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Abstract—Several machine-learning algorithms have been 

proposed for remote sensing image classification during the past 

two decades. Among these machine learning algorithms, Random 

Forest (RF) and Support Vector Machines (SVM) have drawn 

attention to image classification in several remote sensing 

applications. This paper reviews RF and SVM concepts relevant 

to remote sensing image classification and applies a meta-analysis 

of 251 peer-reviewed journal papers. A database with more than 

40 quantitative and qualitative fields was constructed from these 

reviewed papers. The meta-analysis mainly focuses on: (1) the 

analysis regarding the general characteristics of the studies, such 

as geographical distribution, frequency of the papers considering 

time, journals, application domains, and remote sensing software 

packages used in the case studies, and (2) a comparative analysis 

regarding the performances of RF and SVM classification against 

various parameters, such as data type, RS applications, spatial 

resolution, and the number of extracted features in the feature 

engineering step. The challenges, recommendations, and 

potential directions for future research are also discussed in 

detail. Moreover, a summary of the results is provided to aid 

researchers to customize their efforts in order to achieve the most 

accurate results based on their thematic applications. 

Index Terms— Random Forest, Support Vector Machine, 

Remote Sensing, Image classification, Meta-analysis. 

I. INTRODUCTION 

ecent advances in Remote Sensing (RS) technologies, 

including platforms, sensors, and information 

infrastructures, have significantly increased the accessibility to 

the Earth Observations (EO) for geospatial analysis [1]–[5]. In 

addition, the availability of high-quality data, the temporal 

frequency, and comprehensive coverage make them 
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advantageous for several agro-environmental applications 

compared to the traditional data collections approaches [6]–

[8]. In particular, land use and land cover (LULC) mapping is 

the most common application of RS data for a variety of 

environmental studies, given the increased availability of RS 

image archives [9]–[13]. The growing applications of LULC 

mapping alongside the need for updating the existing maps 

have offered new opportunities to effectively develop 

innovative RS image classification techniques in various land 

management domains to address local, regional, and global 

challenges [14]–[21].  

The large volume of RS data [15], the complexity of the 

landscape in a study area [22]–[24], as well as limited and 

usually imbalanced training data [25]–[28], make the 

classification a challenging task. Efficiency and computational 

cost of RS image classification [29] is also influenced by 

different factors, such as classification algorithms [30]–[33], 

sensor types [34]–[37], training samples [38]–[41], input 

features [42]–[46], pre- and post-processing techniques [47], 

[48], ancillary data [49], [50], target classes [22], [51], and the 

accuracy of the final product [21], [50], [52]–[54]. 

Accordingly, these factors should be considered with caution 

for improving the accuracy of the final classification map. 

Carrying a simple accuracy assessment, through the Overall 

Accuracy (OA) and Kappa coefficient of agreement (K), by 

the inclusion of ground truth data might be the most common 

and reliable approach for reporting the accuracy of thematic 

maps. These accuracy measures make the classification 

algorithms comparable when independent training and 

validation data are incorporated into the classification scheme 

[31], [55]–[57], [57].  

Given the development and employment of new 

classification algorithms, several review articles have been 

published. To date, most of these reviews on remote sensing 

classification algorithms have provided useful guidelines on 

the general characteristics of a large group of techniques and 

methodologies. For example, [58] represented a meta-analysis 

of the popular supervised object-based classifiers and reported 

the classification accuracies with respect to several influential 

factors, such as spatial resolution, sensor type, training sample 

size, and classification approach. Several review papers also 

demonstrated the performance of the classification algorithms 

for a specific type of application. For instance, [59] 

summarized the significant trends in remote sensing 

techniques for the classification of tree species and discussed 

the effectiveness of different sensors and algorithms for this 
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application. The developments in methodologies for 

processing a specific type of data is another dominant type of 

review papers in remote sensing image classification. For 

example, [60] reviews the usefulness of high-resolution 

LiDAR sensor and its application for urban land cover 

classification, or in [7], an algorithmic perspective review for 

processing of hyperspectral images is provided. 

Over the past few years, deep learning algorithms have 

drawn attention for several RS applications [33], [61], and as 

such, several review articles have been published on this topic. 

For instance, three typical models of deep learning algorithms, 

namely deep belief network, convolutional neural networks, 

and stacked auto-encoder, were analyzed in [62]. They also 

discussed the most critical parameters and the optimal 

configuration of each model. Studies, such as [63] who 

compared the capability of deep learning architectures with 

Support Vector Machine (SVM) for RS image classification, 

and [64] who focused on the classification of hyperspectral 

data using deep learning techniques, are other examples of RS 

deep learning review papers.  

The commonly employed classification algorithms in the 

remote sensing community include support vector machines 

(SVMs) [65], [66], ensemble classifiers, e.g., random forest 

(RF) [10], [67], and deep learning algorithms [30], [68]. Deep 

learning methods has the ability to retrieve complex patterns 

and informative features from the satellite image data. For 

example, CNN has shown performance improvements over 

SVM and RF [69]–[71]. However, one of the main problems 

with deep learning approaches is their hidden layers; “black 

box” [61] nature, which results in the loss of interpretability 

(see Fig. 1). Another limitation of a deep learning models is 

that they are highly dependent on the amount of training data 

i.e., ground truth. Moreover, implementing CNN required 

expert knowledge and computationally is expensive and needs 

dedicated hardware to handle the process. On the other hand, 

recent researches show SVM and RF (i.e., relatively easily 

implementable methods) can handle learning tasks with a 

small amount of training dataset, yet demonstrate competitive 

results with CNNs [72]. Deep learning methods have the 

ability to retrieve complex patterns and informative features 

from the satellite imagery. For example, CNN has shown 

performance improvements over SVM and RF [69], [70]. 

However, one of the main problems with deep learning 

approaches is their hidden layers; “black box” nature [61], 

which results in the loss of interpretability (see Fig. 1). 

Another limitation of deep learning models is that they are 

highly dependent on the availability of abundant high quality 

ground truth data. Moreover, implementing CNN requires 

expert knowledge and it is computationally expensive and 

needs dedicated hardware to handle the process. On the other 

hand, recent researches show SVM and RF (i.e., relatively 

easily implementable methods) can handle learning tasks with 

a small amount of training dataset, yet demonstrate 

competitive results with CNNs [72]. Although there is an 

ongoing shift in the application of deep learning in RS image 

classification, SVM and RF have still held the researchers’ 

attention due to lower computational complexity and higher 

interpretability capabilities compared to deep learning models. 

More specifically, SVM maintenance among the top 

classifiers is mainly because of its ability to tackle the 

problems of high dimensionality and limited training samples 

[73], while RF holds its position due to ease of use (i.e., does 

not need much hyper-parameter fine-tuning) and its ability to 

learn both simple and complex classification functions [74], 

[75]. As a result, the relatively high similar performance of 

SVM  and RF in terms of classification accuracies make them 

among the most popular machine learning classifiers within 

the RS community [76]. As a result, giving merit to one of 

them is a difficult task as past comparison-based studies, as 

well as some review papers, provide readers with often 

contradictory conclusions, which was somehow confusing. 

For instance, [74] reported SVMs can be considered the “best 

of class” algorithms for classification; however, [75], [77] 

suggested that RF classifiers may outperform support vector 

machines for RS image classification. This knowledge gap 

was identified in the field of bioinformatics and filled by an 

exclusive review of RFs vs. SVMs [78]; however, no such a 

detailed survey is available for RS image classification.  

Table I summarizes the review papers on recent 

classification algorithms of remote sensing data, where a large 

part of the literature is devoted to RFs or is discussed as an 

alternative classifier. The majority of these review papers are 

descriptive and do not offer a quantitative assessment of the 

stability and suitability of RF and SVM classification 

algorithms. Accordingly, the general objective of this study is 

to fill this knowledge gap by comparing RF and SVM 

classification algorithms through a meta-analysis of published 

papers and provide remote sensing experts with a “big picture” 

of the current research in this field. To the best of the authors 

knowledge, this is the first study in the remote sensing filed 

that provides a one to one comparison analysis for RF and 

SVM in various remote sensing applications.  

To fulfill the proposed meta-analysis task, more than 250 

peer-reviewed papers have been reviewed in order to construct 

a database of case studies that include RFs and SVMs either in 

one-to-one comparison or individually with other machine 

learning methods in the field of remote sensing image 

classification.  

 
Fig. 1.  Interpretability-accuracy trade-off in machine learning classification 

algorithms. 
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TABLE I. SUMMARY OF RELATED SURVEYS ON REMOTE SENSING IMAGE CLASSIFICATION (THE NUMBER OF CITATIONS IS REPORTED BY APRIL 20, 2020). 

No. Title # papers Year Citation Publication 

1 
A Survey of Image Classification Methods and Techniques for Improving Classification 
Performance 

NA 2007 2365 IJRS 

2 Support Vector Machines in Remote Sensing: A Review 108 2011 1881 ISPRS 

3 Random Forest in Remote Sensing: A Review of Applications and Future Directions NA 2016 1037 ISPRS 

4 
Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning 

Methods 
NA 2013 467 IEEE SPM 

5 Optical Remotely Sensed Time Series Data for Land Cover Classification NA 2016 414 ISPRS 

6 
Quality Assessment of Image Classification Algorithms for Land-Cover Mapping: A 
Review and A Proposal for A Cost-Based Approach 

NA 1999 382 IJRS 

7 Urban Land Cover Classification Using Airborne Lidar Data: A Review NA 2015 258 RSE 

8 A Review of Supervised Object-Based Land-Cover Image Classification 173 2017 257 ISPRS 

9 
A Meta-Analysis of Remote Sensing Research on Supervised Pixel-Based Land-Cover 
Image Classification Processes: General Guidelines for Practitioners and Future Research 

266 2016 216 RSE 

10 
A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-

Contextual Information 
NA 2014 202 EJRS 

11 Advanced Spectral Classifiers for Hyperspectral Images: A Review NA 2017 190 IEEE GRSM 

12 Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review NA 2018 164 IJRS 

13 Developments in Landsat Land Cover Classification Methods: A Review 36 2017 98 RS/MDPI 

14 Multiple Kernel Learning for Hyperspectral Image Classification: A Review NA 2017 75 IEEE TGRS 

15 Meta-Discoveries from A Synthesis of Satellite-Based Land-Cover Mapping Research 1651 2014 74 IJRS 

16 Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review 176 2019 70 ISPRS 

17 

New Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances 

Based on Mathematical Morphology, Markov Random Fields, Segmentation, Sparse 
Representation, and Deep Learning 

NA 2018 57 IEEE GRSM 

18 
Remote Sensing Image Classification: A Survey of Support-Vector-Machine-Based 

Advanced Techniques 
55 2017 53 IEEE GRSM 

19 
Meta-Analysis of Deep Neural Networks in Remote Sensing: A Comparative Study of 

Mono-Temporal Classification to Support Vector Machines 
103 2019 5 ISPRS 

II. OVERVIEW OF SVM AND RF CLASSIFIER 

Image classification algorithms can be broadly categorized 

into supervised and unsupervised approaches. Supervised 

classifiers are preferred when sufficient amounts of training 

data are available. Parametric and non-parametric methods are 

another categorization of classification algorithms based on 

data distribution assumptions (see Fig. 2). Yu et al. [79] 

reviewed 1651 articles and reported that supervised parametric 

algorithms were the most frequently used technique for remote 

sensing image classification. For example, the maximum 

likelihood (ML) classifier, as a supervised parametric 

approach, was employed in more than 32% of the reviewed 

studies. Supervised non-parametric algorithms, such as SVM 

and ensemble classifiers, obtained more accurate results, yet 

they were less frequently used compared to supervised 

parametric methods [79].  

Prior to the introduction of Random Forest (RF), Support 

Vector Machine (SVM) has been in the spotlight for RS image 

classification, given its superiority compared to Maximum 

Likelihood Classifier (MLC), K-Nearest Neighbours (KNN), 

Artificial Neural Networks (ANN), and Decision Tree (DT) 

for RS image classification. Since the introduction of RF, 

however, it has drawn attention within the remote sensing 

community, as it produced classification accuracies 

comparable with those of SVM [75], [76]. An overview of 

SVM and RF classification algorithms has been presented in 

the following sections.  

 

 
Fig. 2.  A Taxonomy of Image classification algorithms. 

 

A. Support Vector Machine Classifier 

The Support vector machines algorithm, introduced firstly 

in the late 1970s by Vapnik and his group, is one of the most 

widely used kernel-based learning algorithms in a variety of 

machine learning applications, and especially image 

classification [74]. In SVMs, the main goal is to solve a 

convex quadratic optimization problem for obtaining a 

globally optimal solution in theory and thus, overcoming the 

local extremum dilemma of other machine learning 

techniques. SVM belongs to non-parametric supervised 

techniques, which are insensitive to the distribution of 
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underlying data. This is one of the advantages of SVMs 

compared to other statistical techniques, such as maximum 

likelihood, wherein data distribution should be known in 

advance [76].  

SVM, in its basic form, is a linear binary classifier, which 

identifies a single boundary between two classes. The linear 

SVM assumes the multi-dimensional data are linearly 

separable in the input space (see Fig. 3). In particular, SVMs 

determine an optimal hyperplane (a line in the simplest case) 

to separate the dataset into a discrete number of predefined 

classes using the training data. To maximize the separation or 

margin, SVMs use a portion of the training sample that lies 

closest in the feature space to the optimal decision boundary, 

acting as support vectors [80]–[83]. These samples are the 

most challenging data to classify and have a direct impact on 

the optimum location of the decision boundary [38], [76]. The 

optimal hyperplane, or the maximal margin, can be 

mathematically and geometrically defined. It refers to a 

decision boundary that minimizes misclassification errors 

attained during the training step [66], [67]. As seen in Fig. 3, a 

number of hyperplanes with no sample between them are 

selected, and then the optimal hyperplane is determined when 

the margin of separation is maximized [76], [77]. This 

iterative process of constructing a classifier with an optimal 

decision boundary is described as the learning process [79]. 

 
Fig. 3.  An SVM example for linearly separable data. 

 

In practice, the data samples of various classes are not 

always linearly separable and have overlap with each other 

(see Fig. 4). Thus, linear SVM can not guarantee a high 

accuracy for classifying such data and needs some 

modifications. Cortes and Vapnik [80] introduced the soft 

margin and kernel trick methods to address the limitation of 

linear SVM. To deal with non-linearly separable data, 

additional variables (i.e., slack variables) can be added to 

SVM optimization in the soft margin approach. However, the 

idea behind the kernel trick is to map the feature space into a 

higher dimension (Euclidean or Hilbert space) to improve the 

separability between classes [86], [87]. In other words, using 

the kernel trick, an input dataset is projected into a higher 

dimensional feature space where the training samples will 

become linearly separable. 

 
Fig. 4.  An SVM example for non-linearly separable data with the kernel trick. 

 

The performance of SVM largely depends on the suitable 

selection of a kernel function that generates the dot products in 

the higher dimensional feature space. This space can 

theoretically be of an infinite dimension where the linear 

discrimination is possible. There are several kernel models to 

build different SVMs, satisfying the Mercer’s condition, 

including Sigmoid, Radial basis function, Polynomial, and 

Linear [88]. Commonly used kernels for remotely sensed 

image analysis are polynomial and the radial basis function 

(RBF) kernels [74]. Generally, kernels are selected by 

predefining a kernel’s model (Gaussian, polynomial, etc.) and 

then adjusting the kernel parameters by tuning techniques, 

which could be computationally very costly. The classifier’s 

performance, on a portion of the training sample or validation 

set, is the most important criteria for selecting a kernel 

function. However, kernel-based models can be quite sensitive 

to overfitting, which is possibly the main limitation of kernel-

based methods, such as SVM [63]. Accordingly, innovative 

approaches, including automatic kernel selection [83], [87], 

[89], and multiple kernel learning [90], were proposed to 

address this problem. Notably, the task of determining the 

optimum kernel falls into the category of the optimization 

problem [91]–[95]. Optimizing several SVM parameters is 

very resource-intensive. So there comes a need for an alternate 

way of searching out the SVM parameters; genetic 

optimization algorithm (GA) [96]–[98] and particle swarm 

optimization (PSO) algorithm [99]. GA-SVM and SVM-PSO 

are both evolutionary techniques that exploit principles 

inspired from biological systems to optimize C and gamma. 

Compared with GA and other similar evolutionary techniques, 

PSO has some attractive characteristics and, in many cases, 

proved to be more effective [99]. 

The binary nature of SVMs usually involves complications 

on their use for multi-class scenarios, which frequently occur 

in remote sensing. This requires a multi-class task to be 

broken down into a series of simple SVM binary classifiers, 

following either the one-against-one or one-against-all 

strategies [100]. However, the binary SVM can be extended to 

a one-shot multi-class classification, requiring a single 

optimization process. For example, a complete set of five-

class classifications only requires to be optimized once for 

determining the kernel’s parameters C (a parameter that 

controls the amount of penalty during the SVM optimization) 

and γ (spread of the RBF kernel), in contrast to the five-times 

for one-against-all and ten-times for the one-against-one 
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Fig. 5.  The widely used ensemble learning methods: (a) Boosting and (b) Bagging. 

 

methods, respectively. Furthermore, the one-shot multi-class 

classification uses fewer support vectors while, unlike the 

conventional one-against-all strategy, it guarantees to produce 

a complete confusion matrix [101]. SVM classifies high-

dimensional big data into a limited number of support vectors, 

thus achieving the distinction between subgroups within a 

short period of time. However, the classification of big data is 

always computationally expensive. As such, hybrid 

methodologies of the SVM, e.g., Granular Support Vector 

Machine (GSVM), are introduced in different applications. 

GSVM is a novel machine learning model based on granular 

computing and statistical learning theory that addresses the 

inherently low-efficiency learning problem of the traditional 

SVM while obtaining satisfactory generalization performance 

[102]. 

SVMs are particularly attractive in the field of remote 

sensing owing to their ability to manage small training data 

sets effectively and often delivering higher classification 

accuracy compared to the conventional methods [97]–[99]. 

SVM is an efficient classifier in high-dimensional spaces, 

which is particularly applicable to remote sensing image 

analysis field where the dimensionality can be extremely large  

[100], [101]. In addition, the decision process of assigning 

new members only needs a subset of training data. As such, 

SVM is one of the most memory-efficient methods, since only 

this subset of training data needs to be stored in memory 

[108]. The ability to apply new kernels rather than linear 

boundaries also increases the flexibility of SVMs for the 

decision boundaries, leading to a greater classification 

performance. Despite these benefits, there are also some 

challenges, including the choice of a suitable kernel, optimum 

kernel parameters selection, and the relatively complex 

mathematics behind the SVM, especially from a non-expert 

user point of view, that restricts the effective cross-

disciplinary applications of SVMs [103]. 

 

B. Random Forest Classifier 

RF is an ensemble learning approach, developed by [110], 

for solving classification and regression problems. Ensemble 

learning is a machine learning scheme to boost accuracy by 

integrating multiple models to solve the same problem. In 

particular, multiple classifiers participate in ensemble 

classification to obtain more accurate results compared to a 

single classifier. In other words, the integration of multiple 

classifiers decrease variance, especially in the case of unstable 

classifiers, and may produce more reliable results. Next, a 

voting scenario is designed to assign a label to unlabeled 

samples [11], [111], [112]. The commonly used voting 

approach is majority voting, which assigns the label with the 

maximum number of votes from various classifiers to each 

unlabeled sample [107]. The popularity of the majority voting 

method is due to its simplicity and effectiveness. More 

advanced voting approaches, such as the veto voting method, 

wherein one single classifier vetoes the choice of other 

classifiers, can be considered as an alternative for the majority 

voting method [108].  

The widely used ensemble learning methods are boosting 

and bagging. Boosting is a process of building a sequence of 

models, where each model attempts to correct the error of the 

previous one in that sequence (see Fig. 5.a). AdaBoost was the 

first successful boosting approach, which was developed for 

binary classification cases [116]. However, the main problem 

of AdaBoost is model overfitting [111]. The Bootstrap 

Aggregating, known as Bagging, is another type of ensemble 

learning methods [117]. Bagging is designed to improve the 
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stability and accuracy of integrated models while reducing 

variance (see Fig. 5.b). As such, Bagging is recognized to be 

more robust against the overfitting problem compared to the 

boosting approach [110].  

RF was the first successful bagging approach, which was 

developed based on the combination of Breiman’s bagging 

sampling approach, random decision forests, and the random 

selection of features independently introduced by [118]–[120]. 

RFs with significantly different tree structures and splitting 

variables encourage different instances of overfitting and 

outliers among the various ensemble tree models. Therefore, 

the final prediction voting mitigates the overfitting in case of 

the classification problem, while the averaging is the solution 

for the regression problems. Within the generation of these 

individual decision trees, each time the best split in the 

random sample of predictors is chosen as the split candidates 

from the full set of predictors. A fresh sample of predictors is 

taken at each split utilizing a user-specified number of 

predictors (Mtry). By expanding the random forest up to a 

user-specified number of trees (Ntree), RF generates high 

variance and low bias trees. Therefore, new sets of input 

(unlabeled) data are assessed against all decision trees that are 

generated in the ensemble, and each tree votes for a class’s 

membership. The membership with the majority votes will be 

the one that is eventually selected (see Fig. 6) [121], [122]. 

This process, hence, should obtain a global optimum [123]. To 

reach a global optimum, two-third of the samples, on average, 

are used to train the bagged trees, and the remaining samples, 

namely the out-of-bag (OOB) are employed to cross-validate 

the quality of the RF model independently. The OOB error is 

used to calculate the prediction error and then to evaluate 

Variable Importance Measures (VIMs) [117], [118]. 

 
 

Fig. 6.  Random forest model.  

 

Of particular RFs’ characteristic is variable importance 

measures (VIMs) [126]–[129]. Specifically, VIM allows a 

model to evaluate and rank predictor variables in terms of 

relative significance [29], [51]. VIM calculates the correlation 

between high dimensional datasets on the basis of internal 

proximity matrix measurements [130] or identifying outliers in 

the training samples by exploratory examination of sample 

proximities through the use of variable importance metrics 

[49]. The two major variable importance metrics are: Mean 

Decrease in Gini (MDG) and Mean Decrease in Accuracy 

(MDA) [124]–[126]. MDG measures the mean decrease in 

node impurities as a result of splitting and computes the best 

split selection. MDG switches one of the random input 

variables while keeping the rest constant. It then measures the 

decrease in the accuracy, which has taken place by means of 

the OOB error estimation and Gini Index decrease. In a  case 

where all predictors are continuous and mutually uncorrelated, 

Gini VIM is not supposed to be biased [29]. MDA, however, 

takes into account the difference between two different OOB 

errors, the one that resulted from a data set obtained by 

randomly permuting the predictor variable of interest and the 

one resulted from the original data set [110].  

To run the RF model, two parameters have to be set: The 

number of trees (Ntree) and the number of randomly selected 

features (Mtry). RFs are reported to be less sensitive to the 

Ntree compared to Mtry [127]. Reducing Mtry parameter may 

result in faster computation, but reduces both the correlation 

between any two trees and the strength of every single tree in 

the forest and thus, has a complex influence on the 

classification accuracy [121]. Since the RF classifier is 

computationally efficient and does not overfit, Ntree can be as 

large as possible [135]. Several studies found 500 as an 

optimum number for the Ntree because the accuracy was not 

improved by using Ntrees higher than this number   [123]. 

Another reason for this value being commonly used could be 

the fact that 500 is the default value in the software packages 

like R package; “randomForest” [136]. 

In contrast, the number of Mtry is an optimal value and 

depends on the data at hand. The Mtry parameter is 

recommended to be set to the square root of the number of 

input features in classification tasks and one-third of the 

number of input features for regression tasks [110]. Although 

methods based on bagging such as RF, unlike other methods 

based on boosting, are not sensitive to noise or overtraining 

[137], [138], the above-stated value for Mtry might be too 

small in the presence of a large number of noisy predictors, 

i.e., in the case of non-informative predictor variables, the 

small Mtry results in building inaccurate trees [29]. 

The RF classifier has become popular for classification, 

prediction, studying variable importance, variable selection, 

and outlier detection since its emergence in 2001 by [110]. 

They have been widely adopted and applied as a standard 

classifier to a variety of prediction and classification tasks, 

such as those in bioinformatics [139], computer vision [140], 

and remote sensing land cover classification [141]. RF has 

gained its popularity in land cover classification due to its 

clear and understandable decision-making process and 

excellent classification results [123], as well as easily 

implementation of RF in a parallel structure for geo-big data 

computing acceleration [142]. Other advantages of RF 
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Fig. 7.  Article search query design. 

 

classifier can be summarized as (1) handling thousands of 

input variables without variable deletion, (2) reducing the 

variance without increasing the bias of the predictions, (3) 

computing proximities between pairs of cases that can be used 

in locating outliers, (4) being robust to outliers and noise, (5) 

being computationally lighter compared to other tree ensemble 

methods, e.g., Boosting. As such, many research works have 

illustrated the great capability of the RS classifier for 

classification of Landsat archive, hyper and multi spectral 

image classification [143], and Digital Elevation Model 

(DEM) data [144]. Most RF research has demonstrated that 

RF has improved accuracy in comparison to other supervised 

learning methods and provide VIMs that is crucial for multi-

source studies, where data dimensionality is considerably high 

[145]. 

III. METHODS 

To prepare for this comprehensive review, a systematic 

literature search query was performed using the Scopus and 

the Web of Science, which are two big bibliographic databases 

and cover scholarly literature from approximately any 

discipline. Notably, Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) were followed for 

study selection [146]. After numerous trials, three groups of 

keywords were considered to retrieve relevant literature in a 

combination on and up to October 28, 2019 (see Fig. 7). The 

keywords in the first and last columns were searched in the 

topic (title/abstract/keyword) to include papers that used data 

from the most common remote sensing platforms and 

addressed a classification problem. However, the keywords in 

the second column were exclusively searched in the title to 

narrow the search down. This resulted in obtaining studies that 

only employed SVM and RF algorithms in their analysis. 

To identify significant research findings and to keep a 

manageable workload, only those studies that had been 

published in one of the well-known journals in the remote 

sensing community (see Table II) have been considered in this 

literature review.  

 
TABLE II. REMOTE SENSING JOURNALS USED TO COLLECT RESEARCH STUDIES FOR THIS LITERATURE REVIEW.  

Journal Publication 
Impact factor 

(2019) 

Remote Sensing of Environment Elsevier 8.218 

ISPRS Journal of Photogrammetry and Remote Sensing Elsevier 6.942 

Transaction on Geoscience and Remote Sensing IEEE 5.63 

International Journal of Applied Earth Observation and Geoinformation Elsevier 4.846 

Remote Sensing MDPI 4.118 

GISience Remote Sensing Taylor & Francis 3.588 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE 3.392 

Patterns Recognition Letters Elsevier 2.81 

Canadian Journal of Remote Sensing Taylor & Francis 2.553 

International Journal of Remote Sensing Taylor & Francis 2.493 

Remote Sensing Letters Taylor & Francis 2.024 

Journal of Applied Remote Sensing SPIE 1.344 
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Fig. 8.  PRISMA flowchart demonstrating the selection of studies. 

 

Of the 471 initial number of studies, 251 were eligible 

to be included in the meta-analysis with the following 

attributes: title, publication year, first author, journal, 

citation, application, sensor type, data type, classifier, 

image processing unit, spatial resolution, spectral 

resolution, number of classes, number of features, 

optimization method, test/train portion, software/library, 

single-date/multi-temporal, overall accuracy, as well as 

some specific attributes for each classifier, such as 

kernel types for SVM and number of trees for RF. A 

summary of the literature search is demonstrated in Fig. 

8. 
 

IV. RESULTS AND DISCUSSION 

A. General characteristics of studies 

Following the in-depth review of 251 publications on 

supervised remotely-sensed image classification, relevant data 

were obtained using the methods described in Section III. The 

primary sources of information were articles published in 

scientific journals. In this section, we conduct analysis about 

the geographical distribution of the research papers and 

discuss the frequency of those papers based on RF and SVM 

considering time, journals, and application domains. This was 

followed by statistical analysis of remote sensing software 

packages used in the case studies, given RFs and SVMs. 

Further, we reported the result and discussed the finding of 

classification performance against essential features, i.e., data 

type, RS applications, spatial resolution, and finally, the 

number of extracted features. 

 
Fig. 9.  Distribution of research institutions, according to the country reported in the article. The countries with more than three studies are presented in the table. 
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Fig. 10.  The usage rate of SVM and RF for remote sensing image classification in countries with more than three studies. 

 

 
Fig. 11.  Cumulative frequency of studies that used SVM or RF algorithms for 

remote sensing image classification. 

Fig. 9 illustrates the geographical coverage of published 

papers based on the research institutions reported in the article 

on a global scale. More than three studies were published in 

16 countries from six continents, including Asia 41%, Europe 

32%, North America 18%, and the others 9%. As can be seen, 

most of the studies have been carried out in Asia and 

specifically in China by 71 studies; more than two times 

higher than the number of studies conducted in the following 

country (i.e., USA). The papers from China and the USA have 

been over 40% of the studies. This is maybe due to the 

extensive scientific studies conducted by the universities and 

institutions located in these countries, as well as the 

availability of the datasets. Fig. 10 also demonstrates the 

popularity of RF and SVM classifiers within these 16 

countries. It is interesting that in the Netherlands and Canada, 

RF is frequently applied while in China and the USA, SVM 

attracts more scientists. It was only in Italy and Taiwan that all 

the studies used merely one of the classifiers (i.e., SVMs). 

Fig. 11 represents the annual frequency of the publications 

and the equivalent cumulative distribution for RF and SVM 

algorithms applied for remote sensing image classification. 

The resulting list of papers includes 251 studies published in 

12 different peer-reviewed journals. Case studies were 

assembled from 2002 to 2019, a period of 17 years, wherein 

the first study using SVM dates back to 2002 [147] and 2005 

for RFs  [145]. The graph shows the significant difference 

between studies using SVM and RF over the time frame. 

Apart from a brief drop between 2010 and 2011, there was a 

moderate increase in case studies using SVM from 2002 to 

2014. However, this slips back for four subsequent years, 

followed by significant growth in 2019. Studies using RFs, on 

the other hand, shows the steady increase in the given time-

span, which resulted in an exponential distribution in the 

equivalent cumulative distribution function. The number of 

studies employed SVMs were always more than those that 

used RFs until 2016, wherein the number crossed over in favor 

of utilizing RFs. The sharp decrease in using both RF and 

SVM between 2014 and 2019 can be clearly explained by the 

advent of utilizing deep learning models in the RS community 

[148]. However, it seems that employing RF and SVM 

regained the researchers’ attention from 2018 onward. Overall, 

170 (68%) and 105 (42%) studies used SVM and RF for their 

classification task, respectively. It is noteworthy to mention 

that some papers include the implementation of both methods. 

Besides, the graph illustrates that utilizing SVMs fluctuated 

more than RFs, and both classifiers keep almost steady 

growth, given the time period. More information on datasets 

will be given in the next section. 
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Fig. 12.  The number of publications per journal; Remote Sensing of 

Environment (RSE), ISPRS Journal of Photogrammetry and Remote Sensing 

(ISPRS), Transaction on Geoscience and Remote Sensing (IEEE TGRS), 
International Journal of Applied Earth Observation and Geoinformation 

(JAG), Remote Sensing (RS MDPI), GIScience Remote Sensing (GIS & RS), 

Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing (IEEE JSTARS), Patterns Recognition Letters (PRL), Canadian 

Journal of Remote Sensing (CJRS), International Journal of Remote Sensing 

(IJRS), Remote Sensing Letters (RSL), and Journal of Applied Remote 
Sensing (JARS). 

 

Fig. 12 demonstrates the number of publications in each of 

these 12 peer-reviewed journals, as well as their contribution 

in using RF and SVM.  Nearly one-fourth of the papers (24%) 

were published in Remote Sensing (RS MDPI) with the 

majority of the remaining published in the Institute of 

Electrical and Electronics Engineers (IEEE) hybrid journals 

(JSTARS, TGRS, and GRSL; 23%), International Journal of 

Remote Sensing (IJRS; 19%), Remote Sensing of 

Environment (RSE; 8%), and six other journals (26%). 

Although in most of the journals the number of SVM- and RF-

related articles are high enough, three journals have published 

less than ten papers with RF or SVM classification 

implementations (i.e., GIS&RS, CJRS, and PRL). 

The scheme for RS applications used for this study 

consisted of 8 broad Classification groupings referred to as 

classes distributed across the world (Fig. 13). The most 

frequently investigated application, representing 39% of 

studies, was related to land cover mapping, with other 

categorial applications including agriculture (15%), urban 

(11%), forest (10%), wetland (12%), disaster (3%) and soil 

(2%). The remaining applications comprising about 8% of the 

case studies mainly consist of mining area classification, water 

mapping, benthic habitat, rock types, and geology mapping.  

 
Fig. 13.  Number of Studies that used SVM or RF algorithms in different 

remote sensing applications. 

 

B. Statistical and remote sensing software packages 

A comparison of the geospatial and image processing 

software and other statistical packages is depicted in Fig. 14. 

These software packages shown here were used for the 

implementation of both the SVM and RF methods in at least 

three journal papers. The software packages include 

eCognition (Trimble), ENVI (Harris Geospatial 

SolutionsInc.), ArcGIS (ESRI), Google Earth Engine, 

Geomatica (PCI Geomatics) as well as statistical and data 

analysis tools, which are Matlab (MathWorks), and open-

source software tools such as R, Python, OpenCV, and Weka 

data mining software tool (developed by Machine Learning 

Group at the University of Waikato, New Zealand). A detailed 

search through the literature showed that the free statistical 

software tool R appears to be the most important and frequent 

source of SVM (25%) and RF (41%) implementation. R is a 

programming language and free software environment for 

statistical computing and graphics and widely used for data 

analysis and development of statistical software. Most of the 

implementations in R were carried out using the caret package 

[149], which provides a standard syntax to execute a variety of 

machine learning methods, and e1071 package [150], which is 

the first implementation of SVM method in R. The dominance 

of statistical and data analysis software especially R, Python 

(scikit-learn package), and Matlab is mainly because of the 

flexibility of these interfaces in dealing with extensive 

machine learning frameworks such as image preprocessing, 

feature selection and extraction, resampling methods, 

parameter tuning, training data balancing, and classification 

accuracy comparisons. In terms of the commercial software, 

for RF, eCognition is the most popular one, with about 17% of 

the case studies, while for the SVM classification method, 

ENVI is the most frequent software accounted for 9% of the 

studies. 

 
Fig. 14.  Software packages with tools/modules for the implementation of RF 

and SVM methods. 

 

C. Classification performance and data type 

Considering the optimal configuration for the available 

datasets, Fig. 15 shows the average accuracies based on the 

type of remotely sensed data for both the SVM and RF 

methods. Multispectral remote sensing images remain 

undoubtedly the most frequently employed data source 
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amongst those utilized in both SVM and RF scenarios, with 

about 50% of the total papers mainly involving Landsat 

archives followed by MODIS imagery. On the other hand, the 

least data usage is related to LIDAR data, with less than 2% of 

the whole database. The percentages of the remaining types of 

remote sensing data for SVM are as follows: fusion (21%), 

hyperspectral (21%), SAR (4%), and LIDAR (1.6%). These 

percentages for RF classifiers are about 32%, 10%, 6%, and 

4%, respectively. In working with the multispectral and 

hyperspectral datasets, SVM gets the most attention. However, 

when it comes to SAR, LIDAR, and fusion of different 

sensors, RF is the focal point. The mean classification 

accuracy of SVM remains higher than the RF method in all 

sensor types except in SAR image data. Although it does not 

mean that in those cases, the SVM method works better than 

RF, it gives a hint about the range of accuracies that might be 

reached when using the SVM or RF. Moreover, it can be 

observed that, except for hyperspectral data in case of using 

the RF method, the mean classification accuracies are 

generally more than 82%. For SVM, the mean classification 

accuracy of hyperspectral datasets remains the highest at 

91.5%, followed by multispectral (89.7%), fusion (89.14%),  

 
Fig. 15.  Distribution of overall accuracies for different remotely sensed data 

(the numbers on top of the bars show the paper frequencies). 
 

LIDAR (88.0%), and SAR (83.9%). This order for the RF 

method goes as SAR, multispectral, fusion, LIDAR, and 

hyperspectral with the mean overall accuracies of 91.60%, 

86.74%, 85.12%, 82.55%, and 79.59%, respectively. 

 

D. Classification performance and remote sensing 

applications 

The number of articles focusing on different study targets 

(the number of studies is shown in the parenthesis) alongside 

the statistical analyses for each method is shown in Fig. 16. 

Other types of study targets, including soil, forest, water, 

mine, and cloud (comprising less than 10% of the total 

studies) were very few and are not shown here individually. 

The statistical analysis was conducted to assess OA (%) values 

that SVM and RF classifiers achieved for seven types of 

classification tasks. As shown in Fig. 16, most studies focused 

on LULC classification, crop classification, and urban studies 

with 50%, 14%, and 11% for SVM and 27%, 17%, and 14% 

for RF classifier. For LULC studies, the papers mostly 

adopted the publicly-available benchmark datasets, as the 

main focus was on hyperspectral image classification. The 

most used datasets were from AVIRIS (Airborne 

Visible/Infrared Imaging Spectrometer) and ROSIS 

(Reflective Optics System Imaging Spectrometer) 

hyperspectral sensors. For crop classification, the mainly used 

data was AVIRIS, followed by MODIS imageries. While in 

urban studies, Worldview-2 and IKONOS satellite imageries 

were the most frequently employed data. On the other hand, 

other studies mainly focused on the non-public image dataset 

for the region under study based on the application. Therefore, 

there is a satisfying number of studies that have focused on the 

real-world remote sensing applications of both SVM and RF 

classifiers.  

The assessment of classification accuracy regarding the 

types of study targets shows the maximum average accuracy 

in case of using RF for LULC with approximately 95.5% and 

change detection with about 93.5% for SVM classification. 

LULC, as a mostly used application in both SVM and RF 

scenarios, shows little variability for the RF classifier. It can 

be interpreted as the higher stability of the RF method than 

SVM in the case of classification. The same manner is going 

on in crop classification tasks (i.e., the higher average 

accuracy and little variability for RF compared to the SVM 

method). The minimum amounts of average accuracies are 

also related to disaster-related applications and crop 

classification tasks for RF and SVM, respectively. 

 

 
 
Fig. 16.  Overall accuracies distribution of (a) SVM and (b) RF classifiers in 

different applications. 

 

E. Classification performance and spatial resolution 

Fig. 17 shows the average obtained accuracy using RFs and 

SVMs based on the spatial resolution of the employed image 
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data and their equivalent number of published papers.  The 

papers were categorized based on the spatial resolution into 

high (<10 m), medium (between 10 m and 100m), and low 

(>100 m). As seen, a relatively high number of papers (~49%) 

were dedicated to the image data with spatial resolution in the 

range of 10-100 m. Datasets with a spatial resolution of 

smaller than 10 m also contribute to the high number of papers 

with about 44% of the database. The remaining papers (~7% 

of the database) deployed the image data with a spatial 

resolution of more than 100 m. The image data with high, 

medium and low resolutions comprise 41%, 52%, and 7% of 

the studies for the SVM method and 52%, 44%, and 4% of the 

papers while using the RF method. Therefore, in the case of 

using high spatial resolution remote sensing imagery, RF 

remains the most employed method, while in the case of 

medium and low-resolution images, SVMs are the most 

commonly used method.  A relatively robust trend is observed 

for the SVM method as the image data pixel size increases the 

average accuracy decreases. Such a trend can be observed for 

RF regarding that OA versus resolution is inconsistent among 

the three categories. Hence, in the case of the RF classifier, it 

is not possible to get a direct relationship between the 

classification accuracy and the resolution. However, in the 

High and Medium resolution scenarios, the SVM method 

shows the higher average OAs. 

 
Fig. 17.  Frequency and average accuracy of SVM and RF by the spatial 

resolution. 
 

 
Fig. 18.  Frequency and average accuracy of SVM and RF by the number of 

features. 

 

F. Classification performance and the number of extracted 

features 

Frequency and the average accuracies of SVMs and RFs 

versus the number of features are presented in Fig. 18. The 

papers were split into three groups (<10, between 10 and 100, 

and >100) based on the employed number of features. As can 

be seen, the number of papers for the SVM method is 

relatively the same for the three groups. However, in the case 

of RF, the vast majority of published papers (over than 60% of 

the total papers) focused on using 10 to 100 features, whereas 

a smaller number of papers used the number of features less 

than 10 or higher than 100, i.e., 22% and 18%, respectively. 

The comparison of the average accuracies of RF and SVM 

methods shows that the SVM method is reported to have 

higher accuracy. However, because of the inconsistency of the 

average accuracies for both SVM and RF, it is not possible to 

predict a linear relationship between the number of features 

and acquired accuracies. For the SVM method, the highest 

reported average accuracy is when using the lowest (<10) and 

highest (>100) number of features, but RF shows the highest 

average accuracy while the number of features is between 10 

and 100. 

Fig. 19 displays the scatterplot of the sample data for 

pairwise comparison of RF and SVM classifiers. This figure 

illustrates the distribution of the overall accuracies and 

indicates the number of articles where one classifier works 

better than another. It can also help to interpret the magnitude 

of improvement for each sample article while considering the 

other classifier’s accuracy. To further inform the readers, we 

marked the cases with different ranges of the number of 

features by three shapes (square, circle, and diamond), and 

with different sizes. The bigger size indicates the lower spatial 

resolution, i.e., bigger pixel size. 

Moreover, to analyze the sensitivity of the algorithms to the 

number of classes, a colormap was used in which the brighter 

(more brownish) color shows the lower number of classes, and 

as the number of classes increases, the color goes toward the 

dark colors. The primary conclusion that is observed from the 

scatter plot is that most of the points are near the line 1:1, 

which shows somewhat similar behavior of the classifiers. 

However, in general, there are 32 papers with the 

implementation of both classifiers, and in 19 cases (about 

60%), RF outperforms SVM, and in 40% of the remaining 

papers, SVM reports the higher accuracy. 

Fig. 19 organizes the results based on the feature input 

dimensionality in three general categories by using different 

shapes. When it comes to the number of features, one can 

clearly observe that there is only one circle below the line 1:1 

while the others are at the above. This shows the better 

performance of the SVM when the input data contains many 

more features. This result is in accordance with those 

exploited from Fig. 18. Conversely, in the case of features 

between 10 and 100, there are over 63% of the squares under 

the identity line (7 squares out of 11), which shows the high 

capability of RF while working with this group of image data. 

Finally, considering features fewer than 10, 58% of the 

diamonds are under the identity line (11 out of 17) and 42% 

above the line. Considering the fraction of RF supremacy over 

SVM 60-40, it is hard to infer which method performs better.   

To examine the spatial resolution, three shape sizes were 

used. It is hardly possible to notice a specific pattern with  
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Fig. 19.  Comparison of the overall accuracy of SVM and RF classifiers by spatial resolution, number of features, and the number of classes in the under-study 

dataset. 

 

respect to the pixel size of input data, but it is observed that 

most of the bigger shapes are under the one-to-one line. This 

represents the RF method offer consistently better results than 

SVM while dealing with images with bigger pixel size, which 

is in total accordance with Fig. 17. Looking at Fig. 19 and the 

distribution of points regarding the colors, the darker colors 

tend to offer more abundance under the identity line, while the 

points above the reference line are brighter. This can be proof 

of the efficiency of the SVM classifier to work with data with 

a lower number of classes. Statistically, 77% of the papers in 

which SVM shows higher accuracy include input data with the 

number of classes less than or equal to 6. The mean number of 

classes, in this case, is ~5.5, whereas the mean number of 

classes in which RF works better is 8.4. 

V. RECOMMENDATIONS AND FUTURE PROSPECT 

Model selection can be used to determine a single best 

model, thus lending assistance to the one particular learner, or 

it can be used to make inferences based on weighted support 

from a complete set of competing models. After a better 

understanding of the trends, strengths, and limitations of RFs 

and SVMs in the current study, the possibility of integrating 

two or more algorithms to solve a problem should be more 

investigated where the goal should be to utilize the strengths 

of one method to complement the weaknesses of another. If 

we are only interested in the best possible classification 

accuracy, it might be difficult or impossible to find a single 

classifier that performs as well as an excellent ensemble of 

classifiers. Mechanisms that are used to build the ensemble of 

classifiers, including using different subsets of training data 

with a single learning method, using different training 

parameters with a single training method, and using different 

learning methods, should be further investigated.  In this 

sense, researchers may consider multiple variation of nearest 

neighbor techniques (e.g., K-NN) along with RF and SVM for 

both prediction and mapping. 

Both SVM and RF are pixel-wise spectral classifiers. In 

other words, these classifiers do not consider the spatial 

dependencies of adjacent pixels (i.e., spatial and contextual 

information). The availability of remotely sensed images with 

the fine spatial resolution has revolutionized image 

classification techniques by taking advantage of both spectral 

and spatial information in a unified classification framework 

[144], [145]. Object-based and spectral-spatial image 

classification using SVM and RF are regarded as a vibrant 

field of research within the remote sensing community with 

lots of potential for further investigation.  

The successful use of RF or SVM, coupled with a feature 

extraction approach to model a machine learning framework 

has been demonstrated intensively in the literature [153], 

[154]. The development of such machine learning techniques, 

which include a feature extraction approach followed by RF or 

SVM as the classifier, is indeed a vibrant research line, which 

deserves further investigation.  

As discussed in this study, SVM and RF can appropriately 

handle the challenging cases of the high-dimensionality of the 

input data, the limited number of training samples, and data 

heterogeneity. These advantages make SVM and RF well-

suited for multi-sensor data fusion to further improve the 

classification performance of a single sensor data source 

[155], [156]. Due to the recent and sharp increase in the 

availability of data captured by various sensors, future studies 

will investigate SVM and RF more for these essential 
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applications. 

Several other ensemble machine learning toolboxes exist for 

different programming languages. The most widely used ones 

are scikit-learn [157] for Python, Weka [158] for Java, and mlj 

[159] for Julia. The most important toolboxes for R are mlr, 

caret [149], and tidy models [160]. Most recently, the mlr3 

[161] package has become available for complex multi-stage 

experiments with advanced functionality that use a broad 

range of machine learning functionality. The authors of this 

study also suggest that researchers explore the diverse 

functionality of this package in their studies. We also would 

like to invite researchers to report their variable importance, 

class imbalance, class homogeneity, and sampling strategy and 

design in their studies. More importantly, to avoid spatial 

autocorrelation, if possible, samples for training should be 

selected randomly and spatially uncorrelated; purposeful 

samples should be avoided. For benchmark datasets, this study 

recommends researchers to use the standard sets of training 

and test samples already separated by the corresponding data 

provider. In this way, the classification performance of 

different approaches becomes comparable. To increase the 

fairness of the evaluation, remote sensing societies have been 

developing evaluation leaderboards where researchers can 

upload their classification maps and obtain classification 

accuracies on (usually) nondisclosed test data. One example of 

those evaluation websites is the IEEE Geoscience and Remote 

Sensing Society Data and Algorithm Standard Evaluation 

website (http://dase.grss-ieee.org/). 

VI. CONCLUSIONS 

The development of remote sensing technology alongside 

with introducing new advanced classification algorithms have 

attracted the attention of researchers from different disciplines 

to utilize these potential data and tools for thematic 

applications. The choice of the most appropriate image 

classification algorithm is one of the hot topics in many 

research fields that deploy images of a vast range of spatial 

and spectral resolutions taken by different platforms while 

including many limitations and priorities. RF and SVM, as 

well-known and top-ranked machine learning algorithms, have 

gained the researchers’ and analysts’ attention in the field of 

data science and machine learning. Since there is ongoing 

employment of these methods in different disciplines, the 

common question is which method is highlighted based on the 

task properties. This paper focused on a meta-analysis of 

comparison of peer-reviewed studies on RF and SVM 

classifiers. Our research aimed to statistically quantify the 

characteristics of these methods in terms of frequency and 

accuracy.  The meta-analysis was conducted to serve as a 

descriptive and quantitative method of comparison using a 

database containing 251 eligible papers in which 42% and 

68% of the database include RF and SVM implementation, 

respectively. The surveying carried out in the database showed 

the following: 

-The higher number of studies focusing on the SVM 

classifier is mainly due to the fact that it was introduced years 

before RF to the remote sensing community. As can be 

concluded from the articles database, in the past three years, 

implementing the RF exceeded the SVM method. 

Nevertheless, in general, there is still an ongoing interest in 

using RF and SVM as standard classifiers in various 

applications. 

-The survey in the database revealed a moderate increase in 

using RF and SVM worldwide in an extensive range of 

applications such as urban studies, crop mapping, and 

particularly LULC applications, which got the highest average 

accuracy among all the applications. Although the assessment 

of the classification accuracies based on the application 

showed rather high variations for both RF and SVM, the 

results can be used for method selection concerning the 

application. For instance, the relatively high average accuracy 

and the little variance of the RF method for LULC 

applications can be interpreted as the superiority of RFs over 

SVMs in this field. 

-Medium and high spatial resolution images are the most 

used imageries for SVM and RF, respectively. It is hardly 

possible to notice a specific pattern concerning the spatial 

resolution of the input data. In the case of low spatial 

resolution images, the RF method offers consistently better 

results than SVM, although the number of papers using SVM 

for low spatial resolution image classification exceeded the RF 

method. 

-There is not a strong correlation between the acquired 

accuracies and the number of features for both the SVM and 

RF methods. However, a comparison of the average 

accuracies of RF and SVM methods suggests the superiority 

of the SVM method while classifying data containing many 

more features. 

Contrary to the dominant utilization of SVM for the 

classification of hyperspectral and multispectral images, RF 

gets the attention while working with the fused datasets. For 

SAR and LIDAR datasets, the RF was also used more than the 

SVM method. However, its popularity cannot be concluded 

because of the low available number of published papers. 
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