. 

(ii) Pick the best variable/split-point among the 𝑚. 

(iii)  Split the node into two daughter nodes. 
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(2) Output the ensemble of trees {𝑇𝑏}1
𝐵 

• To make a prediction at a new point x:  

𝑓
𝑟𝑓

𝐵
=  

1

𝐵
∑ 𝑇𝑏(𝑥

𝐵

𝑏=1
) 

 188 

RFR possesses two important features, out-of-bag error rate, and variable importance. 189 

Generally, we use about two third of the data in a bootstrap sample and the rest one third 190 

are left out. These are known as out-of-bag (OOB) samples. The error estimated on these 191 

left out samples is known as OOB-error rate. OOB error rate can be used for validation 192 

purposes as well as for the calculation of the optimum number of trees required. Variable 193 

importance is a measure of which predictors are most useful for predicting the response 194 

variable.  Variable importance can be computed using RF by recording improvements, at 195 

each node in every tree in the forest.  196 

 197 

Another advantage of using RFR is that it possesses an ‘acceptable’ tolerance to noise and 198 

outliers, as the input training sets are drawn by random bootstrap sampling, and as the 199 

nodes to be split are selected randomly. Also, as there is no correlation between individual 200 

trees and as each tree is allowed to grow to its maximum size, there is no overfitting of 201 

data. Consequently, the only parameter to be tuned is the number of trees or estimators. 202 

 203 

2.1.2 Classification and Regression Trees (CART) 204 
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CART decision tree is a binary recursion partitioning scheme which is capable of 205 

processing continuous and nominal attributes for regression and classification. In the 206 

present study, we use CART trees for regression. Regression trees are a nonparametric 207 

regression method that approximates real-valued functions. A regression tree is built using 208 

binary partitioning, where each node is iteratively split into two partitions or branches. 209 

Initially, all input variables are grouped into the same partition. Then mean squared error 210 

(mse) is calculated and a split decision is taken. The split decision is taken based on Greedy 211 

minimization. The split which minimizes the mse is selected and further that node is split 212 

into two off-springs. The splitting rule is then applied to each of the new offsprings. Each 213 

tree is grown to the largest possible extent which aids in better regression accuracy.  214 

 215 

2.2 CCA approach in RFA 216 

This section contains a brief discussion about CCA and its connection to the delineation step of 217 

RFA. Let X = {X1, X2 … Xr} be a random variable containing basin meteorological and 218 

physiographical variables, for eg. basin area, etc. and Y = {Y1, Y2 … Yr} be a random variable 219 

containing basin hydrological variables like flood quantiles.  220 

 221 

Consider linear combinations V and W of the variables X and Y: 222 

 𝑉 =  𝑎1𝑋1 +  𝑎2𝑋3 + ⋯ +  𝑎𝑟𝑋𝑟 =  𝑎′𝑋  (1) 223 

 W = 𝑏1𝑌1 +  𝑏2𝑌2 + ⋯ + 𝑏𝑟𝑌𝑟 = 𝑏′𝑌 (2) 224 

where 𝑎′ and 𝑏′ are transposes of vector 𝑎 and 𝑏 respectively. CCA enables identifying 225 

vectors 𝑎 and 𝑏 such that 𝑐𝑜𝑟𝑟(𝑉, 𝑊) is maximum with vectors 𝑉 and 𝑊 having unit 226 
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variances. For each basin 𝐵𝑘, where 𝑘 = 1, 2 … 𝐾 from the set 𝐵 of basins, 𝑣𝑖,𝑘  and 𝑤𝑖,𝑘  are 227 

corresponding values of 𝑉𝑖  and 𝑊𝑖. We have the values of vector 𝑣0 and our aim is to 228 

estimate the unknown vector 𝑤0, where  𝑣0 and 𝑤0 represent the canonical scores of 229 

physio-meteorological and hydrological variables respectively.   230 

 231 

The approximation of the 𝑤0 vector can be obtained from a 100(1 –  𝛼)% confidence 232 

interval about 𝜆𝑣0 by constituting all the realizations 𝑤 of 𝑊 where: 233 

 (𝑤 −  𝜆𝑣0)′(𝐼𝑝 − 𝜆2)−1(𝑤 −  𝜆𝑣0) ≤ 𝜒𝛼,𝑝
2 , (3) 234 

is conditional on 𝜒𝛼,𝑝
2

 being 𝑃(𝜒2  ≤  𝜒𝛼,𝑝
2 )  =  1 –  𝛼. For more detailed information 235 

concerning the algorithm, the reader is referred to (Ouarda et al., 2001). 236 

 237 

2.3. Selection of Methods for Comparison 238 

The RFR and CCA-RFR models are used to estimate the 100, 50 and 10-year flood 239 

quantiles. To evaluate the relative performances of these two approaches, they are 240 

compared to the following models: 241 

 242 

• Canonical Correlation Analysis-Multiple linear regression model (CCA-MLR) (Ouarda et 243 

al., 2001). After selecting the optimal hydrological neighborhoods for each site using CCA 244 

analysis, multiple regression is used for regional flood estimation. 245 



13 
 

• Single Artificial Neural Network (SANN) (Shu and Burn, 2004). A single ANN is used 246 

to identify a functional relationship between physio-meteorological variables and flood 247 

quantiles.  248 

• Ensemble ANN (EANN) (Shu and Burn, 2004). An ANN ensemble is created by bagging 249 

several single ANNs. This helps in improving the generalization ability of the SANN model. 250 

The final output is generated by taking the mean of the outputs of individual ANNs.  251 

• Canonical Kriging Model (CCA-Kriging) (Chokmani and Ouarda, 2004). The 252 

physiographical space defined by CCA is used by the Kriging model to obtain regional flood 253 

estimates by interpolating data over that physiographic space. This method was shown to 254 

lead to comparable results to the traditional CCA model but is computationally less 255 

complicated. 256 

• Single Artificial Neural Network in CCA physiographical space (CCA-SANN) (Shu and 257 

Ouarda, 2007). CCA is used to form the canonical physiographical space and then single 258 

ANN is applied to the data to form functional relationships between physiographical 259 

variables and flood quantiles.  260 

• Ensemble ANN in CCA physiographical space (CCA-EANN) (Shu and Ouarda, 2007). 261 

In the CCA-EANN model, each component uses the same configuration as a Single ANN 262 

but the CCA-EANN is trained on bootstrapped sample data and the results are averaged out. 263 

• Generalized Additive Model in conjunction with CCA (CCA-GAM) (Chebana et al., 264 

2014). In the CCA-GAM approach, firstly backward stepwise selection is used to select the 265 

variables to be used in the model. Then GAM is applied to the neighborhoods delineated by 266 

CCA.  267 

 268 
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2.4. Evaluation Metrics 269 

The following metrics are used to assess the quality of our regional flood analysis models. They 270 

are NASH (Nash Criterion), RMSE (Root mean squared error), RMSEr (Relative Root Mean 271 

Squared Error), BIAS (Mean Bias) and BIASr (Relative Mean Bias). 272 

 273 

𝑁𝐴𝑆𝐻 = 1 −  
∑ (𝑜𝑖− 𝑠𝑖)2𝑛

𝑖=1

∑ (𝑜𝑖− 𝑜 )2𝑛
𝑖=1

 (4) 274 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑜𝑖 −  𝑠𝑖)2𝑛

𝑖=1  (5) 275 

𝑅𝑀𝑆𝐸𝑟 =  √1

𝑛
∑ (

𝑜−𝑠𝑖

𝑜𝑖
)

2
𝑛
𝑖=1  (6) 276 

𝐵𝐼𝐴𝑆 =  
1

𝑛
∑ (𝑜𝑖 − 𝑠𝑖)

𝑛
𝑖=1  (7) 277 

𝐵𝐼𝐴𝑆𝑟 =  
1

𝑛
∑ (

𝑜𝑖−𝑠𝑖

𝑜𝑖
)𝑛

𝑖=1  (8) 278 

 279 

where, 𝑜𝑖  is the observed value at site 𝑖, 𝑠𝑖 is the simulated value using the model for site 280 

𝑖, 𝑜 is the mean of observed at-site values and 𝑛 is the number of sites. 281 

 282 

2.5. Evaluation Procedure 283 

K-fold Cross Validation (k-fold CV) is used as the model validation technique in this work. 284 

In k-fold CV the data is split into 𝑘 small and equal sets. A model is trained using k – 1 285 

folds as training data and then the model is validated using the remaining data. The 286 

performance thus reported by k-fold CV is the mean of the values computed in the loop.  287 

 288 
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The reason for using k-fold CV in the present study is that models trained with k-fold CV 289 

have lower variance than models trained with the jackknife validation procedure. In 290 

jackknife validation, there is more overlap between training folds as only one sample is 291 

omitted which means that almost the entire dataset is used for training. While in k-fold CV 292 

there is less overlap between training folds and thus it leads to smaller variability. 293 

Therefore, results obtained with jackknife might be better but the results obtained using k-294 

fold CV are more robust. 295 

 296 

3. Case Study 297 

The dataset used in the present study consists of 151 hydrometric stations located in the 298 

southern part of the province of Quebec (between 45◦ and 55◦N), Canada. The stations are 299 

operated by the Ministry of Environment of Quebec. The adopted dataset has been used in 300 

a number of previous RFA studies (Chebana and Ouarda, 2008; Shu and Ouarda, 2007) 301 

making it convenient for comparison of the results with those obtained with other 302 

methodologies.  303 

 304 

On the basis of the work of Chokmani and Ouarda (2004) with the same database, a total 305 

of five physio-meteorological variables are selected, of which three are physiographical 306 

and two are meteorological variables. These variables are the basin area (Area), the mean 307 

basin slope (MBS), the fraction of basin area occupied by lakes (FAL), the annual mean 308 

total precipitation (AMP) and the annual mean degree-days above 0◦ (AMD), respectively. 309 
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A number of statistics of these data, like the minimum, mean, maximum and standard 310 

deviation are presented in table 1. 311 

 312 

The database compiled by (Kouider et al., 2002) is used to extract at-site flood estimates 313 

for all of the 151 gauging stations in the study area. The most appropriate statistical 314 

distribution is used to get flood quantile estimates for each site by fitting the distribution to 315 

observed flood data. To avoid negative scale effects, specific quantiles (quantiles divided 316 

by basin areas) are used. The 100-year, 50-year, and 10-year quantiles (q100, q50, and q10 317 

respectively) are the three specific flood quantiles used in the present study.  318 

 319 

The reader is directed to (Shu and Ouarda, 2007) for more details concerning the dataset, 320 

such as scatter plots of basins in canonical space and geographical location of stations, to 321 

avoid redundancy. According to the recommendations of Shu and Ouarda (2007), the 322 

logarithmic transformation is applied to the variables q10, q50, q100, Area, MBS, AMP 323 

and AMD and a square root transformation is applied to FAL.  324 

 325 

4. Results 326 

In the present study, Scikit-learn module of Python is used to obtain the results (Pedregosa 327 

et al., 2011). In RF the size of the dataset, the number of trees (n_estimators) and the 328 

number of variables at each split have a huge impact on the error rate. According to 329 

Breiman (2001), the number of variables at each split should be taken as the square root of 330 
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the total number of variables, i.e. 2 in this study. As the size of the dataset is not a tunable 331 

parameter, only the number of trees is tuned in this study. 332 

 333 

Figure 1 illustrates that the OOB error rate decreases as the number of trees increases. At 334 

around 30 trees the value levels off and there is almost no improvement after this point by 335 

increasing the number of trees. Therefore, the number of trees is fixed at 30 for the present 336 

study. It is also important to note that all the trees were allowed to grow to the maximum 337 

extent without pruning. 338 

 339 

The results of the application of the two models RFR and CCA-RFR along with the models 340 

described in Section 0 to the dataset described in Section 0 are illustrated in Table 2. The 341 

bold font describes the best approach for that particular flood quantile and the particular 342 

evaluation metric. Results indicate that CCA-RFR either outperforms or is comparable to 343 

other models in all the metrics except the NASH criterion. Also, CCA-RFR outperforms 344 

RFR in every metric other than NASH.  345 

 346 

Figure 2 illustrates the relative errors associated with quantiles q50 estimated using RFR 347 

and CCA-RFR. Figure 2 indicates that CCA-RFR performs better than RFR for large 348 

basins, while RFR outperforms CCA-RFR for very small basins. These smaller basins are 349 

associated with larger specific quantiles. Therefore we can attribute the low NASH scores 350 

associated to CCA-RFR to these smaller sites Similarly, according to McCuen et al. (2006), 351 

the NASH criterion is sensitive to a number of factors including sample size and outliers. 352 
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In CCA-RFR, as only the stations in the hydrological neighborhoods are considered for the 353 

prediction and training, the sample size is considerably smaller than the complete original 354 

dataset. Also, the NASH criterion is heavily influenced by the model used (Schaefli and 355 

Gupta, 2007). RFR provides a reasonable tolerance to outliers which can be seen in the 356 

RFR NASH values. However, as we use just the neighborhoods for CCA-RFR, the sample 357 

size is small and thus outliers have more effect than in the basic RFR model which leads 358 

to lower NASH values. 359 

 360 

Although we have low values for the NASH criterion for both RFR and CCA-RFR in 361 

comparison to other models, we can observe that CCA-RFR leads to the best RMSE and 362 

RMSEr values among all the models studied in this work. RMSE provides an evaluation 363 

of prediction accuracy in the absolute scale while RMSEr does the same in relative terms. 364 

CCA based RFR provides better generalization ability than the basic RFR model. As RFRs 365 

are nonparametric data-driven approaches, they have limited scope for extrapolation 366 

beyond the observed data. Therefore, the combination of RFR along with CCA, a 367 

parametric model helps the performance of RFR. Consequently, even though the NASH 368 

value for CCA-RFR is lower than other models the prediction accuracy is not compromised 369 

and is rather improved.  370 

 371 

The BIAS and BIASr are evaluation criteria used to determine whether the model 372 

overestimates or underestimates the various quantiles. In general, CCA-RFR has the lowest 373 

BIAS of all the models considered and BIASr is also comparable with CCA-EANN and 374 
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CCA-GAM which have the best BIASr value. It is also important to point out that, in terms 375 

of BIAS, CCA-RFR overestimates flood quantiles while RFR underestimates them. 376 

However, when BIASr is used, all the models underestimate the flood quantiles. 377 

 378 

Overall, it can be concluded that applying RFR to CCA delineated neighborhoods improves 379 

the results in comparison to RFR applied to the whole set of stations. This is consistent 380 

with the results of previous studies, such as Chokmani and Ouarda (2004) and Shu and 381 

Ouarda (2007), which indicated that applying other estimation techniques to CCA 382 

delineated neighborhoods leads to better performances for the estimation of flood quantiles 383 

than their application to the whole set of stations in the database.  384 

 385 

The scatter plots of regional estimates using RFR and CCA-RFR are shown in Figure 3 386 

and Figure 4, respectively. As would be expected, we observe that the estimation error and 387 

bias are positively correlated with the return period. With the increase in return periods, 388 

bias and estimation error increase simultaneously. Also, the low NASH scores can be 389 

explained by high variation as seen in Figure 4. It is clear from the results that all models 390 

underestimate flood quantiles at sites with higher specific quantiles. These sites can be 391 

associated with smaller basins which have large specific quantiles (Shu and Ouarda, 2007).  392 

 393 

An additional experiment is conducted to identify the importance of individual predictor 394 

variables for flood quantile estimation. In the python implementation of RFR, “Mean 395 

decrease in Impurity (MDI)” or “Gini importance” is used to calculate the importance of 396 
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each variable on the accuracy of the model. MDI is defined as “total decrease in node 397 

impurity averaged over all the trees. Node impurity is weighted by the probability of 398 

reaching that node (which is approximated by the proportion of sample reaching that 399 

node)”(Brieman et al., 1984). The results are illustrated in Table 3. Basin Area (Area) is 400 

shown to be by far the most important physio-meteorological variable. Annual mean total 401 

precipitation (AMP) and Annual mean degree days over 0◦ C (AMD) are distant second 402 

and third, respectively. Mean Basin Slope (MBS) is fourth while the Fraction of Area 403 

covered by lakes (FAL) is the least important of all physio-meteorological variables. 404 

 405 

5. Conclusions 406 

RF has been commonly used in gene classification, banking, medicine, and E-commerce. 407 

However, so far it has not found much application in the field of hydrology and especially 408 

in RFA. Most common studies in RFA establish linear relationships between physio-409 

meteorological variables and flood quantiles. However, these models do not generally 410 

explain the complex relationships between the response variable and the explanatory 411 

variables. Random forest, a non-linear and a non-parametric data-driven approach, is one 412 

such technique which has shown good performances in other fields in explaining such 413 

complex relationships. This method is very easy to apply in practice as it does not require 414 

specific subjective choices by the user. The purpose of this study is to first introduce RFR 415 

in RFA and then apply RFR to neighborhoods delineated by CCA.  416 

 417 

The number of trees in the RF for this study was fixed at 30. Also, all the trees were allowed 418 

to grow to their maximum potential without pruning. The comparison with other models 419 
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indicates that, although CCA-RFR has a lower NASH score, it is more accurate than the 420 

other models. RFR is particularly more advantageous because of its low computational cost 421 

and high prediction quality. The results further indicate that the Random Forest, when used 422 

in conjunction with CCA, provides more robust and accurate results.  423 

 424 

The research presented in this work is based on the introduction of the RF approach to 425 

RFA. The use of Extremely Randomized Trees and other variants of RF in RFA should 426 

also be attempted in the future. Future research activities should also focus on the use of 427 

RF in conjunction with other delineation techniques such as the Region of Influence 428 

approach, statistical depth functions, or projection pursuit regression. The effectiveness of 429 

the same techniques should also be investigated in the future using other data sets from 430 

different climates and different parts of the world to check the generality of the results 431 

obtained in this study. The efficiency of the technique should especially be examined for 432 

case studies with a higher level of heterogeneity in the physiographical variables. Future 433 

efforts should also investigate the use of the RF approach in the case of partially gauged 434 

sites and in the context of the use of procedures for the combination of local and regional 435 

information (see Seidou et al., 2006, for instance). The extension of the approach to the 436 

nonstationary case and for other hydrological variables such as low flows or suspended 437 

sediments should also be considered. 438 
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Table 1: Descriptive Statistics of physio-meterological and Hydrological Variables. 601 

Variables Minimum Mean Maximum Standard deviation 

q10 (m3/s.km2) 0.03 0.31 0.94 0.20 

q50 (m3/s.km2) 0.03 0.28 0.77 0.18 

q100 (m3/s.km2) 0.03 0.22 0.53 0.13 

Area (km2) 208 6255 96600 11716 

MBS (%) 0.96 2.43 6.81 0.99 

FAL (%) 0.00 7.72 47.00 7.99 

AMP (mm) 646 988 1534 154 

AMD (degree day) 8589 16346 29631 5382 
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 610 
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Table 2: NASH, RMSE, RMSEr, BIAS and BIASr values for all models. Best values for each 614 

quantile for the corresponding metrics are marked in bold. 615 

 

Hydrological 

Variables 

CCA-

SANN 

CCA- 

EANN 

CCA- 

Kriging 

CCA-

MLR 

SANN EANN 

CCA- 

GAM 

RFR 

CCA- 

RFR 

NASH 

q10 0.82 0.84 0.78 0.78 0.75 0.78 0.82 0.721 0.577 

q50 0.78 0.8 0.72 0.72 0.69 0.72 0.76 0.657 0.532 

q100 0.77 0.78 0.7 0.68 0.66 0.69 0.67 0.644 0.507 

RMSE 

q10 0.053 0.05 0.05 0.059 0.06 0.058 0.054 0.063 0.049 

q50 0.082 0.079 0.093 0.094 0.098 0.093 0.087 0.089 0.07 

q100 0.095 0.093 0.11 0.112 0.115 0.109 0.115 0.099 0.08 

RMSEr 

q10 38 37 51 43 47 44 33.7 80.74 29.44 

q50 44 43 64 49 55 53 43.5 93.39 33.27 

q100 46 45 70 51 64 60 37.0 96.45 35.02 

BIAS 

q10 0.006 0.005 -0.004 0.001 0.006 0.004 0.009 -0.0013 0.002 

q50 0.009 0.009 -0.007 0.005 0.01 0.009 -0.003 -0.0073 0.003 

q100 0.013 0.012 -0.008 0.007 0.015 0.013 0.043 -0.019 0.004 

BIASr 

q10 -5 -5 -16 -9 -7 -7 -3.5 -21.12 -6.64 

q50 -7 -5 -21 -11 -8 -8 -11.4 -25.97 -8.14 

q100 -7 -6 -23 -11 -11 -10 3.4 -27.85 -8.89 

 616 

 617 

 618 

 619 
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Table 3: Feature Importance of Five Input Variables used for Specific Flood Quantile Estimation. 620 

Input Variables 

Relative Importance, % 

q10 q50 q100 

Area 87.17 88.53 78.25 

MBS 1.39 0.65 0.99 

FAL 1.10 0.70 0.57 

AMP 8.86 7.71 17.89 

AMD 1.46 2.38 2.27 
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 632 

Figure 1: Number of trees (n_estimators) vs OOB error rate for 10, 50 and 100-year flood quantiles. 633 
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 636 

Figure 2: Relative errors associated with at-site quantiles q50 calculated using RFR and CCA-637 
RFR (the sites are ordered according to the increasing area)  638 
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 639 

A) q10 estimation 

 
B) q50 estimation 

 
C) q100 estimation 

 
Figure 3: Estimation using the RFR approach 640 
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 641 

A) q10 estimation 

 
B) q50 estimation 

 
C) q100 estimation 

 
Figure 4: Estimation using the CCA-RFR approach 642 


