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Abstract 15 

Wetlands across Canada have been, and continue to be, lost or altered under the influence of 16 

both anthropogenic and natural activities, such as land development and climate change. The 17 

ability to assess the rate of change to wetland ecosystems and related spatial pattern dynamics 18 

is important for effective and meaningful wetland management and protection. Given the 19 

impacts of climate change across the globe, now more than ever, it is of benefit to assess such 20 

patterns at large and encompassing scales, e.g., regional or national scales for an entire country. 21 

The availability of cloud-based geospatial platforms such as the Google Earth Engine has allowed 22 

for the production of countrywide wetland maps, yet change to these wetlands at the wetland 23 

class scale has yet to be implemented. This study assessed 30 years of change to wetlands across 24 

the province of Newfoundland using Landsat imagery to demonstrate this possibility. Assessment 25 

of change was successful at the wetland class scale, including bog, fen, swamp, and marsh, 26 

elucidating patterns in wetland change across Newfoundland from 1985 to 2015. The results of 27 

this study demonstrate the potential of GEE and Landsat historical imagery to not only assess 28 

change at both provincial and national levels of the entire country of Canada.  29 

 30 

1. Introduction 31 

 32 

Climate change is amongst the most significant challenges faced by northern countries in modern 33 

times. The current and predicted catastrophic impacts of a warming climate on various 34 

ecosystems had been reported extensively, including in Canada, where climate change has the 35 

potential to cause increasing instances of fire and impacts on the ability of ecosystems to recover 36 

from natural disasters [1], permafrost melt [2], and alterations to ecosystem extent and 37 
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vegetation structure [3], among others. Such impacts highlight the need for efficient and timely 38 

adaptation to climate change. A preliminary step for effective climate change adaptation is to 39 

monitor changes to precious ecosystems located within these countries to mitigate or at least 40 

reduce the adverse effects of current and future climate change. 41 

Wetlands are amongst the most valuable and productive resources on the globe and provide 42 

numerous hydrological and ecological services, such as global climate regulation, natural water 43 

purification, flood and drought amelioration, shoreline erosion protection, soil conservation, 44 

opportunities for recreation and aesthetic appreciation, and wildlife habitat [4–7]. Although the 45 

definition of wetlands depends mainly on the scientific field of study, they can be simply defined 46 

as areas inundated or saturated by water for at least part of the year [8,9]. 47 

Wetlands and the services they provide are under the direct and indirect influence of 48 

anthropogenic activity [10–12], resulting in amplified rates of wetland change and loss [13]. Since 49 

the beginning of the 20th century, about two-thirds of the wetlands have been lost or severely 50 

altered [14]. Such loss has not only resulted in a decrease in global wetland coverage but has 51 

impacted the provision of valuable wetland services to humans and non-humans alike [15]. In 52 

Canada, historical causes of wetland loss included land-use change due to development and 53 

agriculture and associated bi-products such as re-direction of run-off and pollution[16]. In 54 

modern times, however, climate change can amplify ongoing wetland loss and change [17–19]. 55 

Due to wetlands' valuable and irreplaceable environmental services, constant monitoring and 56 

mapping changes to wetlands in current times play a crucial role in effective management, 57 

conservation, and restoration of these essential ecosystems [6,20]. In addition, change detection 58 

in wetland areas could be essential for assessing past and future trends, developing evidence-59 

based policy and preventing future disaster events [21]. 60 

Due to the wetlands ecosystem's dynamic nature, conducting conventional vegetation, water, 61 

and soil sampling for monitoring wetlands is difficult and time-consuming, requiring extensive 62 

fieldwork and sustainable human involvement over large geographic areas [9,20,22]. In contrast, 63 

remote sensing is an efficient tool that can play a key and constructive role in assessing and 64 

studying wetland status and measuring the extent of wetland changes on both long-term and 65 

large-scales [23,24]. Utilizing optical satellites is an effective and valid alternative in vegetation 66 

monitoring and assessing the change of wetland areas [25]. The archived moderate resolution 67 

Landsat time-series data provides an exclusive opportunity to detect and identify wetland 68 

changes resulting from the extensive historic imagery library [22]. 69 

Due to a lack of sufficient satellite data and computing resources, most studies applying change 70 

detection techniques do so over only small areas [26]. With the recent availability of the Google 71 

Earth Engine (GEE), an integrated cloud-computing platform for remote sensing and Earth 72 

science data processing [26,27], it is now possible to investigate and apply change detection 73 

algorithms at large regional scales for land cover change research (such as exploring wetland 74 
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dynamics) at multi-spatial and -temporal resolutions [27,28]. The GEE solves computer intensive 75 

problems and provides a quickly accessible collection of ready-to-use data products, including 76 

long-term Landsat imagery series, Sentinel datasets, etc., as well as advanced machine learning 77 

tools to handle and manipulate big earth observation data for large areas [29,30]. 78 

Remote sensing has increasingly been used to produce ecosystem maps, land-cover change 79 

information, and track ecosystem status over large-scales and long-period observation [31]. In 80 

the literature, there exist several studies dealing with land cover change detection at small and 81 

large-scales using bi-temporal and multi-temporal data. The proposed methods are mainly 82 

categorized as algebra-based, transformation-based, and classification-based methods [32–34]. 83 

Image classification-based approaches widely used in land use/land cover change detection, 84 

provide detailed change information within the study area [34]. This category contains two main 85 

subcategories, including direct multi-date classification methods, wherein just one classifier is 86 

used for stacking multi-temporal data sets, and post-classification methods in which two or more 87 

data sets are separately classified and then compared [35,36]. 88 

Several studies have developed change detection strategies on the GEE platform. In [26] a new 89 

approach was proposed to generate and update land change maps via a combination of the CART, 90 

CVAPS methods and NDVI time series analysis for the western regions of China. Sidhu and her 91 

colleagues in [30] evaluated and demonstrated the usefulness of GEE as a web-based remote 92 

sensing platform for detecting land cover changes for Urban areas in Singapore [30]. The Breaks 93 

For Additive Season and Trend (BFAST) method has been used to investigate cropping systems 94 

and temporal paddy crop dynamics in Sidoarjo Regency, Indonesia, and provides accurate and 95 

up-to-date information on agricultural land-use changes [37]. In [38], the result of large-scale and 96 

long-term change patterns over a cropland area near Dongting Lake in China was characterized 97 

via the LandTrendr algorithm with Landsat time-series data derived from GEE [38].  98 

Many other studies have applied change detection strategies to the specific case studies of 99 

wetland ecosystems. For example, [39] examined monthly coastal dynamics in the Zhoushan 100 

Archipelago using GEE, a full time-series of Landsat imagery, and the Modified Normalized 101 

Difference Water Index, noting a loss of coastal tidal flats and establishing the potential of GEE 102 

for use in monitoring other coastal wetland areas. [40] used a Landsat time series to determine 103 

change and type conversion of wetland areas in the Willamette River floodplain in Oregon, 104 

finding that wetland loss slowed after the implementation of wetland-related policy in the area, 105 

demonstrating the importance of change detection techniques for examining the effectiveness 106 

of wetland policies and management decisions. Similarly, [41] quantified an increase in coastal 107 

emergent marsh wetland because of wetland restoration efforts, again demonstrating the 108 

importance of change detection providing evidence for the usefulness of wetland mitigation 109 

strategies. Of particular relevance, [42] successfully assed changes to treed and non-treed 110 

wetlands across 650 million hectares of Canada's forested ecosystems between 1984 and 2016. 111 
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To build on these methods, ours will be the first study to apply a change detection technique 112 

within the GEE to monitor changes of wetlands across the province of Newfoundland at the level 113 

of wetland class (bog, fen, swamp, and marsh). The methods discussed here will support further 114 

assessment of change to wetland class at the scale of the entire country of Canada. The main 115 

objectives of this study are to (1) explore the feasibility of detecting wetland class and land cover 116 

changes using Landsat imagery and associated vegetation features, (2) monitoring and 117 

understanding wetland cover dynamics over time, and (3) determining causes of change to the 118 

wetlands.  119 

2. Materials and methods 120 

2.1. Study area 121 

The study area encompasses the entire island of Newfoundland, located on the eastern-most 122 

coast of Canada (Figure 1). Within its 108,860 km2 area is a highly diverse landscape, 123 

characterized by a range of climate, geology and vegetation. As such, various land cover typifies 124 

the Newfoundland landscape, including dense boreal forest, rolling heath, and sprawling 125 

peatlands. The current anthropogenic land cover makes up roughly 11% of the island's total area, 126 

with the largest concentration in and amongst the capital city of St. John's and a number of other 127 

cities and communities, including Corner Brook, Gander, Grand Falls-Windsor, and Deer Lake. 128 

Wetlands are a dominant feature of the Newfoundland landscape, making up an estimated 18% 129 

of the total land cover, the majority of which are peatlands, including bog and fen [43]. While 130 

there has been extensive work dedicated to establishing the current extent of wetlands across 131 

the island [44,45], there exists very little information as it regards to past and future trends of 132 

wetland loss and change. Rough estimates state that around 80-98% of wetlands in and around 133 

Canadian cities and two-thirds of coastal marsh in Atlantic Canada have been lost since the time 134 

of settlement [46,47]. However, the specifics of wetland loss and change in Newfoundland are 135 

not yet known. Likely causes for historical wetland loss and change on the island include wetland 136 

drainage and conversion to urban or agricultural land-use. Similar pressures are likely to drive 137 

future trends in wetland loss and change, though climate change is a confounding factor [18,19]. 138 
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 139 

Figure 1. The Island of Newfoundland and the locations of field-collected reference data. 140 

 141 

Field data were collected across Newfoundland during the summers of 2015-2017 and provided 142 

the basis for the multi-year reference datasets used later in the change detection methodology. 143 

During 2015-2017, numerous wetlands were visited by biologists and ecologists in and around 144 

several communities across Newfoundland, including St. John's (east coast), Deer Lake (central), 145 

Grand Falls-Windsor (central), and Gros Morne (west coast). The distribution and locations of the 146 

reference data collected from 2015 to 2017 are presented in Figure. These areas were selected 147 

as they best represent landscapes common across Newfoundland while also containing various 148 

roadways accessing as many wetlands as efficiently possible over a short amount of time. While 149 

in the field, wetlands were classified as bog, fen, swamp, or marsh based on the as guidelines by 150 

the Canadian Wetland Classification System (National Wetlands Working Group, 1997). 151 

Ultimately 432 wetlands with a size greater than or equal to one hectare were classified and later 152 

digitized into polygons, creating a wetland training dataset for the years 2015-2017. Additional 153 

land cover classes, such as urban, pasture, forest, and water were, including, resulting in a 154 

reference dataset containing 817 polygons. Figure 2 shows a more detailed view of the 155 

distribution of training data.  156 

The 2015-2017 dataset was used as the basis for the creation of an additional three datasets 157 

representing wetland and non-wetland land cover across the island during the years of 1985-158 
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1987, 1995-1997, and 2005-2007. To do this, each of the 817 polygons from the 2015-2017 were 159 

compared with historical reports, maps, aerial photo, and Landsat imagery of the relevant dates 160 

(1985-1987, 1995-1997, and 2005-2007). Polygon classes and polygon boundaries were modified 161 

or removed, where any past land cover changes had occurred. For example, several marsh 162 

polygon boundaries were modified as water levels and vegetation growth through the years 163 

changed. Similarly, various urban polygons present in the 2015-2017 datasets were removed as 164 

the urban landscapes in the past tended to be less extensive. If dramatic differences in the 165 

appearance of wetland vegetation across the years was noticed, as was sometimes the case 166 

where a fen had dried and became more swamp-like, the polygon was removed or reclassified if 167 

possible.  In cases where a polygon was removed, another polygon representing land cover of 168 

the same type was delineated elsewhere to ensure that the multi-year datasets had similar total 169 

polygon and area counts.  170 

  

St. John's Gros Morne 

  
Deer Lake Grand Falls-Windsor 
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Figure 2. Reference wetland and non-wetland data collected in and around the St. John's, Gros 

Morne, Deer Lake, and Grand Falls-Windsor areas of Newfoundland. 

 171 

2.2. Data collection and pre-processing 172 

 173 

In our study, surface reflectance Tier 1 data product of three different types of Landsat images 174 

(Landsat 5, 7 and 8) from 1985-2017 were obtained from the USGS earth explorer website on 175 

GEE platform. Table 1 summarizes the specifications of the data used in this study. Although the 176 

Landsat archive contains remotely sensed imagery, which was continuously acquired since 1972, 177 

frequent cloud cover results in excessive temporal gaps in the Landsat data, for certain regions, 178 

especially in wetland areas or during specific time periods. In order to achieve the study 179 

objectives and prepare cloud-free composites, each composite was created using the minimal 180 

cloud cover and overlapped images of three consecutive years [1985-1987, 1995-1997, 2005-181 

2007, 2015-2017] taken from June 1 to October 30. Finally, four composites from 284 images, 182 

including 135 TM (Thematic Mapper), 50 ETM+ (Enhanced Thematic Mapper Plus), and 99 OLI 183 

(Operational Land Imager) with almost free cloud cover were prepared to contain the median 184 

reflectance values of the collections. Moreover, since 2003, due to failure of the scan-line 185 

corrector (SLC) of ETM+ imager on Landsat 7, approximately 22% of the pixels of ETM+ images 186 

have no data [28]. A common method to fill no data stripes is utilizing SLC-off gaps filling method 187 

[48], but in this case, some of the stripes may not get filled due to the cloud cover threshold 188 

employed in each composite.  To deal with this problem, the third image composite was created 189 

by the means of both Landsat 5 and Landsat 7 images. Note that the similar bands of different 190 

Landsat sensor types (TM, ETM+ and OLI/TIRS), including Blue, Green, Red, NIR, SWIR1, SWIR2 191 

and TIR bands, were chosen and stacked to create composites. Additionally, to improve the 192 

classification results, the spectral indices, including DVI, NDVI, GDVI, GNDVI, GRVI, GSAVI, 193 

GOSAVI, SAVI, OSAVI, EVI, NDWI, TasselledCap_Wet, TasselledCap_Veg were calculated and 194 

added to the composites. In addition, these composites contain one band consisting of the 195 

Shuttle Radar Topography Mission (SRTM) V4 digital elevation for providing elevation data of the 196 

study site. The selected bands and indices were used as input features for the classification. 197 

Figure 3 illustrates the number of Landsat observations over the summer of the aforementioned 198 

years. 199 

 200 

Table 1. The number of Landsat imagery and cloud cover threshold employed in each composite. 201 

 202 

Composite Period Landsat satellite Number of Images Cloud cover 

First 1985-1987 Landsat 5 TM 62 <20 % 

Second 1995-1997 Landsat 5 TM 46 <10 % 

Third 2005-2007 Landsat 7 ETM+ 50 + <15 % 
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Landsat 5 TM 27 

Fourth 2015-2017 Landsat 8 OLI/TIRS 99 <20% 

 203 

 204 
Figure 3. Distribution and number of Landsat scenes in (a) the first, (b) second, (c) third, and (d) 205 

fourth image composites used in this study. 206 

 207 

2.3. Post-classification change detection 208 

This study intents to develop a land cover map that satisfies the requirements for a wetland 209 

change detection application. We performed the detection of wetland change regions in the GEE. 210 

In this study, the pixel-based classification of multi-temporal composites was produced to assess 211 

change regions and prepare change maps. The available classification algorithms within GEE 212 

include Classification and Regression Tree (CART), decision tree (DT), random forest (RF), support 213 

vector machine (SVM), etc. We executed pixel-based classification with RF tree-based classifier 214 

that works by growing a number of random decision trees to full depth. The RF model is a well-215 

known ensemble classifier that effectively distinguishes between spectrally similar land covers. 216 
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The robustness of this algorithm has been proven in the literature [49]. The important user-217 

specified variables in RF include the number of Rifle decision trees to create per class, the number 218 

of variables per split and the minimum size of a terminal node [50]. Once the classification model 219 

was applied to the composites of sequential times, pixel-by-pixel comparing of classified maps 220 

generated change maps.  221 

2.4. Validation and Accuracy assessment 222 

 To provide error analysis and assessment of classified maps, and consequently, the change 223 

detection results, overall accuracy (OA) rate, which is the portion of cases that were classified 224 

correctly, user's accuracy (UA) and producer's accuracy (PA) were estimated based on confusion 225 

matrices. The user's accuracy is defined as the accuracy of the classification despite commission 226 

errors, which occur when pixels in obtained classes are ascribed to a particular class that, in fact, 227 

does not belong to it. Furthermore, the producer's accuracy is defined as the accuracy of 228 

classification despite errors of omission, which occurs when pixels belonging to one class are 229 

included in other classes [51,52].  230 

3. Results 231 

Figure 4 shows the distribution of land cover classes across Newfoundland for each time-period, 232 

and figure 5 shows the total coverage of each land cover class as calculated from the final 233 

classifications. Based on these results, bog and forest are consistently the most dominant 234 

wetland and non-wetland land in Newfoundland for all years, respectively. These results are 235 

consistent with other reports of dominant Newfoundland land cover [44,53]. Marsh is 236 

consistently the least common wetland class, having the lowest coverage of any wetland class 237 

during all periods. Other reports of Newfoundland wetlands that note the rareness of marsh 238 

reflect the findings presented here [53]. Agriculture and urban/barren are the least common land 239 

cover classes overall. These results are as expected as the majority of the Newfoundland 240 

landscape has not been altered by human modifications. 241 

Bog wetland coverage is the lowest during the earliest years studied (the 80s and the 90s), and 242 

highest in the most recent (2000s). The fen and swamp results reflect this trend somewhat, with 243 

fen having the lowest coverage in the 80s and swamp in the 90s. The total amount of the marsh 244 

class, however, seems to alternate between years, being highest in the 80s and early 2000s and 245 

lowest in the 90s and late 2000s. Bog coverage is far more extensive than all other wetland 246 

classes during every time period. Swamp is the second most extensive wetland class for all 247 

periods except the 90s, during which fen is more extensive. Based on Figure 4, peatlands, 248 

including bog and fen, are most common in the middle and southern portions of the island, while 249 

forest dominants along the west and north coasts.  250 

The result of the accuracy assessment of the classified maps is shown in Table 2. The 2015-2017 251 

classification had the highest overall accuracy at 88%, followed by the 2005-2007 classification 252 
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at 85%, the 1985-1987 classification at 84% and the 1995-1997 classification at 83%. Generally, 253 

across all time periods, non-wetland land-use had the highest user and producer accuracies 254 

between 91 to 100%. Of the wetland classes, bog had the overall highest producer's accuracies 255 

between 92% to 97%, and fen had the highest user's accuracies between 66% to 86%. Marsh 256 

generally had higher user and producers accuracy values compared to that of the swamp, which 257 

had the lowest accuracy results of all classes, wetland and non-wetland.   258 
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Figure 4. Wetland and non-wetland land cover classification using Landsat imagery from 1985-

1987 (top left), 1995-1997 (top right), 2005-2007 (bottom left) and 2015-2017 (bottom right).  

 

 

Table 2. Accuracy assessment of classified maps based on the error matrix. 
Urban Pasture Forest Water Marsh Swamp Fen Bog Estimator Composite 

94.54 88.89 92.06 95.34 50.0 35.0 44.45 94.28 PA 

UA 

OA 
First 97.14 100 84.05 100 42.85 58.33 85.71 80.48 

84.72 

94.87 100 91.83 96.29 42.85 8.33 51.61 92.40 PA 

UA 

OA 
Second 97.36 86.66 86.53 100 75.0 20.0 66.66 78.49 

83.26 

93.54 100 91.42 97.72 62.50 62.50 36.84 96.97 PA 

UA 

OA 
Third 100 94.11 91.63 100 62.15 50.0 82.35 73.56 

85.40 

100 100 98.27 100 50.0 47.05 53.33 94.11 PA 

UA 

OA 
Fourth 100 100 89.06 100 62.50 57.14 80.0 82.05 

88.21 
 

 

 

 
Figure 5. The total area of each wetland and non-wetland land cover class per period of time.  

 259 

Random Forests are not only used for prediction but also to assess and determine the importance 260 

of each variable in the classification scheme. The variable importance analysis is a bi-product of 261 

RF classification and determines the contribution of each predictor variable to the general 262 

classification model. Figure 6 illustrated the normalized importance variable of extracted features 263 
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in this study. As shown, the TIR band and SRTM elevation data were the essential features for 264 

wetland classification in different years, followed by NDWI and DVI indices. It is interesting to see 265 

that the same features play approximately the same role in the classification of different 266 

composites. 267 

 
Figure 6. Heat map of the variable importance for the four classified maps of  

 268 

Figures 7, 8, and 9 show the total amount of wetland coverage lost and gained between the 80s 269 

and the 90s, between the 90s and the early 2000s, and between the early 2000s and the late 270 

2000s, respectively. Overall, the time-period between the 80s and 90s was the only time during 271 

which there was a net loss of wetlands as a single class. The results also show a net gain of 272 

wetlands as a single class between the 90s and the early 2000s, and between the early 2000s and 273 

late 2000s.  274 

Between the 80s and 90s (Figure 7), all wetland classes except for fen experienced a net loss in 275 

coverage, with swamp experiencing the most significant decrease. Much of the swamp loss 276 

during this time period appears to be a result of conversion into forest areas. Similarly, the loss 277 

of bog is mostly a result of conversion to fen. Between the 90s and the early aughts (figure 8), 278 

fen coverage experienced a small net loss while bog, swamp and marsh experienced a net gain, 279 

respectively. The gain in swamp brought its total area back to a similar level, as was present in 280 

the 80s (Figure 7).  Between the early and late aughts (Figure 9), bog and marsh experienced a 281 

net loss, while swamp experienced a net gain. Fen also experienced a small net gain. 282 
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Figure 7. Loss and gain of wetland class land coverage between the 1980s and the 1990s. 

 283 

 
Figure 8. Loss and gain of wetland class land coverage between the 1990s and the early 2000s.  

 
Figure 9. Loss and gain of wetland class land coverage between the early and late 2000s. 

 284 

Figure 10 shows the total amount of wetland coverage lost due to conversion to anthropogenic 285 

land cover, including agriculture and urban (Figure 10a), other wetland classes (figure 10b), and 286 
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non-wetland natural land cover, including forest and water (Figure 10c). Generally, the most 287 

significant contributor to the loss within an individual wetland class seems to be the conversion 288 

to another wetland class, particularly in the case of bog and fen. Bog, for example, is often lost 289 

because of conversion to the fen class and vice versa, though a substantial amount of bog and 290 

fen has also converted to upland forest. Based on the results in Figure 10b, the loss within a 291 

wetland class because of a conversion to another class is most prominent between the early and 292 

late 2000s.  While a large portion of swamp and marsh loss seems to be a result of wetland class 293 

conversion, an even more substantial portion is driven by conversion to non-anthropogenic 294 

upland classes such as forest and open water (Figure 10c). A greater amount of total marsh and 295 

swamp area is lost to the conversion to non-anthropogenic upland than bog or fen.  296 

Conversion of wetlands to non-anthropogenic upland is most prominent between the 80s and 297 

90s, and least prominent between the 90s and the 2000s. Compared to other categories of land 298 

cover (wetland and non-anthropogenic upland), the conversion of wetlands to anthropogenic 299 

classes is less common (figure 10a). The most considerable loss of wetlands to anthropogenic 300 

land cover seems to have occurred between the 80s and the 90s. The lowest amount of bog and 301 

fen conversion to anthropogenic land cover occurred most recently, between the early and late 302 

20000s. Conversely, loss of swamp and marsh to anthropogenic land cover seems to have 303 

increased slightly during this time period. 304 

 305 
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(c) 

Figure 10. (a) Conversion of wetlands to anthropogenic land cover including urban and 

agriculture, (b) conversion of one wetland class to another, and (c) conversion of wetlands into 

the forest or water land cover. 

 306 

Table 3 and Figure 11 provide information about the amount and location of wetlands that 307 

remained stable or unstable across time periods. Stable wetland areas are those wetland classes 308 

that remained the same class across time.  Unstable wetlands areas are those areas that were 309 

classified as a wetland, became a wetland, or changed wetland class. Generally, a majority of 310 

areas experienced wetland instability compared to wetland stability (Table 2). This is also the 311 

case for individual wetland classes. For example, for all time periods, the area of stable swamp is 312 

less than areas of unstable swamp presence. All time periods experienced greater instability and 313 

less stability, at similar rates. Specifically, there is 38, 936 km2 more unstable wetland area than 314 

the stable area between the 80s and 90s, 35, 662 km2 more unstable wetland area than the stable 315 

area between the 90s and the early 2000s, and 32, 829 km2 more unstable wetland area versus 316 

stable area between the early and late 2000s. Note, however, that instability seems to decrease 317 

slightly in the recent years.  318 

Table 3. Area of wetland class that has changed and area of wetland class that remained 319 

unchanged between time periods. 320 

 1985-1987  

to  

1995-1997 

1995-1997  

to  

2005-2007 

2005-2007  

to  

2015-2017 

Wetland  

Class 

Unchanged 

(km2) 

Changed  

(km2) 

Unchanged 

(km2) 

Changed  

(km2) 

Unchanged 

(km2) 

Changed  

(km2) 

Bog 20683 25465 23350 26039 25966 24309 

Fen 1558 15463 2284 15623 2022 15898 

Swamp 1838 17774 1697 17858 4568 20839 

Marsh 2471 6784 2791 6264 2840 7179 
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Total Wetland 26550 65486 30122 65784 35396 68225 

 321 

  

 
Figure 11. Areas where a wetland class remained unchanged over time (green), and areas that 

were or became a wetland (purple). 

 322 

4. Discussion 323 
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Though there has been extensive work recently dedicated to the mapping and classification of 324 

Newfoundland's wetlands [44, 45, 54] there has been little information regarding rates of 325 

wetland loss and gain over time. This information is pertinent for informing on the effectiveness 326 

of government policies and for assessing the potential impacts of climate change and changing 327 

local populations and industry. Additionally, assessing changes to coverage of wetland classes 328 

allows for an indirect assessment of the loss and gain of valuable wetland services, many of which 329 

are tied directly to wetland class [55]. The results of this work help elucidate various trends in 330 

wetland change over 30 years on the island of Newfoundland, explicitly reporting on gains and 331 

loss of specific wetland classes, including bog, fen, swamp and marsh. While working on the 332 

wetland change detection have already been conducted across Canada [42], none thus far have 333 

been conducted in Newfoundland, nor at the scale of the wetland class. 334 

Based on the results of this work, several patterns of interest have arisen. For example, the major 335 

cause for wetland class loss across Newfoundland is the conversion from one wetland class to 336 

another, or conversion to a non-anthropogenic upland class (see figures 10 b and c). While the 337 

conversion of a wetland class to another is sometimes a natural part of a wetlands succession, as 338 

is exemplified by the conversion of fen to bog [56], accelerated or substantial rates of class 339 

conversion may also be a result of climate change, or a result of anthropogenic modifications to 340 

the landscape [18,57]. Peatlands such as bog and fen, for example, may experience drying as a 341 

result of increased temperatures, decreased precipitation, and modified water flow and water 342 

tables [17,58]. This drying will, in turn, allow for the establishment of woody vegetation over 343 

time, resulting in the conversion of bog or fen to the swamp.  344 

Similarly, the injection of excess nutrients into a bog, via pollution in the air or run-off, may result 345 

in a shift in vegetation from bog-like to fen-like [59,60]. Notably, much of the loss of bog and fen 346 

wetland coverage in Newfoundland is attributed to the conversion to swamp or upland forest, or 347 

the conversion of bog and fen alternatively.  Similarly, the results show that the loss of marsh 348 

and swamp wetlands is primarily due to conversion to open water and forest, respectively. This 349 

also may be due in part to climate change, where-by a warming climate, for example, may cause 350 

some swamps to dry, becoming more similar in vegetation composition to the upland forest.  351 

While climate change is likely a contributing factor to such changes in wetlands across 352 

Newfoundland, additional confounding factors should be considered when interpreting these 353 

results. For one, separating swamp from the upland forest has always been a difficult challenge, 354 

mainly when using lower resolutions [61]. Thus, there is potential for some misclassification 355 

between swamp and forest amongst several years examined in this research, causing there is a 356 

misrepresentative amount of swamp loss to forest and vice versa. This problem is commonly 357 

solved by adding Synthetic Aperture Radar (SAR) data to the classification methodology. SAR 358 

imagery with longer wavelengths, such as ALOS imagery, is recommended. This is because SAR 359 

signals with longer wavelengths can penetrate through vegetation canopy, capturing the 360 
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structure below and thus providing more information for allowing for the discrimination between 361 

the swamp and upland forest.  362 

Similarly, much marsh vegetation is emergent, and its growth is closely related to local weather 363 

patterns and the growing season, which may vary from year to year. Additionally, if a satellite 364 

image captures a marsh on a particularly wet day, after too much rain, for example, a marsh may 365 

appear to be flooded entirely with little to no exposed vegetation, resulting in a classification of 366 

open water and a recorded loss of marsh wetlands. Confusion between bog and fen classes is 367 

also a common problem in wetland classification, as many bog and fen share very similar 368 

vegetation patterns [43,62,63]. Such information on the dynamics of wetlands and the difficulties 369 

associated with their classification must be considered when interpreting change detection of 370 

wetland classes, and when drawing any conclusion as to the cause of wetland loss over time. 371 

The results of this work establish a justification for the assessment of wetland change detection 372 

at the level of class across the entirety of Canada's landscape using the GEE and Landsat imagery 373 

over the past 30 years. While there has been work dedicated to assessing wetland change 374 

patterns across Canada previously [42] and work towards assessing the current extents of 375 

wetland classes across the country [4], there has yet to be an attempt to assess countrywide 376 

change at the level of the wetland class. Information on rates of change to wetland classes may 377 

not only help to elucidate impacts of climate change across the country but also allow for a more 378 

in-depth assessment of the loss and modification of class-specific wetland services. Such 379 

information will also allow for the fair assessment and comparison of various federal and 380 

provincial based wetland protection and management policies across Canada. 381 

5. Conclusion 382 

Understanding large-scale wetland dynamics is of great importance in the era of global climate 383 

change and information exchange. Knowledge of change to wetlands, at the class level, is of 384 

particular importance due to the class-related services that these wetlands provide, such as 385 

improving the lives of humans and non-human animals alike. At the time of realizing this 386 

research, there has not yet been an analysis to detect large-scale wetland change at the class 387 

level in Canada. As such, the objective of this research was to support the potential of such 388 

application by investigating the feasibility and applicability of historical Landsat imagery and GEE 389 

cloud-computing platform on a large scale and time basis, over a single province in Canada. In 390 

particular, we used available machine learning algorithms in the GEE platform and Landsat 391 

surface reflectance data to detect wetland classes and understand wetland land cover dynamics 392 

over time.  393 

The results of this study provide for the first time, an assessment of wetland spatial dynamics 394 

across the entirety of Newfoundland at the level of the wetland class.  The results reveal that 395 

bog, fen, swamp, marsh, water, forest, pasture and urban have experienced significant instability 396 
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over the past 30 years, mostly because of climate change and anthropogenic activities. These 397 

results support the further application of these methods to a future change detection study of 398 

the entirety of Canada and confirm the usefulness of the archived Landsat images in the GEE for 399 

monitoring long-term wetland dynamics over the past three decades. Such information will allow 400 

stakeholders to not only compare statistics as it relates to wetland gain and loss but also allow 401 

for the comparison of the effectiveness and quality of province-based wetland policies, which in 402 

turn may allow for the general improvement of these policies across the country.  403 

As wetlands are susceptible to multiple factors, including climate change, population growth, and 404 

land-use conversion, it is necessary to develop effective policies for the process of wetland 405 

protection and restoration. Based on the potential of the Landsat data archive and GEE cloud-406 

computing platform, in a future study, we plan to use this approach for the entire country of 407 

Canada in hopes of contributing to the expansion of knowledge of as it relates to Canadian 408 

wetlands and wetland conservation. 409 
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