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Abstract 36 
 37 
Riparian buffers are important features that help to mitigate suspended sediment loads within rivers running 38 

through agricultural landscapes. Evaluating their effectiveness for sediment control by different modelling 39 

approaches can help direct beneficial management practices. The Soil and Water Assessment Tool (SWAT) 40 

model and the Adapted Neuro-Fuzzy Inference System (ANFIS) based model were used for prediction of 41 

suspended sediment concentrations (SSC) and sediment loads in the Mill River watershed (PEI, Canada). 42 

Those models were then used to assess the impact of riparian buffer widths in reducing sediment loads. The 43 

ANFIS model predicted measured SSC more accurately than the SWAT model. The relationship between 44 

buffer width and sediment reduction was asymptotic, and the relationship begins to plateau when the width 45 

reaches 50 m. Increasing the buffer width from 15 to 100 m led to an increase in sediment loads retention of 46 

30.5% and 36.2% of the total stream sediment load for the SWAT and ANFIS models, respectively. This 47 

study highlighted that a data-driven ANFIS based model can be used to simulate the impact of land use 48 

changes on the sediment delivery in a river. 49 

Key words: Agriculture, Riparian buffers, Sediment yield, SWAT model, ANFIS model. 50 
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1. Introduction 52 

Agriculture is reported by the United States Environmental Protection Agency as the most widespread 53 

cause of stream pollution (U.S. Environmental Protection Agency, 2000). Sediment, bacteria and nutrients 54 

constitute the three leading sources of water pollution from agriculture (Liu et al., 2008; Beaudry, 2017; 55 

FAO & IWMI, 2017), often resulting from environmental land use conflicts (Pacheco et al., 2014). In 56 

addition, soil particles being transported in surface waters can be contaminated by adsorbed heavy metals or 57 

organic pollutants (Kadokami et al., 2013; Song et al., 2017) and affect both aquatic flora and fauna (Beyer 58 

et al., 2014). The turbidity of river water increases as a function of the increase of sediment loads with 59 

negative consequences on fish habitat, the growth of aquatic plants and invertebrate species (Ramskov et 60 

al., 2015; Valero et al., 2017). 61 

 62 

Watersheds without sustainable land use and soil management practices are subjected to increased erosion 63 

with high rates of soil loss (Shi et al., 2017; Mello et al., 2018; Schmidt et al., 2018). The increase of soil 64 

erosion in agricultural areas is related to the precipitation regime, land slope, soil properties and farming 65 

management and practices (Montgomery, 2007; Keesstra et al., 2016; Restrepo & Escobar, 2018). Riparian 66 

buffer strips are multifunctional management tools that play an important role for river water quality and 67 

are vital for aquatic biodiversity and riparian habitat (Mankin et al., 2007; McCracken et al., 2012; Stutter 68 

et al., 2012). Implementing riparian buffer zones is the most natural mitigation measure allowing for 69 

surface runoff reduction, pollutants filtering and sediment retention while additionally creating corridors of 70 

riparian habitat along streams and regulating stream temperature. The optimal width of riparian buffer strips 71 

can vary depending on the intended function (e.g., retention of sediment vs. nutrients Hawes & Smith, 72 

2005; Chang et al., 2011; Shan et al., 2014; Miller et al., 2015) and on landscape configurations (Tim et al., 73 

1995). Understanding of the impact of buffer strips for sediment control in agricultural landscape is crucial 74 

to evaluating their effectiveness (Sahu & R. Gu, 2009; Betrie et al., 2011; Monteiro et al., 2016; Vigiak et 75 

al., 2016; Mello et al., 2017).  76 

 77 
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Hydrological and erosion/sediment models, in combination with monitoring, are essential tools to assist 78 

watershed managers in implementation of strategies and policies for water quality preservation, particularly 79 

for the optimisation of the beneficial management practices for achieving water quality targets (Hould-80 

Gosselin et al., 2016; van Vliet et al., 2016; Romano et al., 2018). Physical processes related to erosion and 81 

sediment transport are modelled with empirical or/and semi-deterministic approaches and this results in two 82 

main types of models, namely data-driven models and physical process-based models. Data-driven models 83 

and physical process-based models have different strengths and limitations for estimating suspended 84 

sediment concentrations (SSC) and sediment loads. Despite their relatively easy implementation for 85 

examining impacts of changes in landscape management practices, physical process-based models can 86 

require a large number of inputs, adjustment of numerous parameters and high computational time during 87 

calibration, compared to data-driven models (Hamaamin et al., 2016). However, the potential of data-driven 88 

models for exploring the implications of altering factors that may influence erosion, such as land-use/land-89 

cover in agricultural watersheds, remains relatively unexplored.  90 

 91 

Prince Edward Island (PEI, Canada) is a highly agricultural province and increasing degradation of the 92 

environmental conditions of its streams, estuaries and coastal waters is recognized (Coffin et al., 2018). 93 

Sediment deposition and suspension in rivers resulting from intense agricultural activities have been well 94 

documented in the region (Alberto et al., 2016; Sirabahenda et al., 2017). Monitoring of suspended 95 

sediment during 2013 - 2017 showed that the sediment loads are high in several PEI Rivers and 96 

stakeholders involved in watershed management have to consider mitigating actions in order to attenuate 97 

erosion (Sirabahenda et al., 2017). One cost-effective strategy to guide mitigations consists of 98 

implementing robust decision-making tools.  99 

 100 

The objective of this study was to compare the effectiveness of a semi-deterministic model and an empirical 101 

model for prediction of SSC and sediment loads in an agricultural watershed. Secondly, those models are 102 

used to develop a methodology to calculate effective riparian buffer widths to reduce sediment loads. To 103 
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this end, a lumped nonparametric model, the Artificial Neuro-Fuzzy Interface System (ANFIS; Jang, 1993) 104 

based model, including a new parameter related to soil and land-use characteristics, was developed by 105 

Sirabahenda et al. (2017). This model is used along with the well-known semi-deterministic model, the Soil 106 

and Water Assessment Tool (SWAT) model with the goal of simulation of impacts from different scenarios 107 

of land use and management on sediment loads using a PEI watershed. 108 

 109 

2 Materials and Methods 110 

2.1 Study site and data gathering 111 

The Mill River is located in Prince Edward Island, Canada and flows into the southern Gulf of St Lawrence 112 

(Figure 2). The Mill watershed covers an area of 120.4 km2 and the drainage upstream of the sediment 113 

monitoring station (46°44'39.6"N, 64°11'2.1"W) is 46.2 km². Total annual precipitation in the region is 114 

1081 mm (Summerside meteorological station), with the months of December to March receiving snow. 115 

Drainage basin elevations vary between 0 and 60 m ABSL. The steeper slopes are located near the river 116 

banks and slopes are classified such that 59.3% and 12.7% of watershed area are under 1% and above 3%, 117 

respectively. The principal soil types of the Mill watershed and their drainage classes  are presented in 118 

Table 1 (Research Branch Agriculture Canada/PEI Department of Agriculture, 1994). The geological 119 

formation of the native rocks of those sedimentary soils is considered to be Triassic Age with dominant 120 

feature of red color (van der Poll, 1983). The three main types of land use/land cover for the studied 121 

watershed (Figure 2) were agriculture (31.3%), forest (60.7%) and wetlands (6.4%). 122 

 123 

Table 1. Distribution area (%) of soil series for Mill Watershed. 124 

Drainage class Soil types names  

Well drained Charlottetown (7.5%) 

Moderately drained Margate (39.9%), Tignish (7.2%), O Leary (24.2%); Albery (3.0%) 

Poorly drained Duvar (14.5%) 

 125 
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Suspended sediment data were monitored in the Mill River using turbidity from May 15, 2013 through 126 

September 30, 2017. An YSI (Yellow Springs Instrument) turbidity probe that measures reflectance of 127 

infrared radiation by the suspended sediments and translates it into Nephelometric Turbidity Units (NTU), 128 

was deployed. The sampling frequency was 30 min with an automatic cleaning after 24 h and a seasonal 129 

recalibration of the probe. The relation between the turbidity and SSC was determined by establishing a 130 

calibration curve with grab samples of river sediments with varying dilution to cover the range of measured 131 

turbidity. Each grab sample was subsequently filtered, dried and weighed to determine SSC. The detailed 132 

description is given by Sirabahenda et al. (2017) for calculation of the non-linear mathematical relationship 133 

between SSC and turbidity for the Mill River. Meteorological data, including precipitation, temperature, 134 

wind speed, solar radiation and humidity were obtained from local weather stations (Alberton Snow, Tyne 135 

Valley, Harrington CDA CS and Summerside stations) operated by Environment and Climate Change 136 

Canada  (http://climate.weather.gc.ca). Streamflow data were obtained from Environment and Climate 137 

Change Canada (Water Survey Division) for Carruthers Brook near St-Anthony station 138 

(http://wateroffice.ec.gc.ca).  139 

 140 

Please include Figure 1 here. 141 

 142 

2.2 SWAT model description and set up 143 

The SWAT model (Arnold et al., 2012; https://swat.tamu.edu) is a physical process-based model that 144 

enables simulation of the impacts of land use practices on waterbodies (qualitatively and quantitatively) at 145 

the watershed scale (Neitsch et al., 2011). For spatial discretization, the watershed is partitioned into sub-146 

watersheds, which are further divided into Hydrologic Response Units (HRUs) comprised of unique 147 

combinations of land cover, slope and soil type.  148 

 149 

Processes modeled by SWAT include canopy storage, snow melt, surface runoff and infiltration, crop 150 

growth, evapotranspiration, erosion and transport of sediments, nutrients and pesticides. Erosion generated 151 

http://wateroffice.ec.gc.ca/
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by precipitation and surface runoff is calculated using the Modified Universal Soil Loss Equation (MUSLE) 152 

(Williams, 1995). The MUSLE is a function of runoff factors (peak and volume of runoff), soil erodibility 153 

factor, cover and management factor, support practice factor, a topographic factor and a coarse fragment 154 

factor. A detailed description of the physical processes involved in modelling the hydrological cycle and 155 

related to the loadings of sediments, nutrients and others pollutants and their movement through the channel 156 

network is presented by Neitsch et al. (2011) in the SWAT theoretical documentation 157 

(http://swatmodel.tamu.edu).  158 

 159 

In this study, an ArcGIS-ArcView extension and graphical interface for SWAT, ArcSWAT 2012 was used 160 

to set up the model by using watershed characteristics obtained from a database including Digital Elevation 161 

Model (DEM), soil, land use and climatic data. GIS data layers for the stream network and 2 m contour 162 

lines (PEI Department of Environment/ Energy & Forestry and Resource Inventory, 2010) were used for the 163 

DEM construction and further sub-classification of areas in the Mill watershed. The Mill watershed was 164 

delineated into 25 sub-basins, from a reduced resolution DEM of 10 m, which were then further partitioned 165 

into Hydrologic Response Units (HRUs). The distribution of HRU within the Mill watershed was set up 166 

using multiple HRUs per sub-basin option with the same minimum areal coverage threshold of 5% for land 167 

use, soil and slope classes to be considered. Then, subdividing the sub-basin into homogeneous areas 168 

having unique soil, land use and management combinations resulted in a total of 479 HRUs for the Mill 169 

watershed. The largest sub-basin has an area of 587.3 ha while the smallest sub-basin has an area of 5.4 ha. 170 

Some statistics regarding the area of those HRUs from the sub-watersheds are shown in the Table 2. 171 

Table 2 Statistics for area of the HRUs 172 

  Statistic for the HRUs from the sub-watersheds   
Interval 
area [ha] 

Sum area 
[ha] 

Number 
of 

HRUs 
 

Max 
[%] 

Mean 
[%] 

Min 
[%] 

Sd 
[%] 

1-10 1020.97 366 24.31 2.32 0.03 2.99 
10-40 1626.02 87 39.19 10.54 2.08 7.52 
40-80 895.13 18 51.07 26.39 7.84 14.75 

http://swatmodel.tamu.edu/
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80-200 1076.81 8 58.84 32.23 17.19 13.41 
 173 

For overland flow, the modified Soil Conservation Service (SCS) curve number method (USDA 174 

Soil Conservation Service, 1972) was selected to estimate the amount of runoff. The modified rational 175 

method (Kuichling, 1889) was used to calculate runoff peaks and the potential evapotranspiration was 176 

computed using Monteith (1965). The variable storage routing method (Williams, 1969) was chosen to 177 

route water through the channel flow network to the watershed outlet. The SWAT model estimated 178 

sediment erosion due to precipitation and runoff using the MUSLE and the simplified version of Bagnold 179 

(1977) stream power equation was chosen for sediment routing, including sediment resuspension and 180 

deposition phenomena.   181 

 182 

The calibration was performed manually (Neitsch et al., 2002) using daily time steps by iteratively 183 

adjusting the parameters and comparing simulated results to observations for streamflow and sediment 184 

loads. The baseflow filter program (Arnold et al., 1995; Arnold & Allen, 1999) available on 185 

https://swat.tamu.edu was used for partitioning observed stream flow into base flow and surface runoff. For 186 

the hydrological model component, the surface runoff was firstly calibrated by adjusting the parameters 187 

such as the curve number (CN2), soil available water capacity (SOL_AWC) and soil evaporation 188 

compensation factor (ESCO). Secondly, the base flow was calibrated considering the following parameters: 189 

the groundwater “revap” coefficient (GW_REVAP), the threshold depth of water in the shallow aquifer for 190 

“revap” to occur (REVAPMN) and the threshold depth of water in the shallow aquifer required for base 191 

flow to occur (GWQMN). Finally, the parameters that impact the shape of the hydrograph such as the 192 

channel hydraulic conductivity coefficient (CH_K) for the transmission losses, the roughness coefficient 193 

(OV_N), the base flow alpha factor (ALPHA_BF), the temperature lapse rate (TLAPS) and 194 

minimum/maximum melt rates (SMFMX and SMFMN) for snow melt, were adjusted until values were 195 

acceptable for both water balance and stream flow. For the sediment model component, the following 196 

parameters were adjusted for sub-watershed sediment loads in addition to runoff factors calculated during 197 

https://swat.tamu.edu/
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the hydrologic calibration process: crop management factor (USLE_P), crop practice factor (USLE_C), 198 

crop residue coefficient (RSDCO) and bio-mixing efficiency (BIOMIX). The slope length factor 199 

(SLSUBBSN) and the slope of HRUs (SLOPE) were adjusted to represent realistic values of the watershed 200 

and HRUs. For channel routing, the parameters related to sediment degradation and deposition processes 201 

such as the channel cover and erodibility factors (CH_COV and CH_EROD), linear and exponential 202 

coefficient for sediment re-entrainment in channel (SPCON and SPEXP), were also adjusted during 203 

sediment calibration.  204 

 205 

The hydrological module calibration was performed for the period of January 2007 through December 206 

2015, while the data from January 2000 through December 2003 were used to validate the hydrological 207 

component of the SWAT model. The period 2007-2015 was selected for calibration because it 208 

encompassed greater variability than 2000-2003 (larger number of high values). Also, the period 209 

from January 2004 through December 2006 was fixed as the model spin up period for SWAT simulations. 210 

Sediment module calibration and validation were done using data from May 2013 through December 2015, 211 

and from January 2016 through September 2017 respectively. The performance of the model was evaluated 212 

through graphical analysis between simulated and measured data and calculation of three statistical metrics 213 

(Table 3) recommended by (Moriasi et al., 2007): the Nash-Sutcliffe efficiency (NSE), the root mean 214 

square error-observations standard deviation ratio (RSR) and the percent bias (PBIAS). The Nash-Sutcliffe 215 

Efficiency (Nash & Sutcliffe, 1970) is a standardized measure that determines the relative magnitude of the 216 

residual variance compared to the measured data variance. The PBIAS quantifies the average tendency of 217 

the simulated data to be larger or smaller than the observed data (Gupta et al., 1999). The RSR is a measure 218 

of the ratio of the Root Mean Square Error (RMSE) and the standard deviation of the observed data.  219 

 220 

 221 

 222 
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 223 

 224 

 225 

Table 3. Performance rating and statistical criteria. 𝑿𝑿𝒊𝒊 and 𝑿𝑿�𝒊𝒊 refer to the observed data and their average 226 
respectively, 𝒀𝒀𝒊𝒊 refer to the simulated data and n is the number of observations. 227 

Performance criteria Performance Rating : Good (Moriasi et al., 2007; Monthly 
time steps) 
  

Equations Streamflow                       Sediment 

𝑵𝑵𝑵𝑵𝑵𝑵 = 𝟏𝟏 −
∑ (𝑿𝑿𝒊𝒊 − 𝒀𝒀𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ (𝑿𝑿𝒊𝒊 − 𝑿𝑿�𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

 
 0.65 < 𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 0.75 0.65 < 𝑁𝑁𝑁𝑁𝑁𝑁 ≤ 0.75 

𝑹𝑹𝑵𝑵𝑹𝑹 =
∑ (𝑿𝑿𝒊𝒊 − 𝒀𝒀𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ (𝑿𝑿𝒊𝒊 − 𝑿𝑿�𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

 
0.5 < 𝑅𝑅𝑁𝑁𝑅𝑅 ≤ 0.60 0.5 < 𝑅𝑅𝑁𝑁𝑅𝑅 ≤ 0.60 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑵𝑵 =
∑ (𝑿𝑿𝒊𝒊 − 𝒀𝒀𝒊𝒊) × 𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ 𝑿𝑿𝒊𝒊𝒏𝒏
𝒊𝒊=𝟏𝟏

 
±10% < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁 ≤ ±15% ±15% < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁 ≤ ±30% 

 228 

 229 

2.3 ANFIS model description and set up 230 

Presented for the first time by Jang (1993), the ANFIS is a data-driven model based on the Takagi-Sugeno’s 231 

inference system (Takagi & Sugeno, 1985) that combines the best strategies of artificial neural networks 232 

and fuzzy logic. The ANFIS model has shown better performance compared to other data driven models for 233 

sediment modelling applications (Kisi et al., 2009; Afan et al., 2016; Kaveh et al., 2017). The ANFIS 234 

model simulation of suspended sediment in this study was performed using concomitant (i.e. zero lag) 235 

variables: precipitation, streamflow and the Watershed Vulnerability Index (Sirabahenda et al. 2017). The 236 

development of the Watershed Vulnerability Index is based on the key factors of the Universal Soil Loss 237 

Equation (USLE) such as the soil erodibility factor K with the crops and management factor C. The use of 238 

the Watershed Vulnerability Index, as an additional predictor, allows the ANFIS model to account for the 239 

spatial and seasonal variability of the land-use and soil characteristics in the estimation of SSC 240 

(Sirabahenda et al., 2017). 241 
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  242 

Fuzzy inference calculations were performed using Genifis1 and Evalfis functions incorporated in Matlab’s 243 

fuzzy logic toolbox (MathWorks, 2015). The ANFIS training is based on a hybrid algorithm allowing error 244 

minimisation and used the least square estimator and the gradient descent method to adjust consequences 245 

and premise parameters by adapting the connection weights. For comparison, the daily datasets were split 246 

into two blocks (for training and test phases) considering the same period and the same assessment criteria 247 

for the model performance as in SWAT model simulation. 248 

 249 

2.4 Buffer strip scenarios 250 

The legislatively mandated riparian buffer strip width for Mill Watershed was targeted to be extended for 251 

sediment loads reduction in the river. Thus, buffer strip widths varying from 15 m (current regulated width) 252 

to 100 m were considered for this study. Percentage agricultural area associated with the increase in buffer 253 

strip width was computed using Geoprocessing tools ‘buffer’ and ‘clip’ in ArcGIS for the watershed 254 

studied. Then, the decreased percentage area of agriculture was calculated by dividing the agriculture 255 

surface area within every projected buffer strip by total agricultural surface area. 256 

 257 

Different buffer width scenarios were simulated using hydro-meteorological data for the validation period. 258 

For the ANFIS model, the effect of agricultural area change on sediments loads was tested by modifying the 259 

Watershed Vulnerability Index. The value of this index changed as a function of agricultural area associated 260 

with the prescribed buffer widths. Similarly, land use in the SWAT model was updated by decreasing 261 

agriculture area and increasing the forested area by the same percentage from the watershed data in the 262 

ArcSWAT tool before every simulation. Finally, the estimated sediment trapping efficiency was quantified 263 

as the difference between sediment loads simulated by both models under the projected riparian strip width 264 

and its current conditions. 265 

 266 

3 Results  267 
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3.1 SWAT and ANFIS sediment simulation results  268 

The first output calibrated for the SWAT model was the streamflow with NSE values of 0.81 and 0.78 269 

respectively for the calibration and validation periods. The RSR and PBIAS were respectively 0.53 and 270 

17.6% for the model calibration period, while they were respectively 0.55 and 24.4% for the validation 271 

period. Those quantitative statistics indicated a good performance rating according to the ranges of statistics 272 

values recommended (Table 3) and reported for monthly time steps by Moriasi et al. (2007). However, 273 

streamflows are under-predicted by the SWAT model, similar to results reported by Anaba et al. (2017). 274 

Factors that most influence streamflow underestimation could be the limitations from the use of SCS Curve 275 

numbers (CN2) for days with several downpours for surface runoff calculation (Qiu et al., 2012; Abbaspour 276 

et al., 2015) and the spatial variability of precipitation that was not fully captured by the relatively distant 277 

rain gauges.   278 

 279 

For SSC estimations, Figure 3 shows the time series of flow, precipitation and SSC for calibration phase 280 

and validation phase.  Low SSC values were often overestimated by both models. For events with high 281 

SSC, the ANFIS model predicted SSC more accurately than the SWAT model, although both models 282 

underestimated most peaks. The SSC underestimation for high concentrations by SWAT may be due to the 283 

simulated streamflow underestimation related to the limitations of the surface runoff calibration processes. 284 

Figure 4 and Figure 5 show respectively the log-scaled scatterplots of predicted SSC versus observed SSC 285 

for SWAT and ANFIS models. Their high slope and low y-intercept of the best-fit regression line indicated 286 

that those models reproduce relatively well the magnitudes of the observed SSC (Willmott, 1981).  287 

Performance criteria calculated from daily predicted SSC  are presented in Table 4 and their values are all 288 

higher than the monthly standards suggested by Moriasi et al. (2007).   289 

 290 

Please include Figure 2 here. 291 

 292 

Please include Figure 3 here. 293 
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 294 

Please include Figure 4 here. 295 

 296 
 297 
 298 
 299 
 300 
Table 4. Model performance evaluation calculated using daily values. 301 

  Statistical performances indicators 

NSE RSR PBIAS 

Variable calibration validation calibration validation calibration validation 

Sediment SWAT 0.76 0.71 0.49 0.56 19.6 23.5 

ANFIS 0.79 0.75 0.45 0.49 15.2 19.7 

 302 

Those model performance indicators suggest that the ANFIS model used in combination with the 303 

Watershed Vulnerability Index can be an alternative and efficient tool to predict SSC comparatively to 304 

SWAT model for the Mill River. Although both models have predictive capacity, ANFIS outperformed 305 

SWAT. It was found also by Roushangar et al. (2014) that ANFIS models gave more accurate total bed 306 

material load transport rates than a deterministic model for the Qotur River in Northwestern Iran. 307 

 308 

The ANFIS model estimated a total sediment load of 6561 tonnes with an overestimation of 1.7 % during 309 

calibration phase and with an underestimation of 13% during validation, compared to the total sediment 310 

load observed. The SWAT model estimated the total sediment load as 4836 tonnes with an underestimation 311 

of 24 % and 22% compared to the total sediment load observed for calibration and validation phases, 312 

respectively.  313 

 314 

3.2 Riparian strip effective width and sediment retention rate  315 
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The change in simulated sediment retention rates were 30.5 % and 36.2 % of the total stream sediment load 316 
for the 100 m wide forested buffer strip for the SWAT and ANFIS models, respectively. These sediment 317 
trapping rates represent the net benefit over what the Mill watershed presently has with 15 m buffer strips.  318 
The sediment retention rate increases initially with buffer width and starts to reach a plateau for widths 319 
above 50 m.  There is a diminishing benefit in making the riparian buffer strip wider than 50 m. Thus, by 320 
doubling the buffer width from 50 m to 100 m, there is only an increase of sediment retention rate of 4.6 % 321 
for the SWAT model and 4.0 % for the ANFIS model.  Figure 5shows the variation of sediment trapping 322 
efficiency and the decreased percentage area of agriculture in function of the increased buffer widths (i.e. 323 
additional buffer width from the original 15 m). An exponential model was also fitted to the simulated 324 
retention rates as a function of the increased buffer widths. The equations, provided in Figure 5, can be used 325 
by managers to interpolate between the modelled retention rates. Based on the calculation with these 326 
equations, Table 5 provides an example of a summary of buffer strip widths (including the original 15 m) 327 
and associated target percentages of the theoretical maximum sediment retention that could be used by 328 
water resources management to support informed decision-making. 329 

 330 

Table 5. Total buffer strip widths required for target percentages of sediment reduction. 331 

Additional sediment 
retention above current 
(percentage of maximum) 
                  [%] 

Total Buffer Strip widths 
required 

ANFIS 
[m] 

SWAT 
[m] 

10 17.7  18.0  
25 22.5  23.1  
50  32.6  33.8  
75  48.4  49.8  
90  65.0  65.6  

 332 

Please include Figure 5 here. 333 

 334 

4.0 Discussion 335 

The fact that ANFIS slightly outperforms SWAT may be in part caused by the differences in model inputs. 336 

While SWAT simulates flows and subsequently uses these simulated values as an input to the sediment 337 

model, ANFIS used measured flows to accomplish the same. Two of the input variables for the ANFIS 338 
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model are correlated (precipitation and discharge), but complementary, given that precipitation can 339 

mobilize sediments in the drainage basin and flow modulates concentrations and downstream transport. 340 

ANFIS may be benefiting from the fact that measured rainfall is not transformed into flows within the 341 

model, as in SWAT. It should be noted that intra-annual variability in individual crop types has not been 342 

considered for SWAT, as these data were not available. However, as explained by Sirabahenda et al. 343 

(2017), the Watershed Vulnerability Index varies throughout the growth season. Both K and C factors 344 

included in the Index account for seasonal variability in rainfall erosivity index and crop stages. This 345 

varying index in ANFIS may also be one of the reasons why it outperformed SWAT. 346 

 The sediment load underestimation at high SCC by the SWAT model could be linked to  underestimation 347 

of runoff and/or the difficulty of SWAT to adequately  predict the contribution of  stream bank soil losses 348 

(Zaimes et al., 2004). In fact, this limitation has been recognized in other studies (e.g. Ricci et al., 2018) 349 

and has led to the development of a streambank erosion module (Narasimhan et al., 2017). When land use is 350 

changed in SWAT, the value of curve number (CN) and crop factor (C) are updated. Therefore, changes in 351 

land use in SWAT (e.g., increasing buffer widths) has an impact on sediment trapping, but also on sediment 352 

generation. The variations in soil aggregate stability during freeze and thaw periods may also affect  runoff 353 

and soil erosion (Hayhoe et al., 1992; Starkloff et al., 2018).  It has also been noted by Edwards and Burney 354 

(1989) that the snowmelt and prolonged low-intensity rains yield greater sediment loss for PEI soils in early 355 

spring.  356 

 357 

The comparative analysis also shows that the ANFIS model gives an average of 6.4 % higher sediment 358 

retention ratios than SWAT model. This relatively small difference can be explained by uncertainties 359 

related to input data and to the limitations inherent to the mathematical conceptualization of both models. 360 

The ANFIS model works as a black box (Wang, 2006) and the parameters have no interpretable meaning in 361 

terms of sediment transport processes like sediment resuspension or deposition phenomena. The ANFIS 362 

model needs large datasets for the learning phase. Hence, when the time series are relatively short, the 363 

model has its limits and over-parametrization can occur that may lead to overfit (Nayak & Jain, 2011; 364 
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Sanikhani & Kisi, 2012). Conversely, the under estimation of the runoff factors by the SWAT model results 365 

in under estimation of sediment loads implicitly during simulation. Tibebe and Bewket (2011) were faced 366 

with a similar challenge in their implementation of SWAT in Ethiopia. Peak runoff was underestimated by 367 

the model, and so were the associated sediment loads.  Recent improvements in SWAT by (Cibin et al. 368 

2018) may provide a different outcome in future comparative studies.  369 

 370 

The main limitation of this study with regards to the assessment of trapping efficiency of buffer strips is the 371 

fact that our implementations of both SWAT and ANFIS did not account directly for the fact that buffer 372 

width increases occur at the edges of fields. Although this fact can be rightly considered as a model 373 

shortfall, it allows for a more direct comparison of the two approaches, given that the ANFIS model is not 374 

structured to specifically indicate the location of buffer strips. Other factors related to local conditions not 375 

fully captured by our models may affect the sediment trapping efficiency such as steep slopes, sediment 376 

grain size distribution and footpaths in the riparian buffer strip that may create preferential flows/gullies 377 

(Wenger, 1999; Shan et al., 2014). Fischer and Fischenich (2000) noted that the wide buffers strips with 378 

optimal conditions can often be compromised by improper practices. It should also be mentioned that the 379 

buffer strip vegetation is dominated by trees and that future mitigation measures should be considering a 380 

more suitable mix of plants (Betrie et al., 2011; Moriasi et al., 2011; Zaimes & Schultz, 2015). For instance, 381 

Shan et al. (2014) found that an average effective width was of the order of 58 m using SWAT and a 382 

Riparian Ecosystem Management Model during a research study in the Three Gorges Reservoir area 383 

(China). This result is similar to the conclusion of the present study. However, they also indicated  that 384 

wider widths were required for areas with steeper slopes or finer textured soil. Other reviewed studies noted 385 

that the sediment retention increases with riparian width but not infinitely and the effective riparian buffer 386 

strip width is site-specific (Parkyn, 2004). 387 

 388 

In spite of these restrictions, both models allowed us to quantitatively investigate the effectiveness of buffer 389 

strip widths on sediment trapping efficiency. The asymptotic behavior of the curve relating trapping 390 
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efficiency to buffer widths, which indicates that beyond a certain threshold, the gain in extending the buffer 391 

strip is minimal was also noted in other studies. For instance, Cho et al. (2010) used the SWAT model in 392 

Little River Experimental Watershed (Georgia, U.S.A) and found that trapping efficiency reached a 393 

maximum value at 30 m and remained constant for wider buffer strips. Similar results were also found by 394 

Zhang et al. (2017) for sediment retention, but also for the reduction of total nitrogen and total phosphorous. 395 

These authors reached a conclusion similar to ours; in general, extending the buffer strip width over 50 m in 396 

conditions like those encountered on PEI does not generate much additional gain in sediment retention.   397 

Selecting 50 m as a buffer width would be more conservative than what is recommended by Canadian 398 

federal authorities. Indeed, Agriculture and Agri-Food Canada recommends a buffer width varying between 399 

10-30 m for sediment retention (http://www.agr.gc.ca/eng/science-and-innovation). The final choice of the 400 

optimum buffer width would require evaluating the benefit of that sediment retention – both for the farmers 401 

who get to keep their soil - and for improved quality of surface waters. 402 

 403 

5.0 Conclusion 404 

This study explored the effectiveness of two models: SWAT and ANFIS to simulate SSC and loads and 405 

their sensitivity to land use parameter changes. Predicted SSC values were close to measured SSC values in 406 

most instances for both models for the calibration and validation periods, but the values of the quantitative 407 

statistics were better for the ANFIS model compared to the SWAT model. Although both models 408 

underestimated sediment loads, the ANFIS model was less biased than SWAT. Both models suggested the 409 

same optimal forested riparian zone width for sediment removal with a slight difference for sediment 410 

trapping ratios, indicating credible performance of ANFIS to simulate the effects of land occupation 411 

variation on sediment. The models suggest that increasing the buffer width beyond 50 m yields only minor 412 

improvements in sediment trapping.  413 

 414 

This study was an exploration case to test the reliability of an empirical model in comparison with a 415 

deterministic model for sediment estimation for future management of sediment delivery factors, like land-416 

http://www.agr.gc.ca/eng/science-and-innovation
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use/land-cover, in agricultural watersheds. The simulated loads obtained with the two modelling approaches 417 

constitute helpful information for watershed managers and stakeholders to plan beneficial management 418 

practices and to formulate their environmental policies for riparian zones. Since both models provide first 419 

approximation estimations, further investigation should be conducted with a long-term monitoring 420 

campaign of SSC to make a comparison with empirical data on the effectiveness of different buffer widths 421 

on sediment retention. It is likely that limitations of the ANFIS model would be further highlighted in a 422 

more detailed analysis that would account for inter-seasonal shifts in land use practices and alternative 423 

riparian zone designed such as zonation within the buffer strip that includes different types of vegetation 424 

(gradient of grass, shrubs and trees). However, this study showed that an empirical model can provide a first 425 

assessment of the benefits of riparian zones in agriculture-dominated watersheds. 426 

 427 
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FIGURE CAPTIONS 645 

Figure 1. Location of PEI in Canada (a), Mill River Watershed location (b), elevation (c) land use (d) and 646 
slope (e). 647 
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Figure 2 Time series plot of observed flow (blue), precipitation (green) and SSC for Calibration phase (a) 648 
and for validation phase (b) 649 

Figure 3. Scatter plot of observed versus simulated SSC for SWAT model. 650 

Figure 4. Scatter plot of observed versus simulated SSC for ANFIS model. 651 

Figure 5. Sediment trapping efficiency versus the increased riparian buffer width. 652 
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