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Highlights

¢ A novel ensemble-based machine learning framework is proposed to estimate seasonal
low-flow at ungauged sites.

e The concept of information mixture is utilized in the ensemble training and ensemble
integration stages.

e Regressive sub-model integration techniques are used in the combining stage to create
robust ensemble forecasts.

e The model provided improved performance, compared to other models, when applied to a
case study in Canada.



Journal Pre-proof

Diversity-driven ANN-based ensemble framework for seasonal low-flow

analysis at ungauged sites

Mohammad H. Alobaidi'", Taha B.M.J. Ouarda?, Prashanth R. Marpu® and Fateh Chebana?

'Department of Civil Engineering and Applied Mechanics, McGill University, 817 Rue

Sherbrooke Ouest, Montréal, Québec, Canada, H3A 0C3

2Eau Terre Environnement (ETE), Institut National de la Recherche Scientifique (INRS), 490 de

la Couronne, Québec City, Québec, Canada, G1K 9A9

Department of Electrical Engineering and Computer Science, Khalifa University, Masdar City,

P.O. Box 54224, Abu Dhabi, UAE

*Corresponding author:

Email: mohammad.alobaidi@mail.mcqill.ca

Address:

Department of Civil Engineering and Applied Mechanics, McGill University, 817 Rue

Sherbrooke Ouest, Montréal, Québec, Canada, H3A 0C3



Journal Pre-proof

Abstract

Low-flow estimation at ungagged sites is a challenging task. Ensemble-based machine
learning regression has recently been utilized in modeling hydrologic phenomena and showed
improved performance compared to classical regional regression approaches. Ensemble modeling
mainly revolves around developing a proper training framework of the individual learners and
combiners. An ensemble framework is proposed in this study to drive the generalization ability of
the sub-ensemble models and the ensemble combiners. Information mixtures between the
subsamples are introduced and, unlike common ensemble frameworks, are explicitly devoted to
the ensemble members as well as ensemble combiners. The homogeneity paradigm is developed
via a two-stage resampling approach, which creates sub-samples with controlled information
mixture levels for the training of the individual learners. Artificial neural networks are used as
sub-ensemble members in combination with a number of ensemble integration techniques. The
proposed model is applied to estimate summer and winter low-flow quantiles for catchments in
the province of Québec, Canada. The results provide significant improvement when compared to
the other models presented in the literature. The results of the homogeneity levels from the
optimum ensemble models demonstrate the importance of utilizing the diversity concept in

ensemble learning applications.

Keywords: Ensemble Learning; Information Theory; Diversity-in-Learning; Low-Flow

Estimation.
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1. Introduction

Reliable low-flow estimates are important for a large number of engineering applications
such as water quantity and quality management, and environmental impact assessment. Low-flow
quantile estimates can be obtained using a number of approaches, such as flow duration curves or
best-fit probabilistic distribution. Both approaches require the availability of low-flow
information at the site of interest. When streamflow data is not available (ungauged sites),
regional techniques are used to estimate the low-flow statistics. Low-flow estimation techniques
at ungauged sites include regional prediction curves, spatial interpolation and regional mapping,
synthetic streamflow time series for low-flow estimation, and regional regression modeling
(Smakhtin, 2001b). Low-flow estimation is well-established in the literature and detailed
information can be found in (Gustard and Demuth, 2009, Ouarda et al., 2008a, Smakhtin, 2001a).
Among the various methods for low-flow estimation at ungauged sites, regional regression
techniques are commonly used in practice for low-flow estimation at ungauged sites (Vogel and
Kroll, 1990, Vogel and Kroll, 1992, Dingman and Lawlor, 1995, Ouarda and Shu, 2009). A
classical regression technigue (Thomas and Benson, 1970) for such task has the following

generalized form:

Qur= @ xf b 1)
i=1

where Qg4 7 is the T-year low-flow quantile corresponding to a duration of d-days at the site of
interest; x; is the it" variable (site characteristic) used for low-flow quantile estimation; ; is the
it" model parameter which needs to be estimated; [ is the total number of site characteristics

used in the model and « is the multiplicative error term.
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Logarithmic transformation linearizes the model governed by Equation (1). A multiple linear
regression (MLR) is then used to estimate it. A disadvantage of this model is that logarithmic
transformation may result in a bias in the estimation of its parameters (Kouider, 2003, Ouarda et
al., 2008b, Shu and Ouarda, 2008, McCuen et al., 1990). In case of low-flow estimation, such

bias may result in significantly improper model performance (Ouarda and Shu, 2009).

Ensemble modeling for regression applications can tackle the different challenges
manifesting in low-flow estimation at ungauged sites. In fact, this study is aimed at building on
Ouarda and Shu (2009). An ensemble framework is presented in the present paper, where the
architecture of its three phases (resampling, training and combining) targets implicitly and
empirically optimized generalization ability. Diversity-controlled approach is embedded in a
proposed multi-stage resampling approach. The ensemble members and the ensemble combiner
are sub-sequentially optimized for enhanced ensemble estimation performance. In this article,
specifics of the proposed approach are presented. The results of the proposed model are
compared with the results from the previous models on the same case study. The proposed
ensemble framework for the problem of low-flow estimation at ungagged sites is intended to
show how the physical nature of the problem of interest inspires the design of the ensemble
architecture for improved generalization ability. The main contributions of the present work are

listed as follows:

- The research work presents a generalized ensemble model which has been inspired from

the concept of diversity-in-learning and the problem of interest.

- The ensemble framework requires relatively reduced computing resource to be trained

and validated in a reasonable timeframe.
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- The ensemble framework is capable of parallelized training routine for efficient allocation

of computing resource.

- The model is theoretically scalable in its own size, the available features as well as the
available observations. The ensemble framework is also of parallel learning nature,

allowing for efficient computational routine.

The structure of the paper is as follows; in Section 2, ensemble learning with artificial neural
network sub-models is discussed. In Section 3, the proposed ensemble approach is provided. In
Section 4, a detailed description of the case study is presented. Section 5 describes the
experimental setup, model-specific configurations, for the present work. In Section 6, the study
results are discussed. Lastly, Section 7 summarizes the study conclusions and provides

recommendations for future research work.
2. Background

2.1. Brief overview of ensemble learning

Ensemble regression modeling is an evolving field in machine learning, which allows remedy
to the nature (feature space) and availability (sample size) challenges of the data. In regard to the
present application, low-flow estimation at ungauged sites utilizes a relatively limited number of
covariates, disqualifying the use of deep learning models. Moreover, shallow machine learning
models inherently suffer from instability challenges (training leads to different local minima of
the parameter choices), which are exacerbated in the case of limited training data. Ensemble

Learning provides a solution to these two major issues.
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An ensemble model generally comprises a set of regression models (known as sub-
ensembles, individual learners, ensemble members or predictors). Ensemble learning defines the
technique upon which the information from the dataset is distributed to the sub-ensembles, for
training, as well as the combination plan of the sub-ensembles estimates toward an observation
(Dong et al., 2020). Many research efforts in the literature have provided empirical and
theoretical evidence toward ensemble models’ superiority in performance and generalization
ability (Chen et al., 2012, Dietterich, 2000, Green and Ohlsson, 2007, Hansen and Salamon,
1990, Maclin and Opitz, 1999, Mendes-Moreira et al., 2012, Vrugt and Robinson, 2007, Zhang

and Ma, 2012).

Ensemble modeling can be divided into three main stages; resampling, generation and
training, and integration. In the resampling phase, the dataset, or sample, undergoes a pre-defined
process which ultimately creates the sub-samples, utilized for training the individual members.
Several resampling plans exist in the literature such as the different bootstrap resampling
techniques (Efron, 1982, Buhimann, 2003). In the ensemble model generation and training
second phase, the sub-ensembies are created and arranged to learn the functional relationship
between the explanatory and response variables, using the available information from the sub-
samples. The sub-ensembles can be any regression model which seen best for the system of
interest. A homogenous ensemble composes of similar sub-ensemble models (the same model
structure and unknown parameters to be solved). In this case, the variation in the information by
the different sub-samples will prompt diverse solutions in the sub-ensemble’s parameters. In the
case of nonhomogeneous ensembles, the sub-ensembles can be a collection of different
regression models. An ensemble of the same individual members can still be nonhomogeneous if

they comprise different sub-ensemble topologies, such as ANNs with different configuration. A
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popular example of nonhomogeneous ensembles is Random Forest (RF). This model utilizes a
multitude of classification and regression trees (CARTS), generated via random subspace
resampling, where each CART is expected to train over a number of the available feature space

(Ho, 1995, Ho, 1998).

The diversification in the resamples (sub-samples) and the sub-ensembles will produce even
more diverse relationship in the nonhomogeneous ensemble models (Zhang and Ma, 2012). In
this case, the ensemble models, in their mathematical nature, improves the overall generalization
ability of the ensemble model (Ueda and Nakano, 1996, Vrugt and Robinson, 2007). In the
ensemble integration phase, a combiner is used to fuse the different estimates from the individual
learners, toward one observation, into the ensemble estimate. The choice of the combiners can
rely on the nature of the resampling techniques and the sub-ensembles chosen for the ensemble
model. Generally, a combiner can be as simple as taking the mean of the individual learners’
estimates. A combiner can also be as complicated as a final-regression model on the sub-
ensembles’ estimates. Such combiner is usually tuned in the training stage of the ensemble, using

the complete training set, the pre-defined training subsamples, or different training plans.

Examples of popular ensemble models are Bagging (Breiman, 1996a), Stacking (Breiman,
1996b, Wolpert, 1992) and Boosting (Bihlmann and Hothorn, 2007, Drucker, 1997, Duffy and
Helmbold, 2002, Freund and Schapire, 1996, Friedman et al., 2000, Friedman, 2001, Sharkey,
1999). Bagging (also known as Bootstrap Aggregating) utilizes bootstrap resampling to generate
the sub-samples which are used to train the sub-ensembles, while the combiner in this model are
simply the arithmetic mean of the sub-ensemble estimates. It is worth noting that diversity
generating mechanism in RFs is also an extension of Bagging (Breiman, 2001). In stacking, the

creation of the sub-samples can be provided using a resampling plan. Once the sub-ensembles are
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trained using their individual sub-samples, a linear combiner of the sub-ensemble estimates is
trained. Non-negative weights are computed for combining the sub-ensemble estimates into an
ensemble estimate. These two ensemble models have the advantage of relatively fast training, as

the re-samples and the sub-ensemble are created in parallel.

On the other hand, the combiner used in Boosting requires an in-series creation of the sub-
samples as well as the ensemble members; this ensemble plan starts by training one sub-ensemble
using all the available information in the training set. The estimation error associated with each
training instance is computed and compared. The second sub-sample is a sampling with
replacement from the original sample set. Further, the instances with high estimation error will
have a greater probability of being selected in the second sub-sample in order to focus the
training of the second predictor on such instances. This process of sub-sample creation and
predictor training is carried out until a stopping criterion is satisfied. The trained predictors will
then be provided with combination weights (proportional to their accuracy) that combine the sub-
estimates into an ensemble estimate. This ensemble model can be slow and highly sensitive to

outliers.

Other techniques are used in the final stage of ensemble learning; one notable approach is
Bayesian Model Averaging (BMA). This approach is suggested by Learner (1978) and recently
proliferated in the applied field (Duan et al., 2007, Dong et al., 2013, Qu et al., 2017, Huo et al.,
2019). Contrary to the name, BMA is actually a selection method. BMA does not combine sub-
ensemble inferences, but rather selects the sub-ensemble to which the target observation
supposedly belongs. As such, each sub-ensemble is considered as a Data-Generating Model
(DGM), and for BMA to prevail, one of the DGMs should be the true model. Under the givens of

the present work, it is not reasonable that one of the trained models will be the true DGM to any
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of the low-flow quantiles. Hence, a combination of the available inference (which is the
motivation behind ensemble learning) is expected to produce better generalization ability.
Moreover, the explicit diversity mechanism in the proposed model is partly driven by the sub-
ensemble combination rather than selection; using BMA in this framework beats the point

(Clarke, 2003).
2.2. Ensemble learning in hydrology

Several studies applied ensemble learning in hydrology. For example, Francke et al. (2008)
compared different methods with respect to performance in measuring the suspended sediment
concentration and construction of sedigraph. This study showed that regression-based random
forests and quantile random forests ensembles provided robust performance, in contrast to the
inferior performance of classical linear regression approach in such problem. The study also
outlined the capability of the applied ensembles in providing uncertainty assessment as well as
interpretation of predictor effects. Erdal and Karakurt (2013) aimed at assessing the application
of classification and regression trees (CARTS) in the bagging and boosting ensemble frameworks
for streamflow forecasting. Results from a support vector regression (SVR) model were used as
benchmark. The study showed that both bagging-based and boosting-based CARTs can
significantly enhance the prediction accuracy when compared to a single CART model as well as
the benchmark SVR model results. Further, Shu and Ouarda (2007) used bagging ensemble
model for flood frequency analysis at ungauged sites. The study used the canonical correlation
analysis (CCA) to draw canonical projections of the sub-ensembles’ meteorological and
physiographic input variables. The results indicated that the proposed CCA-based bagged
ensemble has the best performance when compared to other single models. In addition, this study

showed that CCA pre-processing improved the ensemble performance when compared with the

10
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same model but using original variables space. Many studies compared the performance of
different ensemble methods or different combination techniques when applied to hydrological
problems (Shu and Ouarda, 2007, Ouarda and Shu, 2009, Shu and Burn, 2004, Diks and Vrugt,
2010, Vrugt and Robinson, 2007, Ajami et al., 2006). A recent review and comprehensive

application of common Ensemble frameworks is presented in (Alobaidi et al., 2019).
2.3. Artificial neural networks in an ensemble framework

Artificial neural networks (ANNSs) are evolving machine learning tools that can articulate the
relationship between the models inputs and outputs without predefined assumptions, neither on
the model parameters nor on the system variables (Bishop, 2006). ANNs have received much
attention in the field of hydrology (Govindaraju and Rao, 2010). Regression-based ANNs proved
to be flexible models and effective as sub-ensembles in many studies (Shu and Burn, 2004, Green
and Ohlsson, 2007, Siou et al., 2011, islam et al., 2003, Zaier et al., 2010, Agrafiotis et al., 2002,
Hashem, 1993, Hashem et al., 1994). Furthermore, many studies attempted to describe the
generalization ability of ANN-based ensemble models. The mathematical interpretation of the
statistical performance of ensembles with ANN individuals was frequently investigated (Geman
et al., 1992, Krogh and Vedelsby, 1995, Hashem, 1997, Zhou and Chen, 2002, Granitto et al.,
2005, Green and Ohlsson, 2007, Alam et al., 2019). The idea behind using ANNSs in an ensemble
framework is to promote diversity, which can ultimately improve the generalization ability of the
ensemble model beyond any of its individual members (Liu, 1999, Brown, 2004, Alam et al.,

2019).

Diversity is defined as the amount of disagreement between ensemble members (Kuncheva

and Whitaker, 2003). Metrics of diversity concept can be usually defined via the bias-variance-

11



Journal Pre-proof

covariance decomposition of the ensemble model (Kuncheva, 2003, L&zaro et al., 2020).
Although the general concept of diversity is well defined, the research on providing clear
mathematical description to diversity of an ensemble is still an open topic (Slavin Ross et al.,
2019). In general, in ensemble learning, the sub-models are usually trained on resamples of the
training data. For example, boosting ensembles update their sampling distribution before
generating the new subset for the corresponding member of the boosting ensemble. This allows
for misclassified instances, from previously generated sub-ensembles, to be selected in upcoming
sub-ensembles, and the ensemble members are expected to be diverse as a result. There is no
explicit measure of diversity. This diversity-manifesting mechanism is in fact native to boosting
models and the formulation of diversity mechanisms drastically change among ensembles.
Moreover, once such a relation is formulated, optimizing the diversity-accuracy tradeoff of the
ensemble can be carried out to maximize the ensemble generalization ability (Schmidt, 2004,

Brown et al., 2005a, Brown et al., 2005b, Sun and Zhou, 2018).

To this extent, ANN-based ensemble models seem to be ideal for a challenging regression
problem in hydrological modeling such as regional frequency analysis at ungauged sites (Shu and
Ouarda, 2007). In addition, ANN-based ensemble learning has been utilized in regional low-flow
analysis. The work by Ouarda and Shu (2009) used ANN-based bootstrap aggregation ensemble,
with stacking combiner, in order to provide improved summer and winter low-flow quantile
estimates at ungauged sites. The ensemble approach provided improved generalization ability
when compared to the single ANN model and the classical regression model. Although relatively
improved, the scale challenge (significantly quantile values vary quite from one site to another)
was still apparent in the ensemble model; low-flow quantiles for some of the ungauged basins

were highly skewed from the general pattern and, therefore, poorly estimated.

12
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3. Proposed Approach

The ANN framework employed in this work is ensemble-based. It is utilized to estimate the
functional relationship between the explanatory variables and the target variables, inputs and
outputs, respectively. Figure 1 demonstrates the detailed modeling steps for the proposed
ensemble. It is worth noting that the proposed ensemble framework is a generalization of earlier
work which contributed to the field of interest and detailed work on earlier versions of the
proposed model can be found in (Alobaidi et al., 2015). After identifying the system’s variables,
and before starting the validation and the training process, pre-processing is applied on the
identified inputs and outputs of the system. Pre-processing techniques range from linear
transformation, such as linear scaling and normalization, to nonlinear techniques, such as
logarithmic and Box-Cox transformations (Alobaidi et al., 2014). The choice of a proper pre-
processing plan incorporates the type of data used, the individual members’ requirements and the
ensemble method itself. More about pre-processing can be found in (Ouarda et al., 2001, Ouarda
et al., 2008b, Shu and Ouarda, 2008, Ouarda and Shu, 2009, Basu and Srinivas, 2014). After the
pre-processed plan is determined, and the modified sample set is acquired, the proposed

methodology follows systematic processes, described in the following subsections.

) ) . |dentify optimum
Identify variables and N |dentify ensemble Var
) = . ! sub-ensembles from |——
acquire data sample modeling structure .
validation
Re-construct ) . ) )
. Evaluate optimum Identify optimum
optimum ensembles ' . ' i B
) - g ensembles from e ensemble combiner |<
and train them using N , L
) testing from validation
all available data,

13
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Figure 1: Modeling process of the proposed ensemble.

3.1. The resampling algorithm

A two-stage sampling process is applied in a controlled environment, where two homogeneity
control (or mixture control) measures are introduced. One measure is to control the amount of
information that is blocked from the members’ training and used for the training of the ensemble
combiner. The other parameter is introduced to promote “measured” diversity between the
subsamples (or resamples). The proposed resampling technique is responsible for producing the
required subsets which will be trained for sub-models. It is important to note that resamples’ and
sample’s size annotations are used in order to track the diversity evolution with respect to the
resample size. Also, this will help differentiate between the unique information and the mixed

information that the first-stage and second-stage represent, respectively.

Initially, consider a sample set which corresponds to size N available for the training process,
a size-controlled part of the training data will be chosen randomly (sampling without

replacement) and biocked from the related training sample as follows:
Nprockea = N X mg, 2

where ny;.ckeq refers to the size of the relevant blocked observations and m,. refers to the mixture
ratio that is calculated to measure a number typically between 0% and 30% which refers to the
percentage of blocked information. The percentage often depends on the limited access for

training data, the size of the ensemble, as well as the type of the ensemble combiner.

14
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The subsample size of the first-stage is computes as follows:

_ (N = Npiockea)
S )

ny 1<S < (N — Npiockea): €))

where n, refers to the size of the subsample, and S refers to the size of the ensemble. Every
subsample has different observations even though subsamples have the same size. In other words,

an observation cannot be found in multiple subsamples.

Successively, the subsample size of the second-stage is computed by observing the amount of
exchanged information between subsamples obtained from the first stage, as shown in Equation
(4). This is done after defining a specific parameter which is going to control the information
mixture in each subsample. Further, the mixture-control parameter can be defined as a function or
set of functions that can be given to each first-stage resample (or each individual member’s
training set). By doing so, the nature of the relationship between each second-stage resample can
be different and reshaped in a more flexible way, if required. The second-stage subsample size is

then computed as:

[ 1

S
Ny, = Ny, + (f(me)l-j X nlj) ,i,j =1,23,..,S, (4)

i
j=1
j#i

where n,, refers to the size of the i second-stage subsample, and f(m,); ; refers to the mixture

ratio or the relationship between the ™" first-stage subsample and the i second-stage subsample.

ny, refers to the size of the j" first-stage subsample, while ny, refers to the size of the i first-

stage subsample. Note that the subscript is not removed to indicate that first-stage resamples have

unique information.

15
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f(m,);;, which are the mixture ratios, can be designed to take different mathematical forms,
such as a linear relation or a quadratic function. In all the relationships, this parameter is between
0 and 1; where zero indicates that the resamples from the both stages are exactly similar. In other
words, there is no mixture. Saturation, on the other hand, indicates that the resamples from the
second-stage process are a duplicate of the observations available in the original sample. These
two “extremes” (0 and 1) are avoided in the mixture parameters, because the zero value may
downgrade the diversity for the use of first-stage resamples, and the saturation of the resamples is
a result of the individual member models instead of the training resamples. Moreover, one can
observe that the individual diversity parameters are between 0 and 1, and they may (or may not)
sum to 1, depending on the ensemble size and the individual value of the parameter. Hence,
Equation 4 is not a weighted sum. Two different relationships of the mixture parameters are
defined in Table 1. Additionally, Figure 2 illustrates the effect of the chosen mixture relationship
on the amount of information dedicated for each ensemble member, relative to the original
sample after blocking the random subsample used for training the ensemble combiner. The final
mixture measure can take many forms which are mapped from the mixture parameters. Equation
7 shows how they can be computed for the present work. Also, the choice of a link function is
arbitrary. This is analogues to the choice of a transfer function for the ANN model’s hidden
neurons, or a training algorithm. An empirical evaluation usually presents the best link function

for a given case study.

16
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Table 1: Different mathematical forms of the mixture parameters.

Relationship Mathematical Representation
Linear flme)y = ay X me,; + by (5)
c
Power f(me)y = ay X (meij) + by (6)

In this work, a linear mixture ratio, or homogeneity ratio, definition is used. As a
consequence, the degree of information mixture for the second-stage resamples is computed as

follows:

nsharedj
f(mE)f = mej g ny. ’ 0< nsharedj < nlj: (7)
J

where ngngreq. refers to the number of observations related to the j™ subsample, and n, . refers to
] ]

the size of the j first-stage subsample. Note that the constraints in equation (5) limit the j"

homogeneity ratio, Me,, by restricting its value to be between zero and one. This means that the

amount of obtained information in the j first-stage subsample should not go above its size in
order to prevent redundancy in shared information. This constraint, as a consequence, is what
makes the proposed resampling technique very different from the conventional concept of
bagging. Me,, which is the mixture ratio, is set a priory and, by rearranging equation (5), the size
of the exchanged information, Nshared;s is now calculated. Furthermore, the relation described in

equation (5), specifically, and equation (4), generally, can be further generalized to have different

18
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information mixture ratios. Such approach allows for the mixture ratio relation, f(m,), to have

conditional information sharing, such that:

0 f(me)iz  f(Mme)s f(me)ys
f(me)aq 0 f(me)a3 f(me)as
M= |f(me)3,1 f(me)s, 0 f(me)3,s|. (8)

[ f : f(me)s J
f(me)sy f(me)sz f(me)ss 0

where M refers to the generalized-global mixture ratios’ matrix, f(m.);; is the mixture ratio
relation which controls the information exchanged by the i" first-stage subsample, dedicated to
the j™ first-stage subsample, making-up the j" second-stage subsample. M is set to be symmetric.

Hence, equation (5) defines the identical amount of mixture shared, either way, by two first-stage

resamples.

Furthermore, setting the mixture ratios to be equal results in having the amount of shared

information to be the same for every first-stage subsample, Nshared;» such that:

Nshared; = Mshared, = *** = MNshareds — Mshared, 9)
or:
Mo, = My, =+ = My, = M. (10)
The last constraint reduces equation (4) to the following expression:
n, = wx ((mexS)—me+1) (11)
or:

19
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(1-m,) xme> . (M _ 1>. (12

e

In a computational framework, the indices of one variable of the system input and output
variables can be used, on which the resampling algorithm can be done. Then, the subsets, or
resamples, are obtained by retrieving the observations relating to the indices as well as the
corresponding observations of the other variables. After calculating the size of the corresponding
ensemble model, S, a study of various homogeneity ratios is conducted in the ensemble validation
process in order to arrive at the ideal estimation of unique information to be shared by the first-

stage subsamples.

The reader should note that the proposed resampling approach calculates the amount of
information mixture in the subsamples; however, we execute a random selection of the amount of
shared information by determining the mixture ratio, m. It is expected to yield improved
generalization results by providing the sub-ensemble models just-enough information about the
connection between the explanatory and the specified target variables and then combining the

inferences from the individual learners.
3.2. Sub-ensemble model

The MLP-based ANN ensemble model (ANN-E) is used. The ANN sub-models have only
one input and output layer. Also, they only have one hidden layer. Moreover, the number of
explanatory variables is determined based on the number of neurons in the input layer as they are
set equal. Similarly, the number of response variables depends on the number of neurons in the
output layer as they are set equal. Determining the number of hidden neurons is performed in the

validation procedure. For each hidden neuron, the transfer function (or activation function) is
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selected as the tan-sigmoid. Also, the output layer employs a linear transfer function for its

neuron. This output layer configuration is common in regression based ANNSs.

The training algorithm used is the Levenberg-Marquardt (LM) algorithm (Hagan and
Menhaj, 1994) which outperforms the gradient descent approach (Hagan and Menhaj, 1994, Shu
and Ouarda, 2007). u« is adopted as a scalar parameter while working with the LM algorithm. A
relatively large scalar prompts the algorithm to stipulate the gradient descent method. On the
other hand, a lower-magnitude scalar drives the algorithm to stipulate the Gauss-Newton method
(Demuth et al., 2006). Such method is considered more accurate in obtaining a global optimum.
It is important to circumvent the over-fitting problem in trained ANN-E models by regularization
and specifying stopping criteria (Bishop, 2006, Tikhonov and Arsenin, 1979, Vapnik, 1998). In
this work, an early stopping criterion is specified in the training process (Tetko and Villa, 1997,
Hagiwara, 2002, Biihlmann and Hothorn, 2007). After that, we introduce the validation procedure

which is demonstrated in the next section.

Finding the optimum solution for the ensemble size, S, is often computationally expensive.
The ensemble size, S, is primarily responsible for defining the size of the first-stage resamples. It
is also used to find the size of the shared information, besides the mixture ratios, m. and me, in the
second-stage resamples. One way to reduce computational cost, when the utilized dataset is
large, is through changing and assigning a reasonable value for the ensemble size, given the
available training information. However, when utilizing a small or limited dataset, further due
diligence is required by investigating the optimum ensemble size. This is done by validating and
comparing different ensemble models. As a result, the ensemble size will produce sufficient

training observations in order to perform the training of the ensemble members successfully.
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Also, it will achieve generalization over the entire space of the target variable. In the proposed

study, different values of the ensemble size, S, are investigated along with the mixture ratio.

3.3. Techniques for ensemble integration

The final stage in ensemble learning is the ensemble integration. Estimates from the individua
members are integrated into one ensemble estimate. In this study, four ensemble integration
techniques are utilized; the mean, median, OLS linear regression and linear robust fitting. It is
recommended to use the mean statistic in order to examine the norimality of the distribution of the
estimates. Similarly, Bagging suggests the choice of the mean statistic as an ensemble integration
technique (Breiman, 1996a). The ensemble estimate of the i observation, Ve, Is obtained from

the S sub-ensemble estimates to the relevant observation, J; ;, by calculating their mean value:

S
1
Pei = 5 (911 (13)
=1

The median statistic of the sub-ensemble estimates is defined as follows:

)7e,i = median (371,1' :5}2,1' ) e 'yk,i ) . (14)

The median is a robust tool that is not influenced by outlier values. Therefore, the median
statistic reduces the influence of poor estimation performance related to some ensemble
members. Note that sub-models that yield an under/over estimation in some cases may yield good
estimates in other cases. Such occurrence is treated by utilizing the median statistic to achieve

nonlinear ensemble integration.
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The integration technique in this work applies a linear regression function on the training’s
sub-model estimates in order to generate a value for an ensemble estimate. Also, a linear
regression function based on an ordinary least square (OLS) algorithm results in an efficient
estimate of the regression parameters (Nelder and Wedderburn, 1972, Charnes et al., 1976,

Stigler, 1986), where the expression is represented as:
k
Vei = By + Z(Bj X9ii), (15)
j=1

where B, and B;’s are the unknown linear regression coefficients that are computed by applying
the OLS formulation on all the sub-models’ estimates in the training stage. The coefficients of the
multiple linear regression (MLR) are calculated analytically (Draper et al., 1966, Neter et al.,

1996, Montgomery et al., 2012).

The Gaussian-distributed estimates will perform well due to employing the linear regression.
The OLS estimates remove outlier estimates to a certain extent, but are affected by them. The
advantage of using an OLS-based linear regression is that it allows for evaluating the
performance of linear combiners in ensemble modeling. The parameters of the linear combiners
are fixed and inferred, while taking into account all the estimates calculated in all sub-models.
Hence, for each observation, all the related sub-models’ estimates are combined into one
ensemble estimate. Furthermore, a robust fit of the sub-models’ estimates is performed
(Andrews, 1974, Meer et al., 1991, Dumouchel and O'Brien, 1991, Holland and Welsch, 1977,
Fox, 2002). This method results in robust estimates of the MLR coefficients. The proposed
algorithm utilizes an iterative method based on least squares algorithm that is supported by a bi-

square re-weighing function. It is known that the robust fitting technique requires a weighing
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function. It also demands a tuning constant in order to arrive at a residual vector which is
changed iteratively. The distribution of errors may be non-normal which is an inevitable
problem. Such issue could be avoided by using robust regression or robust MLR techniques
(Meer et al., 1991, Maronna et al., 2006, Huber et al., 1996). In this work, the robust regression
method is used in the MATLAB environment. Such method generates the ensemble output, ¥, ;,

based on the k sub-ensemble estimates, ¥; ;, as per the formula below:

k

5;e,i = Brobusto + Z (Brobustj X y\j,i) ) (16)
=1

where Bropust, refers to the robust regression bias while meustj refers to the robust regression

coefficients. The coefficients are computed as the (n + 1)t iteration which is the solution of a
robust multi-linear regression. An iterative weighted least square function is computed as

follows:

2
Z?’=1(7‘in+1)2 = X Wi, [[Yi - (Brobuston+1 +3k, (Brobustjn+1 X fﬁ',i))]] , (17)

where 7 is the (n + 1) weighted error function combining the individual model estimates
on the i*" observation, w;, ., refers to the assigned weight, y; refers to the it" observation
obtained from training study, and J;; refers to the corresponding estimate, generated from the

jt" individual model. Furthermore, the weights in the previous relation are updates as follows:

Wing1 = (lrin+1| < 1) X (1 - (rin+1)2)2' (18)

Also, the weighted residuals are updated based on the following process:
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T; MAD
Ting1 = [($) Xy (11— ei)]' Op = m (19)

tune X o,

where 7;_ refers to the model error on the corresponding i" basin from the previous iteration,

e; is the leverage error value for the it" observation using the OLS regression during the training
stage. tune is a scalar which significantly drives the degree of outlier influence on estimate of the
robust coefficients, o, is the estimated deviation of the residuals, obtained from previous
iteration. Moreover, MAD,, is the median absolute deviation of the residuals, obtained from

previous iteration.

In this study, the tuning constant is fixed at 4.685. As a result, the coefficient estimates are
95% as statistically efficient as the ordinary least-squares estimates (Maronna et al., 2006). This
parameter value is considered under the assumption that the response variable resembles a normal
distribution, and that it has no outliers. Consequently, an increase in the tuning constant will
magnify the influence of large residuals. Note that the value 0.6745 makes the estimate
unbiased. The idea to include a robust fitting tool is inspired by the fact that certain sub-models in
the ensemble generate outlier estimates continuously. Therefore, a result based on a median
combiner only may lead to an incorrect choice of the ensemble estimate which is also based on
the ensemble size, as well as the number of exaggerating models in the ensemble. Thus, the
robust fitting technique provides an ensemble estimate in the form of a robust linear combination
of the sub-ensemble estimates. Therefore, robust regression presents an advantage over stacking
by introducing a parameter primarily responsible for bias correction, besides the weighted sum of
the ensemble member outputs. It is anticipated that such integration technique can be successfully

applied to many data cases. Note that the amount of information available for training will

25



Journal Pre-proof

directly influence the generalization ability the combiner. However, this issue is addressed before

deciding which robust fitting technique to use.
4. Case Study

The proposed ensemble model is based on information gathered from the hydrometric station
network which covers the southern part of the province of Québec, Canada. Winter and summer
quantiles are examined separately due to the inconsistency in the low-flow generating
phenomena. Since the dataset represent various sites in the province of Quebec, each site
experience low-flow regimes due to notably different variations in the hydrologic process causing
the low-flow. This process is naturally assumed unknown and the empirical model attempts to
estimate its end-product of interest, i.e. the low flow. If the mechanism is the same, then the
model will be able to exactly capture the low-flow quantiles in all the sites. The low-flow
quantiles, with return periods of T of 2, 5 and 10 years and duration d of 7 and 30 days, are
estimated in this work. These quantiles are of interest for fish habitat protection and water quality
control (Ouarda and Shu, 2009). Moreover, in Canada, these quantiles are the most common
indices for water supply system analysis during droughts as well as the studies of stream-based

waste assimilation capacity (Ouarda et al., 2008a).

In this work, seven physiographical and meteorological variables are selected to study the
seasonal low-flow quantiles. The variables are as follows, basin area (A), percent of basin
covered by forest (PFOR), percent of basin being lake (PLAKE), annual mean degree days less
than 0°c (DJBZ), annual mean days with temperature above 27°c (NJH27), summer mean liquid
precipitation (PLME), and curve number (CN), which is a soil characteristic. Table 2 provides a

summary of the descriptive statistics of all the study variables. NJH27 is associated to a particular
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regional hydrology and climatology benchmark for Québec (27°c), representing the medium
temperature for the month of July based on maximum temperatures. Further details on the

resources are available in (Ouarda et al., 2005).

Table 2: Descriptive statistics of explanatory variables.

Variable Symbol Mean Max Min Sg;ggzg]
Basin area (Km?) A 5,655.52 96,600 0.70 11,685.70
Basin’s area fraction occupied by lakes (%) PLAKE 6.33 32.00 0.00 6.57
Basin’s area fraction occupied by forest (%) PFOR 85.78 100.00 6.50 15.97
d QQZ“SL&"?:Q;S?E:W DJBZ 163515 296310  920.60 529.29
Summer mean liquid precipitation (mm) PLME 464.51 664.00 306.00 77.40
Average number of days with temperature > 27°C NJH27 12.28 36.60 0.80 7.57
Curve Number CN 45.08 78.20 21.00 -

Initially, catchments corresponding to a network of 190 hydrometric stations are considered.

To ensure the quality of the database, the stations should adhere the criteria below (Ouarda et al.,

2005):
1- More than 10 years of flow record should be available.
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2- The flow record of the station should be stationary (Kendall, 1975).
3- The flow record should be independent (Wald and Wolfowitz, 1943).

4- The assessed catchment should represent a natural flow incidence.

The above criteria resulted in a network of 129 sites, represented by their corresponding at-
site stations, for the summer low-flow quantiles, and 135 and 133 sites for the winter low-flow
quantiles with durations of 30-days and 7-days, respectively. This work considers catchments
located between 45N and 55N longitude, and between 55W and 80W Latitude. In addition, the
total area of each site ranges from 572 km? and up to 96,600 km?. The seasonal low-flow
quantiles are selected for return periods of 2, 5 and 10 years. Table 3 presents the correlations
between the quantiles and the physiographic and meteorological variables. Further details about
the summer and winter quantiles, the statistical approach to their at-site frequency analysis as
well as the map of the sites are available in (Ouarda et al., 2005, Herrera-Guzman, 2008, Ouarda

and Shu, 2009).

Table 3: Correlation between explanatory and response variables.

Summer Season Winter Season

Variable
QS,SO Q2,7 Q10,7 Q5,30 Q2,7 Q10,7
A 0.941 0.944 0.927 0.981 0.983 0.975
PLAKE 0.531 0.541 0.530 0.588 0.585 0.583
PFOR -0.029 -0.031 -0.031 -0.074 -0.066 -0.067
DJBZ 0.575 0.572 0.566 0.558 0.585 0.583
NJH27 -0.344 -0.341 -0.343 -0.308 -0.301 -0.298
PLME -0.432 -0.429 -0.426 -0.429 -0.428 -0.425
CN -0.203 -0.214 -0.212 -0.173 -0.183 -0.181

5. Experimental Setup
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A two-stage resampling-based ANN ensemble model is proposed to generalize the underlying
relationship between physiographical and metrological variables, and hydrologic variables.
Information homogeneity, or information mixture, and combiner-information parameters are
disclosed in this work. The former is used to examine and smooth out information diversity
discovered among ensemble members. The latter is used to evaluate performance and assess the

sensitivity of linear combiners toward available information.

Initially, a pre-processing of inputs and outputs is carried out. The variables are first
normalized; a linear scaling of each utilized variable is utilized so that the instances are bound
between -1 and 1 to (Bishop, 2006). To optimize the ensemble configuration, different ensemble
sizes, mixture ratios, dedicated data to combiners’ training and ANN structures are investigated
using a Jackknife validation approach (Ouarda and Shu, 2009). The two-stage resampling is
applied on various ensemble size cases, after filtering the data for combiner training (see
approach in Section 2.1). Different ANN configurations (as sub-ensembles) are investigated; in
each jackknife validation study, an ensemble model’s performance is assessed for each m,
Meombiner aNd combiner choice for the homogeneous ensemble where all the ensemble members

are of the same structure.

The proposed validation approach aims to examine the relative performances of the regional
low-flow estimation models (Charron and Ouarda, 2015). The quantile values are temporarily
excluded from the database. The remaining sites are trained using the ensemble members and the
ensemble combiners. Then, regional estimates can be collected for the ungauged site using the
calibrated ensemble model. At-site estimates are later examined against ensemble quantile
estimates for ungauged sites. The utilized predefined evaluation criteria are explained later in this

section. This validation approach to the ANN ensemble members and to the ensemble model
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itself arises from the fact that the proposed ensemble model’s framework prompts specific
conditions on the ANN members. Because the proposed ensemble framework uses explicit
diversity parameters, validating the optimal ANN in an individual manner (as it is the case in
conventional machine learning practice) does not make sense. This will prompt using all the
training data. However, validating the ensemble model as a whole (which is slightly more
complex but still computationally efficient given the parallel architecture and the simplified
diversity evolution) should be considered. In other words, validating the overall performance of
the ensemble model will be better than validating one specific ANN (using cross-validation
approach). An ensemble validation approach helps examining the real performance of the ANN
members, each, under the ensemble parameters’ influence. Jackknife validation has a built-in
sensitivity analysis that assesses the relationship between the model’s performance and available
information for training (Efron, 1981, Ouarda and Shu, 2009). Performance criteria include root
mean square error (RMSE), relative root mean square error (rRMSE), bias (Bias), and relative
bias (rBias). They measure the generalization ability for various ensemble sizes. Similarly,
various homogeneity ratios are considered. Normalizing the error magnitude is an important step

to accurately find rBias and rRMSE. The four measures are computed as per the equations below:

n
1 ~ 2
RMSE = - Z(Qd,TL- - Qd,Tl-) ) (20)
i=1
n A~ 2

1 Qar. — Qar,

rRMSE = 100 X |- Z car cami) (22)
n = QdTi
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1 - _
Bias = e Z (Qd,Tl- - Qd,Ti) ) (22)
i=1
n ~
, 100 Qar; — Qar,
rBias = — X Z _, (23)
n e Qar;

where Qar; is at-site d-day, T-year drought quantile value of site i, Qd'Tz is the corresponding

estimate from the final ensemble learner, and n is the sample size of the validation set of

observations (or sites).

The performance of the proposed model is examined based on six low-flow quantiles, the
summer season corresponds for three quantiles while the winter season corresponds for the other
three quintiles being Q; 2, Q5 and Q3¢ 5. The results of the work by (Ouarda and Shu, 2009) are
used as a benchmark for evaluating the proposed method. Jackknife trials are simulated for each
low-flow quantile. These simulations evaluate various combinations of homogeneity parameters,
ANN members’ structure, ensemble sizes, and ensemble combiners, to determine the optimum
ensemble model. The validation results are discussed in the next section. Also, the performance
of the optimal ensemble models is assessed against the benchmark study. It is important to note
that the Jackknife validation is the testing segment of the study. In Jackknife validation, one
instance from the available dataset is blocked, and the remaining instances are used for training.
The omitted instance is then used for testing. This is repeated until all instances in the available
dataset are tested, and the testing performance is reported. The training performance is not
reported in the manuscript as it is not an indication of the generalization ability, and the sub-
models are already regularized via early stopping and internal six fold cross-validation during

their training phase.
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6. Results and Discussion

Optimum ensemble configuration is selected for each low-flow quantile in the winter and
summer seasons. Jackknife validation results aim at assessing the models’ generalization ability
over the available observations. The proposed models’ performance is compared to that of the

benchmark model.

Figures 3 and 4 preview the jackknife validation performance, with respect to mixture level in
sub-sample, of selected ensemble models for the low-flow quantiles in the winter and summer
seasons, respectively. For each season-based quantile, the selected ensemble models incorporate
ANN members with the same complexity. The variables in the figures are the combiner choice
and the homogeneity levels. The four ensemble maodels show a similar trend in performance
sensitivity with respect to different homogeneity levels. However, in all six quantiles, the
ensemble models with mean and median combiners are relatively more stable along different

homogeneity levels.

The OLS and robust fitting tools adopt a relatively more sensitive performance at low
homogeneity levels. This behavior can be attributed to the nature of the sub-ensemble estimation
behavior, which will be more variable at such mixture levels. Furthermore, the original sample, in
this case study, has a small number of observations to be used in the ensemble training phase. At
high homogeneity levels, the sensitivity in jackknife performance of ensembles with OLS and
robust fitting tools is similar to that of ensembles with mean and median combiners. This
behavior is due to the fact that more training information is shared between the sub-ensembles
and, hence, the estimation behavior tends to be comparable for all the members. The number of

hidden neurons in the ANN members represents the complexity of the link between the inputs
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and outputs in the proposed system. The mixture levels can be regarded as a more precise
measure of model generalization ability, other than the Jackknife validation error. To this extent,
the model’s generalization ability is now further analyzed through its diversity behavior (amount
of information required by the ensemble members to produce the optimum behavior). In Table 4,
the optimum configuration for the ensemble models to estimate the low-flow quantiles in the
winter and summer seasons is presented. For the summer season, it is shown that the optimum
ANN structures for Q.7 and Qio7 ensemble models require nine hidden neurons, while Qs 3o

ensemble model requires eleven hidden neurons.

Winter Q5,30 - 11 Hidden Neurons per ANN member
25 T T T T T T T T i
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Robust Fit [|
—* — OLS Fit
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Winter Q2,7 - 9 Hidden Neurons per ANN member

25 T T T T T T T T T

RMSE (m3/s)

0 10 20 30 40 50 60 70 80 90 100
Mixure Level (%)

Winter Q10,7 - 9 Hidden Neurons per ANN member
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Mixure Level (%)

33



Journal Pre-proof

Figure 3: Jackknife results for selected ensembles to the winter study with respect to

homogeneity levels.

For the winter season, ANNs require twelve hidden neurons for ensemble models estimating
Q27 and Q1o7, and eleven hidden neurons for Qs 3o ensemble model. It is also shown that, for both
seasons, the Qs 3, ensemble models incorporated ANN members with similar complexity (number
of hidden neurons) and m. value, but they adopted different m, values and different ensemble
combiner choices. The ANN members for the ensembles explaining Q,, and Q,,; quantiles are
shown to have the same complexity in the same season, with the summer models being more
complex. It should be noted that in the benchmark study, the optimal ANN configuration for
summer and winter quantiles are different than in the present study. This is expected due to the

employed ensemble validation approach, as discussed earlier.
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Figure 4: Jackknife results for selected ensembles to the summer study with respect to

homogeneity levels.

The similar complexity in Q,; and Q.- ensembles validates the adequacy of the optimum
models. The low-flow duration in a given season is of the same number of days for both Q,- and
Q.07- Consequentially, the regression models for these quantiles are expected to have the same
complexity. Furthermore, all optimum ensemble models incorporated m, values less than 1,
meaning that the ANN models did not require all available information for learning to produce

best models, and that diverse-based ensemble models produced better generalization ability. This
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finding confirms the benefit of the proposed ensemble framework as a diversity promoting
system. In addition, validation of the ensemble studied models with different homogeneity levels

emphasize on the importance of the diversity control among the ensemble members.

Table 4: Optimum ensemble configuration for low-flow quantiles in the winter and summer

seasons.
Optimum Ensembles for Low-Flow Quantiles In The Winter Season
Quantile Ensemble Size Hidden Neurons me (%) m, (%) Combiner
Qs,30 5 11 1 5 OLS Fit
Q27 5 9 10 5 OLS Fit
Quo,7 5 9 10 5 Robust Fit
Optimum Ensembles for Low-Flow Quantiles In The Summer Season
Quantile Ensemble Size Hidden Neurons m. (%) m. (%) Combiner
Qs,30 5 11 85 5 Robust Fit
Q27 5 12 25 5 OLS Fit
Qio7 10 12 5 10 OLS Fit

All optimum ensemble models incorporated m. values above 0. The optimized performance
of the selected regression-based combiners requires observations that are not used in the sub-
ensembles’ training. This is due to the over-fitting consequence of observations used in the
training of the sub-ensembles. If all information is used in training, the linear combiners will not
add to the accuracy of the ensemble estimate. However, when a portion of observations is kept
away from the ensemble members, the estimates of such observations will not be over-fit and will
guide the training of the combiners more properly. It is important to note the dynamic tradeoff
between the distribution of the information and the performance of the ensemble models. If more

observations are kept out of the resamples (higher m. values), the improvement in the combiner’s

36



Journal Pre-proof

generalization ability will be met by deterioration in sub-ensembles’ experience, and vice-versa.
The optimized homogeneity levels are, as a consequence, dependent on the amount of available

information and should be selected with consideration to the discussed tradeoff.

Table 5 presents a comparison of the Jackknife validation results between the benchmark
models and the proposed optimum models and configuration for estimating the low-flow
quantiles in the winter and summer seasons. The proposed ensemble model has significantly
improved over the benchmark results; for example, for the winter-season Qs 3y model, the RMSE
dropped from 15.84 (m®/s) to 5.24 (m®/s), the Bias error dropped from 1.61 (m®/s) to 0.25 (m°/s),
rRMSE dropped from 34.87% to 26.07%, and rBIAS dropped from -5.13% to -0.81%. The
improvement in the absolute and relative error measures indicates that not only the higher values
in the quantile space became better estimated, rather than the case of underestimation by the
benchmark models, but also the estimates of lower values improved. Hence, the adverse scale
problem in regional extreme event estimation is further treated by the proposed models. Because
the ANN members will always have certain estimation accuracy around the real value, this can be

attributed to the combiners chosen for the proposed ensemble model.

A distinct example is shown in the winter Q.7 and Qo7 optimum ensembles, where the OLS
linear combiner and robust fitting combiner are selected, respectively. The choice of robust fitting
as a combiner in the optimum winter Q107 model is expected to be a result of the nature of the
target variable itself, as it reside in a more extreme location at the tail of the distribution than the
winter Q.7 variable (Ouarda and Shu, 2009). The linear regression techniques used as combiners
enjoy the bias correcting parameters that, in contrast to stacking approaches, directly target bias
reduction. This is notably present in the results of the proposed models for all the low-flow

quantiles, where bias error is significantly reduced. It is also shown that the optimum m, value is
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above 0% for all models; this means that the optimum models required unique information for
the training of the combiners’ parameters even though the ANN-combiner training data tradeoff
occurred. Figures 4 and 6 show the improvement of the estimation accuracy of all the low-flow
quantiles in the winter and the summer seasons, respectively. From the figures, the inferiority of
scale challenge and the discrepancy in some of the at-site low-flow observations have been

mitigated.

Table 5: Comparison of Jackknife validation results between the benchmark and the proposed

models for the estimation of winter and summer low-flow quantiles.

Winter Season

Quantile Reference RMSE (m%s) rRMSE (%) Bias (m%s) rBias (%)
Benchmark 15.84 34.87 1.61 -5.13
Qsa0 Proposed Approach 5.24 26.07 0.25 -0.81
Benchmark 16.59 33.13 1.66 -4.55
Qe Proposed Approach 7.72 16.80 0.49 -2.23
Benchmark 13.91 42.92 1.10 -6.87
Quor Proposed Approach 5.29 2291 0.06 -1.98

Summer Season

Quantile Reference RMSE (m*/s) rRMSE (%) Bias (m*/s) rBias (%)
Benchmark 27.95 31.02 0.94 -3.08
Qsa0 Proposed Approach 7.99 25.77 0.37 -1.74
Benchmark 35.90 3141 5.47 -1.65
Qar Proposed Approach 8.78 23.39 0.45 -1.59
Benchmark 27.33 39.17 2.69 -3.17
Quo Proposed Approach 7.41 33.49 0.18 -2.71
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Figure 5: Scatter plot of Jackknife validation results of winter low-flow quantiles.

39



Journal Pre-proof

Q5,30 - Summer

2000 T T T T T T T T T
@
(3]
£ 1500} .
(0]
=)
< 1000} .
e}
9
g so00f- .
r
w
0 r r r r r r r r r
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Target Value (m®/s)
Q2,7 - Summer
- 2000 T T T T T T T T T
0
(3]
E 1500} .
(0]
=
< 1000} .
e}
9
g 500 .
b7
w 0 r r r r r r r r r
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Target Value (m®/s)
Q10,7 - Summer
2000 T T T T T T T T T
Q)
(32}
E 1500 .
()
=)
< 1000 .
©
L .
g 500 . .
@
&
0 r r r r r r r r r
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Target Value (m?s)

Figure 6: Scatter plot of Jackknife validation results of summer low-flow quantiles.
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7. Conclusions

An ensemble framework is proposed in this study to improve the generalization ability of the
regression sub-ensemble models. The proposed two-stage resampling algorithm makes use of the
homogeneity concept between subsamples. Further, the idea of isolating some of the training data
from the sub-model training and using it in the combiner training has enhanced the performance
of the corresponding optimum ensemble models. The over-fitting disadvantage of neural
networks in ensemble modeling has been treated using the proposed resampling plan. The results
clearly show substantial enhancement in the estimation accuracy. The magnitudes of the
homogeneity levels corresponding to the optimum ensemble models have indeed promoted the
diversity concept in the theory of ensemble learning theory; the optimum mixture levels are
found to be low enough, although significant, for ensemble members to be trained using sub-
sample with diverse information about the system. It is shown that the sensitivity of the
combiners’ performance is indirectly related to the mixture levels, through the level of diversity

in the individual members.

The generalization ability of any predictor in the field of regional frequency analysis relies on
the relationship between the hydrologic stations considered in that study. Hence, understanding
the homogeneity, or hydrologic similarity, between the stations is expected to significantly
improve the regression models over them. In fact, assessing and modeling the level of
homogeneity within a group of stations is an active topic of research (Chebana and Ouarda,
2007). Future work may consider modeling the level of hydrologic homogeneity in the data first
and then investigate the data-mixing scheme as a function of the hydrologic homogeneity. Such
approach opens the door to integrate the concept of diversity within the physical identity of the

system of interest, providing solutions to limitations in the current ensemble models for the
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challenging low-flow quantile estimation task. Hence, future work may also target the application
of ensembles involving different mixture ratio relations, given a relatively large database, and
develop a validation approach to such models. A nonlinear mixture relation of the information
share between the ensemble members could further optimize the generalization ability of such
ensembles. The possible combinations between the members can easily reach a relatively huge
number. It is costly to investigate all possible combinations for means of model validation and
selection. To alleviate the difficulty in such work, search-based optimization algorithms may be
investigated to minimize the number of simulations mandatory for finding the optimum ensemble

structure.
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