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Abstract

The capability to generate precisely-timed periodic trains of optical pulses has pushed forward many fields
of science and technology. Periodic optical waves are key to disciplines such as optical communications and
computing, optical signal processing, sensing, spectroscopy, nonlinear and quantum optics, and many others.

Periodic optical waveforms can be generated through electro-optical means, external modulation of
continuous-wave lasers, and through mode-locking, perhaps one of the most significant recent advances
in optical science and technology. Mode-locking is the process by which the different longitudinal modes
oscillating in a laser cavity are tightly locked in phase, giving rise to the repetitive emission of a light pulse,
i.e., a periodic pulse train. The spectrum of such a signal is a collection of equally-spaced discrete frequency
components, known as a frequency comb for the characteristic comb-like shape of its power spectrum. Cur-
rently, optical frequency combs are the most precise man-made clocks in history. These signals are used in
a myriad of fundamental and applied disciplines, and they are the key enabling factor of many scientific and
technological fields, ranging from high-resolution spectroscopy of molecules and atoms, to next-generation
optical communication systems and the astronomical search for exo-planets.

The separation between adjacent frequency components of a frequency comb, known as the free spec-
tral range (FSR), is the inverse of the repetition period of the corresponding pulse train in the time domain
representation of the signal. This is a fundamental parameter from an application viewpoint. Not only most
applications of periodic optical signals require their periodicity to be fixed with precision (for instance, the
rate at which information is transmitted in a telecommunication system, and processed in a computing sys-
tem, is strongly related to the pulse period of the clock signal), but distinct applications require fundamentally
different orders of magnitude. As an example, typical atomic and molecular spectroscopy applications re-
quire combs with FSR values in the MHz regime, while astronomical spectrographic measurements, as well
as applications aimed at arbitrary waveform generation and processing, are performed with frequency combs
in the GHz regime.

Conventional, well-established approaches for periodicity control through manipulation of pulse trains
and frequency combs include spectral amplitude filtering and temporal pulse picking (or time gating). The
main drawback of these approaches is their low energy efficiency, as they rely on directly discarding sig-
nal energy. Additionally, these methods suffer from practical implementation shortcomings. The amplitude
filtering method needs high-finesse filters, with tight design and operational requirements (e.g., precise spec-
tral alignment between the filter and the comb), in order to achieve signals with high quality. Similarly, the
imperfect suppression of undesired pulses in pulse picking techniques results in spectral line-to-line ampli-
tude fluctuations of the obtained comb. The relatively low extinction ratio of current electro-optic intensity
modulators often forces to use optical gates based on nonlinear effects (incurring in even higher energy
inefficiency), or optical switches based on semiconductor optical amplifiers and acousto-optic modulators
(with typically low operation speeds). Precise timing between the pulse train and the pulse picking gate also
becomes a critical factor for a correct pulse suppression.
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Another fundamental metric for the applicability of periodic optical waveforms is related to their noise
content. Indeed, our ability to detect signals or events and to extract information contained therein is ul-
timately limited by the strength of said signal and that of the noise content of the measurement. Noise is
ubiquitous, and its origin mechanisms are often random and difficult to control. In the particular case of peri-
odic optical signals, the aforementioned techniques for periodicity control typically result in the degradation
of the signal-to-noise ratio of the waveform of interest. This is mainly due to the fact that a large amount
of energy from the input signal is deliberately thrown away (e.g., in the form of line suppression by spectral
amplitude filtering of frequency combs, or pulse rejection by temporal amplitude gating of pulse trains).

Versatile methods to control the pulse period of optical trains and the FSR of frequency combs with high
energy efficiency and low signal degradation based on passive, linear processes are highly desired. Perio-
dicity control methods for optical signals based on phase-only manipulations – temporal phase modulation
and/or spectral phase filtering – are particularly attractive solutions to the problem, as these techniques recy-
cle the energy of the input signal, rather than discarding part of it, redistributing it to form the desired output
signal.

Several techniques for periodicity control through phase-only manipulations have been proposed. In
particular, an important set of these techniques relies on periodic phase transformations based on the theory
of Talbot self-imaging. Realizations of Talbot phenomena have been reported across several observation
domains, including time and frequency (for pulse trains and frequency combs respectively), and although the
phenomenon has been extensively studied, a description that unifies its manifestations across all observation
domains is still missing.

The main goal of this dissertation is to propose a universal method for arbitrary, energy-preserving con-
trol of the period of repetitive optical signals, through the development of a unified mathematical description
of the Talbot effect in Fourier-dual representation domains of waves. Such a generalization of the phe-
nomenon is presented in Chapter 3, followed by the formulation of the aforementioned universal periodicity
control model. Chapters 4 and 5 present experimental demonstrations of arbitrary, energy-preserving control
of the repetition period of temporal pulse trains, and the FSR of frequency combs, respectively. In both chap-
ters, the properties of the method to increase the signal energy over the level of incoherent noise propagating
alongside are analyzed. The proposed method is indeed capable of redistributing the energy content of the
signals of interest, producing an effect of passive amplification, thus avoiding the need for conventional ac-
tive gain mechanisms (which are known to amplify both the signal and its noise content, and typically inject
additional external noise contributions to the signal).

Finally, Chapter 6 presents experimental examples and applications of the developed period control
method to the spectra of arbitrary, aperiodic signals. In particular, two applications are reported: (i) a method
for introducing reversible frequency gaps (frequency bands free of energy in the spectrum of a wave) to the
spectrum of isolated optical waveforms, allowing for implementation of a novel technique for invisibility
cloaking; and (ii) a method for compressing the spectra of modulated sequences of short pulses, while
preserving the temporal shape of the pulses (including pulse duration), thus combining the performance
advantages and robustness of short pulses for transferring and processing information with the convenience
of frequency-domain multiplexing and processing operations.

Considering the wide range of application of periodic temporal and spectral waveforms (e.g., trains of
pulses and frequency combs), interest in the methods reported in this dissertation can be foreseen across many
different fields. A particularly appealing feature of the proposed methods for pulse period/FSR control is that
they offer a high flexibility and energy efficiency. Furthermore, this project could inspire the development
of new applications that would take advantage of the energy redistribution strategies for the design of signal
processing systems and techniques.
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Résumé

Cette section fournit un bref résumé des motivations de ce projet de thèse de doctorat, ainsi que les prin-
cipaux concepts développés dans cette thèse. Ceux-ci incluent la généralité de la condition de Talbot et la
méthode universelle pour le contrôle de période des signaux temporels et spectraux répétitifs. Des exem-
ples expérimentaux de démonstration de manipulation de période de trains d’impulsions et de peignes de
fréquence sont rapportés. Enfin, quelques conclusions du travail sont discutées brièvement.

0.1 Introduction

Les signaux optiques périodiques sont d’une importance fondamentale pour une myriade de domaines scien-
tifiques et technologiques. Les trains d’impulsions optiques (signaux optiques temporellement périodiques)
et leur contrepartie spectrale, les peignes de fréquence optique (signaux optiques spectralement périodiques)
sont le facteur clé de plusieurs disciplines fondamentales et appliquées, telles que la spectroscopie à haute
résolution, y compris la mesure et la synchronisation de temps de haute précision, la calibration spectro-
graphique de haute précision des mesures astronomiques, la génération et traitement de formes d’ondes
arbitraires à haute résolution, entre autres. La Fig. 0.1 illustre la relation entre un train d’impulsions et son
spectre, un peigne de fréquence.

Electric field

Temporal envelope

0

(a) (b)

Power spectrum

Spectral envelope

Figure 0.1 – Relation entre un train d’impulsions et son spectre en peigne de fréquence. Les paramètres de (a) un train
d’impulsions et (b) sa représentation en peigne de fréquence sont liés par la transformée de Fourier, où l’enveloppe spectrale en
peigne est donnée par la transformée de Fourier de l’enveloppe temporelle d’une impulsion. Le FSR du peigne est l’inverse de la
période d’impulsion temporelle. Si la fréquence de décalage est différente de zéro, l’enveloppe temporelle du train d’impulsions
subit un décalage, ∆φ = 2πν0ν

−1
r , par rapport à la porteuse optique sous-jacente. Ceci est connu comme le décalage entre

enveloppe et porteuse. Les symboles t et ν représentent les variables de temps et de fréquence, respectivement.

Un grand nombre de ces applications nécessitent des trains périodiques et précis d’impulsions optiques
courtes, généralement générées par des lasers à modes verrouillés. L’un des paramètres clés de ces signaux
est leur période de répétition – la période d’impulsion du train, et l’intervalle spectral libre du peigne corre-
spondant (la séparation de fréquence entre les lignes de peigne appelée FSR1, pour ’Free spectral range’ en

1Pour assurer l’uniformité des abréviations entre ce résumé et la thèse, nous retenons les abréviations en anglais
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anglais). La plupart des applications exigent que ces paramètres soient fixés avec précision. Par exemple,
la vitesse à laquelle l’information est transmise dans un système de télécommunication et traitée dans un
système informatique, est fortement liée à la période d’impulsion du signal d’horloge. De plus, des appli-
cations distinctes nécessitent des ordres de grandeur fondamentalement différents. À titre d’exemple, les
applications de spectroscopie atomique et moléculaire nécessitent des peignes de fréquence avec un FSR
typiquement dans le régime MHz, tandis que les mesures spectrographiques astronomiques, ainsi que les
applications de génération et de traitement de formes d’ondes arbitraires, sont réalisées avec des peignes
dans le régime GHz.

Un autre facteur fondamental des signaux périodiques pour leur utilisation pratique est l’énergie par
impulsion d’un train d’impulsions, et la puissance de crête de ligne dans un peigne de fréquence. Les
applications de trains d’impulsions telles que le pompage optique nécessitent des niveaux élevés de puissance
d’impulsion de crête. De plus, ceci est lié au rapport signal sur bruit (SNR pour ’signal-to-noise ratio’ en
anglais) du signal, un paramètre clé pour de nombreuses disciplines, de la spectroscopie aux communications
optiques.

Le contrôle de la période des signaux optiques périodiques dans les deux domaines de temps et de
fréquence avec un rendement énergétique élevé est donc critique. Les méthodes visant à manipuler la période
des formes d’onde répétitives peuvent être classées en deux groupes: Techniques qui affectent le mécanisme
de génération du signal pour obtenir la période désirée, et techniques qui manipulent le signal déjà généré et
transforment sa période.

Dans la première catégorie, la miniaturisation d’une cavité laser réduit efficacement le temps d’aller-
retour des photons dans le résonateur. Le verrouillage de modes de telles cavités courtes peut générer des
trains d’impulsions avec des taux de répétition très élevés; cependant, ces approches souffrent de lacunes
critiques, telles que les faibles largeurs de bande d’émission et l’instabilité à des taux de répétition élevés.
Les cavités des micro-résonateurs intégrées peuvent atteindre des largeurs de bande d’émission élevées, mais
au prix d’une accordabilité très limitée du FSR, d’une non-uniformité d’intensité, et d’un bruit de fréquence
dans les modes de peigne. Une solution alternative est l’utilisation du verrouillage de modes harmonique, où
plusieurs impulsions sont maintenues en même temps par la cavité résonnante, augmentant ainsi le taux de
répétition. Cependant, cette technique est confrontée à d’importants défauts de performance et de mise en
œuvre, notamment une mauvaise stabilité à long terme, l’émission d’impulsions avec des valeurs énergies
inégales, et une émission de salves empêchant la formation d’un spectre de peigne de fréquence.

Dans la deuxième catégorie, la période d’un signal répétitif peut être modifiée par des opérations de
traitement du signal. Ceux-ci sont effectués sur le signal optique lui-même, en dehors de la cavité laser, et
par conséquent, ils ont tendance à être plus polyvalents, car pratiquement n’importe quel signal peut être
ciblé, indépendamment de sa source. De telles opérations impliquent la manipulation du signal dans le
domaine temporel - modulation temporelle - et / ou la manipulation de son spectre de fréquence - le filtrage
spectral. Parmi les approches traditionnelles bien établies pour le contrôle de la périodicité à travers la
manipulation des trains d’impulsions et des peignes de fréquence on trouve le filtrage d’amplitude spectrale
et le prélèvement d’impulsions temporelles (représentés dans la Fig. 0.2)

Dans ceux-ci, l’élimination directe de r−1 impulsions (ligne de peigne) sur chaque r impulsions (lignes
de peigne) consécutives produit une augmentation de r-fois de la période d’impulsion (FSR du peigne), et
une réduction égale du FSR du peigne (période d’impulsion).

Le principal inconvénient de ces approches est leur faible efficacité énergétique, car les deux méthodes
impliquent le rejet délibéré d’une fraction 1 − r−1 de l’énergie du signal original, entraînant une perte
d’énergie qui augmente avec le facteur r. L’amplification peut alors devenir nécessaire, entraînant ainsi la
dégradation du SNR, inévitable dans les processus d’amplification active classique.
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Periodic spectral

amplitude filter

Periodic temporal
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(b)

Figure 0.2 – Méthodes de traitement du signal pour le contrôle de période par manipulation directe de l’énergie. Méthodes
traditionnelles de contrôle de la périodicité pour les trains d’impulsions optiques et de peignes de fréquence optiques : a) filtrage
spectral d’amplitude et b) prélèvement d’impulsion par temporisation (l’exemple montré illustre un facteur de multiplication r = 5).

De plus, ces méthodes souffrent de défauts de mise en œuvre pratiques. Le procédé de filtrage d’amplitude
nécessite des filtres de haute finesse, avec des exigences de conception et de fonctionnement stricts (par ex-
emple, un alignement spectral précis entre le filtre et le peigne), afin d’obtenir des signaux de haute qualité
temporelle et spectrale. Les lignes de peigne non supprimées se traduiront par des fluctuations d’amplitude
impulsion à impulsion résiduelle dans le domaine temporel (voir Fig. 0.2(a)). De même, la suppression
imparfaite des impulsions indésirables dans les techniques de prélèvement d’impulsions se traduit par des
fluctuations spectrales d’amplitude ligne à ligne du peigne obtenu (voir Fig. 0.2(b)).

Le taux d’extinction relativement faible des modulateurs d’intensité électro-optiques actuels oblige sou-
vent à utiliser des portes optiques basées sur des effets non linéaires (entraînant une inefficacité énergétique
encore plus élevée), ou des commutateurs optiques basés sur des amplificateurs optiques à semi-conducteurs
et des modulateurs acousto-optiques (avec des vitesses de fonctionnement qui sont généralement faibles).

Enfin, dernier point mais non des moindres, la nature même de ces techniques force le facteur r à être
nécessairement un entier. Ceci est dû au fait que l’on ne peut supprimer qu’un nombre entier d’impulsions/
lignes. Les facteurs fractionnaires de multiplication/division de période sont donc inaccessibles par des
méthodes de filtrage d’amplitude et de prélèvement d’impulsions.

Les solutions de traitement du signal au problème de contrôle de périodicité basé sur des manipulations
de phase seulement; modulation de phase temporelle et/ou filtrage de phase spectrale (voir Fig. 0.3) sont
particulièrement intéressantes, car les transformations de phase recyclent l’énergie totale transportée par le
signal cible dans un signal de sortie qui satisfait aux spécifications requises.

Un ensemble important de techniques de contrôle de période basées sur des transformations de phase
seule repose sur la théorie de l’auto-imagerie de Talbot. De tels procédés ont été développés pour réaliser
la multiplication et/ou la division de la période de répétition des trains d’impulsions par des facteurs ar-
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Figure 0.3 – Méthodes de traitement du signal pour le contrôle de période par manipulation de phase uniquement Exemples
de (a) division de période d’impulsion (multiplication du taux de répétition) par filtrage périodique de phase spectrale et (b) division
du FSR par modulation périodique de phase temporelle (les profils de phase temporelle et spectrale sont représentés en pointillés).
La période de répétition est, dans les deux cas, divisée par un nombre entier (r = 5 dans l’exemple montré), et les variations de
phase subsistent dans les deux domaines temps et fréquence dans les deux situations.

bitraires (entiers ou fractionnaires). De même, des méthodes basées sur l’effet Talbot ont également été
rapportées pour réaliser une division du FSR des peignes de fréquence par des facteurs entiers tout en préser-
vant l’énergie du peigne. Ces approches préservent idéalement l’énergie totale du signal d’intérêt, permettant
même de réduire l’impact du bruit grâce à une redistribution cohérente de l’énergie.

Cependant, les solutions proposées implémentent uniquement la transformation de période ciblée dans
un seul domaine de représentation. Les systèmes définis pour le contrôle du taux de répétition des impul-
sions impliquent une combinaison de modulation de phase temporelle et de filtrage de phase spectrale (par
exemple, par propagation dispersive), et généralement ils n’implémentent pas le contrôle du FSR dans le
spectre de peigne de fréquence associé. De même, les conceptions destinées au contrôle du FSR consistent
en une combinaison inversée (réciproque) de manipulations de phase, à savoir filtrage de phase spectrale et
modulation de phase temporelle, mais elles n’implémentent généralement pas le contrôle du taux de répéti-
tion sur le train d’impulsions correspondant. Dans les deux cas, les variations de phase résiduelles restent
non compensées dans le domaine réciproque (voir Fig. 0.3).

0.2 Motivation

0.2.1 Définition du projet

L’objectif principal de cette thèse est de proposer une méthode universelle pour contrôler la période des
signaux optiques répétitifs, de telle sorte que l’énergie véhiculée par le signal d’intérêt soit préservée dans
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le processus, tandis que le reste des propriétés du signal reste inaltéré – p.ex., bande passante et durée
d’impulsion – et sans introduire de bruit ou de distorsion externes.

0.2.2 Solution proposée

La solution proposée consiste en la formulation d’une généralisation de l’effet Talbot, de sorte que la période
d’un signal répétitif puisse être arbitrairement ajustée exclusivement par des manipulations des distributions
de phase temporelle et spectrale du signal – préservant intrinsèquement l’énergie.

0.2.3 Considérations supplémentaires

Bien que la méthode proposée pour le contrôle arbitraire de période soit universelle dans sa formulation (elle
s’applique aux ondes périodiques dans tout domaine de représentation, en particulier le temps, la fréquence,
la position, et le moment transverse), cette thèse accorde une attention particulière à la manipulation arbitraire
de spectres optiques par des moyens qui conservent l’énergie, visant à développer des techniques qui peuvent
être utiles pour le traitement et la génération de peignes de fréquence optique.

De plus, la méthode produit des résultats intéressants lorsqu’elle est appliquée à des signaux apéri-
odiques, par exemple, à des impulsions isolées ou à des séquences d’impulsions modulées (qui ont des
spectres continus).

0.3 Description universelle de l’effet Talbot

L’effet Talbot – ou auto-imagerie – est au cœur des développements rapportés dans cette thèse.

0.4 Vue d’ensemble des effets Talbot

Les effets Talbot se manifestent lorsqu’une onde présentant une périodicité sur l’un de ses domaines de
représentation – espace, moment transverse, temps ou fréquence – est affectée par un propagateur imposant
un profil de phase quadratique spécifique à travers l’espace réciproque (de Fourier) de ce domaine. La
définition mathématique de ces profils de phase est connue sous le nom de «condition de Talbot». Cela
donne lieu à des images parfaites de l’onde (auto-imagerie entière) ou à des sous-images où la période
initiale est divisée par un nombre naturel (auto-imagerie fractionnaire). Bien que l’effet ait été initialement
observé et expliqué dans le contexte de la diffraction de Fresnel des ondes spatialement périodiques, sa
description a été étendue au domaine temporel par l’application de la dualité spatio-temporelle bien connue,
et plus récemment aux domaines des fréquences, et des moments transverses (observée sous la forme de
spectre angulaire). Les réalisations temporelles et spectrales de ce phénomène sont à la base de la méthode
rapportée pour le contrôle périodique des signaux optiques; cependant, il convient de mentionner que tous
les résultats présentés dans ce travail sont immédiatement applicables aux domaines spatial et du moment
transverse, grâce à l’application directe de la dualité espace-temps.
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0.4.1 Effet Talbot temporel

L’effet Talbot temporel est observé lorsqu’un train périodique d’impulsions optiques, avec la période tr, se
propage à travers un milieu transparent présentant une certaine quantité de dispersion de vitesse de groupe
(GVD, pour ‘group velocity dispersion’ en anglais). Ce processus peut être décrit comme un filtre de phase
unitaire, avec une fonction de transfert spectral, HGVD(ω), donnée par,

HGVD(ω) = e−i
1
2β2zω2

(1)

où i est l’unité imaginaire, β2 est le coefficient de dispersion de second ordre du milieu (GVD par unité de
longueur, mesurée à la fréquence centrale de l’onde), z est la longueur de propagation, et ω = 2πν. Notez la
variation de phase quadratique en fonction de la variable de domaine de Fourier, ω, comme prévu ci-dessus.

L’hypothèse principale ici est que l’impulsion sur chaque période de la séquence est identique à la suiv-
ante. Aucune restriction particulière n’est imposée à l’enveloppe d’amplitude complexe de l’impulsion. La
condition temporelle de Talbot fournit la quantité de GVD nécessaire pour obtenir une image de Talbot
spécifique,

2π |β2| z = p

q
t2r (2)

où p et q sont deux nombres naturels co-premiers. Le train d’impulsions obtenu à la sortie du milieu dispersif
a une période d’impulsions q−1tr, tandis que le FSR de son spectre de peigne reste inchangé. Puisque le
processus implique uniquement une manipulation de la phase spectrale, l’énergie d’entrée totale est redis-
tribuée dans un train d’impulsions avec un taux de répétition plus élevé. L’énergie de sortie par impulsion
est ensuite divisée par q.

En raison de la nature discrète de la représentation du train en peigne dans le domaine spectral, la condi-
tion temporelle de Talbot a une représentation discrète comme suit,

φk;p,q = σπ
p

q
k2 (3)

où σ est le signe du coefficient de dispersion de second ordre, c.-à-d. σ = 1 si β2 > 0 et σ = −1 si β2 < 0.
Le coefficient φk;p,q représente la quantité requise de déphasage spectral à appliquer à la k-ème ligne du
peigne de fréquence correspondant pour satisfaire la condition de l’image de Talbot marquée par {p, q}.

Une caractéristique clé de cet effet est que le train d’impulsions à période divisée obtenu acquiert un
profil de phase temporelle déterministe d’impulsion à impulsion. En négligeant un facteur constant, ces
phases s’écrivent comme suit,

ϕn;s,q = −σπs
q
n2 (4)

où s et q sont deux nombres naturels co-premiers.
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0.4.2 Effet Talbot spectral

Une version spectrale de l’effet Talbot peut être observée dans le domaine fréquentiel. En particulier, lorsque
le déphasage temporel, ϕn;s,q, (voir Eq. 4) est introduit à la n -ème impulsion d’un train, à l’origine sans
variations de phase d’impulsion à impulsion, le FSR de son spectre de fréquences est divisé par le facteur
entier q. De façon similaire à l’effet Talbot temporel, le peigne de sortie à FSR divisé acquiert un profil de
phase spectrale ligne-à-ligne, φk;p,q, donné par Eq. 3.

0.5 Dualité de Fourier de l’effet Talbot

L’expression des phases temporelles de Talbot donnée par Eq. 4 satisfait une condition de Talbot, c’est-à-
dire que son expression est isomorphe à la phase spectrale de Talbot, donnée par Eq. 3, nécessaire pour
produire un effet temporel de Talbot. Cette symétrie mathématique est appelée la dualité temps-fréquence
(plus généralement, la dualité de Fourier) de l’effet Talbot.

Le coefficient ϕn;s,q représente le déphasage acquis par la n-ème impulsion de la séquence, après prop-
agation à travers un milieu à GVD satisfaisant l’équation. 2. Les valeurs de s ne dépendent que de p et q
et sont déterminées par la parité du produit pq. En particulier, si E dénote l’ensemble des nombres naturels
pairs et O dénote l’ensemble des nombres naturels impairs, le paramètre s prend les valeurs suivantes,

s =


p

([
1
p

]
q

)2
∀ pq ∈ E

8p
[

1
2

]
q

([
1
2p

]
q

)2
∀ pq ∈ O

(5)

où [1/x]q est l’inverse multiplicatif modulaire de x modulo q, c.à.d l’entier positif (unique) inférieur à q
vérifiant x[1/x]q = 1 (mod q). Cette relation peut être écrite de manière plus compacte,

sp = 1 + qεq (mod 2q) (6)

où εq est la parité de q, c.-à-d. εq = 0∀ q ∈ E et εq = 1∀ q ∈ O.

0.6 Effets Talbot contrôlés par la phase

Les formes fonctionnelles des phases Talbot temporelles et spectrales (Eqs. 4 et 3, respectivement), et leur
relation (Eq. 6), fournissent la clé pour réaliser un contrôle arbitraire de la période de répétition d’un train
d’impulsions ou d’un peigne de fréquence. Pour ce faire, il faut simplement trouver et appliquer la bonne
recette de phases de Talbot. Deux méthodes différentes, bien qu’équivalentes, peuvent être conçues pour fixer
arbitrairement la période de répétition du train/peigne d’intérêt. Ces deux méthodes diffèrent selon l’ordre
dans lequel les phases spécifiques de Talbot sont appliquées. Ils sont nommés respectivement méthode
de Talbot temporelle contrôlé par la phase (PCTTM, pour ‘phase-controlled temporal Talbot method’ en
anglais) et méthode de Talbot spectrale contrôlé par la phase (PCSTM, pour ‘phase-controlled spectral
Talbot method’ en anglais).
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0.6.1 Méthode de Talbot temporelle contrôlé par la phase

Ce processus peut être compris comme une généralisation de l’effet Talbot temporel, c’est-à-dire une méth-
ode pour transformer un train d’impulsions optiques de période tr en un nouveau train de période rtr, où
le facteur de multiplication de la période de répétition r peut être n’importe quelle fraction irréductible,
c’est-à-dire r ∈ Q. En général, r est un nombre rationnel, tel que r = q−1

2 q1 ∀ {q1, q2} ∈ N est une paire
des nombres co-premiers. Si la transformation est entièrement achevée, dans le domaine fréquentiel, cela
se traduit par une division du FSR du peigne de fréquence correspondant par le facteur r, c’est-à-dire de
νr = t−1

r à r−1νr. Différentes combinaisons de phases de Talbot temporelles et spectrales pourraient être
conçues pour atteindre le même facteur de multiplication; c’est-à-dire des valeurs différentes des paramètres
p, q et s dans les équations 3 et 4. La solution générale, représentée sur la figure 0.4, comprend les quatre
étapes suivantes.

Figure 0.4 – Méthode de Talbot temporelle contrôlé par la phase. Étapes pour transformer un train d’impulsions avec une
période tr en un nouveau train avec une période rtr , avec r = q−1

2 q1, à travers l’application des phases de Talbot. Dans le domaine
fréquentiel, la représentation du train en peigne de fréquence correspondant avec FSR νr est transformée en un nouveau peigne avec
FSR r−1νr . Dans l’exemple illustré, r = 5/2.

0. Entrée. Le point de départ est un train d’impulsions optiques de période tr, correspondant à un peigne
de fréquence avec FSR νr = t−1

r (Fig. 0.4(0)). L’objectif est de réaliser un train d’impulsions avec
une période rtr, avec r ∈ Q, c.-à-d., r = q−1

2 q1 ∀ {q1, q2} ∈ N.

1. TPM1 (modulation de phase temporelle 1). Le train d’entrée est modulé temporellement avec la
séquence ϕn;s1,q1 , correspondant à une condition spectrale de Talbot s1/q1 (voir Eq. 4). Le peigne de
fréquence résultant a un FSR q−1

1 νr, alors que la période d’impulsion reste égale à tr (Fig. 0.4(1)).

2. SPF1 (filtrage de phase spectrale 1). À la suite de TPM1, le peigne avec FSR divisé acquiert une
phase spectrale φk;p1,q1 (Fig. 0.4(1)), où p1 est donné par Eq. 6 (avec s ← p1, p ← s1 et q ← q1).).
Cette phase est annulée par un filtre de fréquence passe-tout avec le profil de phase opposé, −φk;p1,q1 ,
résultant en un train d’impulsions avec une période de répétition q1tr (Fig. 0.4(2)). À ce stade, le
train d’impulsions initial, avec la période tr, a été transformé en un autre train d’impulsions avec
une période q1tr sans variations de phase entre impulsions. Si le facteur de multiplication de période
temporelle désirée est entier, cette étape est la dernière.
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3. SPF2 (filtrage de phase spectrale 2). L’application d’une seconde phase spectrale φk;p2,q2 (correspon-
dant à une condition temporelle de Talbot p2/q2) divise la période de répétition temporelle du train
obtenue après SPF1 par le facteur q2. Si q1 et q2 sont des nombres naturels co-premiers, l’effet global
est la multiplication de la période d’impulsion d’entrée par la fraction r = q−1

2 q1 (Fig. 0.4(3). Notez
que, selon les valeurs calculées de q1 et q2, ce facteur peut être supérieur ou inférieur à 1.

4. TPM2 (modulation de phase temporelle 2). Enfin, puisque le train d’impulsions obtenu après SPF2
(Fig. 0.4(3)) est une sous-image de Talbot du train obtenue après SPF1 (Fig. 0.4(2)), il y aura des
variations de phase temporelle d’impulsions à impulsions non compensées. Ces phases peuvent être
annulées par une étape supplémentaire de modulation de phase temporelle avec la séquence−ϕn;s2,q2 ,
où s2 est donné par Eq. 6 (avec s← s2, p← p2 et q ← q2). L’inverse du facteur de multiplication de
la période temporelle affecte alors le FSR du peigne de sortie obtenu, devenant r−1νr (Fig. 0.4(4)).

0.6.2 Méthode de Talbot spectrale contrôlé par la phase

Ce processus peut être compris comme une généralisation de l’effet Talbot spectral, c’est-à-dire une méthode
pour transformer un peigne de fréquence avec FSR νr en un nouveau peigne avec FSR r−1νr, où le facteur
de multiplication de la période spectrale, r−1, peut être n’importe quelle fraction irréductible, c’est-à-dire
r ∈ Q. De manière similaire au PCTTM, en général, r = q−1

2 q1 ∀ {q1, q2} ∈ N et {q1, q2} sont des nombres
co-premiers, et si la transformation est entièrement terminée, dans le domaine temporel, cela se traduit par
une multiplication de la période de répétition des impulsions correspondante par le facteur r, c’est-à-dire de
tr = ν−1

r à rtr Notez que, pour une comparaison pratique, nous considérons ici l’inverse du facteur de mul-
tiplication de période d’impulsion, afin de garder la définition du paramètre r cohérente avec celle donnée
dans le modèle du PCTTM. Différentes combinaisons de phases de Talbot temporelles et spectrales pour-
raient être conçues pour atteindre le même facteur de multiplication; c’est-à-dire des valeurs différentes des
paramètres p, q et s dans les équations 3 et4. La solution générale, représentée sur la figure. 0.5, comprend
les quatre étapes suivantes.

Figure 0.5 – Méthode de Talbot spectrale contrôlée par la phase. Étapes pour transformer un peigne de fréquence avec FSR νr
en un nouveau peigne avec période r−1νr , avec r = q−1

2 q1, à travers l’application des phases de Talbot. Dans le domaine temporel,
la représentation du peigne en un train d’impulsions correspondant, avec une période d’impulsion tr , est transformée en un nouveau
train avec une période rtr . Dans l’exemple illustré, r = 5/2.
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0. Entrée. Le point de départ de la méthode est un peigne de fréquence avec un FSR νr, correspondant
à un train d’impulsions optiques de période tr = ν1

r (Fig. 0.5(0)).

1. SPF1 (filtrage de phase spectrale 1). Le peigne d’entrée est filtré en phase avec la séquence φk;p2,q2 .
Le train d’impulsions résultant a une période q−1

2 tr, alors que le FSR du peigne reste égal à νr
(Fig. 0.5(1)).

2. TPM1 (modulation de phase temporelle 1). La phase temporelle acquise est annulée par une modula-
tion de phase additionnelle avec le profil de phase opposé, −ϕn;s2,q2 . Le résultat est un peigne à phase
plate avec FSR q2νr (Fig. 0.5(2)). Si le facteur de multiplication du FSR souhaité est entier, il s’agit
de l’étape finale. Le paramètre s2 est donné par Eq. 6 (avec s← s2, p← p2 and q ← q2).

3. TPM2 (modulation de phase temporelle 2). Une seconde modulation de phase temporelle ϕk;s1,q1

divise le FSR par q1. Si q2 et q1 sont des nombres naturels co-premiers, l’effet global est la division du
FSR d’entrée par le facteur rationnel r = q−1

2 q1, aboutissant à r−1νr (Fig. 0.5(3)). Encore une fois, ce
facteur peut être supérieur ou inférieur à 1.

4. SPF2 (filtrage de phase spectral 2). Les phases spectrales résiduelles, acquises grâce à l’application
de TPM2, peuvent être annulées par l’application d’une étape supplémentaire de filtrage passe-tout,
correspondant à −φk;p1,q1 , où p1 est donné par Eq. 6 (avec s ← p1, p ← s1 et q ← q1). La période
d’impulsion obtenue sera alors égale à rtr.

0.6.3 Considérations sur la conservation de l’énergie et sur le bruit

Le PCTTM et le PCSTM décrivent les opérations nécessaires pour manipuler arbitrairement les périodes
de répétition des trains d’impulsions et des peignes de fréquence. De telles opérations sont des manipula-
tions des distributions de phase temporelle et spectrale du signal d’intérêt. En tant que tel, idéalement, toute
l’énergie transportée par le signal est préservée dans le processus. C’est l’un des principaux avantages de la
méthodologie rapportée. Pour les facteurs de multiplication de période d’impulsions (FSR) supérieurs à 1,
les impulsions obtenues (lignes de peigne) en sortie ont une énergie par période accrue, produisant ainsi un
effet d’amplification passive d’énergie des impulsions (lignes de peigne) de sortie. La méthode ne modifie
toutefois pas le bruit additif porté par le signal, car il s’agit de fluctuations aléatoires incohérentes qui ne
satisfont pas aux conditions de Talbot nécessaires au contrôle de la période. De plus, les implémentations
pratiques des manipulations de phase décrites – filtrage de phase spectrale et modulation de phase tem-
porelle – n’introduisent pas de bruit externe supplémentaire dans le processus. Il est alors possible d’obtenir
des formes d’onde de sortie à plus faible bruit, par rapport aux formes d’onde d’entrée, grâce à l’application
d’effets Talbot contrôlés par la phase. Il convient de noter que la puissance moyenne du signal reste in-
changée après l’application de la méthode. Ceci est dû au fait que les transformations décrites redistribuent
simplement l’énergie totale transportée par le signal dans un ensemble différent de périodes de sortie.

0.7 Contrôle arbitraire de période des trains d’impulsions

La méthode PCTTM transforme un train d’impulsions de période tr en un nouveau train de période rtr, où
r = q−1

2 q1. Par exemple, si q1 > q2, le train de sortie a une période d’impulsion plus élevée que le train
d’entrée (c’est-à-dire un taux de répétition inférieur) et si q2 > 1, le facteur de multiplication de période est
un nombre fractionnaire. Notez que, si l’on ne s’intéresse qu’à manipuler la période du train d’impulsion, et
non le FSR de son spectre de peigne de fréquence correspondant, la dernière étape de la méthode peut être
omise.
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0.7.1 Manipulations de phase impliquées

Les manipulations de phase nécessaires pour la division fractionnaire du taux de répétition d’un train d’impulsions
sont implémentées ici comme modulation de phase temporelle directe du train d’impulsions et propagation
du train à travers un milieu optique présentant une dispersion de vitesse de groupe du second ordre.

0.7.1.1 Modulation de phase temporelle

La première étape de la méthode consiste à appliquer une phase temporelle ϕn;s,q1 à la n-ème impulsion du
train d’intérêt. Dans les expériences rapportées ici, s = q1 − 1, de sorte que la phase appliquée,

ϕn;q1−1,q1 = −πq1 − 1
q1

n2 (7)

0.7.1.2 Dispersion de la vitesse du groupe

Les deuxième et troisième étapes de la méthode, ici combinées en une seule, consistent en l’application des
phases spectrales −φk;p1,q1 et φk;p2,q2 à la k-ème ligne de la représentation en peigne de fréquence du train
d’intérêt. Ces phases sont appliquées en séquence à un peigne de fréquence avec le même FSR (voir les
étapes 2 et 3 de la Fig. 0.4). Dans les expériences rapportées ici, p1 = p2 = 1, de sorte que la phase globale
appliquée,

φk;1,q2 − φk;1,q1 = π

( 1
q2
− 1
q1

)
n2 (8)

Selon l’équation 2, la quantité requise de GVD,

2πβ2z =
( 1
q2
− 1
q1

)
(q1tr)2 (9)

0.7.2 Démonstration expérimentale

La technique de division fractionnaire du taux de répétition proposée est démontrée sur un train d’impulsions
optiques dans le proche infrarouge dans la bande C des télécommunications optiques, et avec un taux de
répétition dans le régime GHz. Ces caractéristiques constituent une preuve de concept pratique, facile à
mettre en œuvre avec un équipement de télécommunication standard.

0.7.2.1 Configuration expérimentale

Fig. 0.6 montre un schéma simplifié de la configuration expérimentale utilisée pour valider le concept de
division fractionnaire du taux de répétition.

Un laser à verrouillage de modes actif (MLL, pour ‘Mode-locked laser’ en anglais) génère le train
d’impulsions d’entrée. Un synthétiseur radiofréquence pilote le laser au taux de répétition d’entrée souhaité.
Le laser délivre des impulsions optiques de type Gaussien limitées par transformée de Fourier, avec une
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Optical fiber

RF coaxial cable

MLL
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DCF

Output

Signal source Temporal Talbot amplification

Input

Figure 0.6 – Multiplication fractionnaire de taux de répétition, configuration expérimentale. MLL, laser à verrouillage de
modes; AWG, générateur de forme d’onde arbitraire; EOPM, modulateur de phase électro-optique; DCF, fibre à compensation de
dispersion.

largeur d’impulsion à mi-hauteur d’environ 6 ps, à une longueur d’onde centrale de 1550 nm (environ
193.55 THz). Le spectre correspondant est un peigne de fréquence optique cohérent avec un FSR dicté
par le taux de répétition du laser.

Le profil de modulation de phase temporel prescrit est chargé dans la mémoire d’un générateur de formes
d’ondes arbitraires (AWG, pour ‘arbitrary waveform generator’ en anglais) capable de délivrer 24 Gs/s avec
une bande passante analogique de 7 GHz. L’AWG génère un signal de tension électrique analogique suivant
les niveaux de phase requis par Eq. 7 pour une valeur donnée de q1, et correspondant au taux de répétition
des impulsions optiques générées. Ce signal de tension est amplifié et transmis à un modulateur de phase
électro-optique (EOPM, pour ‘Electro-optical phase modulator’ en anglais), avec une bande passante RF de
40 GHz, qui module la phase de chaque impulsion en conséquence.

Enfin, le train modulé en phase se propage sur un tronçon de fibre compensatrice de dispersion (DCF,
pour ‘dispersion-compensating fiber’ en anglais). Cette fibre optique a une dispersion normale (β2 > 0) à
la longueur d’onde de travail, et sa longueur est choisie pour correspondre à la condition requise, définie par
Eq. 9.

0.7.2.2 Résultats expérimentaux

La table 0.1 liste les paramètres des signaux d’entrée testés, l’ensemble des configurations expérimentales
pour la division fractionnaire du taux de répétition, et les résultats obtenus.

Fig. 0.7 montre un ensemble de mesures correspondant aux conditions expérimentales et aux résultats
listés dans le tableau 0.1.

L’AWG génère les signaux de tension représentés sur la Fig. 0.7(a). Ces signaux de tension pilotent
l’EOPM modulant la phase du train d’impulsions optiques d’entrée. Ceci produit des images spectrales de
Talbot, résultant en une division du FSR par le paramètre q1 (Fig. 0.7(b)). Les spectres de puissance optique
montrés sont mesurés par un analyseur de spectre optique.

La propagation des trains modulés en phase a travers la DCF présentant la quantité de GVD requise (voir
le tableau 0.1) produit la division du taux de répétition par le facteur fractionnaire anticipé, et l’amplification
passive associée par le même facteur, r (Fig. 0.7(c)). Les traces temporelles montrées sont mesurées par
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Table 0.1 – Multiplication fractionnaire du taux de répétition, conditions expérimentales et résultats. Liste des périodes
d’impulsions d’entrée et de sortie et des paramètres de configuration de la PCTTM pour un ensemble de 7 expériences conduites.

Période d’impulsion Paramètres de PCTTM
tr

a rtr
b q1

c q2
d re β2z

f

(1) 126.139 168.185 4 3 1.3 3376.415
(2) 84.092 126.139 3 2 1.5 1688.207
(3) 79.777 132.962 5 3 1.6 3376.415
(4) 63.568 111.244 7 4 1.75 3376.415
(5) 53.185 132.962 5 2 2.5 3376.415
(6) 63.069 168.185 8 3 2.6 8441.038
(7) 62.902 220.157 7 2 3.5 11020.156
a Période d’impulsion d’entrée (ps).
b Période d’impulsion de sortie (ps).
c Numérateur.
d Dénominateur.
e Facteur de multiplication de la période d’impulsion.
f Dispersion du second ordre (ps2/rad).

un oscilloscope à échantillonnage optique avec une bande passante d’acquisition équivalente de 500 GHz.
Il est à noter que la perte totale d’insertion dans le chemin du signal optique est de ∼13, 5 dB pour la
démonstration expérimentale rapportée. Les traces temporelles montrées sont normalisées à la valeur de
puissance crête temporelle du signal d’entrée.

Enfin, la figure 0.7(d) montre les spectres radiofréquence des trains d’impulsions d’entrée et de sortie,
mesurés par un analyseur de spectre radiofréquence équipé d’une photodiode à bande passante de 45 GHz.
Les harmoniques mesurées dans les spectres de puissance RF vérifient la division fractionnaire correcte du
taux de répétition.

0.8 Contrôle arbitraire du FSR des peignes de fréquence

La MTSCP transforme un peigne de fréquence avec un FSR νr en un nouveau peigne avec FSR r−1νr, où
r = q−1

2 q1. Notez que, si l’on veut seulement manipuler le FSR du peigne, et non la période d’impulsion du
train d’impulsions correspondant, la dernière étape de la méthode peut être omise.

0.8.1 Manipulations de phase impliquées

Les manipulations de phase requises pour le contrôle arbitraire du FSR d’un peigne de fréquence sont réal-
isées ici par une propagation à travers un milieu optique présentant une dispersion de vitesse de groupe
(GVD) et une modulation de phase temporelle directe du train d’impulsions résultant.
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Figure 0.7 – Multiplication fractionnaire du taux de répétition, résultats expérimentaux. Ensemble de mesures correspondant
aux conditions expérimentales et aux résultats listés sur le Tableau 0.1, et suivant la même numérotation (1) - (5). a) Séquences
de modulation de phase temporelle prescrites et tensions de commande appliquées au modulateur EOPM, où Vπ désigne la tension
demi-onde de l’EOPM (c’est-à-dire le niveau de tension requis pour appliquer un déphasage de π rad au signal optique); (b) spectres
de puissance optique de la représentation en peigne de fréquence d’entrée et de sortie du train d’impulsions traité, normalisé à la
puissance de crête du peigne d’entrée (l’effet d’auto-imagerie spectrale anticipée est observé, conduisant à la division du FSR
par le facteur q1); (c) mesures de puissance instantanée des trains d’impulsions d’entrée et de sortie, normalisées à la puissance
de crête temporelle du train d’entrée (on observe la multiplication fractionnaire anticipée de la période d’impulsion, ainsi que
l’effet correspondant d’amplification passive par redistribution d’énergie); (d) les spectres de puissance radiofréquence des trains
d’impulsions d’entrée et de sortie, vérifiant l’effet attendu de division fractionnaire du taux de répétition.

0.8.1.1 Dispersion de la vitesse de groupe

La première étape de la méthode consiste à appliquer une phase spectrale φk;p2,q2 à la k-ème ligne du peigne
d’intérêt. Dans les expériences rapportées, la valeur p2 = 1 est choisie pour minimiser la quantité totale de
GVD requise, cependant, toute valeur entière peut être conçue, à condition que p2 et q2 soient co-premiers.
De cette façon, la séquence de phase appliquée s’écrit,

φk;1,q2 = π
1
q2
k2 (10)
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Selon l’équation. 2, la quantité requise de GVD,

2πβ2z = 1
q2ν2

r

(11)

0.8.1.2 Modulation de phase temporelle

Les deuxième et troisième étapes de la méthode, ici combinées en une seule, consistent en l’application
des phases temporelles −ϕk;s2,q2 et ϕk;s1,q1 à la n-ème impulsion de la représentation temporelle du peigne
d’intérêt. Ces phases sont appliquées en séquence à un train d’impulsions avec la même période (voir les
étapes 2 et 3 de la Fig. 0.5). Dans les expériences rapportées, s2 = q2 − 1 et s1 = q1 − 1, de sorte que la
phase globale appliquée soit donnée comme suit,

ϕn;q1−1,q1 − ϕn;q2−1,q2 = −πq1 − q2
q1q2

n2 (12)

0.8.2 Démonstration expérimentale

La technique proposée pour le contrôle arbitraire du FSR des peignes de fréquence est démontrée sur un
peigne cohérent correspondant à un train d’impulsions optiques dans le proche infrarouge, plus précisément
dans la bande C de télécommunications optiques, et avec un taux de répétition dans le régime GHz. Ces
caractéristiques constituent une preuve de concept pratique, facile à mettre en œuvre avec un équipement de
télécommunication standard.

0.8.2.1 Configuration expérimentale

La figure 0.8 montre un schéma simplifié de la configuration expérimentale utilisée pour valider le concept
de contrôle arbitraire du FSR.

Optical fiber

RF coaxial cable

MLL

AWG

EOPM

DCF

Output

Signal source Spectral Talbot amplification

Input

Figure 0.8 – Contrôle arbitraire du FSR des peignes de fréquence, configuration expérimentale. MLL, laser à verrouillage
de modes; DCF, fibre de compensation de dispersion; AWG, générateur de forme d’onde arbitraire; EOPM, modulateur de phase
électro-optique.

Un laser à verrouillage de modes actif (MLL) génère le peigne de fréquence d’entrée. Un synthétiseur
radiofréquence pilote le laser sur le FSR d’entrée νr désiré. Le laser délivre des impulsions optiques de
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type Gaussien limitées par transformée de Fourier, avec une largeur d’impulsion à mi-hauteur (FWHM)
d’environ 3 ps, à une longueur d’onde centrale de 1554.4 nm (environ 193 THz) et une période de répétition
des impulsions, tr, dictée par le FSR.

Le train d’impulsions d’entrée se propage sur un tronçon de fibre de compensation de dispersion (DCF).
Cette fibre optique a une dispersion normale (β2 > 0) à la longueur d’onde de travail, et sa longueur est
choisie pour correspondre à la condition définie par Eq. 11. Le train d’impulsions de sortie correspond
à une sous-image temporelle de Talbot avec une période d’impulsion q−1

1 tr, tandis que le FSR du peigne
correspondant reste inchangé.

Enfin, le profil de modulation de phase temporel prescrit (donné par Eq. 12) est chargé dans la mémoire
d’un générateur de forme d’onde arbitraire (AWG) capable de délivrer 50 Gs/ s avec une bande passante
analogique de 14GHz. L’AWG génère un signal de tension analogique suivant les niveaux de phase requis
par Eq. 12, avec un taux de répétition qui correspond à celui des impulsions à la sortie du milieu dispersif
(GVD). Ce signal de tension est amplifié et délivré à un modulateur de phase électro-optique (EOPM), avec
une bande passante RF de 40 GHz, qui module la phase de chaque impulsion (une ligne à retard optique
accordable est utilisée pour aligner le signal optique sur le signal de tension qui pilote le modulateur, et un
contrôleur de polarisation est utilisé pour maximiser l’efficacité de la modulation).

0.8.2.2 Résultats expérimentaux

Le tableau 0.2 liste les paramètres des signaux d’entrée testés, l’ensemble des configurations expérimentales
pour le contrôle arbitraire du FSR, et les résultats obtenus.

Table 0.2 – Contrôle arbitraire du FSR, conditions expérimentales et résultats. Liste des valeurs du FSR d’entrée et de sortie
et des paramètres de configuration de la MTSCP pour un ensemble de 5 expériences conduites.

FSR Paramètres de MTSCP
νr

a r−1νr
b q2

c q1
d r−1e 10 log10(r−1)f β2z

g

(1) 9.451 18.902 2 1 2 3 891.527
(2) 9.463 28.391 3 1 3 4.7 592.369
(3) 9.451 37.804 4 1 4 6 445.455
(4) 7.717 11.575 3 2 1.5 1.7 890.911
(5) 9.451 3.781 2 5 0.4 −4 890.911
a FSR d’entrée (GHz).
b FSR de Sortie (GHz).
c Numérateur.
d Dénominateur.
e Facteur de multiplication du FSR, échelle linéaire.
f Facteur de multiplication du FSR, échelle logarithmique (dB).
g Dispersion de second ordre (ps2/rad).

Fig 0.9 montre un ensemble de mesures correspondant aux conditions expérimentales et aux résultats
listés sur le Tableau 0.2.

Le peigne de fréquence d’entrée se propage d’abord sur une longueur de DCF présentant la quantité de
GVD requise (voir le Tableau 0.2). Le train d’impulsions obtenu à la sortie de DCF est une sous-image
temporelle de Talbot du train d’entrée (division d’impulsions par le facteur q2), tandis que le spectre de
puissance du peigne à la sortie de DCF reste inchangé.
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Figure 0.9 – Contrôle arbitraire du FSR, résultats expéri-
mentaux. Ensemble de mesures correspondant aux conditions
expérimentales et résultats listés sur le Tableau 0.2, et suivant
la même numérotation (1) - (5). a) Séquences de modulation
de phase temporelle et tensions de commande appliquées au
modulateur EOPM, où Vπ désigne la tension demi-onde de
l’EOPM (c’est-à-dire le niveau de tension requis pour appli-
quer un déphasage de π rad au signal optique); (b) spectres
de puissance optique des peignes de fréquence d’entrée et de
sortie, normalisés à la puissance de crête du peigne d’entrée
(la multiplication du FSR anticipée par le facteur r−1 est
observée, ainsi que l’effet d’amplification passive des lignes
spectrales par redistribution d’énergie).
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L’AWG génère les signaux de tension représentés sur la Fig. 0.9(a). Ces signaux de tension pilotent
l’EOPM modulant la phase du train d’impulsions à la sortie du DCF. Ceci produit la modification du FSR
attendue (multiplication du FSR d’entrée par le facteur r−1), et l’amplification passive des lignes spectrales
du peigne associé. Fig. 0.9(b) montre les spectres de puissance d’entrée et de sortie, mesurés avec un anal-
yseur de spectre optique avec une résolution de 5 MHz, et normalisés à la puissance spectrale de crête du
peigne d’entrée.

0.9 Traitement des ondes apériodiques grâce à l’effet Talbot spectral général-
isé

Les transformations d’ondes de la MTSCP, appliquées aux signaux apériodiques, produisent des effets in-
téressants dans leurs spectres. Deux exemples d’application de la MTSCP aux signaux temporels apéri-
odiques sont rapportés et discutés: (i) une méthode pour transformer de façon réversible le spectre d’énergie
d’une onde large bande, afin d’éviter l’interaction entre l’onde et un objet dans le but de dissimuler l’objet,
et (ii) une technique pour comprimer le spectre d’une séquence d’impulsions courtes modulées, par exemple
un signal de télécommunication, sans modifier la forme temporelle – y compris la durée – des impulsions
individuelles de la séquence.
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0.9.1 Invisibilité par dissimulation spectrale

L’invisibilité peut être obtenue en manipulant les manières dont les ondes voyagent dans l’espace. En
général, un observateur est capable de détecter et d’étudier un objet en analysant l’interaction entre cet objet
et une onde de sonde, provenant d’une source d’éclairage connue. Une telle interaction imprime une signa-
ture sur l’onde d’illumination, permettant à l’observateur de détecter et, dans une certaine mesure, d’étudier
les propriétés de l’objet cible. Un dispositif de cape d’invisibilité spatiale redirige l’onde d’illumination au-
tour d’une zone prescrite. De cette façon, les objets situés dans la région masquée évitent toute interaction
avec l’onde. L’observateur est alors incapable de détecter la présence de l’objet. De même, les événements
temporels, qui sont détectés par la variation transitoire - signature temporelle - qu’ils impriment sur un signal
de sonde, peuvent être cachés de la détection à travers une cape d’invisibilité temporelle. Un tel dispositif
ralentit de manière appropriée la vitesse de propagation de l’onde avant que l’événement cible ait lieu, et
l’accélère après la fin de l’événement, créant ainsi une période de temps durant laquelle l’onde ne transporte
pas d’énergie.

Les premières démonstrations d’invisibilité par dissimulation optique présentaient des conceptions de
métamatériaux basées sur des éléments d’optiques dans lesquelles une transformation de coordonnées con-
forme est appliquée aux équations de Maxwell, obtenant l’ensemble des paramètres électromagnétiques
requis pour atteindre les chemins de propagation d’onde désirés. La principale limitation de ces concep-
tions était le fait que l’invisibilité n’était atteinte qu’à une seule longueur d’onde. Les avancées récentes
dans ce domaine ont donné lieu à des capes d’invisibilité comportant de larges bandes passantes d’opération,
reposant généralement sur une ingénierie précise de la réponse électromagnétique d’un matériau exotique
ou d’un système optique complexe. Cependant, des études récentes et approfondies, utilisant une analyse
électromagnétique complète, ont prédit que les capes spatiales traditionnelles induisent une distorsion dans
le spectre d’énergie des ondes d’éclairage à large bande. Pour qu’un objet soit entièrement caché, un dis-
positif d’invisibilité doit être capable de restituer les variations exactes d’amplitude et de phase de l’onde
d’illumination, à la fois spatialement et temporellement (c’est-à-dire le champ complet), à sa sortie. C’est
en effet l’un des principaux défis fondamentaux dans le domaine de l’invisibilité par dissimulation otique
actuellement.

Par des principes de conception fondamentaux, les stratégies de dissimulation actuelles modifient néces-
sairement les variations de phase parmi les différentes composantes de fréquence d’une onde d’illumination
à large bande. Ceci est dû au fait qu’une couche d’invisibilité force différentes composantes de fréquence
de l’onde d’illumination à se propager à travers différents chemins optiques, subissant ainsi des retards dif-
férents. Une telle distorsion de phase altère inévitablement le profil temporel d’éclairage. Par conséquent,
les approches de dissimulation actuelles sont vulnérables à la détection par des méthodes d’observation sim-
ples. Par exemple, une impulsion courte cohérente en phase – correspondant à un spectre de fréquence
large bande continue – incident dans le dispositif de dissimulation sera sévèrement déformée. Un observa-
teur équipé d’instruments communs de détection de phase ou de détection temporelle pourrait facilement
détecter une telle distorsion, révélant ainsi la présence du dispositif d’invisibilité. Il a été avancé que des
concepts fondamentalement nouveaux, au-delà des solutions d’invisibilité classiques proposées à ce jour,
devenaient nécessaires pour la réalisation d’une dissimulation à large bande préservant la phase.

Atteindre l’invisibilité dans la représentation fréquentielle de l’onde d’illumination pourrait fournir une
solution à ce problème. La figure 0.10 illustre schématiquement le processus d’observation d’un objet à
travers la signature distincte qu’il imprime sur le spectre de fréquence continu d’une onde d’illumination à
large bande.

Le concept proposé ici repose sur la redistribution de l’énergie de l’onde entrante vers des régions de
fréquences qui ne seront pas affectées par l’interaction avec l’objet à dissimuler, grâce à des transformations
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Figure 0.10 – Détection d’un objet à travers sa signature fréquentielle sur une onde d’illumination à large bande. Pour la
simplicité de l’illustration, seule la diffusion de l’onde par la cible est représentée.

préservant l’énergie. Ces transformations sont conçues pour créer, de manière réversible, une «ouverture»
(c.à.d. une bande de fréquence vide) à travers la (les) région (s) désirée (s) du spectre d’illumination. L’onde
se propage alors à travers l’objet sans interagir avec lui, et l’application subséquente des transformations
opposées rétablit le spectre d’onde à son état original exact - tant en amplitude qu’en phase - lorsque l’onde
a dépassé l’objet. Cela garantit que la cible et le dispositif de dissimulation restent invisibles pour tout
observateur, y compris par une détection temporelle à large bande, ou sensible à la phase. Fig. 0.11 illustre
le principe d’invisibilité discuté ici.

Figure 0.11 – Invisibilité spectrale par dissimulation de la signature fréquentielle d’un objet. Une ouverture de fréquence
est générée dans le spectre de l’onde d’illumination grâce à des transformations d’ondes réversibles et préservant l’énergie. La
réponse spectrale de l’objet, située dans une telle ouverture, n’interagit pas avec l’onde d’illumination, ainsi, la signature n’est pas
imprimée. Une fois que l’onde a traversé l’objet, les transformations d’onde opposées restaurent le spectre d’illumination (à la fois
en amplitude et en phase) à son état d’origine exact.

0.9.1.1 Principe de fonctionnement

Pour simplifier l’explication, considérons d’abord un train d’impulsions avec une période de répétition tr
comme onde d’illumination. Cela correspond à un peigne de fréquence avec un FSR νr = t−1

r . Dans cette
situation, la MTSCP peut être utilisée pour multiplier le FSR du peigne par un facteur entier, r−1 = q2.
Rappelons que, selon les dérivations de la MTSCP, d’abord, un déphasage spectral φk;p2,q2 doit être appliqué
à la k-ème ligne du peigne. Dans les expériences rapportées, la valeur p2 = 1 est choisie pour minimiser la
quantité totale de GVD requise. De cette façon, la séquence de phase appliquée s’écrit,

φk;1,q2 = σπ
1
q2
k2 (13)

Cela se traduit par une GVD nécessaire,

2π|β2|z = 1
q2ν2

r

(14)
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L’onde obtenue est un train d’impulsions avec une période de répétition q−1
2 tr. Ensuite, un déphasage

temporel −ϕn;s2,q2 , (où s2 est obtenu à partir de l’équation. 6, pour les valeurs données de q2 et p2) est
appliqué à la n-ème impulsion du train résultant. Dans les expériences rapportées, s2 = q2− 1, de sorte que,

−ϕn;q2−1,q2 = σπ
q2 − 1
q2

n2 (15)

Le facteur de multiplication du FSR obtenu dans cette configuration du MTSCP est r−1 = q2, ce qui
donne un peigne avec un FSR,

νc = r−1νr (16)

En raison de la préservation de l’énergie intrinsèque de la transformation, le peigne avec FSR multiplié
peut être rétabli dans son état d’origine en appliquant les manipulations de phase opposées.

Remarquablement, lorsque les transformations décrites sont appliquées à une onde d’éclairage cohérente
à large bande avec un spectre de fréquence purement continu (par exemple, une seule impulsion temporelle
courte), un ensemble périodique de larges ouvertures est généré dans le spectre de l’onde. Les transfor-
mations de phase requises dans cette situation sont les mêmes que celles décrites ci-dessus pour un train
d’impulsions périodique. Cependant, les valeurs de r et νr peuvent maintenant être choisies arbitrairement
pour obtenir la largeur désirée de ces bandes. Cette largeur est fixée par,

∆νg = (r−1 − 1)νr (17)

Ceci rend le fonctionnement du dispositif d’invisibilité indépendant des propriétés de l’onde d’illumination
(par exemple, le taux de répétition). Comme discuté ci-dessus, l’onde d’illumination peut ensuite être restau-
rée à son état d’origine exact en appliquant les transformations de phase opposées.

0.9.1.2 Configuration expérimentale

La figure 0.12 montre un schéma simplifié de la configuration expérimentale utilisée pour valider le concept
d’invisibilité par dissimulation spectrale.

La source d’illumination utilisée est un laser à verrouillage de modes avec une fréquence de répétition
de 250 MHz et un filtre optique utilisé pour sélectionner une bande passante de 4 nm autour d’une longueur
d’onde centrale de 1554. nm (correspondant à une bande passante de 3 dB) ∼500 GHz autour de 192.85
THz). Le spectre de fréquences à large bande cohérent en phase qui en résulte correspond à une impulsion
temporelle ∼1.4 picoseconde.

Le dispositif de dissimulation se compose de deux tronçons de fibre optique – pour la mise en œuvre des
milieux à GVD d’entrée et de sortie – avec une amplitude de dispersion égale et des signes opposés, et deux
modulateurs de phase électro-optiques pilotés par un synthétiseur radiofréquence.

Une bobine de fibre monomode standard (SMF) de 10 km a été utilisée comme section dispersive d’entrée
du dispositif de dissimulation, avec une dispersion du second ordre totale de 173 ps/nm (correspondant à
−222.6 ps2/rad). La section dispersive de sortie est appariée à l’entrée en concaténant une bobine de fibre
de compensation de dispersion, conçue pour compenser la dispersion de 20 km de fibre SMF à la longueur
d’onde de travail, avec une bobine SMF supplémentaire de 10 km. Ces valeurs de dispersion satisfont

xxviii



Figure 0.12 – Dissimulation par invisibilité spectrale, con-
figuration expérimentale. MLL, laser à verrouillage de
modes; SMF, fibre monomode; EOPM, modulateur de phase
électro-optique; RFS, synthétiseur radiofréquence; POF, filtre
optique programmable; DCF, fibre à compensation de disper-
sion.
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la condition de Talbot souhaitée pour νr = 19 GHz et r−1 = 2 (voir Eq. 14). Notez que cette valeur
de νr est 76 fois plus élevée que le taux de répétition du laser d’illumination; en tant que tel, le taux de
répétition d’illumination ne satisfait manifestement pas la condition de Talbot pour la dispersion fournie
par le dispositif de dissimulation. De plus, cette quantité de dispersion est insuffisante pour induire une
interférence entre deux impulsions consécutives quelconques, assurant ainsi l’absence d’interaction entre les
impulsions entrantes dans le système.

Les deux modulateurs de phase électro-optiques sont pilotés par une sinusoïde à 19 GHz générée par
le synthétiseur radiofréquence. La tension de pilotage générée correspond à une approximation de premier
ordre de la séquence de phase de Talbot r−1 = 2. L’alignement du signal de tension de pilotage sur le
signal optique est réalisé par une ligne à retard optique accordable. Des contrôleurs de polarisation sont
utilisés à l’entrée de chaque modulateur afin de maximiser l’efficacité de la modulation. Deux amplificateurs
radiofréquences sont utilisés pour amplifier la sortie du synthétiseur avant chaque étage de modulation, afin
d’adapter le signal radiofréquence à la tension demi-onde des modulateurs de phase. La figure 0.13 montre
une mesure de la tension de pilotage de modulation de phase, avec la mesure de l’impulsion dispersée à
laquelle elle est appliquée dans le dispositif de dissimulation.

L’objet à dissimuler (caractérisation du domaine fréquentiel représenté sur Fig. 0.14) est un filtre op-
tique programmable, programmé pour avoir une réponse en fréquence linéaire consistant en un ensemble de
résonances espacées de 38 GHz, chacune avec une largeur à 3 dB de 17.5 GHz.
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Figure 0.13 – Modulation de phase et prop-
agation de l’impulsion à travers le dispositif
d’invisibilité spectrale. (a) Profil périodique de
la phase de Talbot temporel associé à une con-
dition de Talbot avec r−1 = 2. Vπ représente
la tension demi-onde du modulateur de phase
électro-optique. (ligne pointillée) Phase prescrite
obtenue à partir de la théorie de l’effet Talbot.
(ligne continue) Tension (mesurée) de commande
du modulateur de phase utilisée dans les expéri-
ences, se rapprochant de la phase de Talbot en
utilisant une composante à une seule fréquence.
(b) Trace d’amplitude temporelle photo-détectée
de l’impulsion dispersée, représentée par rap-
port à la durée estimée de 1.4 ps de l’impulsion
d’illumination d’origine, mesurée par un oscillo-
scope en temps réel avec 28 Gsa/s équipé d’une
photodiode de 43 GHz.
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Figure 0.14 – L’Objet de test util-
isé dans la démonstration ex-
périmentale d’invisibilité par dis-
simulation spectrale. Phase (en
haut) et amplitude en échelle log-
arithmique des profils spectraux de
transmission (en bas) du filtre op-
tique linéaire, utilisé comme objet
à dissimuler dans la démonstration
expérimentale d’invisibilité par dis-
simulation spectrale. Les mesures
sont effectuées avec un analyseur de
vecteur optique avec une résolution
en fréquence de 200 MHz.
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0.9.1.3 Résultats expérimentaux

Fig. 0.15 montre un ensemble de mesures spectrales des ondes impliquées dans le processus de dissimulation
spectrale. Ces mesures ont été effectuées par un analyseur de spectre optique avec une résolution de 2 GHz.

Fig. 0.15(a) montre le spectre de l’onde d’illumination à large bande cohérente. La signature d’amplitude
spectrale de l’objet est clairement observée sur Fig. 0.15(b), lorsque les modulateurs de phase ne sont pas pi-
lotés (dissimulation désactivée). Lorsque la dissimulation est activée, cette configuration produit l’ensemble
attendu d’ouvertures dans le spectre d’illumination. Ces bandes ont une largeur de ∆νg = 19 GHz, et une
période spectrale νc = 38 GHz (Fig. 0.15(c)). On notera qu’une augmentation de 3 dB de l’intensité de crête
– correspondant à un facteur linéaire de ∼2 – est observée dans le spectre, en accord avec la conservation
d’énergie attendue, à partir du paramètre r−1.

La présence des ouvertures dans le spectre d’illumination permet à l’onde de se propager à travers le
filtre (Fig. 0.15(d)) sans interagir avec lui. Dans cette situation, un observateur surveillant le spectre de sortie
détectera l’onde d’illumination originale exacte, comme si l’objet n’était pas présent (Figs. 0.15(e) et (f)).
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Figure 0.15 – Invisibilité par dissimulation
spectrale, résultats expérimentaux, domaine
fréquentiel. Spectres de puissance optique
mesurés des ondes impliquées, normalisés au
maximum de l’intensité spectrale d’illumination,
illustrant les transformations mises en œuvre
pour la génération et l’inversion des ouver-
tures de fréquence. Le spectre de transmis-
sion de l’objet à dissimuler (caractérisation com-
plète sur Fig. 0.14)) est montré à titre de
référence. Les points de mesure, comme mar-
qués sur Fig. 0.12, sont indiqués. (a) Spec-
tre d’illumination (Fig. 0.12(a)). (b) Signa-
ture d’amplitude spectrale de l’objet, détectée
sur l’onde d’illumination lorsque les transforma-
tions ne sont pas appliquées (Fig. 0.12(d)). (c)
Les ouvertures de fréquence induites dans l’onde
d’illumination lorsque les transformations sont
appliquées (Fig. 0.12(b)). (d) Réponse spectrale
de l’objet inséré dans les ouvertures de fréquence
(Fig. 0.12(c)). (e) Effet de la dissimulation spec-
trale sur le spectre d’illumination de sortie en
l’absence de l’objet (Fig. 0.12(d)). (f) Spectre de
sortie mesuré lorsque l’objet est présent et que la
dissimulation est activée, montrant la prévention
de l’interaction onde-objet, et la dissimulation ré-
sultante de l’objet (Fig. 0.12(d)). Les ondulations
résiduelles sur le spectre restauré sont attribuées
au fait que les résonances de l’objet sont légère-
ment plus larges que les ouvertures de fréquence
générés.
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Afin de démontrer que le dispositif de dissimulation spectrale préserve l’onde d’illumination originale
exacte, en amplitude et en phase, des mesures temporelles de l’onde de propagation à l’entrée et à la sortie
du dispositif sont effectuées (Fig. 0.16).

Figure 0.16 – Invisibilité par dissimulation
spectrale, résultats expérimentaux, autocor-
rélation temporelle. Traces d’autocorrélation
temporelle mesurées des ondes impliquées. Les
points de mesure, comme marqués sur Fig. 0.12,
sont indiqués. (a) Trace d’autocorrélation de
l’onde d’illumination (Fig. 0.12(a)), et interpo-
lation numérique de la trace attendue pour une
impulsion limitée par la transformée de Fourier
(c’est-à-dire avec un profil de phase spectral con-
stant). (b) Signature temporelle de l’objet lorsque
la dissimulation est désactivée (Fig. 0.12 (d)).
(c) Trace d’autocorrélation de l’onde à la sortie
quand l’objet est absent (Fig. 0.12 (d)). (d) Trace
d’autocorrélation lorsque l’objet est présent et
que la dissimulation est activée (Fig. 0.12(d)),
montrant une dissimulation réussie de l’objet.
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Fig. 0.16(a) montre l’autocorrélation mesurée de l’impulsion d’illumination. Cette courbe est comparée
à l’autocorrélation attendue, calculée à partir du spectre d’illumination mesuré, en supposant un profil de
phase spectrale uniforme. Le bon accord entre les deux courbes suggère que l’impulsion d’illumination est
limitée par transformée de Fourier 2

Lorsque la dissimulation est désactivée, l’autocorrélation de sortie mesurée est significativement dé-
formée, révélant la signature de l’objet dans le domaine temporel (Fig. 0.16(b)). En revanche, l’onde
se propage sans distorsion observable lorsque la dissimulation est activée, que l’objet soit présent ou non
(Figs. 0.16(c) et (d)).

Pour quantifier la similarité entre les courbes d’autocorrélation mesurées des ondes d’illumination et de
sortie, on calcule leur coefficient d’inter-corrélation, ρ. Le coefficient d’inter-corrélation obtenu entre l’onde
d’illumination et les ondes à la sortie du dispositif de dissimulation est supérieur à 0, 999, indépendamment
de la présence de l’objet (Figs. 0.16(c) et (d)).

0.9.2 Compression spectrale préservant la forme d’onde des signaux de données pulsés

Les concepts de redistribution d’énergie spectrale proposés - en particulier, les transformations d’onde du
MTSCP - peuvent être exploités pour comprimer le spectre d’une séquence d’impulsions courtes arbitraires
(par exemple, aléatoires) modulées en données, sans altérer la forme temporelle – y compris la durée tem-
porelle – de ses impulsions constitutives. Comme les opérations agissent seulement sur la phase des sig-
naux impliquées, un tel processus serait entièrement réversible, de sorte que le signal original pourrait être
récupéré sans aucune perte d’information (y compris la récupération complète de la forme d’onde de données
pulsée).

Une telle méthode de compression spectrale des signaux de données, avec préservation d’énergie, pour-
rait trouver une application immédiate dans le multiplexage des signaux dans le domaine fréquentiel, tout en
conservant de courtes impulsions temporelles combinant ainsi l’efficacité spectrale et le bon fonctionnement
des systèmes de multiplexage par répartition en fréquence avec les avantages de la transmission de données
à impulsions courtes, notamment, la performance, la robustesse, et la polyvalence, typique des systèmes de
multiplexage par répartition dans le temps.

0.9.2.1 Principe de fonctionnement

Le processus de compression spectrale avec préservation de la forme d’onde proposé dans cette thèse est
similaire au concept d’invisibilité par dissimulation spectrale expliqué précédemment, avec la particularité
que la fréquence du signal d’entrée, dans ce cas, satisfait à la condition de Talbot, comme dans la formula-
tion originale du MTSCP appliquée aux peignes de fréquence. Dans cette situation, l’apériodicité temporelle
introduite par la séquence de modulation – données – produit un spectre continu où des écarts de fréquence
peuvent être générés, suivant une méthodologie identique à celle introduite dans la Section 0.9.1.1 pour la
mise en œuvre de l’invisibilité spectrale. De manière similaire à l’implémentation de la dissimulation spec-
trale, l’inversion des transformations MTSCP restaure complètement le signal d’entrée d’origine. Fig. 0.17
illustre le concept.

Le cas considéré ici est celui d’une séquence d’impulsions de durée ∆t modulée par des données. Ces
séquences sont obtenues par modulation temporelle en amplitude et / ou en phase d’un train d’impulsions

2Une impulsion limitée par transformée de Fourier a des distributions de phase temporelle et spectrale linéaires et donc sa durée
temporelle est la plus courte possible, compte tenu de sa bande passante.
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Figure 0.17 – Compression spectrale préservant la forme d’onde des séquences d’impulsions modulées Illustration du concept
proposé pour surmonter la contrainte d’étalement du spectre d’une séquence d’impulsions arbitrairement modulée par les données
(avec un produit temps-bande passante donné par C) grâce à des transformations linéaires réversibles en phase uniquement (dans
l’exemple représenté, GVD: dispersion de vitesse de groupe de second ordre, PM: modulation de phase temporelle quadratique).
De telles transformations de phase agissent sur la totalité de la séquence d’impulsions, plutôt que sur des impulsions individuelles.
Le résultat est la compression souhaitée de la bande passante totale occupée, tout en conservant la forme d’impulsion individuelle
originale: la largeur spectrale globale reste inchangée, mais des ouvertures fréquentiels périodiques sont introduites dans le spectre,
réduisant la bande passante occupée effective (et atteignant un produit effectif temps-bande passante inférieur à celui du signal pulsé
d’origine, sans modifier la largeur d’impulsion d’origine). La forme d’onde du signal de données original peut être entièrement
récupérée par application des transformations de phase linéaire inversée (-GVD, -PM).

périodique, par des données choisies arbitrairement. Le taux de symbole, νr, est défini par la période
d’impulsion de la séquence, tr = ν−1

r . Dans le domaine fréquentiel, suite à un tel processus de modula-
tion, la séquence de données résultante présente un spectre d’énergie continu sur toute la largeur de bande de
fréquence, ∆ν, des impulsions courtes dans la séquence. En supposant des impulsions limitées par transfor-
mée de Fourier, la relation entre la durée d’impulsion temporelle et la bande passante en fréquence est donnée
par le produit temps-bande passante (TBP), ∆t∆ν = C, pour une constante C dépendant de l’enveloppe
temporelle des impulsions.

Le processus de compression spectrale consiste en l’application des transformations de phase spectrale
et temporelle définies par la MTSCP (avec une valeur entière de r−1 = q2) à la séquence d’impulsions
modulées en entrée. Ces transformations sont identiques à celles données dans Eqs. 14 et 15, où, dans ce cas,
tr n’est plus une constante arbitraire, mais plutôt fixé par le débit de symbole du signal d’intérêt, de manière
similaire à la formulation originale de la MTSCP pour les peignes de fréquence. Le signal obtenu après
propagation à travers le milieu à GVD, tel que défini dans Eq. 14, est un train d’impulsions avec une période
de répétition q−1

2 tr, où les impulsions individuelles conservent leur profil temporel d’origine, y compris la
largeur d’impulsion ∆t. L’application ultérieure de la séquence de modulation de phase temporelle définie
dans Eq. 15 entraîne la génération d’un ensemble périodique d’ouvertures dans le spectre de fréquence
continu du signal, avec une période spectrale νc et une bande passante ∆νg, donné par, Eqs. 16 et 17,
respectivement. Ceci produit une compression de la gamme de fréquence globale occupée par la séquence
d’impulsions modulée, réduisant la bande passante effective de la séquence à,

∆νe = r∆ν (18)

tandis que l’enveloppe spectrale conserve sa forme et sa largeur d’origine, ∆ν.
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En conséquence, la TBP effective de la séquence de sortie est réduite par rapport à l’entrée, et plus
précisément, la relation d’incertitude pour la bande passante occupée effective s’écrit,

∆t∆νe = rC (19)

Enfin, l’application des transformations de phase opposées (-PM et -GVD) restaure la séquence d’impulsions
de données à son état d’origine exact dans les domaines temporel et fréquentiel.

0.9.2.2 Configuration expérimentale

Fig. 0.18 montre un schéma simplifié de la configuration expérimentale utilisée pour valider le concept de
compression spectrale avec préservation de la forme d’onde.

Figure 0.18 – Compression spectrale préservant la forme
d’onde, configuration expérimentale. MLL, laser à ver-
rouillage de modes; BPG, générateur de trames binaires;
MZM, modulateur Mach-Zehnder; DCF, fibre de compen-
sation de dispersion; EOPM, modulateur de phase électro-
optique; AWG, générateur de forme d’onde arbitraire; POF,
filtre optique programmable; SMF, fibre optique monomode.
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Un laser à verrouillage de modes génère des impulsions optiques à un taux de répétition de νr =
9.45 GHz (période de répétition des impulsions tr = 105.82 ps), à une fréquence centrale de 193.4 THz
(correspondant à une longueur d’onde centrale de 1551.2 nm). Ces impulsions ont une largeur temporelle à
mi-hauteur de ∆t = 2.58 ps. Le spectre associé est un peigne de fréquence avec un FSR νr, et une largeur
spectrale à 3 dB ∆ν = 126.2 GHz. Le TBP estimé est ∼0.326, proche de la valeur attendue de C ' 0.315
pour les impulsions sech2 limitées par transformée de Fourier.
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Un modulateur Mach-Zehnder électro-optique est utilisé pour moduler en amplitude le train d’impulsions
avec une séquence binaire (0/1) pseudo-aléatoire (PRBS, pour ‘pseudo-random bit sequence’ en anglais)
27 − 1, générée par un générateur de trames à 12 Gb/s. Cette modulation génère un signal de données RZ.

Le milieu dispersif d’entrée du compresseur spectral est un tronçon de fibre compensatrice de dispersion,
fournissant une dispersion totale du second ordre de −349.5 ps/nm à la longueur d’onde de travail. Cela
correspond à une valeur de β2z = 446.5 ps2/rad, satisfaisant la condition temporelle de Talbot requise pour
les valeurs de νr GHz et r−1 = 4 (voir Eq. 14). À la longueur d’onde de travail, cela correspond à la
dispersion opposée d’environ 20 km de fibre mono-mode standard, qui est utilisée comme milieu dispersif
de sortie du décompresseur spectral.

Deux modulateurs de phase électro-optiques à 40 GHz de bande passante sont utilisés pour introduire
les phases temporelles de Talbot requises aux signaux optiques dispersés. Un générateur de forme d’onde
arbitraire de 50 Gsa/s avec une bande passante analogique de 14 GHz génère un signal de tension avec le
profil temporel requis, représenté sur Fig. 0.19.

Figure 0.19 – Fonction de modulation de phase
pour la compression spectrale préservant la
forme d’onde. Profil périodique de phase de Tal-
bot temporel associé à une condition de Talbot
avec r−1 = 4. Vπ représente la tension demi-
onde du modulateur de phase électro-optique.
(ligne pointillée) Phase prescrite obtenue à par-
tir de la théorie d’effet Talbot. (ligne continue)
Tension de commande (mesurée) du modulateur
de phase utilisée dans les expériences.
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Un filtre optique programmable est utilisé pour vérifier que les intervalles de fréquence générés ne con-
tiennent pas d’énergie significative.

0.9.2.3 Résultats expérimentaux

Fig. 0.20 compile les résultats d’une expérience où le concept de compression spectrale préservant la forme
d’onde est validé.

Fig. 0.20(a.1) montre les spectres du peigne de fréquence initial et du signal de données RZ modulé, ainsi
que l’enveloppe de son spectre de puissance. Comme prévu, le spectre du signal modulé est un continuum
sur toute la largeur de bande de fréquence des impulsions individuelles, avec des composantes d’horloge
discrètes aux fréquences des lignes de peigne d’origine. La représentation correspondante du domaine tem-
porel est montrée dans Fig. 0.20(a.2), y compris le train d’impulsions modulé, son diagramme de l’oeil 3, et
le détail d’une impulsion unique de la séquence. Comme prévu, le spectre et le profil de puissance instan-
tané correspondent à une forme d’impulsion sech2 limitée par transformée de Fourier, en bon accord avec la
valeur du TBP estimée ci-dessus.

La figure 0.20(b.1) montre le spectre résultant du processus de génération d’ouvertures (c’est-à-dire,
après GVD et PM). Comme prévu, la période entre ouvertures de fréquence obtenue est νc = 37.8 GHz, ce
qui correspond à la suppression de 3 sur 4 composantes d’horloge (lignes de peigne d’origine), en accord
avec la valeur de r−1 = 4. Fig. 0.20(b.2) montre que la séquence d’impulsions d’origine est répartie en

3Le diagramme de l’oeil d’un signal de données numériques est une superposition des intervalles de symboles – périodes – de la
séquence, enregistrés sur une période de temps suffisamment longue. Cette représentation est un outil puissant pour l’évaluation des
effets combinés du bruit et des interférences inter-symbols, puisqu’elle contient une combinaison de toutes les réalisations possibles
de la séquence de modulation numérique.
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Figure 0.20 – Compression spectrale préservant la forme d’onde, résultats expérimentaux. Génération d’ouvertures de
fréquence dans une séquence d’impulsions optiques courtes avec modulation d’intensité binaire (on-off-keying, OOK). Les points de
mesure, comme marqués sur la figure 0.18, sont indiqués. (a.1) Spectre de la séquence d’origine, obtenu par modulation d’amplitude
directe d’un train d’impulsions optiques répétitif ou d’un peigne de fréquence optique périodique (illustré à titre de référence) avec
un PRBS binaire 27 − 1 (Fig. 0.18(a)). (a.2) Profil temporel, diagramme de l’œil, et détail d’une seule impulsion de la séquence
originale (Fig. 0.18(a)). (b.1) Spectre, et (b.2) profil temporel, diagramme de l’œil, et détail d’impulsion unique de la séquence après
l’application du processus de compression spectrale (Fig. 0.18(b)). L’enveloppe spectrale globale et la forme d’impulsion temporelle
– y compris la durée – restent inchangées, tandis que des ouvertures périodiques de fréquence sont induits dans la séquence. (c.1),
(c.2) Un filtre périodique coupe-bande est introduit dans les intervalles de fréquence à des fins de test (Fig. 0.18(c)). En raison
du mécanisme de redistribution de l’énergie donnant lieu aux ouvertures de fréquence, la séquence temporelle n’est pas affectée
par le filtre, un résultat qui confirme que les espaces créés ne contiennent aucune information. (d.1), (d.2) Séquence de sortie
après l’application des transformations de phase inverse, fermant les ouvertures de fréquence et ramenant la séquence de données
temporelle modulée à son état d’origine exact (Fig. 0.18( c)).

un plus grand nombre d’impulsions courtes, avec un taux de répétition équivalent augmenté 4-fois par rap-
port à l’entrée (voir diagramme de l’œil sur Fig. 0.20(b.2)). Les impulsions obtenues conservent la largeur
temporelle et la forme globale (voir le détail d’une impulsion unique sur Fig. 0.20(b.2)).

Afin de confirmer la capacité de compression spectrale du procédé, un filtre optique linéaire de test est
introduit. Sa réponse en fréquence consiste en un ensemble de bandes coupées, avec une période spec-
trale νT = 36.9 GHz (proche de νc), qui se chevauchent avec les ouvertures de fréquence générés (voir
les spectres mesurés dans Fig. 0.20(c.1)). La bande passante à 3 dB de chacune des bandes coupées est
∆νT = 22.57 GHz. En raison de la présence des ouvertures de fréquence, le signal se propage à travers le
filtre sans interagir avec lui, et la forme d’onde temporelle reste entièrement inchangée (voir mesures dans
le domaine temporel dans Fig. 0.20(c.2)). Ceci démontre que la bande passante effective du signal modulé
a été compressée, au moins, par un facteur ν−1

T ∆νT = 0.612; en d’autres termes, plus de 60% du spectre
de fréquences occupé par le signal de données d’entrée a été libéré, tout en maintenant la forme temporelle
originale des impulsions dans la séquence. Il est à noter que, idéalement, pour la valeur calculée de r−1 = 4,
la compression spectrale attendue devrait atteindre 75%; cependant, des imperfections pratiques dans la mise
en œuvre de la modulation de phase (limitée par la bande passante électronique disponible) et de la dispersion
(associées à de faibles écarts de longueur de fibre par rapport à l’idéal) conduisent à une suppression impar-
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faite de l’énergie du signal dans les ouvertures spectrales, jusqu’à ∼20 dB dans les expériences rapportées
ici.

Enfin, l’application du profil de modulation de phase temporelle inverse et la propagation à travers une
fibre optique avec une valeur de GVD inverse restituent le signal de données à son état original exact (y
compris le profil de modulation de données original), à la fois dans les domaines fréquentiels et temporels
(voir Figs. 0.20(d.1) et (d.2), respectivement).

0.10 Conclusion

L’effet Talbot – ou auto-imagerie – est observé lorsqu’un objet ou une onde périodique est affecté par un
propagateur imposant une variation de phase à travers sa représentation dans le domaine de Fourier (par
exemple, le spectre discret de fréquence d’un signal temporel périodique) avec une dépendance quadratique
spécifique avec la variable correspondante dans le domaine de Fourier. Le phénomène, rapporté initialement
dans le régime de diffraction de Fresnel des ondes optiques paraxiales, a été observé indépendamment dans
les domaines temporel, spectral, et angulaire de l’optique ondulatoire, ainsi qu’à travers différents systèmes
d’ondes tels que les ondes de matière et les fonctions quantiques.

Dans cette thèse de doctorat, une description générale de l’effet Talbot a été rapportée, unifiant toutes les
manifestations du phénomène dans un cadre mathématique unique. Un tel formalisme décrit le phénomène
en termes de distributions de phase des ondes impliquées dans n’importe quelle paire de variables de Fourier-
conjuguées, avec une indépendance du domaine d’observation (par exemple, temps / fréquence, position /
moment, etc.). La possibilité de calculer des phases de Talbot dans des domaines réciproques de Fourier
a permis la formulation d’une méthode de transformation d’onde générale pour transformer une onde péri-
odique originale en une nouvelle onde, où la nouvelle période peut être fixée arbitrairement. De plus, comme
la méthode n’implique que des transformations des distributions de la phase de l’onde, tout son contenu én-
ergétique est préservé dans le processus.

Des cas particulièrement intéressants de formes d’onde périodiques sont des trains d’impulsions op-
tiques et leur contrepartie spectrale, des peignes de fréquence optique. Ces signaux trouvent une application
étendue dans une multitude de domaines de la science et de l’ingénierie, dans certains cas, devenant le fac-
teur essentiel permettant de progrès technologiques importants. La période de répétition de tels signaux est
un facteur clé pour leur utilisation dans différentes applications. La méthodologie de contrôle universelle
de périodicité rapportée est une solution de traitement de signal attrayante à la manipulation arbitraire de
signaux périodiques, offrant une grande flexibilité dans la conception de la période de sortie désirée, en
plus de la caractéristique intéressante de préserver potentiellement l’énergie du signal à traiter. Ceci est en
fort contraste avec les méthodes conventionnelles basées sur la modulation d’amplitude directe et le filtrage
d’amplitude, où une grande quantité d’énergie est délibérément rejetée dans le processus, affectant négative-
ment les caractéristiques de bruit du signal. En outre, dans ces méthodes, seule la multiplication/division par
des facteurs entiers est accessible.

De plus, des phénomènes intéressants apparaissent dans les spectres des ondes temporelles apériodiques
(p. ex, impulsions optiques isolées et séquences d’impulsions modulées par les données) lorsqu’ils sont
traités par les mêmes méthodes de transformation d’ondes que celles décrites dans cette thèse, avec des
applications potentielles à l’invisibilité par dissimulation optique et à la compression spectrale préservant la
forme d’onde des signaux de données pulsés.

En conclusion générale, compte tenu de la large gamme d’applications de signaux optiques périodiques
temporels et spectraux (trains d’impulsions et peignes de fréquence), l’intérêt pour les méthodes présentées
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dans cette thèse peut être prévu, grâce à leur grande flexibilité et leur efficacité énergétique. En outre,
ce projet pourrait inspirer le développement de nouvelles applications qui tireraient profit des stratégies
de redistribution de l’énergie pour concevoir des systèmes et des techniques de traitement du signal. Par
exemple, des méthodes d’atténuation du bruit de signaux arbitraires – non nécessairement périodiques –,
basées sur la redistribution de l’énergie, pourraient être envisagées. Enfin, la généralité des transformations
d’ondes rapportées rend les méthodes proposées attractives pour l’application aux ondes électromagnétiques
sur tout le spectre d’énergie, et même pour des plateformes d’ondes fondamentalement différentes, telles que
les ondes de matière, les ondes quantiques, les ondes acoustiques, et les ondes thermiques.
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OSNR Optical signal-to-noise ratio

OSO Optical sampling oscilloscope

OTDL Optical tunable delay line

OTDM Optical time-division multiplexing

P

PC Polarization controller

PCSTM Phase-controlled spectral Talbot method

PCTTM Phase-controlled temporal Talbot method

PD Photodiode

PM Phase modulation

POF Programmable optical filter

PRBS Pseudo-random binary sequence

PROUD Phase reconstruction through optical ultrafast
differentiation

PUT Process under test

Q

QAM Quadrature amplitude modulation

R

Radar Radio detection and ranging

RF Radio-frequency

RFA Radio-frequency amplifier

RFa Radio-frequency attenuator

RFPD Radio-frequency power divider

RFS Radio-frequency synthesizer

RFSA Radio-frequency spectrum analyzer

RZ Return-to-zero

S

S-PROUD Spectral phase reconstruction through optical
ultrafast differentiation

S-TAI Spectral Talbot array illuminator

SM Spatial modulator

SMF Single-mode fiber

SNR Signal-to-noise ratio

SPF Spectral phase filtering

SSI Spectral self-imaging

SUT Signal under test

T

T-TAI Temporal Talbot array illuminator

TAI Talbot array illuminator

TBP Time-bandwidth product

TDM Time-division multiplexing

TM Temporal modulation
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TPM Temporal phase modulation

TSI Temporal self-imaging

V

VOA Variable optical attenuator

W

WDM Wavelength-division multiplexing

Y

YC Y-coupler

Symbols

Units are specified in brackets where applicable (see system of units below).

Wave representation domains

u Real space

U Fourier space (Fourier conjugate of u)

x y z Space (m)

x̂ ŷ ẑ Space base

kx ky kz Momentum (m−1rad)

θx θy θz Angular spectrum (rad)

t Time (s)

ω Radial frequency (s−1rad)

ν Linear frequency (Hz)

λ Wavelength (m)

Wave parameters

c Speed of light (s−1m)

c0 Speed of light in the vacuum (s−1m)

n Refractive index

r Position vector (m)

k Wavevector (m−1rad)

k Wavenumber (m−1rad)

α Attenuation coefficient (m−1)

β Propagation constant (m−1)

βl l-th order dispersion coefficient (m−1rad−1sl)

γ Nonlinear parameter (W−1m−1)

LD Dispersion length (m)

tg Group delay (s)

vg Group velocity (s−1m)

h(t) Time-domain wave operator

H(ω) Radial frequency-domain wave operator

H(ν) Linear frequency-domain wave operator

σt Full temporal width at height e−1 (s)

σω Full spectral width at height e−1 (s−1rad)

∆t Full width at half-maximum pulse duration (s)

∆ν 3-dB linear frequency bandwidth (Hz)

C Transform-limited time-bandwidth product

Pt Time-domain peak power (W)

Pν Frequency-domain peak power (W)

Periodic signal parameters

ur Real space period (arbitrary domain)

Ur Fourier space period (arbitrary domain)

xr yr Transverse spatial period (m)
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tr Temporal period (s)

ωr Radial frequency spectral period (s−1rad)

νr Linear frequency spectral (Hz)

n Pulse number in a pulse train

k Line number in a frequency comb

ck Fourier series coefficient (k-th harmonic)

η Comb line visibility

τc Duty cycle

Ep Energy per pulse (J)

Pavg Average power (W)

Experimental parameters

Vπ Modulator half-wave voltage (V)

β2 Second-order dispersion in ω (rad−1ps2)

D Second-order dispersion in λ (m−2s)

νT Test filter spectral period (Hz)

∆νT Test filter 3-dB bandwidth (Hz)

Q Eye diagram quality factor

νc S-TAI spectral period (Hz)

∆νg Frequency gap 3-dB bandwidth (Hz)

ν0 FSFL seed frequency (Hz)

Lc FSFL cavity length (m)

tc FSFL cavity round-trip time (s)

νc FSFL cavity round-trip frequency (Hz)

νs FSFL shifting frequency (Hz)

Talbot effect parameters

zT Talbot length (m)

θ Talbot condition parameter

ς Sign of the Talbot condition parameter

p Real-space Talbot condition numerator

q Real-space Talbot condition denominator

s Fourier-space Talbot condition numerator

m Fourier-space Talbot condition denominator

c Fourier-space Talbot condition constant

r Real-space period multiplication factor

r−1 Fourier-space period multiplication factor

φk;p,q Fourier-space Talbot phase sequence (rad)

ϕn;s,m,c Real-space Talbot phase sequence (rad)

Gn;p,q Generalized quadratic Gauss sum

Number sets

N Natural numbers

E Even natural numbers

O Odd natural numbers

Z Integer numbers

Q Rational numbers

R Real numbers

C Complex numbers

Relation symbols

= Equal to

6= Not equal to

:= Defined as

≡ Equivalent to

≈ Approximately equal to

∈ Contained in

6∈ Not contained in
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∼ On the order of

> Greater than

� Much greater than

≥ Greater than or equal to

< Less than

� Much less than

≤ Less than or equal to

=⇒ Implies

⇐⇒ If and only if

± Plus or minus

→ Function domain

← Variable exchange

Statistics

E{·} Expected value

Var{·} Variance

Cov{·, ·} Covariance

CV{·} Coefficient of variation

Functions, operations and other symbols

i Imaginary unit

·∗ Complex conjugate

| · | Absolute value

F{·} Fourier transform

F−1{·} Inverse Fourier transform

· ∗ · Convolution integral

d· Differential

d
d· · Derivative

∂
∂· · Partial derivative∫ ·
· d· Integral∑·
· Summation∏·
· Product

δ(·) Dirac’s delta

∇2· Laplacian

∇̃2· Transverse Laplacian

(mod ·) Modulo

sgn{·} Sign

ε· Parity[1
·
]
· Modular multiplicative inverse(·
·
)

Jacobi symbol

max
·
{·} Maximum value

min
·
{·} Minimum value

b·c Floor

ρ Cross-correlation coefficient

System of units

This dissertation uses the international system of units (SI, short for Système International) for mathematical
and physical developments, as well as for presentation of numerical and experimental results. The SI is
built around seven base units; the most relevant four in this dissertation are the meter (m, unit of length), the
second (s, unit of time), the kilogram (kg, equivalent to 1000 grams, g, unit of mass), and the ampere (A, unit
of electric current). Other units are defined based upon these fundamental ones, such as the radian (rad, unit
of angle, corresponding to m·m−1), the hertz (Hz, unit of linear frequency, corresponding to s−1), or the volt
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(V, unit of voltage or electrical potential, corresponding to kg·m2·s−3·A−1). A specific prefix can be added
to any of such units to change its magnitude by a multiple of 10 factor (so that, for instance, a gigahertz,
GHz, corresponds to 109 Hz), as follows,

Multiples
Prefix name deca hecto kilo mega giga tera peta exa zetta yotta

Prefix symbol da h k M G T P E Z Y

Magnitude factor 100 101 102 103 106 109 1012 1015 1018 1021 1024

Submultiples
Prefix name deci centi milli micro nano pico femto atto zepto yocto

Prefix symbol d c m µ n p f a z y

Magnitude factor 100 10−1 10−2 10−3 10−6 10−9 10−12 10−15 10−18 10−21 10−24

Certain magnitudes are characterized by units expressed in relative terms. Relative units can be presented
in linear scale, representing the ratio of two magnitudes; e.g., the ratio of the magnitudes A and B, measured
in units of a and b, respectively writes,

C = A

B
(20)

where the units of C are b−1a. It is often convenient to present such units in logarithmic scale. The base
used for logarithmic scale in this representation in this representation is 10, so that,

log10(C) = log10(A)− log10(B) (21)

If A and B have the same units (i.e., C is adimensional), the magnitude 10 log10(C) is measured in
decibels (dB).

Absolute units can also be represented in logarithmic scale, referenced to a fixed value. A common
example is the dBm, i.e., the amount of power, P (in watts, W, corresponding to kg·m2·s−3), relative to 1
mW, represented in base-10 logarithmic scale,

PdBm = 10 log10

(
P

1 mW

)
(22)

Constants

The following table lists some mathematical and physical constants used throughout this dissertation.

Name Pi Euler’s number Speed of light in the vacuum

Symbol π e c0

SI units m/s

Definition/Value
∫ 1

−1

1√
1− χ2 dχ lim

χ→∞

(
1 + 1

χ

)χ
299792458

Approximation ∼3.14159265 ∼2.71828183
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Objectives and organization of the
thesis

Original contributions

The central point of this Ph.D. dissertation is the unification of the different manifestations of the Talbot effect
under a universal mathematical framework. For this purpose, a generalization of the conditions necessary
for observation of the Talbot effect in representation domains related by a Fourier transform is introduced
(objective 1). In particular, the relationship between the spectral and temporal phase functions describing the
manifestation of Talbot effects in the domains of time and frequency in periodic signals is established. This
will be referred to as the time-frequency duality of the Talbot effect. Such mathematical duality provides a
powerful tool for calculation of Talbot phases in Fourier-conjugate domains, and it is the foundation of all
signal processing methods and phenomena presented in this dissertation.

Based on the proposed time-frequency duality, a general method for tailoring the period of repetitive
signals is presented (objective 2). This method involves manipulations of the phase profiles of the signal of
interest in both its real and Fourier domains. Such a methodology has the following characteristics:

• It applies to periodic signals in any domain of representation. It is compatible with any wave
platform where basic filtering and modulation operations can be implemented, e.g., for optical waves
in the time, frequency, space or transverse momentum domains. This dissertation focuses on the
time/frequency picture, particularly, for the technologically relevant case of manipulating the free
spectral range (FSR) of optical frequency combs.

• It allows for arbitrary transformations of the input period. In particular, the output period is any
desired integer or fractional multiple of the input period, that can be either higher or lower than 1.

• It preserves the entire energy of the input signal, simply redistributing it to achieve the desired
period transformation. This can lead to an effect of amplification of individual signal features without
the need for an external energy supply.

• It does not introduce noise or distortion to the input signal. This, combined with the previously
mentioned passive amplification effect, allows for the de-noising, and even sub-noise detection of
signals.

The experimental contributions of this dissertation rely on application of the aforementioned periodicity
control model to optical signals in the time and frequency domains, with the purpose of studying interesting
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Generality of the Talbot condition
Time-frequency duality of Talbot effect

Processing of periodic temporal waves Processing of periodic spectral waves
Generalized spectral Talbot effect

on aperiodic waves

Fractional repetition rate division

of pulse trains

Arbitrary FSR control

of optical frequency combs 

Full-field broadband invisibility cloaking

in the frequency domain

Noiseless spectral amplitication

of optical frequency combs

Spectral compression of modulated pulse

sequences preserving the original pulse shape

Universal period control model
Based on energy redistribution

(1)

(2)

(3) (5)

(6)

(7)

(8)
Averaging of noisy signals

by non-integer factors
(4)

Objectives and original contributions. The numbers next to each box in the diagram correspond to the numbering of the objectives
described in the text.

phenomena and proposing practical applications. The method is first showcased in the demonstration of
fractional repetition rate division of a train of optical pulses, i.e., the multiplication of its pulse period by
a fractional factor higher than 1 (objective 3). In this scenario, the properties of the noise in the obtained
rate-divided signal are studied (objective 4), resulting in a noise reduction by a fractional factor, equivalent
to the averaging of a non-integer number of realizations of the process. This interesting result is simply not
allowed by the fundamental mathematical definition of statistical averaging of multiple events, essentially
involving the sum of a discrete (integer) number of realizations of the process under analysis.

The main focus of the experimental part of this thesis is on the application of the periodicity control
model to optical signals in the frequency domain. Arbitrary tailoring of the FSR of a frequency comb is
demonstrated (objective 5), with potential important implications in the myriad of scientific and applied
fields where frequency combs are the enabling technological factor; e.g., high-resolution spectroscopy, high-
precision frequency metrology and calibration, waveform shaping, optical communications, etc. Addition-
ally, the impact of the method on the noise content of the combs is studied (objective 6), achieving, under
certain conditions, output frequency combs with lower noise floor levels than their input counterparts, even
allowing for the sub-noise detection of signals in the frequency domain.

Finally, the proposed period control method is applied to aperiodic signals, in order to study its effects
on their frequency spectra. It is demonstrated that, under certain conditions, the method has the capability of
introducing gaps in the continuous spectrum of an aperiodic signal. This effect is exploited to demonstrate
a scheme for invisibility cloaking that preserves the full-field (both amplitude and phase variations) of a
broadband wave (objective 7). Additionally, when applied to a modulated data signal (e.g., from an optical
telecommunications system), the method achieves compression of the signal’s spectrum, while preserving the
duration and overall shape of its temporal pulses (objective 8). This can be understood as a way of globally
overcoming the time-bandwidth product limit, imposed by the uncertainty principle of the Fourier transform
in data-modulated sequences of pulses (recall that a consequence of the Fourier uncertainty principle states
that the product of the temporal and spectral spreads of a signal has a fixed lower bound).
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Methodology

The listed objectives are approached with the following strategy:

• Objectives 1 and 2: The generality of the Talbot condition, as well as the universal period control
model resulting from its formulation, are mathematically developed and numerically validated.

• Objectives 3 to 8: The different studied phenomena are mathematically modeled, numerically vali-
dated and experimentally demonstrated. In all cases, simplified circuit diagrams of the used experi-
mental setups are provided, with more detailed, complete circuit diagrams in Appendix D.

All numerical simulations are carried out using MATLABr R2015b.

Layout of the thesis

This Ph.D. thesis is organized in 7 chapters, covering the following topics:

Chapter 1. Introduction and motivation
This chapter introduces the problem addressed in this thesis, as well as the proposed solution. The
relevance and importance of periodic signals and objects in the current scientific and technological
world is discussed. Special attention is directed towards the particularly interesting case of periodic
trains of pulses and frequency combs in the realm of optical waves. The critical importance of con-
trolling and generating periodic temporal and spectral signals is discussed, as well as the limitations
and shortcomings of current solutions that address this problem, with special attention to their impact
on the noise and overall energy of the signal of interest. The chapter then addresses the general moti-
vation of this dissertation, namely the proposal and demonstration of a universal method for noiseless
periodicity control of repetitive waves based on redistributing the energy already carried by the signal
of interest. This methodology is aimed at overcoming the drawbacks of the state-of-the-art solutions
discussed in the chapter. Special attention is directed towards arbitrary control of spectrally-periodic
optical signals, an area of increasing interest due to the high impact of the optical frequency comb in
current science and engineering applications.

Chapter 2. Review of linear wave propagation and the Talbot effect
This chapter provides the basic mathematical and physical background used in the developments and
discussions along this dissertation. Fundamental concepts of optical wave propagation and basic wave
operations are revised, with particular emphasis on the mathematical formalism describing the tempo-
ral evolution of optical waves. A brief overview of the theory of Talbot effect is presented, enunciated
in the framework of Fourier analysis and signal processing. This interesting phenomenon is at the core
of the methods and techniques proposed in this thesis.

Chapter 3. Generalized Talbot effect
This chapter presents a generalization of the Talbot effect, as well as the relationships between its
different realizations in all domains of representation of waves. A general definition of the condition
leading to observation of the Talbot phenomena is presented. Additionally, the mathematical basis of
the universal periodicity control method – central point of this dissertation – is presented. The problem
is addressed in the framework of the time/frequency representation of optical signals, corresponding
to the experimental demonstrations presented in following chapters. Two equivalent realizations of the
method are introduced, discussed and compared. This chapter deals with objectives 1 and 2.
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Chapter 4. Processing of periodic temporal waves
In this chapter, the universal period control method proposed in chapter 3 is applied to a periodic
temporal signal. In particular, energy-preserving division of the repetition rate of a train of optical
pulses by fractional factors is demonstrated. Considerations on noise mitigation are described, where
the process produces a counter-intuitive effect of noise averaging, equivalent to calculating the mean
of a non-integer number of noise contributions. This chapter deals with objectives 3 and 4.

Chapter 5. Processing of periodic spectral waves
In this chapter, the universal period control method proposed in chapter 3 is applied to periodic spectral
signals – frequency combs – to demonstrate arbitrary, energy-preserving control of their frequency
spacing. This feat is relevant to many areas of application of frequency combs. The impact of the
method on the noise characteristics of the comb is studied, and results showing noiseless spectral
amplification of the comb signal are reported. This chapter deals with objectives 5 and 6.

Chapter 6. Generalized spectral Talbot effect on aperiodic waves
The effects of the universal period control method on aperiodic signals are studied in this chapter.
The method has the capability to introduce free spectral regions – frequency gaps – to the continuous
spectra of aperiodic waves. Two applications are discussed; (i) a method for full-field invisibility
cloaking in the frequency domain and, (ii) a method for compressing the spectrum of sequences of
modulated pulses (e.g., telecommunication data signals) while preserving the original pulse duration
and overall temporal shape. The latter is additionally used as a robust, energy-efficient technique for
format conversion of modulated pulse sequences. This chapter deals with objectives 7 and 8.

Chapter 7. Conclusion and perspectives
This chapter summarizes the work presented in this dissertation and discusses its potential prospects,
as well as tentative paths of future work.

Additional information is provided in 5 appendices, listed A to E:

Appendix A. Review of continuous-variable Fourier analysis
This Appendix provides a brief review of basic concepts of the Fourier transform for functions of
continuous independent variables.

Appendix B. Review of Fourier optics and the space-time duality
This Appendix provides a brief summary of the Fourier optics formalism for modeling the paraxial
propagation of waves, as well as the space-time duality, a mathematical symmetry between the equa-
tions describing paraxial wave propagation and temporal wave evolution.

Appendix C. MATLAB code listings
This Appendix contains the MATLAB code used in the calculation of Fourier-dual Talbot phase pro-
files.

Appendix D. Detailed circuit schematics
This Appendix contains detailed schematics of the electro-optical circuits used in the experimental
demonstration of the systems, techniques and phenomena reported in this dissertation.

Appendix E. Generation of frequency combs with user-defined FSR
This Appendix reports the theoretical foundations and experimental demonstration of a technique for
frequency comb generation with user-defined line frequency spacing, based on a realization of phase-
controlled Talbot phenomena on a CW-seeded frequency-shifted feedback loop cavity.
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CHAPTER 1
Introduction and motivation

This chapter introduces the problem addressed in this thesis, as well as the proposed solution. The rele-
vance and importance of periodic signals and objects in the current scientific and technological world is
discussed. Special attention is directed towards the particularly interesting case of periodic trains of pulses
and frequency combs in the realm of optical waves. The critical importance of controlling and generating
periodic temporal and spectral signals is discussed, as well as the limitations and shortcomings of current
solutions that address this problem, with special attention to their impact on the noise and overall energy of
the signal of interest. The chapter then addresses the general motivation of this dissertation, namely the pro-
posal and demonstration of a universal method for noiseless periodicity control of repetitive waves based on
redistributing the energy already carried by the signal of interest. This methodology is aimed at overcoming
the drawbacks of the state-of-the-art solutions discussed in the chapter. Special attention is directed towards
arbitrary control of spectrally-periodic optical signals, an area of increasing interest due to the high impact
of the optical frequency comb in current science and engineering applications.
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Chapter 1. Introduction and motivation

1.1 Periodic objects in science and engineering

Inasmuch as the central points of this dissertation deal with, and profoundly rely on the concept of periodi-
city, it seems only natural to begin this document by looking at the impact of periodic objects in the current
scientific and technological state of the world.

A periodic object is one whose properties repeat at multiples of a defined interval – the fundamental
period – in some observation domain. Note that I use the term object in a very loose sense here. For
instance, we could say that the clock signal of a digital system is a periodic object in time, or a temporally-
periodic object, in the same way that a material with a crystalline structure is a periodic object in space, or
a spatially-periodic object. In general, a function, ψ : R → C, is periodic in the representation domain u if
ψ(u±Nur) = ψ(u) ∀ N ∈ N, where ur > 0 is the fundamental period.

Not only periodic structures are of interest to science, but many of the technological advances we have
witnessed over the years rely on spatially-periodic objects. In the context of materials science, for instance,
crystalline structures diffract X-rays, electrons and neutrons, producing patterns with sharp Bragg reflec-
tion spots, due to their periodic nature [1, 2]. This facilitates the study of solids through the analysis of
the diffracted periodic waves. Indeed, the diffraction of waves from periodic structures finds technological
application in many areas of engineering. Diffraction gratings are the enabling component of a myriad of
photonic devices and techniques, key to modern optical experimentation [3]. These include lasers, spec-
trometers, telescopes, signal processing devices, photolitographic instruments, etc. These gratings are not
necessarily static objects, as they can also be generated dynamically by means of acousto-optic interaction
of light and sound waves [4]. Furthermore, advances in the field of metamaterials – specially-engineered
periodic structures – have brought to life effects and applications seemingly out of science fiction, through
the use of transformation optics [5], including the negative refraction of light [6], flat lenses [7], lenses with
focusing power beyond the diffraction limit [8], fast and slow light propagation [9], and even devices capable
of rendering objects invisible [10].

On the other hand, many natural phenomena exhibit temporal periodicity. Pulsar neutron stars rotate with
extremely precise periods, some of them even rivaling the timekeeping accuracy of modern atomic clocks
[11]. Additionally, temporally- and/or spectrally-periodic signals (the latter referring to signals exhibiting
periodicity along their frequency-domain representation) play a pivotal role in the current scientific and
technological landscape. Pulsed radar and lidar systems are prime examples [12, 13]. Moreover, the advent
of digital signal processing systems revolutionized the fields of information and communications theory,
ultimately giving birth to the modern internet and computing era. Such systems intrinsically rely on periodic
signals and processes for basic processing operations and timing [14].

In this context, periodic optical signals have a prominent position, especially since the development
and maturity of the mode-locked laser [15]. The main focus of this dissertation deals with the problem of
controlling the period of repetitive optical waves, in particular, for optical signals in the time and frequency
domains of representation.

1.2 Periodic optical signals in the time and frequency domains

A handful of technological wonders, such as the airplane and the radio, have revolutionized the world through
history in ways we could have never imagined. The laser is certainly one of them. The development of the
laser has been a turning point in the history of scientific discovery. In 1917, Albert Einstein developed his
theory of stimulated emission [16]. It took over three decades for it to be put to practical use. Since then, the
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Chapter 1. Introduction and motivation

impact of the laser on the technological world has been such that nowadays we could not conceive our lives
without it. Fig. 1.1 shows a summarized timeline of the events leading to the development of modern laser
sources.

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

M
ase

r de
mon

str
ati

on

Opti
ca

l m
ase

r pro
po

sal

Lase
r de

mon
str

ati
on

Q-sw
itc

hin
g de

mon
str

ati
on

M
od

e-l
oc

kin
g de

mon
str

ati
on

s

Nob
el

pri
ze

in
ph

ys
ics

- op
tic

al
pu

mpin
g

Roo
m-te

mpe
rat

ure
sem

ico
nd

uc
tor

CW
las

ers

Qua
ntu

m
well

las
er

Com
merc

ial
sem

ico
nd

uc
tor

CW
las

ers

Adv
en

t o
f op

tic
al

co
mmun

ica
tio

ns

Ti:S
ap

ph
ire

las
er

de
mon

str
ati

on

Atom
man

ipu
lat

ion
by

las
er

lig
ht

Erbi
um

-do
pe

d fibe
r am

pli
fier

de
mon

str
ati

on

Kerr
-le

ns
mod

e-l
oc

kin
g

Qua
ntu

m
ca

sca
de

an
d qu

an
tum

do
t la

ser
s

Freq
ue

nc
y co

mb de
mon

str
ati

on

Firs
t s

elf
-re

fer
en

ce
d fre

qu
en

cy
co

mb

Nob
el

pri
ze

in
ph

ys
ics

- fre
qu

en
cy

co
mb

Firs
t S

i-c
om

pa
tib

le
las

ers

Firs
t la

ser
ins

tru
men

t o
n a sat

ell
ite

Firs
t f

req
ue

nc
y co

mb on
a sat

ell
ite

Figure 1.1 – History of the laser. Compilation of relevant events leading from the original conception of the laser to current
developments of laser technology.

The laser – light amplification by stimulated emission of radiation – is a coherent optical oscillator. In
general terms, laser radiation is emitted when an optical gain medium, enclosed within a resonant cavity,
is excited by an energy pump mechanism [16]. Continuous-wave (CW) lasers emit a monochromatic light
wave, itself a periodic optical signal (see Fig. 1.2(a)). However, multitude of practical applications require
pulsed laser signals, consisting of a periodic temporal envelope oscillating at the optical laser frequency.
Such waves are no longer monochromatic, as their spectra is made out of a certain number of frequency
components (see Fig. 1.2(b)). These signals can be achieved through several means. For instance, the pump
current of a CW laser can be electrically switched to directly turn its emission on and off, thus obtaining a
pulsed optical signal [17]. This method, however, is generally inefficient, as the transient times associated
with the population inversion process in the laser gain medium do not generally allow for the production of
short pulses at high repetition rates [16]. Nowadays, it is common to use electro-optical devices, known as
amplitude modulators, to achieve optical pulses from CW lasers with repetition rates on the order of tens of
GHz [18].
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Figure 1.2 – Comparison between continuous and pulsed light waves. Numerical simulation showing the electric field amplitude
(top) and its spectrum (bottom) of (a) a continuous wave, and (b) a periodic pulsed wave with the same central frequency. The
frequency spectrum of the continuous optical wave corresponds to a single frequency component, while the spectrum of the pulsed
optical wave is a collection of equally-spaced frequency components (where the frequency separation is the reciprocal of the pulse
period). Note that the shown frequency values in the bottom plots are represented relative to the central frequency of the wave.
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There are two problems, however, associated with electro-optical techniques in the generation of peri-
odic waveforms. First, the extinction ratio of amplitude modulators is limited by the precision of current
fabrication methods [19]. This results in a background of unsuppressed light superimposed to the gener-
ated pulses. Second, the obtained pulses have a minimum temporal duration that is limited by the electrical
bandwidth of the modulator and by the speed of the available electronics. Nowadays, typical electronic
waveform generators and amplifiers can produce radio-frequencies in the order of tens of GHz. Moreover,
electro-optical modulation has only been demonstrated with radio-frequency bandwidths slightly over 100
GHz [20]. Achieving optical pulses with temporal widths below a few tens of ps – and associated broad
optical bandwidths – becomes extremely challenging, if at all possible, by electro-optical means alone.

A myriad of scientific and technological applications require precisely-timed, periodic trains of short
optical pulses. A second kind of lasers achieve such requirements through a process known to as mode-
locking.

1.2.1 Mode-locked lasers

Mode-locking is the process by which the different longitudinal modes oscillating in a laser cavity are
strongly locked in phase, resulting in a well-defined phase distribution along the emission spectrum of the
laser (see Fig. 1.3) [15, 21]. Interference between these modes causes the formation of a short optical pulse
circulating within the cavity, which gives rise to radiation of pulsed laser light. This way, the stimulated
photons leaving the laser cavity are concentrated over a short period of time, achieving higher values of
peak optical power than their CW counterparts (for a given value of average optical power). State-of-the-art
mode-locked lasers routinely produce periodic trains of optical pulses, with pulse durations in the picosecond
(10−12 s), femtosecond (10−15 s), and more recently, attosecond (10−18 s) regimes [22].
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Figure 1.3 – Principle of mode-locking. Numerical simulation illustrating the coherent interference of monochromatic waves. An
optical cavity supports a number of longitudinal modes, oscillating at optical frequencies. (a) When the relative phases between
cavity modes are not deterministically defined, the laser emits an electric field with fluctuating amplitude. (b) When all cavity modes
are locked in phase, the laser emits a train of optical pulses, with a repetition rate given by the reciprocal of the round-trip time of
a photon in the cavity. The temporal duration of the pulses is determined by the number of supported cavity modes, through a
Fourier-reciprocity relationship.
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Generally speaking, there are two main methods to achieve mode-locking. Passive mode-locking relies
on a nonlinear passive element – a saturable absorber – that modulates the losses of the resonator [15, 23].
Very short pulse durations and high pulse energies can be attained through this method [24]; however, the
repetition rate of the resulting pulse train is typically low (in the range of tens to a few hundreds of MHz) and
fixed. Additionally, in some situations, a pulse circulating through a passively mode-locked laser cavity may
break up into two or more closely spaced replicas, leading to the emission of pulse bunches [23]. Passively
mode-locked lasers are the usual light source of choice for applications such as spectroscopy [25], and laser
surgery [26], among others. Furthermore, recent studies propose this technology as a promising candidate
for clean nuclear fusion energy [27].

Another group of applications, including telecommunications [28, 29], radio-frequency generation [30],
and waveform shaping [31, 32], usually require significantly higher repetition rates. These disciplines do
not rely on ultra-high peak power pulses, that can in fact be damaging to photonic components and systems.
Active mode-locking is generally better suited for applications in this framework. Such lasers can achieve
pulses in the ps regime at repetition rates in the GHz regime, by periodically modulating the laser cavity
loss through an active element, e.g., an optical modulator [15,23]. This method has the additional advantage
of offering some – although limited – capability of controlling the repetition rate by adjusting the modula-
tion frequency. On the other hand, these lasers usually suffer from higher level of noise than their passive
counterparts.

Some laser structures, particularly mode-locked diode lasers, can be operated in a combination of passive
and active mode-locking. Hybrid mode-locked lasers can generate fairly short pulses with some degree of
repetition rate control. However, these systems are extremely difficult to optimize, and imperfections in the
design usually lead to poor pulse quality, pulse replicas, chirped pulses, and strong variations of the temporal
pulse emission period, due to the low attainable pulse energies [23].

1.2.2 The optical frequency comb

A common feature of all mode-locked lasers is that their emission spectra is discrete. A periodic train of
optical pulses, provided a coherent phase relation between pulses of the train, can always be described in the
frequency domain as a collection of equally-spaced frequency components. Such discrete periodic spectra
are referred to as optical frequency combs1 [33, 34], and the spectral components are commonly called the
comb lines or teeth.

In a frequency comb, the frequency of the k-th comb line is determined by two parameters, the free
spectral range (FSR), νr, and the offset frequency, ν0, following Eq. 1.1.

νk = ν0 + kνr (1.1)

The FSR of the comb sets the repetition rate of the corresponding temporal pulse train, where the pulse
period is the reciprocal of the FSR [33]. If the offset frequency is nonzero, the temporal envelope of the
pulse train experiences a phase deviation, ∆φ (known as the carrier-envelope offset, CEO), with respect to

1It is worth noting that the definition of frequency comb varies from author to author. For instance, for certain scientific
disciplines – particularly involving high precision metrology – a discrete line spectrum only qualifies as a frequency comb if both
the repetition rate and the absolute frequency offset are stabilized to a frequency reference with a high degree of precision, and
with a very low level of phase noise. In the context of this dissertation, any optical signal with a discrete spectrum consisting on a
collection of frequency components with an equal, well-defined separation, and deterministic line-by-line phase relationships (i.e.,
phase-coherent) qualifies as a frequency comb.
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Chapter 1. Introduction and motivation

the underlying optical carrier, so that, ∆φνr = 2πν0 [35]. Fig. 1.4 illustrates the parameters of a frequency
comb in the time and frequency domains of representation.

Electric field

Temporal envelope

0

(a) (b)

Power spectrum

Spectral envelope

Figure 1.4 – Parameters of a frequency comb in the time and frequency domains. The parameters of (a) a train of pulses and
(b) its frequency comb representation are related by the Fourier transform, where the comb spectral envelope is given by the Fourier
transform of the temporal envelope of one pulse. The comb FSR is the reciprocal of the temporal pulse period. The symbols t and
ν represent the time and frequency variables, respectively.

The first hints of frequency combs in the literature date from the late 1970’s, in the experiments of Nobel
Prize laureate Theodor Wolfgang Hänsch in high-resolution spectroscopy using short optical pulses [36].
However, it was not until 20 years later that the development of the frequency comb achieved maturity.
Nowadays, combs are used in a myriad of scientific and applied disciplines, and they are the key enabling
factor of many technological fields [33, 37], ranging from high-resolution spectroscopy of molecules and
atoms [25], to the astronomical search for exo-planets [38–40].

1.2.3 Technological considerations of periodic optical signals

Periodic trains of optical pulses and their frequency comb spectra are fundamental to a myriad of scientific
and applied disciplines, impossible to realize otherwise. Some examples include high-precision frequency
metrology [41], high-resolution atomic and molecular spectroscopy [25,42], high-accuracy spectrograph cal-
ibration (e.g., as used in astronomical telescopes) [38–40], ultrafast optical and microwave signal processing
and generation [30–32], optical communications and computing [18,28,29], sensing [OPj12], nonlinear and
quantum optics [43] [OPj13], etc.

One of the key parameters of these signals is their period of repetition, i.e., the pulse period of the train,
and the corresponding FSR of the comb (see Fig. 1.4). Most applications require that these parameters are
fixed with precision. For instance, the rate at which information is transmitted in a telecommunication sys-
tem, and processed in a computing system, is strongly related to the pulse period of the clock signal [14,18].
Moreover, distinct applications require fundamentally different orders of magnitude. As an example, typi-
cal atomic and molecular spectroscopy applications require frequency combs with FSR values in the MHz
regime, while astronomical spectrographic measurements, as well as applications aimed at arbitrary wave-
form generation and processing, are performed with combs in the GHz regime [33]. Table 1.1 summarizes
some of the applications of periodic pulse trains and frequency combs, depending on the repetition rate
regime.

Another fundamental factor of periodic signals for their practical use is the energy per pulse of a pulse
train, and the peak line power in a frequency comb. Applications of pulse trains such as nonlinear microscopy
[44], laser micromachining [45], and realization of relativistic optical processes [46], require pulses with high
peak power levels. Additionally, this is related to the signal-to-noise ratio (SNR), a key parameter for every
discipline relying on signal detection, ranging from spectroscopy to optical communications [14, 39, 42].
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Chapter 1. Introduction and motivation

Table 1.1 – Applications of pulse trains and frequency combs. Different applications typically require different regimes of the
repetition rate of the train – the comb FSR.

FSR regime Application examples

kHz High-energy physics
Laser micromachining
Laser pumping
Biomedial imaging
Laser surgery
Mass spectrometry

MHz Optical frequency metrology
High-precision spectroscopy
Optical time transfer
Coherent light detection and ranging
Laser microscopy
Sensor interrogation

GHz High-speed communications
High-speed computing
Microwave photonics
Radio-frequency generation
Optical waveform shaping
High-precision spectrograph calibration

1.3 Controlling the period of periodic optical signals

Methods aimed at manipulating the period of repetitive waveforms can be categorized in two groups: Tech-
niques that affect the signal generation mechanism to obtain the desired period, and techniques that manipu-
late the already generated signal and transform its period.

1.3.1 Control of the generation mechanism

These techniques involve altering, either the signal source itself, or its generation process, to target a desired
pulse repetition rate.

1.3.1.1 Cavity miniaturization

Miniaturizing a laser cavity effectively reduces the round-trip time of the photons in the resonator. Mode-
locking of such short cavities can generate trains of pulses with very high repetition rates.

7



Chapter 1. Introduction and motivation

Miniature bulk solid-state laser diodes have achieved repetition rates in the GHz regime, and even ex-
ceeding the THz [47]. However, the spectral emission bandwidth of such structures is typically low, and
harmonic mode-locking (explained in the following Section) is necessary for high repetition rates.

Additionally, optical micro-resonators have attracted a great deal of attention lately as integrated sources
of optical frequency combs. These integrated combs are generated through nonlinear interaction of a continuous-
wave pump laser, coupled to one of the resonances, with the cavity [48]. High bandwidths (even reaching
an octave) and repetition rates (from tens to hundreds of GHz) have been achieved with micro-resonator
combs. However, FSR tunability is very limited (if at all possible), the generated comb suffers from intensity
nonuniformity, and frequency noise in the comb modes (associated to processes such as thermo-refractive
and thermo-elastic noise) is enhanced in micro-resonator cavities [23].

1.3.1.2 Harmonic mode-locking

The repetition rate of pulse trains generated by mode-locked lasers can be increased by the harmonic mode-
locking technique, where several pulses are simultaneously sustained by the resonant cavity (see Fig. 1.5)
[23]. This method is interesting for laser architectures where the cavity length cannot be made short enough
to achieve the targeted repetition rate with a single pulse (e.g., for fiber lasers operating in the GHz regime)
[49]. This technique is mainly used in actively mode-locked lasers, although passive harmonic mode-locking
is also possible.

(b)(a)

AMLL

PMLL

Figure 1.5 – Fundamental and harmonic mode-locking. In the fundamental mode-locking technique (a), a single pulse circulates
trough the laser cavity. In the harmonic mode-locking technique (b), r pulses (r = 5 in the shown example) circulate in the
cavity with equal temporal separation, thus multiplying the repetition rate of the laser by the factor r. In actively mode-locked
lasers (AMLL), harmonic mode-locking does not ensure equal energy per pulse or phase coherent between consecutive pulses. In
passively mode-locked lasers (PMLL), harmonic mode-locking may lead to burst emission.

A carefully stabilized laser cavity can exhibit lower phase noise and timing jitter2 when exploited in a
harmonic mode-locking configuration than in the fundamental mode-locking scheme. This is due to the lower
interaction time between the intra-cavity generated noise and each pulse circulating through the resonator.
However, this technique faces important performance and implementation shortcomings, not the least of
which is a typically poor long-term stability, as the laser can switch oscillation between different sets of
modes or even oscillate on different sets of modes simultaneously [23].

In actively mode-locked lasers, multiple pulses can coexist in the cavity if the modulator is driven with
a harmonic of the fundamental resonant frequency. However, this does not guarantee that the pulses will be
generated with equal energies. Some pulses might not be generated at all (a phenomenon known as pulse
dropout). Furthermore, the mutual phase coherence between pulses of the train is not guaranteed [23]. In
such situations, a frequency comb spectrum is not formed.

Passively mode-locked lasers operating under harmonic mode-locking also face the problem of nonuni-
form pulse-to-pulse intensity distribution. Moreover, achieving a constant pulse period is often challenging,
and pulses might be emitted in bursts rather than periodically [23].

2See Section 1.4 for clarifications.
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A number of sophisticated techniques have been developed in order to solve these problems. Some
include the use of spectral filters (e.g., resonant subcavities) inserted into the resonator. Electronic feedback
stabilization is often required, as well as external amplitude equalizers, typically reducing the output signal
energy. The complexity of the system is thus increased, and lasers operating under harmonic mode-locking
conditions typically suffer from poor long-term stability [23, 50].

Finally, arbitrary-numerator rational harmonic mode-locking, where the fundamental repetition rate is
multiplied by the fraction of two arbitrary integers, has been demonstrated [51]. However, the mentioned
problems of stability and nonuniform pulse-to-pulse intensity distributions are accentuated in this technique.

1.3.2 Period manipulation through signal processing

The period of a repetitive signal can be modified through signal processing operations. These are performed
on the optical signal itself, outside the laser cavity, and therefore, they tend to be more versatile than the
previously explained methods, as virtually any signal can be targeted, independently of its source. Such
operations involve manipulation of the signal in the time domain – temporal modulation – and/or manipu-
lation of its frequency spectrum – spectral filtering. Depending on the nature of said manipulations, signal
processing methods can be categorized in two groups: methods that manipulate the energy content of the
signal directly, and methods that manipulate the phase distributions of the signal.

1.3.2.1 Methods based on direct energy manipulation

Traditional, well-established approaches for periodicity control through manipulation of pulse trains and
frequency combs include spectral amplitude filtering and temporal pulse picking (or time gating), sketched
in Fig. 1.6.

A spectral amplitude filter is a straightforward way of directly multiplying the FSR of a frequency, simply
by eliminating r − 1 out of each r consecutive comb lines. This effectively produces an r-fold increase of
the FSR [39, 40], and an associated r-fold reduction of the pulse period of the train [52].

The dual operation is also possible, in the form of pulse picking [53], where a temporal amplitude
gate – on/off amplitude modulation – selects one pulse out of each r consecutive pulses and throws away
the remaining r − 1. The repetition period is then directly increased by r, and the associated FSR of the
corresponding comb spectrum is reduced by the same factor.

The main drawback of these approaches is their low energy efficiency. Both methods involve the deliber-
ate discarding of a fraction 1−r−1 of the original signal energy, resulting in an energy loss that increases with
the factor r. Amplification may then become necessary, thus incurring in the associated SNR degradation,
unavoidable in classical active processes [16].

Additionally, these methods suffer from practical implementation shortcomings. The amplitude filter-
ing method needs high-finesse filters, with tight design and operational requirements (e.g., precise spectral
alignment between the filter and the comb, sustainable over long periods of time), in order to achieve sig-
nals with high temporal and spectral quality. Unsuppressed comb lines will result in residual pulse-to-pulse
amplitude fluctuations in the time domain (see Fig. 1.6(a)) [54]. Similarly, the imperfect suppression of
undesired pulses in pulse picking techniques results in spectral line-to-line amplitude fluctuations of the ob-
tained comb (see Fig. 1.6(b)). The relatively low extinction ratio of current electro-optic intensity modulators
often forces to use optical gates based on nonlinear effects (incurring in even higher energy inefficiency), or
optical switches based on semiconductor optical amplifiers and acousto-optic modulators (with typically low
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Periodic spectral

amplitude filter

Periodic temporal

amplitude gate

(a)

(b)

Figure 1.6 – Signal processing methods for period control through direct energy manipulation. Traditional periodicity control
methods for trains of optical pulses and optical frequency combs: (a) spectral amplitude filtering and (b) pulse picking by temporal
amplitude gating (shown example for a period multiplication factor r = 5).

operation speeds). Moreover, a precise timing between the pulse train and the pulse picking gate becomes a
critical factor for a correct pulse suppression.

Approaches aimed at mitigating the problem of energy loss in pulse picking methods, such as coherent
addition of pulses in optical cavities, have also been demonstrated. However, these require stringent opera-
tion conditions, difficult to achieve and maintain, including precise matching between the cavity round-trip
and the pulse period, as well as the need for offset frequency stabilization [55].

Last, but not least, the very nature of these techniques forces the factor r to be necessary integer. This
is due to the fact that one can only suppress an integer number of pulses/lines. Fractional period multipli-
cation/division could be achieved through combinations of amplitude filtering and pulse picking techniques,
suffering from the critical aforementioned drawbacks associated to both methodologies.

Versatile methods to control the pulse period of optical trains and the FSR of frequency combs with high
energy efficiency and low signal degradation based on passive, linear processes are highly desired.

1.3.2.2 Methods based on phase manipulation

Signal processing solutions to the periodicity control problem based on phase-only manipulations – temporal
phase modulation and/or spectral phase filtering – are particularly attractive (see Fig. 1.7). Phase transfor-
mations recycle the total energy carried by the target signal into an output signal that satisfies the required
specifications. Additionally, such solutions offer an increased tolerance to practical implementation errors,
greatly relaxing the design requirements of methods involving direct amplitude manipulations.

Considering all these important advantages, several techniques for periodicity manipulation through
phase-controlled energy redistribution have been proposed. In particular, an important set of these techniques
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Periodic spectral

phase filter

Periodic temporal

phase modulation

(a)

(b)

Figure 1.7 – Signal processing methods for period control through phase-only manipulation. Examples of (a) pulse period
division (repetition rate multiplication) through periodic spectral phase filtering, and (b) FSR division through periodic temporal
phase modulation (both temporal and spectral phase profiles are shown in dashed line). The period of repetition is, in both cases,
divided by an integer number (r = 5 in the shown example), and phase variations remain in both time and frequency domains in
both situations.

relies on periodic phase transformations based on the theory of Talbot self-imaging3. Such methods have
been developed to achieve multiplication and/or division of the repetition period of pulse trains by arbitrary
(integer or fractional) factors [56–58] [APj1,APj4]. Likewise, Talbot-based methods have been also reported
to achieve multiplication and/or division of the FSR of frequency combs by arbitrary (integer or fractional)
factors [59–61] [APj5]. Some of these methods are, in fact, proposals reported in this dissertation.

Due to their inherent phase-only nature, these approaches ideally preserve the total energy of the signal
of interest, where the desired output signal is obtained from a coherent redistribution of the energy of the
input signal. As such, methods based exclusively on phase transfomations have the potential to reduce the
impact of noise by focusing the energy of a periodic signal on a lower number of output periods [57] [APj1,
APj4, APj5]. Such methods offer an attractive signal processing solution to the periodicity control problem.
However, all proposed solutions only implement the targeted period transformation in one representation
domain. The schemes defined for pulse repetition rate control involve a combination of temporal phase
modulation and spectral phase filtering (e.g., dispersive propagation) [56–58], and generally, they do not
implement the counterpart FSR control in the related frequency comb spectrum. Moreover, designs aimed at
frequency comb periodicity control proposed prior to the realization of the work reported in this dissertation
have only achieved FSR division by integer factors, and they also do not implement the counterpart repetition
rate control on the corresponding pulse train [59–61]. In both situations, residual phase variations remain
uncompensated on the dual domain (see Fig. 1.7). Establishing the nature and characteristics of such residual
phase variations remains an unsolved problem.

3For a review of Talbot self-imaging, consult Section 2.4, and for detailed analysis, consult Chapter 3.
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1.4 Mitigation of noise in periodic optical signals

Our ability to detect signals or events and to extract information contained therein is ultimately limited by
the strength of said signal and that of every other unwanted event detected simultaneously. Such unwanted
events conform the noise content of the measurement and, although it arises in the form of many different
manifestations, noise is ubiquitous, and its origin mechanisms are often random and difficult to control.

Random noise is a fundamental limiting factor in the detection of any physical event [62]. In particular,
the problem of noise mitigation in periodic signals is intrinsic to scientific disciplines like spectroscopy
[42, 63], and radio-astronomy [39, 64], to name a few. Additionally, technological fields such as sensing
[OPj12], telecommunications [14, 28], and data processing [65], face similar challenges when dealing with
the inherent noise present alongside the signals of interest.

Periodic signals experience different kinds of noise. These include random fluctuations of the ampli-
tude of the signal period-to-period, random fluctuations of the phase of the signal period-to-period, random
fluctuations of the instantaneous phase distribution within each individual pulse, random additive noise (in-
cluding amplitude and phase fluctuations) with a specific spectral content (e.g., white Gaussian noise, as
generated by optical amplifiers), and random fluctuations of the period duration (known as timing jitter).
Fig. 1.8 illustrates these noise mechanisms in periodic signals.

The problem of noise mitigation has been treated in depth for signals in their real domain of represen-
tation, i.e., the domains of time (for temporal signals) or space (for spatial images). It should be noted,
however, that the problem becomes particularly challenging when the information of interest is available
along the Fourier domain representation of the processed signal, e.g., the frequency domain for temporal
waves. Frequency combs are a good example of such situations [66], as the measurement, detection and
study of physical systems and processes is often performed in the frequency domain, e.g., through the vast
family of comb-based spectroscopy techniques [25, 42]. Furthermore, the presence of random noise fluctua-
tions across the comb frequency spectrum has a critical impact on its performance quality, e.g., degrading the
SNR of comb-based telecommunication systems [28,29], deteriorating the quality of spectroscopic measure-
ments [42], or limiting the accuracy of astronomical spectrometry [67]. Nonetheless, suchlike any problem
involving measurements directly in the Fourier domain of frequencies, reducing the noise floor of a frequency
comb poses significant challenges.

Similarly to the problem of periodicity control, techniques to mitigate the noise of periodic optical signals
can be classified as methods that affect the generation process and methods that affect the generated signal.

1.4.1 Control of the generation mechanism

Based on their point of origin, noise mechanisms in mode-locked lasers fall into one of two categories: noise
generated within the laser cavity, and noise generated outside the laser cavity [68].

Intracavity noise arises from fluctuations of the pump power, environmental perturbations of the cavity
length and amplified spontaneous emission (ASE) photons generated within the laser cavity. This results in
the broadening of the individual comb lines, that acquire a finite linewidth, as opposed to the ideal case of an
infinitely-narrow frequency component. Linewidth broadening results in fluctuations of the repetition rate
over time – timing jitter – and pulse-to-pulse amplitude and phase variations. These mechanisms produce a
noise content that is generally well-behaved and easy to model. As a result, its contribution can, in general,
be suppressed through feedback in order to stabilize the generation process [68].
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Figure 1.8 – Noise mechanisms in periodic signals. Numerical simulation showing different forms of noise on periodic signals;
power distributions shown in the time (top) and frequency (bottom) domains: (a) pulse-to-pulse amplitude fluctuations, (b) pulse-to-
pulse phase fluctuations, (c) intra-pulse phase fluctuations, (d) additive white Gaussian noise, (e) timing jitter, and (f) a combination
of all of them.

Extracavity noise sources are mainly associated to shot noise and ASE resulting from amplification pro-
cesses outside of the laser cavity, typically required to induce spectral broadening of the comb, fundamental
for operations such as the stabilization of the offset frequency through f -2f interferometry [33, 68]. Such
noise contributions can, in most cases, be modeled as additive white Gaussian noise, provided that their
power spectral density is mostly uniform throughout the majority of the signal’s spectrum (which is a rea-
sonable assumption as long as the signal of interest fits within the gain bandwidth of the amplifier responsible
for injecting the noise). Extracavity noise mechanisms cannot be suppressed in a deterministic way, as the
fluctuations introduced across the comb frequency spectrum are independent of the signal source. The result
is a noise floor that reduces the visibility of the comb lines (see Fig. 1.8) [68].
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Mitigating the impact of the uncorrelated spectral noise floor in periodic optical signals is an interest-
ing problem, generally difficult to approach, but of great importance for achieving an adequate practical
performance quality of the signal of interest.

1.4.2 Noise mitigation by signal processing

Signal processing solutions can help mitigating the extra-cavity noise contribution. Amplitude filtering is
perhaps the most straightforward method for noise mitigation of arbitrary signals. A band pass filter rejects
the power spectral density of noise at frequencies outside the bandwidth of the signal of interest, so-called
out-of-band noise [69]. This method, however, cannot remove the noise located in-band with the signal of
interest.

In the case of optical frequency combs, a periodic optical filter, aligned with the comb lines, could, in
principle, be used for mitigation of the in-band noise spectral components (sharing the bandwidth occupied
by the signal). But this would require extremely precise design, fine-tuning and alignment of the filter [67],
including accurate a priori knowledge of the absolute frequencies of the comb lines.

Alternatively, for periodic signals, both in-band and out-of-band noise contributions can be mitigated
by directly averaging the value of the signal of interest over several consecutive periods [70]. This method
mitigates both in-band and out-of-band noise contributions, however, it requires the detection of many con-
secutive realizations of the signal, followed by a numerical post-processing step.

As mentioned in Section 1.3.2.2, it was recently shown that techniques based on redistributing the energy
of the periodic signal of interest into a lower number of periods prior to detection effectively implements a
coherent addition of the repetitive waveform only (not the incoherently-related noise), thus enabling effective
noise mitigation in a deterministic way. Such a mechanism can be practically realized by use of generalized
Talbot self-imaging phenomena in temporally-dispersive media; a process that has been referred to as passive
Talbot amplification [57]. Noise mitigation through this process can outperform classical averaging, e.g.,
achieving higher levels of extinction ratio in a single measurement [57], and even enabling the access to
fractional averaging factors (a feat not allowed by conventional statistics, as shown in Chapter 4) [APj1], as
well as the detection of signals originally buried completely under incoherent noise [APj5].

1.5 Motivation

1.5.1 Definition of the project

The main objective of this dissertation is to propose and demonstrate a universal method to control the period
of repetitive optical signals, in such a way that the energy carried by the signal of interest is preserved in
the process, while the rest of its properties remain unaltered (e.g., bandwidth and temporal duration), and
without introducing any external noise or distortion.

1.5.2 Proposed solution

The proposed solution involves the formulation of a generalization of the Talbot effect, so that the period of
a repetitive signal can be arbitrarily tailored exclusively through manipulations of the temporal and spectral
phase distributions of the signal – inherently energy-preserving.
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1.5.3 Additional considerations

Although the method for arbitrary period control (proposed and explained in chapter 3, and experimentally
demonstrated in chapters 4 and 5) is universal in its formulation (it applies to periodic waves in any domain
of representation, in particular, time, frequency, position and transverse momentum, and in any regime, e.g.,
radio, microwaves, optics, etc, potentially even extending to other platforms, such as acoustics, matter waves,
thermal waves, etc), this dissertation focuses on the arbitrary manipulation of optical spectra by energy-
preserving means, aimed at developing techniques that can be of use for the processing and generation of
optical frequency combs (discussed in chapter 5).

Additionally, the method produces interesting results when applied to aperiodic signals, e.g., to isolated
pulses or to modulated sequences of pulses (e.g., telecommunication data signals), which have continuous
spectra. These results, as well as potential practical applications, are discussed in chapter 6.
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CHAPTER 2
Review of linear wave propagation and

the Talbot effect

This chapter provides the basic mathematical and physical background used in the developments and discus-
sions along this dissertation. Fundamental concepts of optical wave propagation and basic wave operations
are revised, with particular emphasis on the mathematical formalism describing the temporal evolution of
optical waves. A brief overview of the theory of Talbot effect is presented, enunciated in the framework
of Fourier analysis and signal processing. This interesting phenomenon is at the core of the methods and
techniques proposed in this thesis.
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Chapter 2. Review of linear wave propagation and the Talbot effect

2.1 Mathematical modeling of the evolution of waves

A proper understanding of the properties of optical waves and the mechanisms governing their interactions
with matter requires the electromagnetic theory of light. Furthermore, light is emitted and absorbed in
wavepackets called photons, which exhibit properties of both waves and particles simultaneously. Pheno-
mena such as the photo-electric effect and the nature of non-classical light are explained by the photon theory
of light, and studied in the field of quantum optics. However, phenomena such as diffraction and interfe-
rence can be accurately described by the wave theory of light. The formalism of wave optics models the
interaction of optical waves with objects and systems whose dimensions are comparable to the wavelength.
This approximation, together with the fundamentals of Fourier analysis, is a sufficient theoretical basis for
the derivations and findings reported in this dissertation.

This Chapter provides a brief review of said topics. Section 2.2 briefly presents the mathematical formu-
lation of the wavefunction (i.e., the analytical construction used to model the evolution of waves). Section 2.3
summarizes the basic concepts of temporal wave propagation (i.e., the mathematical modeling of the tempo-
ral evolution of waves along their interaction with systems), with special attention to the operator formulation
of linear wave dynamics in the domains of time and frequency. Such a formulation is strongly based on the
discipline of Fourier analysis and the principle of harmonic decomposition; a review covering these topics
is provided in Appendix A. Finally, Section 2.4 introduces the Talbot effect, a phenomenon upon which the
entirety of this dissertation is based.

2.2 Wave theory of light

This section introduces the basic concepts and definitions necessary to model light as scalar waves prop-
agating through free space and dielectric media. The contents of this Section are a summary of concepts,
compiled from the following sources: [16, 71].

2.2.1 Speed of light and refractive index

A wave is a dynamic perturbation of a medium that either stores or propagates energy through it. Wave optics
describes the propagation of light as electromagnetic waves that travel through a medium with velocity c, so
that,

c = c0
n

(2.1)

where c0 = 299792458 m/s is the speed of light in the vacuum, and n ≥ 1 is a constant1 known as the
refractive index of the medium2.

1In general, n is a function of position, r, so that for a given trajectory, S, within the propagation medium, the optical path
length, δs (which is proportional to the time taken by the wave to traverse the trajectory S) is,

δs =
∫
S

n(r) ds (2.2)

where ds is a differential element of length along the path S.
2It should be noted that under certain conditions, plasmas and X-rays may exhibit a refractive index below unity [72].
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2.2.2 The wave equation

Mathematically, a wave is described by a real scalar function, Υ : (R3,R)→ R, of position, r = xx̂+yŷ+zẑ,
and time, t, known as the wavefunction. Wavefunctions are solutions of the wave equation,

(
∇2 − 1

c2
∂2

∂t2

)
Υ(r, t) = 0 (2.3)

where∇2 is the Laplacian operator,

∇2 := ∂2

∂2x
+ ∂2

∂2y
+ ∂2

∂2z
(2.4)

Note that Eq. 2.3 is linear, and thus, the principle of superposition holds: the sum of wavefunctions is
itself a wavefunction.

It will be convenient to write the real wavefunction, Υ(r, t) as the real part of a complex function,
ψ : (R3,R)→ C, so that, Υ(r, t) = Re {ψ(r, t)}.

2.2.2.1 Monochromatic waves

If the wave of interest is represented by a wavefunction with harmonic time dependence, it is said to be
monochromatic3. The complex wavefunction writes then,

ψ(r, t) = ψ(r)eiωt (2.5)

where ω is the radial frequency of the wave, measured in rad/s. From a practical viewpoint, it is often
convenient to measure the linear frequency4 (or simply, frequency), ν, in Hz, so that,

ω = 2πν (2.6)

This definition is convenient because it immediately relates to the temporal period of the monochromatic
wave, t0 = ν−1, i.e., the time (in seconds) that the wave takes to complete a cycle. Fig. 2.1 shows a
representation of the wavefunction of a monochromatic wave.

The complex wavefunction necessarily satisfies the wave equation. Using Eq. 2.5 in Eq. 2.3,

(
∇2 + k2

)
ψ(r) = 0 (2.7)

3Practically, in the context of visible light propagation, monochromatic waves are those that carry only one color.
4Optical waves are most commonly classified as those whose frequency ranges from ∼300 GHz to ∼3 PHz, i.e., from the

far infrared to the near ultraviolet (including the visible spectrum, roughly ranging from ∼430 THz to ∼750 THz). However, the
postulates of wave optics still apply to all regions of the electromagnetic spectrum (including radio-frequency, microwaves, etc).
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Figure 2.1 – Monochromatic wave. Representation of a
monochromatic wave at a fixed position in space. (a) The
wavefunction is harmonic in time, and it oscillates at a fixed
frequency, ω. (b) The complex wavefunction is a phasor of
fixed length that rotates with angular velocity ω.

(a)

(b)

Eq. 2.7 is known as the Helmholtz equation, and k is the wavenumber,

k = ω

c
(2.8)

The spatial phase of the wave, ^ψ(r), defines the wavefronts, as equiphase surfaces, i.e., surfaces satis-
fying ^ψ(r) = 2lπ ∀ l ∈ Z.

2.2.2.2 Plane waves

The most basic solution of the wave equation is the plane wave, defined by a complex amplitude,

ψ(r) = ψ0e
−ik·r (2.9)

where ψ0 is a generally complex constant, and k = kxx̂+kyŷ+kz ẑ is the vector that defines the propagation
direction of the plane wave, known as the wavevector (see Fig. 2.2). Note that k2

x + k2
y + k2

z = k2, so that
|k| = k.
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(a) (b) (c)

Figure 2.2 – The wavevector. The wavevector, k = kxx̂ + ky ŷ + kz ẑ, unambiguously describes a plane wave with wavenumber
k = |k|, propagating in the direction of k. (a) Components of the wavevector in Cartesian coordinates; vy,z denotes the direction of
the projection of the vector k onto the plane {y, z}. (b) Detail of the wavevector components in the plane that contains the vector
k and its projection onto the plane {y, z}. (c) Wavefronts of a plane wave (note that the equiphase surfaces of a plane wave are
boundless planes, here depicted as squares for illustration purposes).

The spatial phase of the plane wave writes, ^ψ(r) = ^ψ0 − k · r. Since ^ψ0 is a real constant, the
wavefronts satisfy the equation of parallel planes, perpendicular to k (see Fig. 2.2(c)),

kxx+ kyy + kzz = ^ψ0 + 2lπ ∀ l ∈ Z (2.10)

The separation between wavefronts is k−12π. This quantity is known as the wavelength, λ, so that,

λ = c

ν
(2.11)

It should be noted that, as a wave travels through a medium, its phase velocity5 (and consequently, its
wavelength), is reduced by the refractive index, n; its frequency, however, remains unaltered.

Taking z as the reference dimension, the wavevector makes angles θx and θy with the planes {y, z} and
{x, z}, respectively (as shown in Fig. 2.2(a)), so that,

k sin(θx) = kx (2.12)

k sin(θy) = ky (2.13)

These angles are related to the concept of spatial frequency, which arises from the principle of plane
wave decomposition. In general, an arbitrary spatial wavefront can be expressed as a sum of plane waves
with different wavevectors through application of the Fourier transform. This is the basis of the discipline
of Fourier optics [16, 71], and it is mathematically equivalent to the principle of harmonic decomposition in
the Fourier analysis formalism of signals and systems6 [73, 74].

5The phase velocity of a wave is the rate at which its phase propagates in space. This is the velocity at which the phase of any
one frequency component of the wave travels.

6For further details about Fourier analysis and the signals and systems formalism, consult Appendix A.
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2.3 Temporal evolution of waves

Many physical phenomena manifest as variations of the properties of waves with time. For instance, pulsar
stars are precisely studied thanks to the highly accurate timing of the fluctuations in the light waves they emit.
Furthermore, the measurement and control of temporal variations in propagating waves is the cornerstone of
areas of technology, such as signal processing, telecommunications and computing, ubiquitous in modern-
day society.

The contents of this Section are a summary of concepts, compiled from the following sources: [16, 75].

2.3.1 Propagation of light through dielectric media

Consider a monochromatic plane wave propagating through a dielectric medium, along the z axis,

ψ(r, t) = ψ0e
i(ωt−kz) (2.14)

The medium will reduce the propagation speed of the wave with respect to c0 by its refractive index (see
Eq. 2.1). Additionally, it will absorb a fraction of the energy carried by the wave. This is represented by a
complex-valued wavenumber, of the form,

k := β − iα2 (2.15)

where β = kn ∈ R is the propagation constant of the wave in the medium (the rate at which the phase
changes with z), and α ∈ R is the attenuation coefficient (the rate at which the amplitude decreases7 with z).
Note that the propagation constant can be either positive or negative.

A plane wave with an arbitrary temporal amplitude can be written as,

ψ(r, t) = ψ(t)e−ikz (2.16)

As a consequence of the principle of harmonic decomposition8, an arbitrary temporal amplitude can
be expanded as a superposition of monochromatic waves oscillating at different radial frequencies, through
application of the Fourier transform.

Ψ(ω) =
∫ ∞
−∞

ψ(t)e−iωt dt (2.17)

2πψ(t) =
∫ ∞
−∞

Ψ(ω)eiωt dω (2.18)

where Ψ(ω) is the frequency spectrum of the wave.

7It should be noted that in active propagation media, such as in optical amplifiers, α will actually contribute to increase the
wave amplitude. Here, however, only passive propagation media is considered.

8For further details on the principle of harmonic decomposition and its relationship to Fourier analysis, consult Appendix A.
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Both the real and imaginary parts of the wavenumber, β and α, are frequency-dependent real functions.
The propagation constant can be expressed as a Taylor series expansion around the central frequency of the
wave, ω0, often referred to as the carrier frequency,

β(ω) =
∞∑
l=1

βl
l! (ω − ω0)l (2.19)

where,

βl = ∂l

∂ωl
β(ω)

∣∣∣∣∣
ω=ω0

(2.20)

2.3.1.1 Complex envelope and the narrow-band approximation

A large set of interesting physical phenomena manifest in the form of waves whose spectra consists of a
certain range of frequency components, centered around a specific frequency value, ω0. These include the
paradigm of optical pulsed waveforms, particularly relevant in the context of this dissertation.

In such situations, it is usually convenient to write the temporal amplitude in terms of a complex temporal
envelope, ψ̃(t), and an oscillatory term at ω0, representing the central – carrier – frequency,

ψ(t) = ψ̃(t)eiω0t (2.21)

In this formulation, the complex envelope ψ̃(t) is known as the equivalent base-band signal. This allows
for a convenient representation of the frequency spectrum around a normalized central frequency, through
the change of variables ω ← ω − ω0.

If ψ̃(t) varies slowly with time, the wave is considered narrow-band. This results on a localized frequency
spectrum, that does not extend far from the central component, ω0. In this situation, it becomes reasonable
to expect the high-order derivatives of β(ω) to approach 0 at frequencies close to ω0. Neglecting high-order
terms in the Taylor series expansion of β(ω) (typically l > 2 in Eq. 2.19) is known as the narrow-band
approximation.

2.3.1.2 The nonlinear Schrödinger equation

The nonlinear Schrödinger equation (NLSE) models the propagation of optical waves through dielectric
media. This equation takes into consideration both linear and nonlinear phenomena. For the temporal
envelope of a wave propagating through a dielectric with propagation constant β and attenuation α, along
the z direction, the NLSE writes,

(
∂

∂z
− β0 + i

∞∑
l=1

βl
ill!

∂l

∂tl
+ α

2 + iγ|ψ̃(z, t)|2
)
ψ̃(z, t) = 0 (2.22)
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where γ is the nonlinear parameter of the medium, responsible for the occurrence of a nonlinear temporal
phase-shift, proportional to the power distribution of the wave, along its propagation through the medium.
Note that, as per Eq. 2.16, for a plane wave propagating in the z direction, ψ̃(z, t) = ψ̃(t)e−ikz .

A case of particular interest in the context of this dissertation is the linear propagation of waves through
transparent, second-order dispersive media, characterized by α = 0, γ = 0, and βl = 0 ∀ l 6= 2. The
resulting NLSE (now a linear equation) writes,

(
∂

∂z
− iβ2

2
∂2

∂t2

)
ψ̃(z, t) = 0 (2.23)

2.3.2 Temporal wave propagators

The temporal evolution of scalar electromagnetic waves along their propagation through optical media can
be described by the formalism of signals and systems theory9. The effect of an optical system on a impinging
wave is characterized by a linear operator, known as a wave propagator. The propagator can be expressed
both in the time domain, h(t), and in the frequency domain, H(ω). If the system implements an operation
that is linear (i.e., it satisfies the principle of superposition for any number of input waves) and invariant to
displacements in t (i.e., it remains equal for input waves affected by different temporal delays), h(t) is said to
be the temporal impulse response of the system, and H(ω), its spectral transfer function, forming a Fourier
transform pair. The system described by such an operator is then said to be linear and time-invariant (LTI).

In the following, two important examples of temporal wave transformations – temporal modulation and
chromatic dispersion – are discussed.

2.3.2.1 Temporal modulation

Temporal modulation is the process by which an optical system introduces a time-dependent change to the
complex amplitude of a wave. The process is described by the multiplication of the complex amplitude of
the impinging wave in the time domain, ψ(0, t), by the temporal modulation function, hTM(t), so that,

ψ(z, t) = hTM(t)ψ(0, t) (2.24)

where here it is assumed that the wave enters the system at z = 0, and then travels through it along the
propagation axis, z.

In the Fourier domain, the operation is described by the convolution integral between the frequency
spectrum of the wave, Ψ(0, ω), and the Fourier transform of the temporal modulation function, HTM(ω),

Ψ(z, ω) = 1
2π

∫ ∞
−∞

HTM(Ω)Ψ(0, ω − Ω) dΩ (2.25)

Fig. 2.3 schematically depicts the operation.

9For a review of basic concepts of signals and systems theory, consult Appendix A.
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Figure 2.3 – Temporal modulation. Operator model of the temporal mod-
ulation process. The shown example consist on a periodic, real modula-
tion function. The modulator – the optical system used to carry out the
modulation process – is considered infinitesimally thin, making the process
spatially localized; the notation z = 0+ and z = 0− refer to the planes
immediately before and after the modulator, respectively. (top) Real space.
(bottom) Fourier space.

The temporal modulation function can be purely real, in which case the process is referred to as amplitude
modulation, a complex function with uniform magnitude, in which case the process is referred to as phase
modulation, or a combination of both, in which case the process is referred to as complex, or I/Q modulation.

If ψ(0, t) is a monochromatic wave (i.e., a wave with a spectrum consisting of a single frequency compo-
nent), the temporal modulation process will generate an output frequency spectrum, Ψ(z, ω), with additional
frequency components. Temporal modulation transforms monochromatic waves into polychromatic waves.

In practice, this process is achieved through nonlinear interaction between two waves, e.g., a radio-
frequency voltage wave and an optical wave in an electro-optical modulator, or two optical waves in a
nonlinear medium. However the process is in any case described by an operator that satisfies the principle
of superposition10; the transformation is, thus, linear. On the other hand, the operator is not time-invariant.
This is immediately verified as the transformations suffered by the wave of interest are directly proportional
to the temporal variations of the modulation function. This time-dependence is the mechanism responsible
for the generation of new frequency components in the spectrum of the wave of interest.

2.3.2.2 Chromatic dispersion

Chromatic dispersion is the process by which different frequency components of a light wave traverse an
optical medium at different propagation velocities. This is the consequence of a propagation constant with a
nonlinear dependence with frequency.

10For further clarification, consult Appendix A.
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Neglecting the losses of the medium – the medium is then said to be transparent – and assuming linear
propagation (α = 0 and γ = 0 in Eq. 2.22), the chromatic dispersion operator is a complex, unitary transfer
function,

HGVD(ω) = e−iβ(ω)z (2.26)

This way, the output spectrum writes,

Ψ(z, ω) = HGVD(ω)Ψ(0, ω) (2.27)

This operation is LTI, as it satisfies the principle of superposition, and it applies equally to any time-
delayed copy of the same input wave.

As previously mentioned, in the narrow-band approximation, the high-order terms of the propagation
constant (l > 2 in Eq. 2.19) are neglected. The spectral phase factor in Eq. 2.26 writes then,

β(ω)z ≈ β0z + β1zω + 1
2β2zω

2 (2.28)

The transit of the wave through the medium has an associated propagation delay. This delay is, in general,
different for each constituent frequency component of the wave, due to the effect of dispersion. The group
delay, tg(ω), is the time it takes the complex envelope to traverse the medium,

tg(ω) := − ∂

∂ω
β(ω)z (2.29)

and the group velocity – the speed at which the complex envelope propagates through the medium – is then,

vg(ω) = z

tg(ω) (2.30)

It follows then that if the group delay experienced by the wave in the medium is a linear function of
frequency, the wave obtained at the output of the medium is simply a delayed copy of the input one. Using
Eq. 2.28 in 2.29, the group delay associated to the propagation of the wave through the medium in the
narrow-band approximation writes,

tg(ω) ≈ −β1z − β2zω (2.31)

The term β0z in Eq. 2.28 introduces a constant phase-shift to the frequency spectrum, equal for all
frequency components of the wave. This translates into a constant phase term along the time-domain rep-
resentation of the signal, and, as per Eq. 2.31, it has no effect on the group delay distribution. The term
β1zω in Eq. 2.28 introduces a spectral phase-shift, linear with the frequency variable; this, as per Eq. 2.31,
translates into a constant delay for all frequency components of the wave. This term can be neglected by
choosing a reference frame that moves with the wave, at speed β−1

1 , i.e., by applying the change of variables
t← t+ β1z.

The terms with l ≥ 2 in the β(ω) decomposition are known as the chromatic dispersion coefficients. In
particular, the term β2z in Eq. 2.28 introduces a phase-shift to the spectrum of the wave, with a quadratic
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dependence with frequency. As per Eq. 2.31, this term translates into a linear variation of the group delay
frequency distribution, resulting in different frequency components traveling through the medium at different
speeds. The product β2z is, thus, commonly known as group velocity dispersion (GVD).

Considering only the second-order dispersion coefficient, β2 (GVD per unit length, measured at the
central frequency of the wave), the dispersion transfer function writes,

HGVD(ω) = e−i
1
2β2zω2

(2.32)

The inverse Fourier transform of Eq. 2.32 gives the impulse response of the second-order dispersion
process in the medium,

hGVD(t) = e
i 1

2β2z
t2 (2.33)

and the associated time-domain input/output relationship is defined as a convolution integral,

ψ(z, t) =
∫ ∞
−∞

hGVD(τ)ψ(0, t− τ) dτ (2.34)

The dispersion process is then modeled as a linear all-pass filter – a spectral transfer function with
unitary amplitude – with a phase distribution exhibiting a quadratic dependence with frequency. Fig. 2.4
schematically depicts the operation.

Figure 2.4 – Chromatic dispersion. Operator model of the
group velocity dispersion process. In the shown example, the
wave obtained after the temporal modulation process shown
in Fig. 2.3 propagates a distance L away from the modulator
through a GVD medium. (top) Real space. (bottom) Fourier
space.

From a practical viewpoint, chromatic dispersion is particularly relevant in the problem of propagation
of optical pulses through transparent media. For a practical example, consider a complex temporal envelope
defined by a Gaussian function of time with unitary amplitude, and its Fourier transform
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ψ̃(0, t) = e
− t2

2σ2
t (2.35)

Ψ̃(0, ω) =
√

2π
σω

e
− ω2

2σ2
ω (2.36)

where σt and σω are the half-widths at height e−1 of the functions ψ̃(0, t) and Ψ̃(0, ω), in the time and
frequency domains respectively, satisfying σω = σ−1

t .

Eq. 2.27 (with Eq. 2.32) gives the expression of the output spectrum.

Ψ̃(z, ω) =
√

2π
σω

e
− 1

2

(
1

2σ2
ω

+iβ2z

)
ω2

(2.37)

Calculation of the inverse Fourier transform11 of Eq. 2.37 gives, after some rearranging, the expression
of the output temporal envelope,

ψ̃(z, t) = σt
4
√
σ4
t + (β2z)2

e
− 1

2

(
σ2
t t

2

σ4
t

+(β2z)2 +i
(

β2zt
2

σ4
t

+(β2z)2−tan−1
(
β2z
σ2
t

)))
(2.38)

The output signal is a Gaussian pulse with an acquired temporal phase profile and modified amplitude
and width. The temporal width of the pulse at the output of the dispersive medium is,

σ′t = σt

√
1 +

(
z

LD

)2
(2.39)

where σ′t > σt and LD is the dispersion length of the pulse in the medium,

LD = σ2
t

|β2|
(2.40)

The dispersive medium causes the pulse to broaden in time. As anticipated, this is due to different
frequency components propagating at different speeds. For instance, if β2 > 0, the higher frequency com-
ponents of the pulse travel with higher speed than the lower ones, thus moving towards the leading edge of
the pulse; similarly, the lower end of the spectrum moves towards the trailing edge of the pulse, due to lower
propagation speeds. Not only this causes the pulse to stretch, but such a redistribution of frequencies results
on a quadratic temporal phase along the pulse envelope,

^ψ̃(z, t) = 1
2

(
β2zt

2

(σ4
t + (β2z)2 − tan−1

(
β2z

σ2
t

))
(2.41)

11For the Fourier transform pair of a Gaussian function, as well as a list of properties of the Fourier transform, useful in this
calculation, consult Appendix A.
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Differentiating the temporal phase with respect to time gives the instantaneous frequency of the pulse.

d
dt^ψ̃(z, t) = β2z

σ4
t + (β2z)2 t (2.42)

In the equivalent base-band representation, the instantaneous frequency is a measurement of the deviation
of the frequency occurring at each time instant from the carrier. As shown in Eq. 2.42, second-order GVD
produces a linear instantaneous frequency distribution, or chirp. Fig. 2.5 illustrates the effect of second-order
dispersion on a Gaussian pulse.
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Figure 2.5 – Gaussian pulse stretching due to second-order GVD. Nu-
merical simulation showing the the effect of propagation through second-
order group velocity dispersive media of a Gaussian pulse. The input pulse
(a) has unitary amplitude and σt = 1. The carrier frequency is ω0 = 2π.
The total simulated second-order dispersion is chosen to produce a multi-
plication of the input pulse duration by a factor 4; with the chosen pulse
parameters this value corresponds to β2z =

√
3. The pulse obtained at the

output of the medium (b) has reduced its amplitude by
√

4, as a result of
the pulse broadening effect (losses are neglected). The output waveform
shows the anticipated chirp of the underlying carrier frequency, with higher
frequencies (shorter wavelengths represented in blue color) moving towards
the leading edge of the pulse (faster), and lower frequencies (longer wave-
lengths represented in red color) moving towards the trailing edge (slower).

The parameter β2 has units of ps2/rad/km. It is sometimes convenient to define the second-order disper-
sion coefficient with respect to wavelength, instead of radial frequency,

D = −2πc
λ2 β2 (2.43)

where D is measured in ps/nm/km.

As per the definition of the propagation constant, the dispersion coefficient is a real magnitude (i.e., with
sign). A medium characterized by a positive β2 parameter (D < 0) is said to exhibit normal dispersion. For
instance, this is the case of standard single-mode optical fibers for wavelengths shorter than ∼1310 nm. On
the other hand, a medium characterized by a negative β2 parameter (D > 0) is said to exhibit anomalous
dispersion, as encountered in standard single-mode optical fibers for wavelengths longer than ∼1310 nm.
Fig. 2.6 shows the second-order dispersion characteristic of the Corningr SMF-28 standard single-mode
optical fiber [76].
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Figure 2.6 – Second-order dispersion
characteristic of SMF-28. Spectral distri-
bution of the parameters β2 and D, for the
Corningr SMF-28 standard single-mode
optical fiber, with a zero-dispersion wave-
length of 1310 nm (∼228.8492 THz).
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2.4 The Talbot effect

The Talbot effect – or self-imaging – is at the heart of the developments reported in this dissertation.

2.4.1 Brief history

Talbot effect was first observed by the British scientist William Henry Fox Talbot, in the context of his
pioneering works in photography. Talbot noticed that, when illuminated with a monochromatic wave, a
coarsely-ruled diffraction grating – an object with a periodic amplitude transmittance – would produce im-
ages, faithful to the grating pattern and perfectly in focus. Such images would reappear periodically at integer
multiples of a particular distance, that would later come to be known as the Talbot length. Talbot published
his findings on the subject in 1836 [77], but immediately abandoned it as a mere curiosity, in order to pursue
his work on photography, thus leaving behind the phenomenon that, decades later, would carry his name.

It took 45 years for the effect to be revisited by British physicist and Nobel Prize laureate John William
Strutt, 3rd Baron Rayleigh. Rayleigh explained Talbot effect as a natural consequence of near-field – Fresnel
– diffraction on its 1881 letter to the Philosophical Magazine [78]. Furthermore, he found the analytic
expression of the Talbot length,

zT = x2
r

λ
(2.44)

where xr is the spatial repetition period of the complex amplitude transmittance of the object (assuming
a one-dimensional object, periodic along the x dimension) illuminated by a monochromatic wave, with
wavelength λ.

Rayleigh already anticipated the practical usefulness of the phenomenon, proposing that it could be used
to accurately reproduce a diffraction grating by exposing photographic film to one of the focused images
that form at integer multiples of the Talbot length. Since then, extensive work has been devoted to the study
of the phenomenon and its practical applications [79, 80], which nowadays are found in diverse areas of
science and technology, including holography [81,82], image processing [83,84], lithography [85], electron
interferometry [86], plasmonics [87] matter wave physics [88, 89], quantum optics [90], etc.
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2.4.2 Temporal Talbot effect

A dual phenomenon to the spatial Talbot effect, first postulated by Tomasz Jannson and Joanna Jannson
in 1981 [91], can be observed in the paradigm of second-order group-velocity dispersion of time-periodic
waveform trains. Temporal Talbot effect has been used as an extremely simple and efficient method for
multiplying the repetition rate of pulse trains [56], and it finds extensive application in several areas of laser
physics, [92], signal processing [93, 94], telecommunications [95], etc.

Consider a tr-periodic temporal wave of interest. Its frequency-domain representation corresponds to a
frequency comb with linear frequency line spacing νr = t−1

r . Temporal Talbot effect occurs when such a
spectrum is affected by a frequency-domain wave propagator of the form,

HTSI(ω) := ei
1
2 θω

2
(2.45)

where TSI stands for ‘temporal self-imaging’.

The condition for the parameter θ, necessary for the observation of temporal Talbot effect is [56],

2π|θ| = p

q
t2r (2.46)

where p and q are two mutually-prime natural numbers (i.e., q−1p is an irreducible fraction).

Note that Eq. 2.45 has the form of the transfer function of a dispersive medium in the narrow-band
approximation, given in Eq. 2.32, with the parameter θ playing the role of the total second-order dispersion
of the medium, β2z. In this context, it is possible to define a Talbot length – the required propagation distance
through the GVD medium to achieve the first temporal Talbot image – as,

zT = t2r
2π|β2|

(2.47)

where the second-order dispersion coefficient plays the role of the wavelength in Eq. 2.44.

Solutions of Eq. 2.46 yielding dispersion values with q = 1 result in output pulse trains corresponding
to perfect reconstructions of the input pulse train, i.e., as if the original train never underwent dispersive
propagation. This is the time-domain dual of the phenomenon originally observed by Talbot in the Fresnel
diffraction of periodic images. Indeed, the well-known space-time duality12 – a relationship between spatial
and temporal wave phenomena arising from a mathematical isomorphism in the equations describing wave
propagation – accounts for this relationship [96]. On the other hand, solutions of Eq. 2.46 yielding disper-
sion values with q > 1 produce output pulse trains where the individual pulses are reconstructed without
distortion, but with a reduced pulse period, q−1tr. The effect is that of a repetition-rate multiplication of the
input pulse train, achieved purely through dispersive propagation of the input pulse train.

The dispersive medium, when satisfying the temporal Talbot condition in Eq. 2.46, and assuming trans-
parency (i.e., neglecting insertion losses), effectively redistributes the entirety of the energy carried by the
input pulse train into either an equal number of output periods (q = 1), or into a higher one (q output periods
per input period, with q > 1). The first case is known as integer temporal Talbot effect, and the obtained
output trains are referred to as integer temporal Talbot images. The second case is known as fractional

12For a review of the space-time duality, consult Appendix B.
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Chapter 2. Review of linear wave propagation and the Talbot effect

temporal Talbot effect, and the obtained – higher-pulse-rate – output trains are referred to as temporal Talbot
sub-images. Due to the fact that the entire energy of the input wave is, ideally, preserved through the process,
the resulting output pulses have their energy content reduced (divided) by the factor q. Fig. 2.7 illustrates the
process.

Temporal Talbot condition

Temporal

Talbot

image

Temporal

Talbot

sub-images

Temporal Talbot effect
Second-order group velocity dispersion

Integer

Fractional

Figure 2.7 – Temporal Talbot effect. Schematic depiction of the formation of temporal Talbot images (q = 1) and sub-images
(q > 1), in the dispersive propagation of a periodic train of pulses. The transformation leading to observation of temporal Talbot
effect is the application of a quadratic spectral phase (here shown in linear frequency, ν).

Fig. 2.8 shows a numerical simulation illustrating the formation of the {p = 1, q = 2} temporal Talbot
sub-image.
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Figure 2.8 – Formation of temporal Talbot sub-images. Numerical simulation illustrating the coherent interference between
spectral modes of a periodic pulse train affected by a spectral phase distribution corresponding to a temporal Talbot sub-image. (a)
Input pulse train (with uniform spectral mode phase distribution), and (b) output pulse train corresponding to the {p = 1, q = 2}
temporal Talbot sub-image (see Eq. 2.46).

Note that, while the temporal Talbot sub-images are rate-multiplied replicas of the input pulse train, their
power spectra is identical to that of the input train. This is so because the involved transformation is simply a
modification of the input phase distribution along the frequency domain (see Eq. 2.45). It follows then, that
each temporal Talbot sub-image has an associated temporal phase variation, acquired due to the temporal
energy redistribution process (see pulse-to-pulse instantaneous phase variation of the output pulse train in
Fig. 2.8(b)). These phase variations have been shown to exhibit mathematical forms that follow the solutions
of generalized quadratic Gauss sums [97–99]. The properties of such phase variations are of key importance
for the developments reported in this dissertation, and are studied in depth in Chapter 3.
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Chapter 2. Review of linear wave propagation and the Talbot effect

2.4.3 Spectral Talbot effect

If one exchanges the domains of time and frequency in the previous scenario, a frequency-domain counterpart
of the temporal Talbot effect can be observed in the power spectrum of a frequency comb. Heuristically, this
arises as a consequence of the symmetry property of the Fourier transform13. Spectral Talbot effect was first
postulated by José Azaña in 2005 [59], and it has since been proposed as a versatile, energy-efficient method
for controlling the FSR of frequency combs [61].

Consider again a tr-periodic pulse train, corresponding to a frequency comb with FSR νr = t−1
r . The

mechanism responsible for spectral Talbot effect is described by a temporal phase modulation operator of
the form,

hSSI(t) := ei
1
2 θt

2
(2.48)

where SSI stands for ‘spectral self-imaging’, and in this case, θ defines the spectral Talbot condition as [100],

2π|θ| = s

m
ω2
r (2.49)

where s and m are, again, two mutually-prime natural numbers (i.e., m−1s is an irreducible fraction), and
ωr = 2πνr.

In this situation, the spectral Talbot images (m = 1) and sub-images (m > 1) correspond to the spectra of
the output pulse train (obtained after temporal phase modulation), resulting in perfect reconstructions of the
input comb (integer spectral Talbot effect) or reconstructions with a reduced FSR,m−1νr (fractional spectral
Talbot effect), respectively. Similarly to the temporal Talbot scenario described above, energy conservation
ensures that the output comb lines have an energy content reduced (divided) by the factor m. Fig. 2.9
illustrates the process.
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Spectral Talbot effect
Quadratic temporal phase modulation

Spectral Talbot condition Integer

Fractional

Figure 2.9 – Spectral Talbot effect. Schematic depiction of the formation of spectral Talbot images (m = 1) and sub-images
(m > 1), in the temporal phase modulation of a periodic train of pulses. The transformation leading to observation of spectral
Talbot effect is the application of a quadratic temporal phase.

It should be noted that the temporal phase profile of the operator in Eq. 2.48 is continuous, and follows
a quadratic variation with time. As shown in Fig. 2.9, this continuous variation results in nonuniform phase
fluctuations within the pulses in the time domain. If the temporal duration of the pulses is sufficiently short
(approaching deltas in the limit of infinite bandwidth), these variations can be considered flat. However, for
long pulses, or exceedingly sharp temporal phase variations of the spectral Talbot operator, uncompensated
phase fluctuations within the duration of different pulses will introduce distortion in the spectrum of the
train. This situation does not occur in the temporal Talbot effect scenario, as the spectral phase variations

13For details on the properties of the Fourier transform, consult Appendix A.
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Chapter 2. Review of linear wave propagation and the Talbot effect

induced by the temporal Talbot propagator are applied to a frequency comb, where the individual frequency
components are expected to be sufficiently narrow. A more general formulation of the temporal and spectral
Talbot conditions involves the use of discrete phase sequences, defining the phase level to be applied to each
comb line or temporal pulse. This formulation will be developed in Chapter 3.

Regarding the phase distributions of the waves in the time and frequency domains, a similar situation to
that of the previously described temporal Talbot effect arises here. While the spectral Talbot sub-images are
FSR-divided replicas of the input frequency comb, their instantaneous power distribution is identical to that
of the input train. This is so because the involved transformation is simply a modification of the input phase
distribution along the time domain (see temporal phase modulation function in Eq. 2.48). It follows then, that
each spectral Talbot sub-image has an associated spectral phase variation, acquired due to the spectral energy
redistribution process. It is unclear, however, whether such residual phases are equivalent to those described
by Eq. 2.46, i.e., whether or not the phases acquired by temporal and spectral Talbot sub-images satisfy the
corresponding Talbot condition in their observation domain. Chapter 3 formulates the relationship between
temporal and spectral Talbot phases, hereinafter referred to as the time-frequency duality of the Talbot effect,
which is the cornerstone upon which all the developments reported in this dissertation are based.
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CHAPTER 3
Generalized Talbot effect

This chapter presents a generalization of the Talbot effect, as well as the relationships between its different
realizations in all domains of representation of waves. A general definition of the condition leading to
observation of the Talbot phenomena is presented. Additionally, the mathematical basis of the universal
periodicity control method – central point of this dissertation – is presented. The problem is addressed in
the framework of the time/frequency representation of optical signals, corresponding to the experimental
demonstrations presented in following chapters. Two equivalent realizations of the method are introduced,
discussed and compared. The work presented in this Chapter was reported in [APj2, APj3, APj4] [APc5,
APc8, APc11, APc13, APc14].
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Chapter 3. Generalized Talbot effect

3.1 Generality of the Talbot condition

As introduced in Section 2.4, temporal Talbot effect is observed when a periodic train of pulses is affected
by a specific quadratic phase profile across its frequency domain representation, giving rise to perfect images
of the train (integer temporal self-imaging), or to sub-images where the initial temporal period is divided by
a natural number (fractional temporal self-imaging), as shown in Fig. 3.1(a). Similarly, spectral Talbot effect
is observed when a periodic spectral waveform, e.g., a frequency comb, is affected by a specific quadratic
phase profile across its time domain representation, giving rise to perfect images of the comb (integer spectral
self-imaging), or to sub-images where the initial spectral period is divided by a natural number (fractional
spectral self-imaging), as shown in Fig. 3.1(b). These quadratic phase profiles are determined by the well-
known Talbot condition [56, 100].

Quadratic temporal phase modulation

Temporal Talbot effect

Spectral Talbot effect

(a)

(b)

Temporal Talbot condition

Spectral Talbot condition

Input waveform Output image

Second-order group velocity dispersion

Figure 3.1 – Time-frequency duality of the Talbot effect. Comparison of (a) temporal and (b) spectral Talbot effect applied to
obtain sub-images of (a) a train of pulses and (b) a frequency comb. The periods of the input object are selected to generate output
images with equal period in both time and frequency domains. The obtained temporal and spectral phase profiles are sketched
for comparison (dashed lines). In this representation, the amplitudes of all temporal pulses and spectral lines are kept equal for
convenience of interpretation (not considering the effects of energy redistribution associated to self-imaging). Additionally, the
pulsewidth is considered short enough to neglect the effects of non-uniform phase variations within the duration of a pulse.

The problem under consideration here is the Fourier relationship between temporal and spectral Talbot
effects. Fig. 3.1 compares the results of a q-factor fractional temporal Talbot effect [56] (Fig. 3.1(a)), and
a fractional spectral Talbot effect [100] by the same factor (Fig. 3.1(b)). The temporal Talbot effect in
Fig. 3.1(a) is induced through quadratic spectral phase filtering of a phase-locked pulse train, where the
applied phase satisfies the corresponding temporal Talbot condition [56] (e.g., through second order group-
velocity dispersion [75]). The resulting output temporal sub-image exhibits a temporal period equal to the
input one divided by q. Particularly important here is the fact the output temporal train acquires a pulse-to-
pulse phase variation that results from computing the phase of a quadratic Gauss sum [97–99]. On the other
hand, the spectral Talbot effect in Fig. 3.1(b) can be induced through quadratic temporal phase modulation
of a phase-locked frequency comb, where the applied phase now satisfies the corresponding spectral Talbot
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condition [100] (e.g., through a time lens [60]). Similarly to the temporal Talbot effect, the resulting output
spectral sub-image exhibits a spectral period equal to the input one divided by q, as well as a line-to-line
phase variation.

Notice that the temporal pulse period of the signal in Fig. 3.1(b) is chosen to be q times shorter than the
one of the signal in Fig. 3.1(a), so that the two processes render identical temporal and spectral repetition
periods. However, as illustrated in Fig. 3.1, the temporal phase profiles of the two output signals are, in
principle, different. In particular, whereas the temporal phase profile applied to the input train in order
to obtain a spectral Talbot sub-image satisfies the Talbot condition (φk in Fig. 3.1(b)), the temporal phase
variation acquired by the temporal Talbot sub-image in the temporal self-imaging scenario is dictated by
a Gauss sum (ϕn in Fig. 3.1(a)). A similar relationship occurs between the phases φ′k in Fig. 3.1(a) and
ϕ′n in Fig. 3.1(b). The question being asked here is whether the phase variations acquired by a Talbot sub-
image in their observation domain satisfy the Talbot condition, in a similar way that the phases introduced
in the corresponding Fourier-dual domain, in order to trigger the effect, do. In other words, this section
aims to establish a relationship between the solutions of quadratic Gauss sums and the Talbot condition, in
order to determine whether there exists a duality between manifestations of the Talbot effect in the time and
frequency domains. In particular, if some of the resulting Gauss sums lead to phase profiles that do not
follow the general Talbot condition, it would follow that self-imaging effects could be achieved through the
use of an additional set of phase profiles other than those given by the Talbot condition.

In anticipation, this is, in fact, not the case, as the solutions of quadratic Gauss sums do satisfy the Talbot
condition, which suggests that the Talbot condition may encompass all possible quadratic phase patterns for
inducing self-imaging effects.

3.1.1 The time-frequency duality of the Talbot effect

The mathematical derivations in this Section establish the precise relationship between the two phase profiles
leading to Talbot effect in the observation domains of time and frequency (related by the Fourier transform).
Some of these derivations follow the steps of John Hannay and Sir Michael Victor Berry in [97], Sir Michael
Victor Berry and Susanne Klein in [98], and Shigeki Matsutani and Yoshihiro Ônishi in [99], with some
modifications and needed corrections. These authors studied the phases associated to spatial Talbot images,
obtained from a periodic grating1. Concepts of modular arithmetic and number theory [101], as well as
Fourier analysis [73], are used in the following calculations.

Let us consider a generic, one-dimensional waveform, periodic along the time domain, represented by
the variable t. As shown in Eqs. 3.1 and 3.2, such a wave can be analytically modeled by a – generally
complex – periodic function of t, ψ : R → C, and its Fourier transform in the radial frequency domain
Ψ : R→ C, represented by the variable ω, so that Ψ(ω) = F{ψ(t)}. Note that, as per the properties of the
Fourier transforms of periodic functions, Ψ(ω) is a Dirac comb2,

ψ(t) :=
∞∑

n=−∞

“ψ (t− ntr) (3.1)

Ψ(ω) :=
∞∑

k=−∞
ckδ (ω − kωr) (3.2)

1While these derivations were originally formulated in the paradigm of spatial Talbot effect, the time-domain formulation used
here for studying the phases associated to temporal Talbot effect is mathematically analogous.

2For further details on the Fourier transforms of periodic functions and Dirac combs, consult appendix A.
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where,

tr is the temporal period of ψ(t),
ωr = 2πt−1

r is the period of Ψ(ω) along the radial frequency domain3,
“ψ : R→ C is the complex amplitude of a single period of ψ(t), so that “ψ(t) = 0 ∀ |t| > tr/2,

δ is the unitary Dirac delta function,
ck = ωr “Ψ(kωr) is the complex weight of the k-th delta of Ψ(ω), with “Ψ(ω) = F{ “ψ(t)}.

It should be noted that ψ(t) is here written in the equivalent base-band representation (corresponding to
ψ̃(t) in the notation used in Chapter 2).

The temporal representation of the wave can be expressed in terms of the convolution integral of “ψ(t)
and a Dirac comb with period tr,

ψ(t) = “ψ(t) ∗
∞∑

n=−∞
δ (t− ntr)

=
∫ ∞
−∞

(
“ψ(t− τ)

∞∑
n=−∞

δ (τ − ntr)
)

dτ (3.3)

The periodicity of ψ(t) is set by the Dirac comb in Eq. 3.3, independently of the value of “ψ(t). For
mathematical convenience, and without loss of generality, this term can be dropped from the analysis, so that
“ψ(t) = δ(t) ⇐⇒ ck = ωr ∀ k.

ψ(t) =
∞∑

n=−∞
δ (t− ntr) (3.4)

Ψ(ω) = ωr

∞∑
k=−∞

δ (ω − kωr) (3.5)

This definition of the periodic wave of interest, ψ(t), is convenient; since δ(t) has an infinitesimally
narrow extent in t, any Talbot sub-image, involving division of the period tr by any natural factor, can be
represented, and therefore studied on the basis of this formalism. Furthermore, since Talbot effect is the
result of a linear operator, the principle of superposition holds, and the effects of a finite extent in t of “ψ(t)
can always be incorporated a posteriori.

3A similar expression could be formulated in linear frequency, ν, noting that ωr = 2πνr , where νr is the spectral period in the
linear frequency domain (with units of Hz).
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3.1.1.1 Frequency spectra of temporal Talbot (sub-)images

Temporal Talbot effect, as described in Section 2.4.2, arises from the action of a spectral wave propagator
applying a phase variation to the frequency spectrum of the time-periodic wave of interest, with a quadratic
dependence with frequency,

HTSI(ω) := ei
1
2 θω

2
(3.6)

where the condition for the parameter θ, necessary for the observation of temporal Talbot effect is,

2π|θ| = p

q
t2r (3.7)

where p and q are two mutually-prime natural numbers (i.e., q−1p is an irreducible fraction).

Recall that, as described in Section 2.4.2, such a transformation is inherent in second-order GVD media,
although any phase filtering operation of the form described by Eq. 3.6 that satisfies the condition given in
Eq. 3.7 will produce temporal Talbot effect.

The spectrum of the temporal Talbot (sub-)image, Ψ′(ω), resulting from the action of the operator
HTSI(ω) on the spectrum of the wave of interest, Ψ(ω) is,

Ψ′(ω) = HTSI(ω)Ψ(ω)

= ωr

∞∑
k=−∞

δ (ω − kωr) ei
1
2 θω

2
(3.8)

Applying the sampling property of the Dirac delta function4 and substituting θ (Eq. 3.7) in Eq. 3.8, gives
the phase shift applied to each frequency component of the comb.

Ψ′(ω) = ωr

∞∑
k=−∞

δ (ω − kωr) ei
1
2 θ(kωr)

2

= ωr

∞∑
k=−∞

δ (ω − kωr) eiπ
p
q
k2

(3.9)

4The sampling property of the Dirac delta function states that,

ψ(u)δ(u− u0) = ψ(u0)δ(u− u0)

This property was implicitly used in Eq. 3.3 to remove the envelope “ψ(t). For additional details, consult Appendix A.
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This way, the temporal Talbot condition can be rewritten as a discrete function of k (the index running
over ω in steps of ωr). This represents the line-to-line phase shift required in the Fourier-dual (frequency)
domain, ω, to observe any desired Talbot (sub-)image in the representation (time) domain, t,

φ′k;p,q := π
p

q
k2 (3.10)

3.1.1.2 Time-domain representation of temporal Talbot (sub-)images

The expression for the (sub-)image ψ′(t) is given by the inverse Fourier transform of Ψ′(ω),

ψ′(t) = F−1 {Ψ′(ω)
}

= 1
2π

∫ ∞
−∞

Ψ′(ω)eiωt dω

= ωr
2π

∫ ∞
−∞

 ∞∑
k=−∞

δ (ω − kωr) eiπ
p
q
k2

 eiωt dω

= ωr
2π

∞∑
k=−∞

eikωrte
iπ p
q
k2

= ωr
2π

∞∑
k=−∞

e
i2π
(
t
tr
k+ p

2q k
2
)

(3.11)

Defining, k := nq + l, with {n ∈ Z | − ∞ < n < ∞} and {l ∈ N | 0 < l < q − 1}, the argument of
the complex exponential in the last step of Eq. 3.11 writes,

t

tr
k + p

2q k
2 = t

tr
nq + t

tr
l + 1

2pqn
2 + p

2q l
2 + pnl (3.12)

and the last sum in Eq. 3.11 can be split into groups of q terms,

ψ′(t) = ωr
2π

q−1∑
l=0

e
i2π
(
t
tr
l+ p

2q l
2
) ∞∑
n=−∞

ei2π
(
t
tr
qn+ 1

2pqn
2+pnl

)
(3.13)

At this point, one must note that,

eiπpqn
2 = (−1)pqn2

≡ (−1)pqn

= eiπpqn (3.14)

and that ei2πpnl ≡ ei2π = 1 ∀ {p, n, l} ∈ Z.
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This way,

ψ′(t) = ωr
2π

q−1∑
l=0

e
i2π
(
t
tr
l+ p

2q l
2
) ∞∑
n=−∞

ei2π
(
t
tr
qn+ 1

2pqn
)

(3.15)

As stated by Berry and Klein in [98], the observation in Eq. 3.14 is the mathematical heart of the Talbot
effect, because it renders the argument of the second exponential in Eq. 3.15 linear in n, so that the Poisson
summation formula5 gives, after some rearranging, the expression of the output image, ψ′(t) as a Dirac
comb,

ψ′(t) = 1
q

∞∑
n=−∞

δ

(
t− ntr

q
+ p

tr
2

) q−1∑
l=0

e
i2π
(
t
tr
l+ p

2q l
2
)

(3.16)

and the sampling property gives,

ψ′(t) = 1
q

∞∑
n=−∞

δ

(
t− ntr

q
+ p

tr
2

) q−1∑
l=0

e
iπ
q (pl2+(2n−pq)l) (3.17)

From Eq. 3.17, it immediately holds that the period of the output image in the observation – time –
domain is q−1tr, as expected for a periodic waveform satisfying the temporal Talbot condition in Eq. 3.10.

3.1.1.3 The time-frequency duality of the Talbot condition

The second sum in Eq. 3.17 has the form of a generalized quadratic Gauss sum.

Gn;p,q :=
q−1∑
l=0

e
iπ
q (pl2+(2n−pq)l) (3.18)

It can be demonstrated that the solution of this sum is a complex number with magnitude
√
q, and a

phase that depends on the numbers p and q [97–99].

The magnitude of the sum ensures the conservation of energy between the input waveform ψ(t) (with
period tr) and the output (sub-)image ψ′(t) (with period q−1tr). Additionally, if the phase profile along the
time domain of ψ′(t) satisfies a Talbot condition, Gn;p,q must necessarily yield an exponent of the form,

ϕn;s,m,c := −π s
m
n2 − πc (3.19)

where s and m are two mutually-prime natural numbers that must depend on p and q only, and c is a
real constant, also dependent on p and q. Note that this expression is isomorphic to the phase sequence
responsible for the observation of the effect, i.e., the phase of the (sub-)image in the Fourier-dual domain U ,
Ψ′(ω) (given by the Talbot condition in Eq. 3.10), except for the constant c (that does not alter the nature of
the Talbot image since it simply represents an equal phase shift for all the components of the comb) and the

5For further details on the Poisson summation formula, consult Appendix A.
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opposite sign (that indicates complex conjugation, due to the application of the Fourier transform). If this
hypothesis holds, the output image should write,

ψ′(t) = e−iπc
√
q

∞∑
n=−∞

δ

(
t− ntr

q
+ p

tr
2

)
e−iπ

s
m
n2

(3.20)

The goal here is to solve the Gauss sum in Eq. 3.18 and compare the form of its solutions with Eq. 3.19.
Hannay and Berry provided a general solution to these sums in [97]. Following the steps of their derivations,
three sets of solutions are found, depending on the parity of p and q. Denoting the set of even natural numbers
by E, and the set of odd natural number by O,

Gn;p,q =



√
qe
−iπ
(
q−1

4 + p
q

(
[1
p]q
)2
n2+ 1

2

(
1−(pq)

))
∀ {p ∈ E, q ∈ O} (3.21a)

√
qe
−iπ
(
q−1

4 + 2p
q [1

2]q
(
[ 1
2p]q
)2

(2n+q)2+ 1
2

(
1−(pq)

))
∀ {p ∈ O, q ∈ O} (3.21b)

√
qe
iπ

(
p
4−

p
q

(
[1
p]q
)2
n2+ 1

2

(
1−(qp)

))
∀ {p ∈ O, q ∈ E} (3.21c)

where
[1
a

]
b

is the modular multiplicative inverse of a modulo b, i.e. the (unique) positive integer smaller than
b satisfying Eq. 3.22,

a

[
1
a

]
b

= 1 (mod b) (3.22)

and
(
a
b

)
is the Jacobi symbol, equal in this case to the Legendre symbol since, as per Eqs. 3.21a, 3.21b and

3.21c, the lower argument is always an odd prime number, such that,

(
a

b

)
:=


0 ⇐⇒ a ≡ 0

+1 ⇐⇒ a 6≡ 0, {∃ n ∈ Z | n2 ≡ a (mod b)}
−1 ⇐⇒ a 6≡ 0, {@ n ∈ Z | n2 ≡ a (mod b)}

(3.23)

Table 3.2 lists some values of the modular multiplicative inverse,
[1
a

]
b
, and the Jacobi symbol,

(
a
b

)
, re-

spectively.

Rearranging terms in the arguments of the complex exponentials on Eqs. 3.21a, 3.21b and 3.21c, and
dropping all the factors that contribute a net phase of 2π,
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Table 3.2 – Modular multiplicative inverse and Jacobi symbol. (left) Values of the modular multiplicative inverse,
[

1
a

]
b
, for

{a ∈ N | 1 ≤ a ≤ 10} and {b ∈ N | 2 ≤ b ≤ 11}. (right) Values of the Jacobi symbol,
(
a
b

)
, for {a ∈ N | 1 ≤ a ≤ 10} and

{b ∈ O | 1 ≤ b ≤ 19}.

a

1 2 3 4 5 6 7 8 9 10

b

2 1 1 1 1 1
3 1 2 1 2 1 2 1
4 1 1 3 1 1 3 1 1
5 1 3 2 4 1 3 2 4
6 1 1 1 5 5 1 1 1 5
7 1 4 5 2 3 6 1 4 5
8 1 1 3 1 5 7 7 1 1
9 1 5 1 7 2 8 4 8 1
10 1 1 7 8 1 2 3 9 9
11 1 6 4 3 9 2 8 7 5 10

a

1 2 3 4 5 6 7 8 9 10

b

1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
3 +1 −1 +1 −1 +1 −1 +1
5 +1 −1 −1 +1 +1 −1 −1 +1
7 +1 +1 −1 +1 −1 −1 +1 +1 −1
9 +1 +1 +1 +1 +1 +1 +1
11 +1 −1 +1 +1 +1 −1 −1 −1 +1 −1
13 +1 −1 +1 +1 −1 −1 −1 −1 +1 +1
15 +1 +1 +1 −1 +1
17 +1 +1 −1 +1 −1 −1 −1 +1 +1 −1
19 +1 −1 −1 +1 +1 +1 +1 −1 +1 −1

Gn;p,q =



√
qe
−iπ

p

(
[1
p]q
)2

q
n2−iπ

(
q−1

4 +
1−(pq)

2

)
∀ {p ∈ E, q ∈ O} (3.24a)

√
qe
−iπ

8p[1
2]q
(
[ 1
2p]q
)2

q
n2−iπ

(
q−1

4 +
1−(pq)

2

)
∀ {p ∈ O, q ∈ O} (3.24b)

√
qe
−iπ

p

(
[1
p]q
)2

q
n2+iπ

(
p
4 +

1−(qp)
2

)
∀ {p ∈ O, q ∈ E} (3.24c)

Identifying terms in Eqs. 3.24a, 3.24b and 3.24c gives the phases of the Talbot images in the form of
Eq. 3.19, where the parameters s, m and c are functions of p and q. Table 3.3 shows the values of these
parameters. Eq. 3.18 can thus be rewritten,

Gn;p,q = √qeiϕn;s,m (3.25)

As shown in Table 3.3, m = q ∀ {p, q} ∈ N; on the other hand, in general s 6= p, depending on the parity
of p and q. In most practical situations, a constant phase factor does not contribute to any observable or, in
any case, relevant effect on a wave of interest. It is convenient then to write only the relationship between
the parameter s and the coefficients p and q,

s =


p

[1
p

]
q

2

∀ pq ∈ E

8p
[
1
2

]
q

[ 1
2p

]
q

2

∀ pq ∈ O

(3.26)
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Table 3.3 – Coefficients of the Talbot phases in Fourier-dual domains. Relationship between the parameters s, m and c of
the Talbot phase in an observation domain (Eq. 3.19) and the parameters p and q of the Talbot phase in its Fourier-dual domain
(Eq. 3.10).

Fourier-dual domain Observation domain
Parity of {p, q} s m c

p ∈ E
q ∈ O

p

[1
p

]
q

2

q
q − 1

4 +
1−

(p
q

)
2

p ∈ O
q ∈ O

8p
[
1
2

]
q

[ 1
2p

]
q

2

q
q − 1

4 +
1−

(p
q

)
2

p ∈ O
q ∈ E

p

[1
p

]
q

2

q −p4 −
1−

(q
p

)
2

In a later work, motivated by the findings reported here [APj2, APj3], and published shortly thereafter
[102], Carlos Rodríguez Fernández-Pousa found an elegant, more compact formulation of the parameter s,

sp = 1 + qεq (mod 2q) (3.27)

where εq is the parity of q, so that,

εa :=
{

0 ∀ a ∈ E
1 ∀ a ∈ O

(3.28)

If the phases acquired by the Talbot sub-images, ϕn;s,m,c, satisfy a Talbot condition, s and m must be
mutually prime. This character is established by demonstrating that q does not divide s in any case. To verify
this, it suffices to note that

[1
a

]
q

and q are, by definition, mutually-prime for any q and amutually-prime. This
proves that, as anticipated, the Talbot condition is satisfied by both sets of phases, φ′k;p,q in ω, and ϕn;s,m,c
in t, and so the time-frequency duality of the Talbot effect is established.

The findings compiled on this Section can be summarized in the Fourier transform pair ψ′(t) F←→ Ψ′(ω)
(Eqs. 3.29 and 3.30, together with Table 3.3).

ψ′(t) = e−iπc
√
q

∞∑
n=−∞

δ

(
t− ntr

q
+ p

tr
2

)
e−iπ

s
m
n2

(3.29)

Ψ′(ω) = 2π
tr

∞∑
k=−∞

δ

(
ω − k2π

tr

)
e
iπ p
q
k2

(3.30)

It should be noted that, from a practical perspective, the definitions used here are generally insufficient
to accurately model realistic signals. Important considerations such as the time-bandwidth product must be
taken into account in a practical context. As such, the effects of a finite value of “ψ(t) should be considered.
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These can be easily introduced to the derivation by simply solving the convolution integral in Eq. 3.3 and
calculating the values of the coefficients ck in Eq. 3.2.

3.1.2 Universal Fourier duality of the Talbot effect

The results reported in Section 3.1.1 demonstrate that the residual phases acquired by temporal Talbot sub-
images along the time domain satisfy the general expression of the Talbot condition, in the same way that
the spectral Talbot phases, responsible for observation of the phenomenon, do. An identical mathematical
development, starting from application of a temporal Talbot phase to a periodic pulse train (inducing spectral
Talbot effect) would demonstrate that the same relationship applies to the frequency-domain phase variations
induced to the resulting spectral Talbot sub-images. More generally, such a relationship applies to any
pair of Fourier-conjugate variables (e.g., to the position/momentum picture) in both directions. Application
of a phase profile, satisfying the general Talbot condition, to a periodic function defined along a certain
observation domain, will result on a Talbot sub-image represented along the corresponding Fourier-dual
domain, with an associated phase profile that also satisfies the general Talbot condition.

Indeed, realizations of Talbot phenomena have been reported across several observation domains. In
particular, all representation domains of spatial and temporal waves support realization of a Talbot effect.
These include position (space) [77], transverse momentum (typically observed in the form of angular spec-
trum) [103], time [91], and frequency [59]. Fig. 3.2 illustrates the relationships between different domains
where a form of Talbot effect can be observed. The different representations of waves in these domains are
mathematically related by two analytical constructions. Wave phenomena represented in domains separated
horizontally in Fig. 3.2 are related by the space-time duality6, a well-known mathematical isomorphism be-
tween the equations describing spatial and temporal propagation of waves [96]. For instance, this is the case
for the formal duality between paraxial diffraction and second-order chromatic dispersion (relating spatial
and temporal Talbot effects), and spatial and temporal lenses (relating angular and spectral Talbot effects).
On the other hand, wave phenomena represented in domains separated vertically in Fig. 3.2 are related by
the Fourier transform7.

Let us consider two adimensional variables, u and U , denoting to the observation domain, along which
Talbot images occur, and its Fourier-dual domain, respectively. An ur-periodic wave under analysis can be
represented in such domains as follows,

ψ(u) =
∞∑

n=−∞
δ (u− nur) (3.31)

Ψ(U) = Ur

∞∑
k=−∞

δ (U − kUr) (3.32)

where Ur = 2πu−1
r , and the wave is assumed to be a Dirac comb, so as to facilitate the analysis of the

periodic component and associated phase profiles.

6For a review of the space-time duality, consult Appendix B.
7For a review of Fourier analysis, consult Appendix A.
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Figure 3.2 – Relationship between representation domains
of waves. Each box contains the name of an observation do-
main of waves, its commonly-used representation symbol, and
the mechanism that leads to observation of Talbot effect in
such domain.
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Talbot effect, observed in the domain u, results from the action of a unitary operator on the Fourier-
domain representation of the wave under analysis, Ψ(U),

Hφ(U) := eiφ
′(U) (3.33)

where the phase profile has a quadratic dependence with the variable U ,

φ′(U) := 1
2θU

2 (3.34)

The solutions for θ that produce all possible fractional and integer Talbot (sub-)images in the domain u
are of the form,

2π|θ| = p

q
u2
r (3.35)

where p and q are two mutually-prime natural numbers.

The parameter θ is related to the mechanism responsible for producing a particular manifestation of the
Talbot effect. If u represents the transversal position of a spatially-periodic wavefront – a periodic image
– with wavelength λ, propagating a length z in free space, then 2πθ = λz [78]; if u represents the time
stamp of a temporally-periodic train of pulses traveling through a dispersive medium of length z and second-
order dispersion coefficient β2, then θ = β2z [56]; if u represents the frequency axis of a coherent optical
frequency comb, then θ is the chirp parameter of a quadratic temporal phase modulation profile (e.g., for a
phase modulator with half-wave voltage Vπ, driven by a voltage signal V (t) = V t2, θ = 2πV −1

π V ) [61]; if
u represents the transverse momentum distribution of a wave (linearly proportional to its spatial distribution
of diffraction angles under the paraxial approximation), then θ is the chirp parameter of a spatial light phase
modulation profile (e.g., for a spatially-periodic wavefront with wavelength λ, propagating through a thin
lens with focal length f , θ = 2π(λf)−1) [103]. Table 3.4 summarizes the formulation of the Fourier-dual
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representations of periodic structures susceptible of experience Talbot effects, as well as the associated values
of the parameter θ in Eq. 3.35.

Table 3.4 – Representation domains supporting a Fourier duality of the Talbot effect. Summary of the relations between the
four representation domains where Talbot effects are observed and their Fourier-dual domains. Examples of Talbot propagators are
given (parameter θ in Eq. 3.34), as discussed in the text. In domains supporting two dimensions – space and transverse momentum
– the expression of a 1D object is given as an example.

Observation domain Propagator Fourier-dual domain
Domain u ur ψ(u) Mechanism θ Domain U Ur Ψ(U)

Space
(position)

x xr

∞∑
n=−∞

δ(x− nxr)
Paraxial

diffraction
λz

2π
Transverse
momentum

kx
2π
xr

2π
xr

∞∑
k=−∞

δ

(
kx − k

2π
xr

)

Transverse
momentum

kx kr

∞∑
n=−∞

δ(kx − nkr)
Thin
lens

2π
λf

Space
(position)

x
2π
kr

2π
kr

∞∑
k=−∞

δ

(
x− k2π

kr

)

Time t tr

∞∑
n=−∞

δ(t− ntr)
2nd-order
dispersion

β2z
Radial

frequency
ω

2π
tr

2π
tr

∞∑
k=−∞

δ

(
ω − k2π

tr

)

Radial
frequency

ω ωr

∞∑
n=−∞

δ(ω − nωr)
Quadratic phase

modulation
2π V
Vπ

Time t
2π
ωr

2π
ωr

∞∑
k=−∞

δ

(
t− k2π

ωr

)

An identical mathematical development to that used in Section 3.1.1 for the case of temporal Talbot
effect, starting from the general definitions above, results in the following Fourier transform pair for the

output wave, ψ′(u) F←→ Ψ′(U),

ψ′(u) = e−iπc
√
q

∞∑
n=−∞

δ

(
u− nur

q
+ p

ur
2

)
e−iπ

s
m
n2

(3.36)

Ψ′(U) = 2π
ur

∞∑
k=−∞

δ

(
U − k2π

ur

)
e
iπ p
q
k2

(3.37)

where u represents any observation domain, and U is its Fourier-dual (e.g., any of the Fourier-conjugate
pairs of Table 3.4).

The results summarized in the Fourier pair in Eqs. 3.36 and 3.37 and Table 3.3 can be enunciated as
a fundamental property of the Fourier transform of Dirac combs. This solution is, then, general, and, in
particular, it applies to any of the pairs of Fourier-conjugate variables listed in Table 3.4. As such, the
reported formulation of the Fourier duality, along with the space-time duality [96], provides a complete
picture of Talbot effect, relating its manifestations in all observation domains8.

3.1.3 The Talbot carpet

Eqs. 3.36 and 3.37, together with Table 3.3 are sufficient to describe all images and sub-images of a periodic
wave arising through Talbot effect in any observation domain. The ordered representation of the entire set

8It should be noted that, while in the reported derivations a single dimension of the observation domain is considered (sufficient
in general for the time/frequency picture), multidimensional objects, such as 2D spatial images, can be studied under the presented
mathematical analysis, simply by extending the definition of ψ(u) and the Talbot phases to extra dimensions.
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of such images and sub-images is referred to as the Talbot carpet. Fig. 3.3 shows a representation of this
structure.

(a)

(b)

(c)

Figure 3.3 – Talbot carpet. Representation of amplitude and phase Talbot carpets in the observation domain, u; (a) amplitude (top)
and phase (bottom) carpets for a periodic Dirac comb; (b) amplitude (top) and phase (bottom) carpets for a periodic Gaussian train
with full-width at half maximum ur/50; (c) schematic representation of the carpet, highlighting the image p = 1, q = 4.

The illustrations in Fig. 3.3(a) are the amplitude and phase Talbot carpets in the observation domain, u,
for a periodic Dirac comb (Eq. 3.36). Each value of the fraction q−1p corresponding to a Talbot condition
renders a Talbot (sub-)image. Irrational values of the fraction produce diffused images of the object ψ(u),
where the individual features of each period of ψ(u) are not reconstructed in ψ′(u), but they are rather
distorted by the application of the propagator. For instance, this situation corresponds to a temporal sub-
image where the amount of group velocity dispersion does not correspond to the value prescribed by the
Talbot condition. Fig. 3.3(b) shows the amplitude and phase Talbot carpets of a periodic waveform with
a Gaussian envelope function ( “ψ in Eq. 3.1), with a full-width at half maximum equal to a 50-th of ur,
obtaining smoother features.
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This representation of Talbot effect has practical interest beyond its aesthetic appeal. In the following
Sections the Talbot carpet will be useful to represent transformations between different Talbot (sub-)images,
a methodology that will allow to formulate a universal method for controlling the period of repetitive wave-
forms in any domain of observation. Fig. 3.3(c) depicts a schematic representation of the carpet that will be
used in the following Sections.

3.1.4 Properties of the Talbot condition

The fact that both sets of Talbot phases φ′k;p,q and ϕn;s,m,c satisfy the Talbot condition is relevant from
an application perspective. Following the notation used throughout this Section, let us consider a periodic
waveform ψ(u) with period ur. If a Talbot phase φ′k;p,q is applied to its Ur-periodic spectrum, Ψ(U), the
resulting image in u-space, ψ′(u) becomes (q−1ur)-periodic, and it acquires the phase ϕn;s,m=q,c. This
situation is equivalent to the direct application of the phase ϕn;s,m to an object ψ′(u), periodic in u with
period q−1ur, and originally phase-free. Such an object would have a periodic spectrum Ψ′(U) with period
qUr. This operation could then be understood as emulating a virtual Talbot effect transforming a virtual
object Ψ′(U) into the image Ψ(U), Ur-periodic. Dual Talbot effects can then be used in both time and
frequency domains to construct images from virtual waveforms with arbitrarily-defined repetition periods.
This property is the basis for the universal period control method, proposed and detailed in Section 3.2.

In the following paragraphs, some properties of the Talbot phases of mathematical interest are discussed.

3.1.4.1 Solution set of the Talbot condition

It is interesting to note a few properties of the discrete set of allowed solutions of the Talbot propagator,
identified by the rational values of the fraction q−1p in Eqs. 3.35 and 3.10.

Fig. 3.4(a) illustrates the 866 possible combinations of p and q that give rise to a valid integer (q = 1) or
fractional (q > 1) Talbot condition in the interval {q ∈ N, p ∈ N | 1 ≤ q ≤ 55 1 ≤ p ≤ 25}.

Fig. 3.4(b) shows the (unique) allowed value of q for any given value of q−1p ∈ Q, in the interval
{q−1p ∈ Q | 0 < q−1p ≤ 2}. The 2-periodicity of this solution set in q−1p is consistent with the periodicity
of the Talbot carpet, as the fraction q−1p represents the normalized argument of the Talbot propagator.

Fig. 3.4(c) lists the amount of allowed values of p (i.e, the number of valid Talbot conditions) for a given
q, when q−1p lays in its fundamental period. This, in turn, corresponds to the number of possible solutions
to achieve a period division factor q in the fundamental period of the Talbot carpet9. It is easy to verify
from Fig. 3.4(c) that, for odd values of q, exactly half of the allowed solutions for p are odd, giving rise
to odd values of pq. These solutions correspond to Talbot sub-images with a lateral shift of half a period
(see Eqs. 3.29 and 3.30). Fig. 3.5 shows some pairs of Talbot phases in Fourier-dual domains, where the
mentioned effects can be assessed10.

From the structure of the dual Talbot phase sequence (Eq. 3.19), it is easy to demonstrate that ϕn;s,q and
ϕn;s+2Nq,q are congruent modulo 2π, for any N ∈ Z,

9Note that, in general, multiple values of q−1p may achieve a given period division factor q; e.g., q = 3 allows for p =
{1, 2, 4, 5} in the fundamental period of the Talbot carpet.

10The phase sequences shown in Fig. 3.5 are generated from the analytic expressions developed in this chapter, as well as by
numerically solving the associated Gauss sums (see MATLAB source code in Appendix C).
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Figure 3.4 – Solution set of the Talbot condition. The Talbot propagator only exists for values of p and q satisfying q−1p ∈ Q. (a)
Snapshot of the set of Talbot conditions for {q ∈ N, p ∈ N | 1 ≤ q ≤ 55 1 ≤ p ≤ 25}. (b) Value of q associated to each value of
q−1p, in the interval {q−1p ∈ Q | 0 < q−1p ≤ 2}. (c) Number of allowed values of p for each value of q. Black marks correspond
to even values of pq, while light grey marks correspond to odd values of pq.

ϕn;s+2Nq,q,c = −πs
q
n2 − 2Nπn2 − πc

≡ −πs
q
n2 − πc

= ϕn;s,q,c (3.38)

where it should be noted that, e−i2Nπn
2 ≡ ei2π = 1 ∀ {n,N} ∈ Z.

This is consistent with the fact that the Talbot carpet is 2q-periodic in its longitudinal dimension, ev-
idenced also by Fig. 3.4(b). As such, the solutions for the parameter s are not unique; they are in fact,
periodic, with the fundamental range {s ∈ N | 1 ≤ s ≤ 2q − 1}. Equivalently, when choosing a partic-
ular Talbot phase in the dual domain U , values of p separated by an arbitrary multiple of 2q will result on
congruent values of s (mod 2q), within the fundamental range. Table 3.5 lists the fundamental values of the
parameter s for some combinations of p and q.
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Figure 3.5 – Talbot phases in Fourier-dual domains. Values of φ′k;p,q (mod 2π) and ϕn;s,m,c (mod 2π) are shown in the ranges
{k ∈ Z | 0 ≤ k ≤ 4q} and {n ∈ Z | 0 ≤ n ≤ 4m}, respectively, for each allowed pair {p, q | q−1p ∈ Q}. Results for
ϕn;s,m,c (mod 2π) are included for the case c = 0.

3.1.4.2 Similarity

A particularly interesting Talbot self-image is the one corresponding to the condition p = q ± 1. It can be
shown that in this situation, s = p (see main diagonal in Table 3.5), which implies that, if the constant c
is neglected (recall that, from a practical viewpoint, this parameter does not contribute significantly to the
structure of the image ψ′(u)), the discrete phase profiles along the two Fourier-related domains have identical
expressions (except for the opposite sign). That is,

φ′k;q±1,q ≡ −ϕk;s,q,c=0 ∀ {q ∈ N | q > 1} (3.39)

where the variable change n ← k is only necessary to compare the structure of both sequences on equal
grounds.

3.1.4.3 Periodicity along Fourier-dual representation domains

From the self-imaging theory, the Talbot phases are expected to be q-periodic in both k and n [100]. In order
to verify this, it suffices to evaluate the sequences in k ← k + q and n← n+ q. For the sequence in k,
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Table 3.5 – Values of the coefficients of the Talbot phases in Fourier-dual domains. Values of s (mod 2q) for different values of
p and q.

p

1 2 3 4 5 6 7 8 9 10

q

2 1 3 1 3 1
3 4 2 4 2 4 2 4
4 1 3 5 7 1
5 6 8 2 4 6 8 2 4
6 1 5 7
7 8 4 12 2 10 6 8 4 12
8 1 11 13 7 9
9 10 14 16 2 4 8 10
10 1 7 3 9
11 12 6 4 14 20 2 8 18 16 10

φ′k+q;p,q = π
p

q
(k + q)2

= π
p

q
k2 + 2πpk + πpq

≡ π
p

q
k2 + πpq

= φ′k;p,q + πpq (3.40)

where, once more, Euler’s identity implies ei2πpk ≡ ei2π = 1 ∀ {k ∈ Z, p ∈ N}; and, similarly, the sequence
in n,

ϕn+q;s,q,c ≡ ϕn;s,q,c + πsq (3.41)

The periods of the Talbot phases in U and u depend on the parity of the products pq and sq respectively.
For the phase sequence in U , the hypothesis of q-periodicity holds only when pq ∈ E. If pq ∈ O, the period
of the sequence φ′k;p,q is equal to 2q. This discrepancy is explained by the fact that the extra net π factor in
φ′k;p,q when pq ∈ O introduces a shift in the u domain by half of the input period (represented in Eq. 3.29 by
of the factor 2−1pur), a phenomenon that has been referred to as ‘inverted’ Talbot effect11 [56].

For the phase sequence in the u domain, it should be noted that, from Table 3.3, q ∈ O =⇒ s ∈ E,
necessarily. This implies that all of the Talbot images in u verify sq ∈ E, and the sequence ϕn;s,q,c is always
q-periodic. This is consistent with the fact that the comb in the U domain is not expected to undergo any
additional shift by the application of the Talbot propagator.

11Note that, although this lateral shift is observed when pq ∈ O, a shift of half an input period when q ∈ E, even if p ∈ O,
does not introduce any shift at all to an infinitely-periodic object (for any value of p). This is because the input period, ur , is an
even multiple of the output one q−1ur . The factor 2−1pur in Eq. 3.29, including only the parameter p, is sufficient to model this
effect, although, if it serves to facilitate interpretation, it can also be written as 2−1pqur , or εp2−1ur , where εp is the parity of p
(see Eq. 3.28).
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These findings on the periodicity of the Talbot phases can be easily assessed from Fig. 3.5.

3.2 Universal periodicity control model

The results reported in the previous Section, in particular, the expressions of Talbot phase sequences in
domains related by a Fourier transform, provides a starting point for a general method to arbitrarily tailor
the period of any repetitive waveform. Periodic trains of pulses and frequency combs (their frequency-
domain counterpart) are particularly interesting examples of periodic signals, with intrinsic relevance and
deep implications in a myriad of scientific and technological disciplines12.

The goal here is to obtain an output pulse train (frequency comb) with a pulse repetition period (FSR)
multiplied (divided) by a factor r ∈ Q, defined by the interplay of Talbot conditions, where r can, in
principle, be any rational factor lower or higher than 1.

This Section presents a step-by-step description of a universal method to arbitrarily set the period of
any periodic waveform, observable in a wave representation domain where the Fourier transform is defined
(see Table 3.4). The method is formulated in the time/frequency picture, in the context of periodic trains of
pulses and frequency combs, although direct application of the space-time duality13 suffices for an equivalent
formulation in the space/momentum picture of spatial images and angular spectra [96].

3.2.1 Signal definitions

Similarly to the development in Section 3.1.1, the definitions of the original signal of interest and its Fourier
transform are,

ψ(t) :=
∞∑

n=−∞

“ψ (t− ntr) (3.42)

Ψ(ν) :=
∞∑

k=−∞
ckδ (ν − kνr) (3.43)

where,

tr is the pulse repetition period of the train,
νr = t−1

r is the free spectral range (FSR) of the comb,
“ψ : R→ C is the complex amplitude of a single pulse, so that “ψ(t) = 0 ∀ |t| > tr/2,

ck = νr “Ψ(kνr) is the complex weight of the k-th delta of the comb, with “Ψ(ν) = F{ “ψ(t)}.

Note that in this case, the Fourier transform is done in linear frequency, ν, instead of radial frequency,
ω = 2πν. This choice of variables is simply a matter of convenience, as it is common when working with
frequency combs and pulse trains to define quantities such as the FSR and the repetition rate in Hz, rather
than in rad/s, while the use of the radial frequency variable in Section 3.1.1 allowed for simpler expressions
of the Fourier transforms obtained through the mathematical developments.

12Consult chapter 1 for a detailed review on the applications of temporally- and spectrally-periodic signals.
13For a review of the space-time duality, consult Appendix B.
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Fig. 3.6 illustrates the relationship between a periodic train of pulses (Eq. 3.42, Fig. 3.6(a)) and its
frequency comb representation (Eq. 3.43, Fig. 3.6(b)).

Figure 3.6 – Relationship between a train of pulses and its
frequency comb representation. A periodic train of pulses
(a) with pulse repetition period tr has a spectrum in the form
of a coherent frequency comb (b) with FSR νr = t−1

r . The re-
lation between the different parameters of Eqs. 3.42 and 3.43
is illustrated. The shown representation deals with the com-
plex envelope of the involved signals; the underlying carrier
frequency is not shown for simplicity of representation.

(b)

(a)

3.2.1.1 Power distributions

It will be useful in the following, to introduce some definitions relative to the power distributions of ψ(t) and
Ψ(ν). In particular, the instantaneous power of ψ(t) – the energy per unit time14 carried by the train – is de-
fined as ψ∗(t)ψ(t). For a single pulse, the instantaneous power is “ψ∗(t) “ψ(t), where the maximum is referred
to as the peak power, Pt := max

t∈R
{ψ∗(t)ψ(t)} = max

t∈R
{ “ψ∗(t) “ψ(t)}. On the other hand, Ψ∗(ν)Ψ(ν) gives

the power per unit frequency, i.e., the amount of energy per time delivered by each frequency component of
ψ(t), and it is referred to as its power spectrum. Similarly, a measure of peak spectral power of the comb
can be defined in the frequency domain as Pν := max

ν∈R
{Ψ∗(ν)Ψ(ν)} = max

k∈Z
{c∗kck}. Note that, in the limit

case, “ψ(t) = δ(t) =⇒ Pν = ν2
rPt. As a remark, since ψ(t) and Ψ(ν) are Fourier conjugates, Parseval’s

theorem holds, and the energy per pulse can be calculated either from the complex envelope15 “ψ(t), or from
the complex coefficients of Ψ(ν), ck = νr “Ψ(kνr),

1
tr

∫ ∞
−∞

“ψ∗(t) “ψ(t) dt =
∞∑

k=−∞
c∗kck (3.44)

14Not to be confused with intensity, which is power per unit area. Here, all the energy is assumed to be coupled to a single spatial
mode.

15Note that, as per the definition of “ψ(t),∫ ∞
−∞

“ψ∗(t) “ψ(t) dt =
∫ t0+tr

t0

ψ∗(t)ψ(t) dt

where t0 is an arbitrary point in the domain of definition of ψ(t).
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For periodic trains of pulses, it is convenient to also define the average power, Pavg as the mean rate of
energy flow per pulse period. Given a pulse train with repetition period tr, and pulse duration ∆t, in the first
approximation – for a pulse with a rectangular shape – the average power writes,

Pavg = ∆t
tr
Pt (3.45)

Fig. 3.7 illustrates the relationship between the mentioned parameters for a periodic train of rectangular
pulses.

Figure 3.7 – Relation between power and time parameters on periodic
signals. Relationship between pulse duration (∆t), repetition period (tr),
energy per pulse (Ep) and pulse peak power (Pt), for a periodic sequence
of rectangular pulses.

Note that the peak power can then be written as the energy per pulse, Ep, per unit time,

Pt = Ep
∆t (3.46)

and the fraction of time occupied by the pulse, known as duty cycle, τc, can be defined as,

τc := ∆t
tr

= Pavg

Pt
(3.47)

3.2.2 Talbot propagators for periodic trains of pulses and frequency combs

The temporal and spectral Talbot propagators, as described in Eqs. 2.45 and 2.48, respectively, involve mod-
ifications of the spectral and temporal phase profiles of the periodic signal of interest, that follow quadratic
variations with the frequency and time variables, respectively. It is convenient, however, to define discrete
Talbot propagators for periodic signals, providing the constant phase level to be applied to each individual
comb line or pulse of the train. This is possible by using the definitions of the spectral and temporal Talbot
phases, φk;p,q and φk;s,m,c, given in Eqs. 3.10 and 3.19, respectively. These are the basic building blocks of
the periodicity control method proposed in this section.

3.2.2.1 The discrete temporal Talbot propagator

From Eq. 3.10, the phase level to be applied to the k-th line of a frequency comb to observe any temporal
Talbot (sub-)image is16,

16The notation of the Talbot phase sequence in k is simplified here for convenience.

55



Chapter 3. Generalized Talbot effect

φk;p,q := ςφ′k;p,q

= ςπ
p

q
k2 (3.48)

where ς = ±1. In particular, if the effect is achieved through propagation of the periodic signal of interest
through a second-order dispersive medium of length z and second-order dispersion coefficient β2, then ς =
sgn{β2}, where sgn{·} is an operator that returns the sign of its argument, so that,

sgn{a} :=


−1 ⇐⇒ a < 0

0 ⇐⇒ a = 0
+1 ⇐⇒ a > 0

(3.49)

In this situation (as stated in Section 2.4.2), the total amount of second-order dispersion satisfies the
temporal Talbot condition,

2π|β2|z = p

q
t2r (3.50)

The discrete operator responsible for temporal Talbot effect writes, then,

{HTSI}k;p,q := eiφk;p,q (3.51)

Application of this propagator to the frequency comb spectrum of a tr-periodic train of pulses, produces
a new pulse train with period q−1tr, affected by the pulse-to-pulse phase profile described in Eq. 3.19 (where
s is calculated from Eq. 3.27).

This operation is a quadratic spectral phase filtering (SPF) transformation. For optical waves, as stated
above, the operation can be achieved through GVD propagation [56], or through a specially-designed multi-
level optical phase filter, following the values of the sequence φk;p,q at k-multiples of νr [100].

3.2.2.2 The discrete spectral Talbot propagator

Since, as demonstrated in Section 3.1, the phase sequence ϕn;s,q,c (Eq. 3.19) satisfies the general Talbot
condition. As such, neglecting a constant phase term (constant c in Eq. 3.29), the phase level to be applied
to the n-th pulse of a pulse train to observe any spectral Talbot (sub-)image is17,

ϕn;s,q := ςϕn;s,m=q,c=0

= −ςπ s
q
n2 (3.52)

17The notation of the Talbot phase sequence in n is simplified here for convenience.
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The discrete operator responsible for spectral Talbot effect writes, then,

{HSSI}n;s,q := eiϕn;s,q (3.53)

Application of this propagator to the pulse train representation of a νr-periodic frequency comb, produces
a new comb with period q−1νr, affected by the line-to-line phase profile described in Eq. 3.10 (where p is
calculated from Eq. 3.27).

For optical waves, this operator can be practically implemented as electro-optical temporal phase modu-
lation (TPM) of the input signal with a multilevel voltage driving signal following the values of the sequence
ϕn;s,q at n-multiples of tr. Additionally, for pulses with sufficiently short temporal durations, the sequence
ϕn;s,q can be approximated by a continuous function of time, provided that the phase variations within a
single pulse are slow enough to be considered constant. Nonlinear cross-phase modulation with parabolic-
shaped pump pulses has been demonstrated as a successful candidate of this operation with ps-wide optical
pulses [OPj7].

3.2.2.3 The Talbot propagator as a transformation on the Talbot carpet

The application of a specific Talbot phase can be interpreted as a displacement from one point in the Talbot
carpet to a different one. This visual way of interpreting the effect is particularly useful to picture the
transformations involved in the model for periodicity control reported in the following.

To illustrate this, let us consider a train of pulses with period tr, to which we apply a temporal Talbot
phase ϕn;s,m (from Equation 3.52), satisfying a spectral Talbot condition for the pair {s, q} ∈ N, and
q−1s ∈ Q.

Fig. 3.8 shows the effect of such a phase transformation along the spectral and temporal amplitude Talbot
carpets.

The applied temporal phase transports the plane 0 to the plane q−1s in the spectral carpet, dividing the
input FSR by q (as shown in the bottom plot of Fig. 3.8).

The outcome of this temporal phase modulation is then a spectral Talbot effect. The input pulse period
remains unaltered, but the applied temporal phase emulates the effect of dispersive propagation of a virtual
pulse train with original period qtr, to the temporal sub-image q−1p (as shown in the top plot of Fig. 3.8).
This corresponds to a spectral phase φk;p,m (from Eq. 3.48), acquired by the FSR-divided comb.

The applied temporal phase has then the effect of selecting a sub-image, q−1p, in a virtual temporal
carpet where the period of the virtual pulse train at the input – plane 0 – is q times the period of the real pulse
train under analysis (see Fig. 3.8, top).

Equivalently, this corresponds to a displacement on the spectral carpet to a, generally different, sub-image
q−1s. Note that while the denominator, q, is the same in both domains, in general, p 6= s.

The dual situation, i.e., temporal Talbot effect, would be produced by the spectral phase filtering of a
frequency comb with a Talbot phase sequence φk;p,q. In such case, the resulting transformations would be
the selection of the sub-image q−1s in a virtual spectral Talbot carpet with an input FSR q times larger than
that of the real comb under analysis; and a displacement on the temporal carpet to the sub-image q−1p, where
generally, s 6= p.
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(virtual)

(input)

Displacement

Virtual displacement Selection

Acquired phase

Emulated sub-image

Obtained sub-image

Figure 3.8 – The Talbot propagator as a transformation in the Talbot carpet. The temporal phase ϕn;s,m, applied to a train of
pulses with period tr (top), produces the sub-image q−1s of a fractional spectral Talbot effect (bottom). Moreover, the output train
behaves as the sub-image q−1p of a virtual temporal Talbot carpet with fundamental period qtr (as illustrated in the top figure). As
such, the output q−1νr-periodic comb acquires the spectral phase φn;p,q . Note that, in general, p 6= s; in the given example, s = 2
and q = 3, resulting in p = 5 (see Table 3.5).

3.2.3 Phase-controlled Talbot effects

The time-frequency duality of the Talbot effect is the key to achieve an arbitrary control of the repetition
period of a pulse train or a frequency comb. For this purpose, one simply must find and apply the right recipe
of Talbot phases to transform a pulse train (frequency comb) into a new one with an arbitrary, user-defined
pulse period (FSR).

The method can be intuitively understood from Fig. 3.8, where one could design a combination of Tal-
bot phases to select a specific Talbot (sub-)image, and then induce a displacement to a different Talbot
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(sub-)image with different period in the same carpet. The transformations required to achieve such arbitrary
control of periodicity are detailed in this Section.

Two different, though equivalent, methods can be designed for this purpose. These two methods differ
by the order on which the specific Talbot phases are applied. Here the are referred to as phase-controlled
temporal Talbot method (PCTTM) and phase-controlled spectral Talbot method (PCSTM).

3.2.3.1 Phase-controlled temporal Talbot method

This Section describes a method to transform a train of optical pulses with period tr into a new train with
period rtr, where the multiplication factor of the repetition period, r, can be any irreducible fraction of the
form r = q−1

2 q1 ∀ {q1 ∈ N, q2 ∈ N | q−1
2 q1 ∈ Q}, i.e., r is the ratio of two co-prime natural numbers.

If the transformation is entirely completed, in the frequency domain, this translates into a division of the
corresponding frequency comb FSR by the factor r, i.e., from νr = t−1

r to r−1νr.

Different combinations of temporal and spectral Talbot phases could be designed to achieve the same
multiplication factor; i.e., different values of the parameters p, q, s andm in Eqs. 3.48 and 3.52. This Section
describes the general solution of the problem and then provides guidelines to achieve particular solutions that
minimize the displacement on the temporal Talbot carpet (corresponding to the case of minimum required
dispersion in a practical implementation).

General solution

The general phase-controlled temporal Talbot method is summarized in Figure 3.9. Recall that the goal
here is to transform a train of pulses with period tr into a new train with period rtr, where r = q−1

2 q1.

Figure 3.9 – Phase-controlled temporal Talbot method. Steps to transform a train of pulses with period tr into a new train with
period rtr , with r = q−1

2 q1, through the application of Talbot phases. In the frequency domain, the corresponding frequency comb
representation of the train, with FSR νr is transformed into a new comb with FSR r−1νr . In the illustrated example, r = 5/2.

As such, the method consists of the following four steps.
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0. Input. The starting point is a train of pulses with period tr, corresponding to a frequency comb with
FSR νr = t−1

r (Fig. 3.9(0)). From Eqs. 3.42 and 3.43,

ψ0(t) :=
∞∑

n=−∞

“ψ (t− ntr) (3.54)

Ψ0(ν) :=
∞∑

k=−∞
ckδ (ν − kνr) (3.55)

The power distributions (see Section 3.2.1.1),

ψ∗0(t)ψ0(t) =
∞∑

n=−∞

∣∣∣ “ψ (t− ntr)
∣∣∣2 (3.56)

Ψ∗0(ν)Ψ0(ν) =
∞∑

k=−∞
|ck|2 δ (ν − kνr) (3.57)

and thus, the values of peak power in time and frequency are,

Pt = max
t∈R
{ψ∗0(t)ψ0(t)} (3.58)

Pν = max
k∈Z
{c∗kck} (3.59)

1. TPM1 (temporal phase modulation 1). A spectral Talbot propagator of the form {HSSI}n;s1,q1 (Eq. 3.53)
is applied to ψ0(t), inducing a spectral Talbot effect described by the Talbot condition {s1, q1}. This
corresponds to a temporal phase modulation with the sequence ϕn;s1,q1 (Eq. 3.52).

Choosing ς = 1,

ψ1(t) =
∞∑

n=−∞

“ψ (t− ntr) e
−iπ s1

q1
n2

(3.60)

Ψ1(ν) = eiπc1

√
q1

∞∑
k=−∞

ckδ

(
ν − kνr

q1
+ s1

νr
2

)
e
iπ
p1
q1
k2

(3.61)

where c1 is the constant phase term in the frequency domain, associated to the application of the Talbot phase
ϕn;s1,q1 .

The power distributions,
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ψ∗1(t)ψ1(t) =
∞∑

n=−∞

∣∣∣ “ψ (t− ntr)
∣∣∣2 (3.62)

Ψ∗1(ν)Ψ1(ν) = 1
q1

∞∑
k=−∞

|ck|2 δ
(
ν − kνr

q1
+ s1

νr
2

)
(3.63)

TPM1 does not alter the instantaneous power of the train, as it simply involves the application of a
temporal phase profile. The associated power spectrum, however, is affected by this operation, as different
frequency components of the comb are shifted due to the effect of the spectral Talbot propagator. The FSR of
the resulting comb is q−1

1 νr, while the pulse period remains equal to tr (Fig. 3.9(1)). Similarly, the resulting
peak powers of the train and the comb are Pt and q−1

1 Pν , respectively.

2. SPF1 (spectral phase filtering 1). As a result of TPM1, Ψ1(ν) acquired a line-to-line spectral phase pro-
file, φk;p1,q1 , associated to the Talbot condition {p1, q1} (Eq. 3.48). As anticipated in Section 3.2.2.3,
this result is equivalent to the action of a temporal Talbot propagator of the form {HTSI}k;p1,q1 on a
virtual comb with FSR q−1

1 νr. In the time domain, ψ1(t) resembles a Talbot sub-image, obtained from
a virtual train with period q1tr.

Application of the propagator {HTSI}∗k;p1,q1
(spectral phase profile−φk;p1,q1) to Ψ1(ν), cancels the resid-

ual spectral line-to-line phases induced by TPM1.

ψ2(t) = √
q1e

iπc1
∞∑

n=−∞
(−1)nq1s1 “ψ (t− nq1tr) (3.64)

Ψ2(ν) = eiπc1

√
q1

∞∑
k=−∞

ckδ

(
ν − kνr

q1
+ s1

νr
2

)
(3.65)

where the term (−1)nq1s1 introduces an additional phase factor associated to the lateral shift experienced by
the comb when s1q1 ∈ O. This term arises from the frequency shift property of the Fourier transform, which
introduces a term ei2πs1

νr
2 t to ψ2(t), and, due to the sampling property of Dirac deltas, results in (−1)nq1s1 .

The power distributions,

ψ∗2(t)ψ2(t) = q1

∞∑
n=−∞

∣∣∣ “ψ (t− nq1tr)
∣∣∣2 (3.66)

Ψ∗2(ν)Ψ2(ν) = 1
q1

∞∑
k=−∞

|ck|2 δ
(
ν − kνr

q1
+ s1

νr
2

)
(3.67)

The power spectrum is not altered by SPF1. The pulse period of the train, however, is multiplied by q1
due to the cancellation of spectral phases, becoming q1tr (Fig. 3.9(2)). Conservation of energy ensures that
the peak power values in time and frequency are q1Pt and q1Pν , respectively. The energy of the original train
is redistributed into a train with a larger pulse spacing. Since no additional power was added nor was any
subtracted from the train, the average power must remain unchanged. The energy per pulse must, in turn,
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increase, thus resulting in the obtained peak power enhancement by q1. This effect has been referred to as
passive Talbot amplification [57].

Note that this process can be implemented as linear dispersive propagation, and the required amount of
GVD, β2z, can be calculated by substituting p← p1, q ← q1 and tr ← q1tr in Equation 3.50.

If the desired temporal period multiplication factor is integer, this is the final step, and r = q1.

3. SPF2 (spectral phase filtering 2). At this point, Ψ2(ν) is free of line-to-line phase variations, but its
FSR is q−1

1 νr. As such, application of a new temporal Talbot propagator of the form {HTSI}k;p2,q2

(spectral phase profile φk;p2,q2) to Φ2(ν) produces a temporal self-image, satisfying the Talbot condi-
tion {p2, q2} for an input period q1tr.

ψ3(t) =
√
q1
q2
eiπ(c1+c2)

∞∑
n=−∞

(−1)nq1s1 “ψ
(
t− nq1

q2
tr + p2q1

tr
2

)
e
−iπ s2

q2
n2

(3.68)

Ψ3(ν) = eiπc1

√
q1

∞∑
k=−∞

ckδ

(
ν − kνr

q1
+ s1

νr
2

)
e
iπ
p2
q2
k2

(3.69)

where c2 is the constant phase term in the time domain, associated to the application of the Talbot phase
φn;p2,q2 .

The power distributions,

ψ∗3(t)ψ3(t) = q1
q2

∞∑
n=−∞

∣∣∣∣ “ψ
(
t− nq1

q2
tr + p2q1

tr
2

)∣∣∣∣2 (3.70)

Ψ∗3(ν)Ψ3(ν) = 1
q1

∞∑
k=−∞

|ck|2 δ
(
ν − kνr

q1
+ s1

νr
2

)
(3.71)

The application of a second spectral phase φk;p2,q2 divides the temporal repetition period of the train
obtained after SPF1 by the factor q2. If q1 and q2 are mutually-prime natural numbers, the overall effect is
the multiplication of the input pulse period by the fraction r = q−1

2 q1 (Fig. 3.9(3)). Note that, depending of
the designed values of q1 and q2 this factor can be either higher or lower than 1. Similarly, the resulting peak
powers of the train and the comb are q−1

2 q1Pt and q−1
1 Pν , respectively.

If the desired outcome is the multiplication of the pulse period of ψ0(t) by the factor r, regardless of the
value of the corresponding frequency comb, no further steps are necessary.

As a note on implementation, since the application of the temporal Talbot propagator does not alter the
FSR of the comb in the frequency domain, the two consecutive spectral phase filtering steps, SPF1 and SPF2,
can be combined into a single operation,

φk;p2,q2 − φk;p1,q1 ≡ φk;p2q1−p1q2,q1q2

= π
p2q1 − p1q2

q1q2
k2 (3.72)
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If this process is implemented as GVD propagation, the total amount of dispersion can always be de-
signed to be smaller than the sum of the magnitudes of both dispersive propagation steps taken indepen-
dently. This is due to the fact that the sign of φk;p2,q2 can be chosen arbitrarily, and the sign of φk;p1,q1 is
determined by the sign of ϕn;s1,q1 , which can be set arbitrarily as well.

4. TPM2 (temporal phase modulation 2). Finally, ψ3(t) has uncompensated pulse-to-pulse phase vari-
ations, of the form ϕn;s2,q2 . This is due to the fact that ψ3(t), is a temporal Talbot sub-image of
ψ2(t). Application of a new spectral Talbot propagator of the form {HSSI}∗n;s2,q2 (spectral phase pro-
file −ϕn;s2,q2) to ψ3(t), compensates for the mentioned phase variations.

ψ4(t) =
√
q1
q2
eiπ(c1+c2)

∞∑
n=−∞

(−1)nq1s1 “ψ
(
t− nq1

q2
tr + p2q1

tr
2

)
(3.73)

Ψ4(ν) =
√
q2
q1
eiπ(c1+c2)

∞∑
k=−∞

(−1)nq2p2ckδ

(
ν − kq2

q1
νr + s1

νr
2

)
(3.74)

The power distributions,

ψ∗3(t)ψ3(t) = q1
q2

∞∑
n=−∞

∣∣∣∣ “ψ
(
t− nq1

q2
tr + p2q1

tr
2

)∣∣∣∣2 (3.75)

Ψ∗3(ν)Ψ3(ν) = q2
q1

∞∑
k=−∞

|ck|2 δ
(
ν − kq2

q1
νr + s1

νr
2

)
(3.76)

Application the variable changes t′ ← t+ p2q1tr/2 and ν ′ ← ν + s1νr/2, results in the power distribu-
tions,

ψ∗4(t′)ψ4(t′) = r
∞∑

n=−∞

∣∣∣ “ψ
(
t′ − nrtr

)∣∣∣2 (3.77)

Ψ∗4(ν ′)Ψ4(ν ′) = 1
r

∞∑
k=−∞

|ck|2 δ
(
ν ′ − kνr

r

)
(3.78)

The global outcome of the method is, as anticipated, the transformation of a pulse train (frequency
comb) with pulse period tr (FSR νr) into a new train (comb) with period rtr (FSR r−1νr), where r = q−1

2 q1.
Consequent transformations of the peak powers of the train and comb to rPt and r−1Pν , respectively, are
also achieved.

Table 3.7 summarizes the general solution of the PCTTM, and Fig. 3.10 shows the involved transforma-
tions on the temporal Talbot carpet for a particular example with r = 5/2.

Fig. 3.11 shows a step-by-step numerical simulation example, illustrating the results of the application
of the PCTTM to multiply the repetition period of a pulse train by the factor r = 5/2 = 2.5 (and the FSR of
its corresponding frequency comb representation by r−1 = 2/5 = 0.4).
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Table 3.7 – Phase-controlled temporal Talbot method, general solution. Summary of parameters and outcomes of each step of the
phase-controlled temporal Talbot method with pulse period multiplication factor r = q−1

2 q1 (and corresponding FSR multiplication
factor r−1 = q−1

1 q2). The listed values ensure an output signal free of temporal and/or spectral Talbot phase variations.

0. Input 1. TPM1 2. SPF1 3. SPF2 4. TPM2

Applied Talbot phase ϕn;s1,q1
a −φk;p1,q1

b φk;p2,q2
c −ϕn;s2,q2

d

Pulse repetition period
Time domain

tr tr q1tr q−1
2 q1tr q−1

2 q1tr

Free spectral range
Frequency domain

νr q−1
1 νr q−1

1 νr q−1
1 νr q−1

1 q2νr

a s1 is a free parameter.
b p1 is obtained from Eq. 3.27 with {s← s1, q ← q1}.
c p2 is a free parameter.
d s2 is obtained from Eq. 3.27 with {p← p2, q ← q2}.

SPF2
SPF1

TPM1TPM2

Figure 3.10 – Phase-controlled temporal Talbot method, temporal Talbot carpet. Phase transformations of the PCTTM shown
as movements in the temporal Talbot carpet. Shown example for r = 5/2.

Note that the problem reduces to the calculation of four Talbot conditions. Since there are, in general,
several allowed values of p (or s) for each value of q, many configurations of the method are possible to
achieve a desired value of r. The parameters s1 and p2 can be set freely18. This implies that several solutions
to the method can be found for a desired period multiplication factor.

Particular solution for minimum dispersion

It is interesting to look for solutions that minimize the total displacement on the temporal Talbot carpet,
since such solutions achieve a minimal required amount of dispersion19. From an implementation perspec-
tive, this is an attractive design specification, as it minimizes the total propagation length and, in turn, the
associated propagation loss.

18The only restrictions to setting these parameters are that s1 and q1 must be mutually-prime, and p2 and q2 must be mutually-
prime.

19This is the case when the spectral phase filtering (SPF) steps are implemented by GVD propagation.
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Figure 3.11 – Phase-controlled temporal Talbot method, simulation example. Step-by-step numerical simulation of the method
with multiplication factor r = 5/2 = 2.5; (a) amplitude and (b) phase of the temporal train of pulses; (c) amplitude and (d) phase
of the corresponding frequency comb spectrum. In this simulation, Gaussian pulses with a full width at half maximum equal to a
30-th of the pulse repetition period are used for ease of interpretation (this produces a frequency comb with a power distribution that
is mostly flat within the chosen spectral representation window).

From Eq. 3.50 and Table 3.7, the magnitude of the total required dispersion to achieve the desired period
multiplication factor is,

2π|β2|z =
∣∣∣∣p2
q2
− p1
q1

∣∣∣∣ (q1tr)2 (3.79)

recall that p1 is determined by the values of q1 and s1.

The solution with minimum dispersion minimizes Eq. 3.79 for the parameters p1 and p2. Renaming
d := 2π |β2| z,

d =
∣∣∣∣p2
q2
− p1
q1

∣∣∣∣ q2
1t

2
r (3.80)

Rearranging terms, Eq. 3.80 rewrites,

|p2q1 − p1q2| =
q2
q1

d

t2r
(3.81)
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Bézout’s identity states that given two nonzero integers, q1 and q2, with greatest common divisor g, there
exist integers p2 and p1 such that [101],

p2q1 − p1q2 = g (3.82)

Note that g is the smallest20 natural number that can be written as p2q1 − p1q2. Since q1 and q2 are
mutually-prime, their greatest common divisor is g = 1. Using Eq. 3.82 in Eq. 3.81, gives the minimum
value of d,

min
p1,p2
{d} = q1

q2
t2r (3.83)

and the minimum dispersion is,

2π|β2|z = q1
q2
t2r (3.84)

The minimum required dispersion is then fixed by the period multiplication factor, r = q−1
2 q1, and the

input temporal period, tr. The associated Bézout coefficients, p2 and p1, that satisfy Eq. 3.82 are determined
by the standard extended Euclidean algorithm [101]. Given the specifications for the input period and the de-
sired multiplication factor, r, the parameters of the phase-controlled temporal Talbot method with minimum
dispersion are obtained as follows,

0. Specifications of the method: r = q−1
2 q1, and tr. The minimum dispersion is given by Eq. 3.84.

1. Determine p1 and p2 from Eq. 3.82 with g = 1, using the standard extended Euclidean algorithm.

2. Determine s1 from p1 and q1, using Eq. 3.27.

3. Determine s2 from p2 and q2, using Eq. 3.27.

It is interesting to note that, since q1 and q2 are mutually-prime naturals, the minimum dispersion value
satisfies a fractional temporal Talbot condition for the input period tr. In particular, in the absence of the first
temporal phase modulation step, TPM1, the method will produce a train of pulses with period q−1

2 tr.

3.2.3.2 Phase-controlled spectral Talbot method

This Section describes an alternative version (although equivalent in result) to the method described in the
previous Section. The goal here is to transform a frequency comb with FSR νr into a new comb with FSR
r−1νr, this time, through transformations along the spectral Talbot carpet. Recall that r = q−1

2 q1 ∀ {q1 ∈
N, q2 ∈ N | q−1

2 q1 ∈ Q}, i.e., r is the ratio of two co-prime natural numbers.

Similarly to the PCTTM, if the transformation is entirely completed, in the time domain, this translates
into a multiplication of the corresponding pulse repetition period by the factor r, i.e., from tr = ν−1

r to rtr.

Also, similarly to the previous method, a number of specifications can be adjusted freely in the calcu-
lation of the Talbot phases to achieve a desired value of r, leading to many different possible values for the
main design parameters.

20The Bézout coefficients, p2 and p1, are not unique, and every integer of the form p2q1 − p1q2 is a natural multiple of g
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This Section describes the general solution of the problem and then provides guidelines to achieve par-
ticular solutions that minimize the displacement on the temporal Talbot carpet (corresponding to the case of
minimum required dispersion in a practical implementation).

General solution

The general phase-controlled spectral Talbot method is summarized in Fig. 3.12. Recall that the goal
here is to transform a frequency comb with FSR νr into a new comb with FSR r−1νr, where r = q−1

2 q1.

Figure 3.12 – Phase-controlled spectral Talbot method. Steps to transform a frequency comb with FSR νr into a new comb
with period r−1νr , with r = q−1

2 q1, through the application of Talbot phases. In the time domain, the corresponding pulse train
representation of the comb, with pulse period tr is transformed into a new train with period rtr . In the illustrated example, r = 5/2.

As such, the method consists of the following four steps.

0. Input. The starting point of the method is a frequency comb with FSR νr, corresponding to a train of
optical pulses with period tr = ν−1

r (Figure 3.12(0)).

1. SPF1 (spectral phase filtering 1). The input comb is phase-filtered with the sequence φk;p2,q2 . The
resulting pulse train has a period q−1

2 tr, while the comb FSR remains equal to νr (Fig. 3.12(1)).

2. TPM1 (temporal phase modulation 1). The acquired temporal phase is canceled by a phase modulation
mechanism with the opposite phase profile, −ϕn;s2,q2 . The result is a flat-phase comb with FSR q2νr
(Fig. 3.12(2)). If the desired FSR multiplication factor is integer, this is the final step. The parameter
s2 is given by Equation 3.27 (with s← s2, p← p2 and q ← q2).

3. TPM2 (temporal phase modulation 2). A second temporal phase ϕn;s1,q1 divides the FSR by q1. If q2
and q1 are mutually-prime natural numbers, the overall effect is the division of the input FSR by the
rational factor r = q−1

2 q1, resulting in r−1νr (Fig. 3.12(3)).

4. SPF2 (spectral phase filtering 2). The residual spectral phases, acquired due to the application of
TPM2, can be canceled out by the application of an additional all-pass filtering step, corresponding to
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−φk;p1,q1 , where p1 is given by Equation 3.27 (with s← s1, p← p1 and q ← q1). The obtained pulse
period is rtr (Fig. 3.12(4)).

As a note on implementation, since the application of the spectral Talbot propagator does not alter the
pulse period of the train in the time domain, the two consecutive temporal phase modulation steps, TPM1
and TPM2, can be combined into a single operation,

ϕn;s1,q1 − ϕn;s2,q2 ≡ ϕk;s1q2−s2q1,q1q2

= −πs1q2 − s2q1
q1q2

n2 (3.85)

The global outcome of the method is, as anticipated, the transformation of a frequency comb (pulse train)
with FSR νr (pulse period tr) into a new comb (train) with FSR r−1νr (pulse period rtr), where r = q−1

2 q1.
Consequent transformations of the peak powers of the comb and train to r−1Pν and rPt, respectively, are
also achieved.

Similarly to the temporal method, step 4 (SPF2) is only necessary if one wishes to obtain a phase-
free frequency comb and/or to control the pulse train temporal period. If the objective is only to set the
comb FSR, regardless of the pulse period, this step can be omitted. If included, however, it becomes clear
that both realizations of phase-controlled Talbot effects achieve identical results through different sets of
transformations in the temporal and spectral Talbot carpets. Both methods are then equivalent from a signal
processing perspective.

Table 3.8 summarizes the general solution of the PCSTM, and Fig. 3.13 shows the involved transforma-
tions on the spectral Talbot carpet for a particular example with r−1 = 5/2.

Table 3.8 – Phase-controlled spectral Talbot method, general solution. Summary of parameters and outcomes of each step
of the phase-controlled spectral Talbot method with FSR multiplication factor r−1 = q−1

1 q2 (and corresponding pulse period
multiplication factor r = q−1

2 q1). The listed values ensure an output signal free of temporal and/or spectral Talbot phase variations.

0. Input 1. SPF1 2. TPM1 3. TPM2 4. SPF2

Applied Talbot phase φk;p2,q2
a −ϕn;s2,q2

b ϕk;s1,q1
c −φk;p1,q1

d

Pulse repetition period
Time domain

tr q−1
2 tr q−1

2 tr q−1
2 tr q−1

2 q1tr

Free spectral range
Frequency domain

νr νr q2νr q−1
1 q2νr q−1

1 q2νr

a p2 is a free parameter.
b s2 is obtained from Eq. 3.27 with {p← p2, q ← q2}.
c s1 is a free parameter.
d p1 is obtained from Eq. 3.27 with {s← s1, q ← q1}.

Once again, the problem reduces to the calculation of four Talbot conditionswith two degrees of freedom
(s1 and p2).

Particular solution for minimum dispersion
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TPM2

TPM1

SPF 1 SPF 2

Figure 3.13 – Phase-controlled spectral Talbot method, spectral Talbot carpet. Phase transformations of the PCSTM shown as
movements in the spectral Talbot carpet. Shown example for r−1 = 5/2.

In this version of the method, the two spectral phase filtering steps, SPF1 and SPF2, are not consecutive.
The total required dispersion is then obtained by adding the magnitudes of both dispersion steps (i.e., without
sign). From Eq. 3.50 and Table 3.8,

2π|β2|z = p2
q2
t2r + p1

q1

(
q1
q2
tr

)2
(3.86)

The minimum displacement in the temporal Talbot carpet is then achieved by minimizing each individual
displacement induced by SPF1 and SPF2, i.e., by imposing p2 = 1 (s2 is then obtained from Equation 3.27),
and setting s1 to obtain p1 = 1 using Equation 3.27. The minimum dispersion writes,

2π|β2|z = q1 + q2
q2

2
t2r (3.87)

3.2.4 Limits and considerations of the method

In the following, some important considerations of the proposed periodicity control methods are discussed.

3.2.4.1 Limits of the period multiplication factor

In regards to the conventional temporal Talbot effect, using spectral phase filtering only, the maximum pulse
period division factor that can be achieved has an upper boundary. This limit is imposed by the temporal
duration of the individual pulses of the original train, in order to avoid interference among consecutive rate-
multiplied pulse replicas.

In a temporal Talbot sub-image with parameters {p, q}, q pulses are obtained in the duration of a single
input period, where originally only one pulse was present, thus the output temporal period must be longer
than the full-width duration of an individual pulse. Naming the full pulse duration ∆t, this limit establishes
an upper bound for the factor q,

q ≤ tr
∆t (3.88)
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This condition can be equivalently enunciated in the frequency domain, where the limit now deals with
the number of discrete frequency components that fit within the pulse bandwidth. The spectral Talbot phase
that produces the temporal sub-image {p, q} is q-periodic. As such, this phase sequence must be applied to
a minimum of q consecutive spectral lines. The pulse bandwidth must then fit q comb lines at least.

For the general case of a pulse period multiplication factor of the form r = q−1
2 q1, this condition sets a

lower boundary,

r ≥ ∆t
tr

(3.89)

If r > 1, there is no fundamental limitation to the pulse period multiplication factor in the PCTTM, since
the first transformation to the instantaneous power of the train is a multiplication of its period by q1 (note
that r > automatically satisfies condition 3.89). In the PCSTM, however, the first step is a temporal Talbot
effect (SPF1), resulting in pulse period division by q2. If condition 3.88 is not satisfied by q2, the method
will fail, even if r satisfies condition 3.89.

From this viewpoint, short pulse durations (corresponding to large frequency bandwidths) are generally
preferred.

Regarding the accessible range of period multiplication factors, the described period control methods
allow for the design of r factors that can be expressed as an irreducible fraction of two natural numbers, i.e.,
rational factors. Irrational multiplication factors cannot be achieved by the proposed techniques. However, it
is a well-known result of number theory that any real number can be approximated by the ratio of two integers
with arbitrary precision. This is known as the Diophantine approximation. Hurwitz’s theorem establishes an
upper bound to such approximations [101]; for every irrational number, ξ, there are infinite mutually-prime
integers v and w, such that,

∣∣∣∣ξ − v

w

∣∣∣∣ < 1√
5w2 (3.90)

This result suggests that the proposed method could, in principle, approximate irrational period multipli-
cation factors with arbitrary precision.

3.2.4.2 Considerations on practical implementation

Here, the specifics of the two processes involved in the methods – spectral phase filtering and temporal phase
modulation – are analyzed form the viewpoint of practical implementation through optics and photonics
technology.

Spectral phase filtering

Temporal Talbot effect is typically induced by linear propagation through second-order group velocity
dispersive media [75]. This is due to the fact that the different temporal Talbot conditions are achieved by a
quadratic spectral phase of a certain curvature [56].
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Optical media such as dispersive fibers are good approximations to second-order dispersion. However,
these approximations lose accuracy for pulses with broad bandwidths, as higher order dispersion effects
become significant.

It is important to note that the amount of dispersion, required to induce a temporal Talbot condition,
scales with the square of the pulse period (Eq. 3.50). This means that lower repetition rate trains will require
longer propagation distances in order to produce a given Talbot (sub-)image, for a given value of the second-
order dispersion coefficient of the medium, β2.

For example, considering a standard single-mode fiber SMF-28, the nominal value of second-order chro-
matic dispersion at a central wavelength of 1550 nm is ∼17 ps/nm/km, with a typical attenuation of 0.275
dB/km. A repetition rate multiplication factor of 2 for a 10 GHz rate pulse train would then require a fiber
propagation length of approximately 36 km, with an associated loss of approximately 10 dB (corresponding
to a linear power attenuation factor of 10). Propagation loss can be mitigated by the use of special fibers,
such as dispersion-compensating fibers, which can be designed to introduce larger amounts of dispersion
in shorter propagation lengths. Moreover, linearly-chirped fiber Bragg gratings [104], and superimposed
linearly-chirped fiber Bragg gratings [105], further reduce the required propagation lengths by orders of
magnitude [OPj16]. These are periodic structures, capable of achieving large amounts of second-order dis-
persion over broad frequency ranges, and with overall losses that can be below the 1-dB level; e.g., a few
meters of linearly-chirped fiber Bragg grating can compensate the dispersion introduced by hundreds of km
of SMF-28, thus substantially reducing the loss associated to the propagation of light in the medium.

In this context, it is also interesting to ask whether any of the two realizations of the method offers an op-
timal solution that minimizes the total required dispersion. To answer this question, the minimum dispersion
values of both methods, given in Eqs. 3.84 and 3.87, are compared. Dropping the constant multiplicative
factor t2r on the right-hand side of Eqs. 3.84 and 3.87, and renaming the remaining fractions dT and dS
respectively,

dT := q1
q2

(3.91)

dS := q1 + q2
q2

2
(3.92)

The difference between dS and dT writes,

dS − dT = q1 + q2 − q1q2
q2

2
(3.93)

Since q1 and q2 are positive and nonzero, the sign of this fraction is determined by its numerator. In
particular, if q1 = 1 and/or q2 = 1, then q1 + q2 > q1q2, and dS > dT. On the other hand, if q1 > 1 and
q2 > 1, then q1 + q2 < q1q2, and dS < dT.

Alternatively, the ratio of dS to dT writes:

dS

dT
= 1
q1

+ 1
q2

(3.94)

Again, since q1 and q2 are positive and nonzero, if q1 = 1 and/or q2 = 1, then q−1
1 + q−1

2 > 1, and
dS > dT. On the other hand, if q1 > 1 and q2 > 1, then q−1

1 + q−1
2 < 1, and dS < dT.
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In conclusion, the PCTTM offers a solution with lower dispersion than the phase-controlled spectral
Talbot method when either the pulse-period or FSR multiplication factor is an integer (i.e., for q1 = 1 and/or
q2 = 1). However, for strictly fractional multiplication factors (i.e., for q1 > 1 and q2 > 1) the PCSTM
demands lower dispersion.

Finally, it is important to note that Talbot phases are inherently discrete, i.e., the applied phase must be
constant over each period of the initial signal, otherwise distortion will be induced on the signal representa-
tion in the dual domain. In fact, temporal Talbot effect can be achieved through a especially designed all-pass
filter with a discrete phase profile, introducing a line-by-line spectral Talbot phase sequence [100]. On the
other hand, optical fibers and linearly-chirped fiber Bragg gratings introduce continuous spectral phase vari-
ations. These continuous phases represent a good approximation to their discrete counterpart in the case
of optical frequency combs, as the linewidth of the comb lines is generally narrow enough to neglect any
continuous phase variations occurring within each comb line. In general, the linewidth of a frequency comb
increases when aperiodicities are introduced across its temporal pulse train representation. For instance, a
sequence of pulses with finite duration will have a comb representation with a relatively broad linewidth.
Temporal Talbot effect of such a sequence, implemented through continuous (dispersive) spectral filtering,
will result in distortion of the individual output pulses [106].

Temporal phase modulation

The temporal phase modulation profiles employed in the described methods are sequences of constant
phase levels, applied pulse to pulse. Such is the form of a Talbot phase, i.e., flat within each individual pulse;
otherwise, a temporal phase profile with nonlinear variations in time would introduce unwanted modulation
of the instantaneous frequency of the pulse (chirp), consequently altering the spectral envelope.

These Talbot phase sequences can be generated electronically and introduced to the train of pulses
through electro-optical phase modulation [61]. The limiting factor in this implementation is the available
electronic bandwidth (typically in the range of a few tens of GHz).

A possible solution to overcome this limit would be to avoid the use of electro-optic components and to
implement the Talbot phases optically. In order to do this, one could use a nonlinear effect with properly
shaped optical pump pulses to imprint the desired Talbot phase in the train to be processed. Spectral Talbot
effect induced by cross-phase modulation with parabolic-shaped optical pump pulses has been demonstrated
[OPj7]. In this situation, one should consider that conditions must be imposed so that the continuous phase
modulation closely approaches the desired discrete Talbot phase distribution. In this regard, the pulses of
the input train should be sufficiently narrow, so that to avoid the introduction of significant chirp, associated
to the temporal phase variations occurring within each pulse. This ultimately leads to undesired distortion
of the resulting comb spectral envelope. The specific conditions could be derived as the Fourier-domain
counterpart of the equivalent problem studied for temporal Talbot effect [106].

It is important to note that the temporal Talbot phase associated to the sub-image {s, q} is q-periodic
when reduced modulo 2π, assuming sq ∈ E. Additionally, since these sequences are derived from quadratic
expressions, each period of the sequence is symmetric with respect to its central sample (see Fig. 3.14(a)). A
single period of the temporal Talbot phase associated to the sub-image {s, q} can then be constructed with q
samples that take values in a set of bq/2c + 1 levels. This is an important consideration of the signal used
to imprint such a phase in the modulation process. In the case of electronics-based implementations (e.g.,
the voltage output of an arbitrary waveform generator), this means that the vertical resolution of the involved
digital-to-analog converters must be sufficient to encode bq/2c+ 1 voltage levels, and the available depth of
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memory must be sufficient to store q samples. For sq ∈ O, the phase sequence contains an additional linear
term. The number of samples becomes 2q, and the number of levels q + 1 (see Fig. 3.14(b)).

0 1 2 3 4 0 1 2 3 4 0

0 1 2 3 4 5 6 7 8 9 0
1

2
3

4
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1
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3

Level

Level

(a)

(b)
Figure 3.14 – Discretization of temporal Talbot phases. Talbot phases
corresponding to q = 5 for (a) s = 4 (sq ∈ E) and (b) s = 3 (sq ∈ O).
In (a), q = 5 samples and bq/2c + 1 = 3 levels are needed to build up the
sequence. In (b), 2q = 10 samples and q+ 1 = 6 levels are needed to build
up the sequence.

3.2.4.3 Considerations on energy preservation and noise

This chapter described the operations necessary to arbitrarily manipulate the repetition periods of pulse trains
and frequency combs. Such operations are manipulations of the temporal and spectral phase distributions of
the signal of interest. As such, ideally, the entire energy carried by the signal is preserved in the process.
This is one of the main advantages of the reported methodology.

For pulse period (FSR) multiplication factors higher than 1, the obtained pulses (comb lines) have an
increased energy per period of the output signal. The method, however, does not alter the additive noise
carried by the signal, as these are incoherent, random fluctuations that do not satisfy the Talbot conditions
necessary for period control. Moreover, practical implementations of the described phase manipulations –
spectral phase filtering and temporal phase modulation – do not introduce additional external noise in the
process. It is possible, then, to obtain output waveforms with lower noise content, relative to the input
waveforms, through the application of phase-controlled Talbot effects.

It should be noted that the average power of the signal remains unaltered after the application of the
method. This is due to the fact that the described transformations simply redistribute the total energy carried
by the signal into a different set of output periods.

In the following chapters, this principle will be demonstrated experimentally.

3.2.5 Generality of the method

All the operations required by the reported methods are linear manipulations of the phase of a wave, along
its two Fourier-dual domains of representation; i.e., time and frequency, in the reported model. As per the
findings reported in Section 3.1.2, these methods can be extended to any system or framework described by
wave equations. One must simply identify the equivalent operations of spectral phase filtering and temporal
phase modulation in such a framework (see Table 3.4). In particular, these methods could be readily-applied
to the space and transverse momentum (observed in the form of angular spectrum) domains of optical fields,
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by direct application of the space-time duality21. A similar realization of this method was reported to control
the periodicity of repetitive images in two dimensions, even allowing to tailor the spatial repetition periods
associated to each dimension independently [OPj11].

Moreover, the generality of the operations involved would, in principle, allow to implement arbitrary
period control of signals outside the realm of optical waves. In fact, manifestations of the Talbot effect have
been reported across a wide variety of wave regimes, including radio-frequency waves [107], acoustic and
mechanical waves [108], X-rays [109], plasmon waves [87] matter waves [88, 89], quantum wavefunctions
[90], etc.

Finally, given the beneficial noise-reduction properties of the studied processes (that will be analyzed in
more detail in the following chapters), purely computational versions of these methods could be envisioned as
techniques to enhance signals and images affected by noise through numerical signal processing operations.

21For a review of the space-time duality, consult Appendix B.
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CHAPTER 4
Processing of periodic temporal waves

In this chapter, the universal period control method proposed in chapter 3 is applied to a periodic temporal
signal. In particular, energy-preserving division of the repetition rate of a train of optical pulses by fractional
factors is demonstrated. Considerations on noise mitigation are described, where the process produces a
counter-intuitive effect of noise averaging, equivalent to calculating the mean of a non-integer number of
noise contributions. The work presented in this Chapter was reported in [APj1, APj4] [APc1].
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4.1 Arbitrary period control of pulse trains

In this chapter, the methodology introduced in Section 3.2.3.1 is experimentally validated. In particular,
energy-preserving multiplication of the pulse period of a train of optical pulses by a fractional factor, r ∈ Q,
as depicted in Fig. 4.1, is experimentally demonstrated.

Figure 4.1 – Phase-controlled temporal Talbot method,
summary. Transformation of a train of pulses with pulse pe-
riod tr into a new train with period rtr ∀ r ∈ Q, through
energy redistribution based on phase manipulations. In the
shown example, r = 5/2.

PCTTM

Interesting properties of the method to affect the noise content of the processed signal are discussed.
In particular, the passive temporal Talbot amplification effect, theoretically discussed in Section 3.2 bears
symmetries with the classic operation of numerical averaging, i.e., calculating the mean, or expected value,
of a record of samples. Experimental data reported in this chapter shows that, for fractional values of the
period multiplication factor, derived form the phase-controlled temporal Talbot method (Section 3.2.3.1),
the noise content of the output signal behaves as the result of calculating the mean of a non-integer number
of samples (e.g., as if ‘2.6 realizations of the process’ were measured and processed). Such an operation
is simply outside of the scope of classical statistics. This result, though counter-intuitive, perfectly fits the
statistical model of averaging of noisy signals, as evidenced by the presented experimental data.

In the following, first, the phase-controlled temporal Talbot method (derived in Section 3.2.3.1) is briefly
revisited, and the particular realization of the technique, applied to the reported experiments is introduced.
Second, experimental results of energy-preserving pulse period multiplication by fractional factors are pre-
sented. Finally, the aforementioned effect on the noise content of the signal is discussed and, the recorded
experimental data is compared to the statistical model for signal averaging in the presence of uncorrelated
white Gaussian noise.

4.2 PCTTM for fractional repetition rate division of pulse trains

The phase-controlled temporal Talbot method (introduced in Section 3.2.3.1 and summarized in Fig. 4.2)
transforms a train of pulses with period tr into a new train with period rtr, where r = q−1

2 q1. If q1 > q2,
the output train has a higher pulse period than the input train (i.e., a lower repetition rate), and if q2 > 1, the
period multiplication factor is a fractional number.

Note that the last step of the method has been omitted (see Fig. 3.9). As a reminder, this last step consists
on a second application of a spectral Talbot propagator, i.e., a second temporal phase modulation. Since
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Figure 4.2 – Pulse period control by PCTTM. Combination of phase transformations (PM, phase modulation, and GVD, group
velocity dispersion) to implement the phase-controlled temporal Talbot method on a train of optical pulses. In the shown example,
r = 5/2.

the result of this process only modifies the spectrum of the train, and does not alter its instantaneous power
distribution, it was not implemented in the experimental proof of concept reported here (Section 4.2.2).
Additionally, the two SPF steps in the PCTTM are combined here into a single group velocity dispersion
step for convenience of implementation.

4.2.1 Involved phase manipulations

The phase manipulations required for observation of fractional repetition rate division of a pulse train are
implemented here as direct temporal phase modulation (PM) of the pulse train, and propagation of the train
through an optical medium exhibiting second-order group velocity dispersion (GVD).

4.2.1.1 Temporal phase modulation

The first step of the method consists on applying a temporal phase ϕn;s,q1 (general expression in Eq. 3.52)
to the n-th pulse of the train of interest.

In the reported experiments, s = q1 − 1, so that the applied phase writes,

ϕn;q1−1,q1 = −πq1 − 1
q1

n2 (4.1)

4.2.1.2 Group velocity dispersion

The second and third steps of the method, here combined into a single one, consist of the application of the
spectral phases−φk;p1,q1 and φk;p2,q2 (general expression in Eq. 3.48) to the k-th line of the frequency comb
representation of the train of interest.
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In the reported experiments, p1 = p2 = 1, so that the applied phase writes,

φk;1,q2 − φk;1,q1 = π

( 1
q2
− 1
q1

)
k2 (4.2)

As per Eq. 3.50, the required amount of GVD,

2πβ2z =
( 1
q2
− 1
q1

)
(q1tr)2 (4.3)

Note that β2 > 0. This, as explained below, is chosen to fit the sign of the dispersion introduced by
the propagation medium used in the experimental demonstration (exhibiting normal dispersion along the
working frequency range). Consequently, ς = 1 in both Eqs. 4.1 and 4.2 (see Eqs. 3.52 and 3.48).

4.2.2 Experimental demonstration

The proposed fractional repetition rate division technique is demonstrated on a train of near-infrared opti-
cal pulses in the C-band of optical telecommunications, and in the GHz regime of repetition rates. These
characteristics make for a convenient proof of concept, easy to implement with standard telecommunications
equipment.

4.2.2.1 Experimental setup

Fig. 4.3 shows a simplified1 schematic of the experimental setup used to validate the fractional repetition
rate division concept.

Optical fiber

RF coaxial cable

MLL

AWG

EOPM

DCF

Output

Signal source Temporal Talbot amplification

Input

Figure 4.3 – Fractional repetition rate multiplication, experimental setup. MLL, mode-locked laser; AWG, arbitrary-waveform
generator; EOPM, electro-optical phase modulator; DCF, dispersion-compensating fiber. For a complete schematic of the experi-
mental setup, see Fig. D.1.

An actively mode-locked laser (MLL) generates the input pulse train. A radio-frequency synthesizer
drives the laser to the desired input repetition rate. The laser delivers transform-limited Gaussian-like optical
pulses with a full-width at half maximum (FWHM) pulsewidth of approximately 6 ps, at a central wavelength

1For a complete schematic of the setup, see Fig. D.1.
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of 1550 nm (approximately 193.55 THz). The corresponding spectrum is a coherent optical frequency comb
with an FSR dictated by the repetition rate of the laser.

The prescribed temporal phase modulation profile (given by Eq. 4.1) is loaded to the memory of an
arbitrary waveform generator (AWG) capable of delivering 24 Gs/s with an analog bandwidth of 7 GHz. The
AWG generates an analog voltage signal following the phase levels required by Eq. 4.1 for a given value
of q1, and matching the repetition rate of the generated optical pulses. This voltage signal is amplified and
delivered to an electro-optical phase modulator (EOPM), with an RF bandwidth of 40 GHz, that modulates
the phase of each pulse accordingly (a tunable optical delay line is used to align the optical signal to the
voltage drive, and a polarization controller is used to maximize the modulation efficiency).

Finally, the phase-modulated train propagates through a length of dispersion-compensating fiber (DCF).
This optical fiber has normal dispersion (β2 > 0) at the working wavelength, and its length is chosen to
match the required condition, set by Eq. 4.3.

4.2.2.2 Experimental results

Table 4.1 lists the parameters of the tested input signals, the set of experimental configurations for fractional
repetition rate division, and the obtained results.

Table 4.1 – Fractional repetition rate multiplication, experimental conditions and results. List of input and output pulse periods
and configuration parameters of the PCTTM for a set of 7 conducted experiments.

Pulse period PCTTM parameters
tr

a rtr
b q1

c q2
d re β2z

f

(1) 126.139 168.185 4 3 1.3 3376.415
(2) 84.092 126.139 3 2 1.5 1688.207
(3) 79.777 132.962 5 3 1.6 3376.415
(4) 63.568 111.244 7 4 1.75 3376.415
(5) 53.185 132.962 5 2 2.5 3376.415
(6) 63.069 168.185 8 3 2.6 8441.038
(7) 62.902 220.157 7 2 3.5 11020.156
a Input pulse period (ps).
b Output pulse period (ps).
c Numerator.
d Denominator.
e Pulse period multiplication factor.
f Second-order dispersion (ps2/rad).

Fig. 4.4 shows a set of measurements corresponding to the experimental conditions and results listed on
Table 4.1.

The AWG generates the voltage signals shown in Fig. 4.4(a). These voltage signals drive the EOPM,
modulating the phase of the input optical pulse train. This produces spectral Talbot images, resulting in
FSR division by the parameter q1 (Fig. 4.4(b)). The shown optical power spectra are measured by an optical
spectrum analyzer.

Propagation of the phase-modulated trains through DCF exhibiting the required amount of GVD (see
Table 4.1) produces the anticipated fractional repetition rate division effect, and associated passive ampli-
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Figure 4.4 – Fractional repetition rate multiplication, experimental results. Set of measurements corresponding to the ex-
perimental conditions and results listed on Table 4.1, and following the same numbering (1)-(5). (a) Prescribed temporal phase
modulation sequences and applied EOPM drive voltages, where Vπ denotes the half-wave voltage of the EOPM (i.e., the required
voltage level to apply a phase sift of π rad to the optical signal); (b) optical power spectra of the input and output frequency comb
representation of the processed pulse train, normalized to the spectral peak power of the input comb (the anticipated spectral self-
imaging effect, leading to FSR division by the factor q1 is observed); (c) instantaneous power traces of the input and output pulse
trains, normalized to the temporal peak power of the input train (the anticipated fractional pulse period multiplication is observed,
as well as the corresponding passive amplification effect by energy redistribution); (d) radio-frequency power spectra of the input
and output pulse trains, verifying the expected fractional repetition rate division effect.

fication by the rate-division factor, r (Fig. 4.4(c)). The shown temporal traces are measured by an optical
sampling oscilloscope with an equivalent acquisition bandwidth of 500 GHz. It is worth noting that the total
insertion loss in the optical signal path is of ∼13.5 dB for the reported experimental demonstration. The
shown temporal traces are normalized to the temporal peak power value of the input signal, accounting for
the mentioned insertion loss.

Finally, Fig. 4.4(d) shows the input and output radio-frequency spectra of the pulse trains, measured by a
radio-frequency spectrum analyzer equipped with a 45 GHz bandwidth photodiode. The measured measured
harmonics in the RF power spectra verify the correct fractional repetition rate division.
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Chapter 4. Processing of periodic temporal waves

4.3 Noiseless amplification of periodic trains of pulses

Talbot amplification, e.g., as a result of the PCTTM exploited here, arises from the coherent addition of
properly-delayed frequency components of the periodic signal of interest, as sketched in Fig. 4.5. As such,
the noise content of the signal is not affected by the involved coherent phase manipulations of the method.
In particular, integer Talbot amplification – energy-preserving pulse period multiplication with r ∈ N – has
been shown to produce an effect of noise reduction, equivalent to the classical operation of signal averaging.

PCTTM

Figure 4.5 – Phase-controlled temporal Talbot method, ef-
fect on noise. Depiction of the impact of the phase-controlled
temporal Talbot method on the noise content of a periodic train
of pulses. In the shown example, r = 5/2.

In this Section, the statistics of time-domain signal averaging in the presence of noise are reviewed,
and the effects of noise mitigation by fractional Talbot amplification (i.e., with r ∈ Q) are experimentally
demonstrated and compared with the results obtained by classical signal averaging.

4.3.1 Statistics of time-domain signal averaging in the presence of noise

Let Sn be a deterministic variable representing a single realization of the signal level on one period of a
repetitive waveform (labeled by n), so that,

E{Sn} = µ ∀ n ∈ N (4.4)

Var{Sn} = 0 ∀ n ∈ N (4.5)

where E{A} is the expected value of the variable A, i.e., µ is the mean value of S on a particular sampling
instant (e.g., the top level of a signal pulse), and Var{A} is the variance2 of A [110].

Let Wn be a random variable representing a realization of additive white Gaussian noise (AWGN) with
zero mean and equal variance,

E{Wn} = 0 ∀ n ∈ N (4.6)

Var{Wn} = σ2 ∀ n ∈ N (4.7)
2For a random variable A, Var{A} := E

{
(A− E{A})2}.
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The following mathematical derivations operate under the premise that different realizations of Wn are
uncorrelated, and that signal and noise are independent (and, therefore, uncorrelated), so that,

Cov{Wn,Wk} =
{

0 ∀ n 6= k

Var{Wn} ∀ n = k
(4.8)

Cov{Sn,Wn} = 0 ∀ n ∈ N (4.9)

where Cov{A,B} is the covariance3 of A and B [110]. This is a reasonable assumption for most practi-
cal AWGN sources of interest, including noise generation mechanisms in optical amplifiers. As such, the
variableWn is a fairly accurate model of amplified spontaneous emission (ASE) noise, generated by erbium-
doped fiber amplifiers (EDFA), provided that the entire signal bandwidth is contained within a uniform region
of the gain spectrum of the amplifier [111].

The measurement of a single signal pulse in the presence of noise is modeled by the process,

Xn := Sn +Wn ∀ n ∈ N (4.10)

The expectation of a single measurement of a noisy pulse, Xn, is then,

E{Xn} = E{Sn}+ E{Wn}
= µ (4.11)

and the variance,

Var{Xn} = Var{Sn +Wn}
= Var{Sn}+ Var{Wn}+ 2Cov{Sn,Wn}
= σ2 (4.12)

The dispersion4 of the probability distribution of a random variable, A, is quantified by the relative
standard deviation, also known as the coefficient of variation, CV{A},

CV{A} := Var{A}
1
2

E{A} (4.13)

where Var{A}
1
2 is the standard deviation of A.

3For a pair of random variables A and B, Cov{A,B} := E{(A− E{A}) (B − E{B})}. Note that Cov{A,A} = Var{A}.
4Note that the term dispersion in this context does not refer to chromatic dispersion of transparent media, as used throughout

this dissertation, but rather to the spread of a probability distribution.
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The coefficient of variation of Xn writes,

CV{Xn} = σ

µ
(4.14)

The operation of signal averaging of the process Xn, consists of calculating YN , the arithmetic mean of
N realizations of Xn,

YN := 1
N

N∑
n=1

Xn (4.15)

The expectation of the average YN writes,

E{YN} = 1
N

E
{

N∑
n=1

Xn

}

= 1
N

N∑
n=1

E{Sn}+ 1
N

N∑
n=1

E{Wn}

= µ (4.16)

The variance of YN can be written as [110],

Var{YN} = Var
{

1
N

N∑
n=1

Xn

}

= 1
N2

N∑
n=1

N∑
k=1

Cov{Xn, Xk} (4.17)

Expanding a single term of the sum in Eq. 4.17, the covariance of two different realizations of a single
measurement reduces to,

Cov{Xn, Xk} = E{(Xn − E{Xn}) (Xk − E{Xk})}
= E{XnXk} − E{Xn}E{Xk}
= E{SnSk}+ E{SnWk}+ E{SkWn}+ E{WnWk} − E{Sn}E{Sk}
= E{WnWk}
= Cov{Wn,Wk}+ E{Wn}E{Wk}
= Cov{Wn,Wk} (4.18)

and, considering uncorrelated noise (Eq. 4.8), the variance of YN writes,
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Var{YN} = 1
N2

N∑
n=1

Var{Xn}

= σ2

N
(4.19)

The coefficient of variation of YN ,

CV{YN} = 1√
N

σ

µ
(4.20)

Finally, dividing Eq. 4.20 by Eq. 4.14,

CV{YN}
CV{Xn}

= 1√
N

(4.21)

The operation of averaging N realizations of a measurement reduces the dispersion of the probability
distribution of the noise variations by a factor N−

1
2 , thus producing a signal trace with lower intensity

fluctuations within a period.

The key here, is that the deterministic signal components add coherently, while the uncorrelated noise
contributions add incoherently, causing the output signal power to scale withN , while the output noise power
scales at the slower rate of N

1
2 . Fig. 4.6 summarizes these results.

It is important to note that, for the case of averaging a photodetected signal on a sampling oscilloscope,
this conclusion holds true for high levels of signal mean, µ, relative to the standard deviation σ of the
noise. In other words, this analysis is relevant for analyzing the noise affecting high levels of the pulse
of interest (e.g., the top level). The reason for this is that the averaged realizations of Xn correspond to
values of received power. As such, noise fluctuations around low levels of the signal of interest that would
cross zero, will be made positive. Classical signal averaging leaves a background level of noise fluctuations.
Furthermore, as per the definition of the coefficient of variation (Eq. 4.13), low values of signal mean could
lead to indetermination, arising from a fraction with a small denominator value.

4.3.2 Noise averaging in fractional Talbot amplification

As aforementioned, Talbot amplification by a factor r has an impact on the noise content of the processed
signal, equivalent to that of averaging N = r consecutive realizations of the signal.

Fig. 4.7 shows the results of a numerical simulation where a flat-top pulse, Sn, in the presence of strong
AWGN fluctuations, Wn, is processed through standard signal averaging of N = 20 measurements of the
pulse, YN , and a single measurement after passive Talbot amplification by r = 20. The obtained standard
deviations for signal averaging (Fig. 4.7(b)) and Talbot amplification (Fig. 4.7(c)) coincide, and approach
the anticipated value of variation reduction by 20−

1
2 ≈ 0.2236.

Furthermore, as evidenced in Figs. 4.7(b) and (c), Talbot amplification outperforms classical averaging,
as it enhances the extinction ratio of the processed pulses. This is due to the fact that Talbot amplification
operates directly on the electric field, while classical signal averaging of an instantaneous power trace, as
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Signal Noise

Average
Figure 4.6 – Statistics of signal averaging. Impact of recur-
sive averaging of a periodic signal on the noise content of the
measurement (assuming AWGN noise with zero mean). Cal-
culating the arithmetic mean of N consecutive realizations of
the signal reduces the noise fluctuations by N−

1
2 . Note that,

by definition, N ∈ N.

-1 -0.5 0.5 1
0

0.5

1

1.5

2

0

(a) (b) (c)

A
m

p
li

tu
d
e 

(a
.u

.)

-1 -0.5 0.5 1
0

0.5

1

1.5

2

0

A
m

p
li

tu
d
e 

(a
.u

.)

-1 -0.5 0.5 1
0

0.5

1

1.5

2

0

A
m

p
li

tu
d
e 

(a
.u

.)

Figure 4.7 – Noise averaging effect of Talbot amplification, numerical simulation. Noise mitigation of a pulsed signal affected
by strong AWGN fluctuations (a). Comparison between (b) standard signal averaging of N = 20 measurements, and (c) a single
measurement after integer Talbot amplification by r = 20. A clean trace of the input signal is shown for reference. ∆t denotes the
FWHM temporal duration of the pulse.

commented in the last paragraph of the previous Section, operates on positive-only levels that will not cancel
out for low values of signal power.

Noise averaging on an Talbot amplifier with r ∈ N has been experimentally demonstrated on trains of
optical pulses affected by ASE noise from an EDFA [57].

It is reasonable to expect that the reported operation of fractional pulse period multiplication by the factor
r achieves a similar noise averaging effect, but with a variation reduction factor r−

1
2 , with r ∈ Q. Note that
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this situation would be equivalent to ‘averaging a fractional number of measurements’, a possibility that is
simply not allowed by the basic definition of the sum of a discrete set of samples.

4.3.3 Experimental demonstration

In order to demonstrate the predicted fractional averaging effect, the experiment described in Section 4.2.2
is repeated. An AWGN source is incorporated in order to increase the noise content of the input pulse train.
The pulse period is then divided by rational numbers, r, following the energy-preserving protocol defined
by the PCTTM. Finally, the noise fluctuations on the top level of input and output pulses are quantified, and
their respective coefficients of variation are compared in order to extract the observed variation reduction
factor and compare it with the expected value for the noise averaging model, r−

1
2 .

4.3.3.1 Experimental setup

In order to test the effect of fractional noise averaging by energy redistribution, an AWGN source is incor-
porated to the experimental setup depicted in Fig. 4.3.

The noise source is constructed by injecting ASE from an EDFA, leaving the input of the amplifier
disconnected, to the input pulse train. This way the amount of ASE injected to the signal is controllable
by varying the pump current of the EDFA. A variable optical attenuator is connected to the output of the
mode-locked laser generating the input train, in order to set the power level of the signal. In the reported
experiments, the optical signal-to-noise ratio (OSNR) – measured with an optical spectrum analyzer as the
ratio between the spectral peak power and the noise floor – is set to 10 dB. Fig. 4.8 shows the implementation
of this noise source in the experimental setup.

Optical fiber

RF coaxial cable
MLL

VOA

EDFA

AWG

EOPM

DCF

Output

Signal source Noise source Temporal Talbot amplification

Input

Figure 4.8 – Fractional Talbot amplification and noise averaging, experimental setup. MLL, mode-locked laser; VOA, vari-
able optical attenuator; EDFA, erbium-doped fiber amplifier; AWG, arbitrary-waveform generator; EOPM, electro-optical phase
modulator; DCF, dispersion-compensating fiber. For a complete schematic of the experimental setup, see Fig. D.1.

4.3.3.2 Experimental results

Fig. 4.9 shows the temporal traces of a noisy input pulse (OSNR= 10 dB), the average of 2 measurements
of the input pulse, and a single measurement of an output pulse after the fractional repetition rate division
process with r = 8/3 = 2.6 (entry 6 of Table 4.1).
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Figure 4.9 – Measured temporal traces resul-
ting of averaging a repetitive train of noisy
pulses. Single-shot measured traces of (a) an in-
put noisy pulse with OSNR= 10 dB, (b) inte-
ger averaging of the measured power profiles of
N = 2 input pulses and, (c) an output pulse after
the fractional repetition rate division process with
r = 8/3 = 2.6. ∆t denotes the FWHM tempo-
ral duration of the pulse. A clean trace of the
input pulse is shown in all figures for reference.
All traces are captured by an electrical sampling
oscilloscope equipped with a 45 GHz bandwidth
photodiode (see Fig. D.1).

The reduction on the variance of the noise fluctuations within the pulse is clearly observed in Figs. 4.9(b)
and 4.9(c). In order to quantify this reduction, the ratio of the coefficients of variation of an input pulse to the
average ofN pulses, as well as to the output of the fractional Talbot amplifier, are calculated. Fig. 4.10 shows
the obtained results for classical averaging in an electrical sampling oscilloscope with N = 2, N = 3 and
N = 4, as well as for fractional Talbot amplification by r = 5/2 = 2.5, r = 8/3 = 2.6 and r = 7/2 = 3.5
(corresponding to entries 5, 6 and 7 of Table 4.1).

The obtained noise variation reduction factors for the evaluated fractional Talbot amplification cases
precisely follows the expected trend r−

1
2 , corresponding to interpolations in between the values obtained

by conventional averaging in the oscilloscope, generally following the predicted theoretical trend N−
1
2 (see

Eq. 4.21). Hence, as predicted, the Talbot amplification processes implements an averaging operation, ob-
taining a result where the record length effectively behaves as if it was equal to a rational number, r.

4.3.4 Additional comments and remarks

As briefly commented on Section 3.2.5, all the operations involved in the realization of the reported experi-
ments are linear manipulations of the phase distributions of the signal of interest in both time and frequency
domains. As such, the method could be extrapolated to any system or framework described by wave equa-
tions, including other domains of optical waves (e.g., space and transverse momentum), other wave regimes
beyond the optical realm (e.g, microwaves, X-rays, matter waves, etc.), and even purely computational re-
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Figure 4.10 – Variation reduction
factor for integer and fractional
noise averaging. Measured values
of the variation reduction factor (the
ratio of the coefficient of variation
of the average of N pulses or a sin-
gle pulse resulting from Talbot am-
plification by the fractional factor r,
to that of an input pulse. The shown
data points are obtained from 10
measurements for each listed value
of N and r; each data point corre-
sponds to the mean of said 10 mea-
surements, while the error bars de-
note the standard deviation. The ex-
pected trend (and specific values) of
the variation reduction factor in the
statistical model of noise averaging,
N−

1
2 , is shown for comparison.
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alizations. This is of particular interest, given the ubiquitous nature of noise in any discipline involving the
harvesting of information from waves and signals.

In a more general sense, the results reported here indicate that mathematical operations, not defined
within the scope of a particular paradigm (calculating the mean, i.e., a sum, of a fractional number of sam-
ples, in the case of the reported experiments), could be realized through physical phenomena, enabling an
unprecedented, wider range of mathematical and experimental conditions.
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CHAPTER 5
Processing of periodic spectral waves

In this chapter, the universal period control method proposed in chapter 3 is applied to periodic spectral
signals – frequency combs – to demonstrate arbitrary, energy-preserving control of their frequency spacing.
This feat is relevant to many areas of application of frequency combs. The impact of the method on the noise
characteristics of the comb is studied, and results showing noiseless spectral amplification of the comb signal
are reported. The work presented in this Chapter was reported in [APj5] [APc4, APc6, APc8, APc9, APc14].
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5.1 Arbitrary FSR control of frequency combs

In this chapter, the methodology introduced in Section 3.2.3.2 is experimentally validated. In particular,
energy-preserving transformations of the free spectral range of an optical frequency comb by an arbitrary
factor, r−1 ∈ Q, as depicted in Fig. 5.1, are experimentally demonstrated. As discussed in chapter 1, tra-
ditional FSR control methods based on signal processing operations can only achieve FSR multiplication
or division by integer factors (e.g., through spectral amplitude filtering or temporal amplitude gating, re-
spectively), and the property of energy preservation has only been demonstrated in the case of integer FSR
division through fractional spectral Talbot effect [61].

Figure 5.1 – Phase-controlled spectral Talbot method,
summary. Transformation of a frequency comb with FSR νr
into a new train with period r−1νr ∀ r ∈ Q, through energy
redistribution based on phase manipulations. In the shown ex-
ample, r−1 = 5/2.

PCSTM

Furthermore, interesting properties of the method to affect the noise content of the processed signal are
discussed. In particular, for FSR multiplication factors higher than 1, the PCSTM (derived in Section 3.2.3.2)
has the capability of amplifying the coherent components of the power spectrum of a frequency comb over
the incoherent background noise floor. Experimental data reported in this chapter shows successful detection
of frequency combs originally buried completely under the noise floor, and therefore undetectable through
direct spectral measurements.

In the following, the phase-controlled spectral Talbot method is briefly revisited, and the particular real-
ization of the technique, applied to the reported experiments is introduced. Experimental results of energy-
preserving, arbitrary FSR control are presented, including the aforementioned effects of noiseless spectral
amplification and sub-noise detection of frequency combs.

5.2 PCSTM for arbitrary FSR control of frequency combs

The phase-controlled spectral Talbot method (introduced in Section 3.2.3.2 and summarized in Fig. 5.2)
transforms a frequency comb with FSR νr into a new comb with FSR r−1νr, where r = q−1

2 q1.

Note that the last step of the method has been omitted (see Fig. 3.12). As a reminder, this last step
consists on a second application of a temporal Talbot propagator, i.e., a second spectral phase filtering.
Since the result of this process only modifies the instantaneous power of the train, and does not alter the
associated frequency comb spectrum, it was not implemented in the experimental proof of concept reported
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Figure 5.2 – Comb FSR control by PCSTM. Combination of phase transformations (GVD, group velocity dispersion, and PM,
phase modulation) to implement the phase-controlled spectral Talbot method on an optical frequency comb. In the shown example,
r−1 = 5/2.

here (Section 5.2.2). Additionally, the two TPM steps in the PCSTM are combined here into a single phase
modulation step for convenience of implementation.

5.2.1 Involved phase manipulations

The phase manipulations required for arbitrary FSR control of a frequency comb are implemented here as
propagation of through an optical medium exhibiting second-order group velocity dispersion (GVD), and
subsequent direct temporal phase modulation (PM) of the resulting pulse train.

5.2.1.1 Group velocity dispersion

The first step of the method consists on applying a spectral phase φk;p2,q2 (general expression in Eq. 3.48) to
the k-th line of the comb of interest. In the reported experiments, the value p2 = 1 is chosen to minimize the
total required amount of GVD, however, any integer value can be designed, as long as p2 and q2 are mutually
prime. This way, the applied phase sequence writes,

φk;1,q2 = π
1
q2
k2 (5.1)

As per Eq. 3.50, the required amount of GVD,

2πβ2z = 1
q2ν2

r

(5.2)

Note that β2 > 0. This, as explained below, is chosen to fit the sign of the dispersion introduced by
the propagation medium used in the experimental demonstration (exhibiting normal dispersion along the
working frequency range). Consequently, ς = 1 in both Eqs. 5.1 and 5.3 (see Eqs. 3.48 and 3.52).
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5.2.1.2 Temporal phase modulation

The second and third steps of the method, here combined into a single one, consist of the application of the
temporal phases −ϕk;s2,q2 and ϕk;s1,q1 (general expression in Eq. 3.52) to the n-th pulse of the time-domain
representation of the comb of interest.

In the reported experiments, s2 = q2 − 1, and s1 = q1 − 1, so that the applied phase writes,

ϕn;q1−1,q1 − ϕn;q2−1,q2 ≡ ϕn;q1−q2,q1q2

= −πq1 − q2
q1q2

n2 (5.3)

It is interesting to note that the output comb will preserve the frequency grid reference of the input comb.
The output comb lines can be selected within such a grid, by properly delaying the applied temporal phase
modulation sequence in the time domain.

Fig. 5.3 shows the results of a numerical simulation where the FSR of a frequency comb is multiplied by
the integer factor r−1 = q2 = 3. Different results are shown where the temporal phase modulation sequence
is delayed in steps of q−1

2 tr. The lines of the corresponding FSR-multiplied combs are shifted within the
input comb frequency grid in steps of νr for each step of temporal delay of the phase sequence. A total delay
of tr restores the phase sequence to its original position in the time domain, resulting on a spectral line shift
of q2νr, which produces the same comb obtained in the case where no temporal delay is introduced.

Figure 5.3 – Shifting of comb lines by tem-
poral delay of the phase sequence, numerical
simulation. Three examples of application of the
PCSTM with r−1 = 3 to a frequency comb with
FSR νr are shown. The temporal phase mod-
ulation sequence (a) is delayed by ktr/3, with
k = 0, 1, 2. The output combs (b) have FSR 3νr ,
and their comb lines are shifted by kνr (within
the input frequency grid) underneath the comb
envelope, as a consequence of the temporal de-
lay of the phase modulation sequence. Frequency detuning (    )
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Chapter 5. Processing of periodic spectral waves

5.2.2 Experimental demonstration

The proposed technique for arbitrary control of the FSR of frequency combs is demonstrated on a coherent
frequency comb corresponding to a train of near-infrared optical pulses in the C-band of optical telecommu-
nications, and in the GHz regime of repetition rates. These characteristics make for a convenient proof of
concept, easy to implement with standard telecommunications equipment.

5.2.2.1 Experimental setup

Fig. 5.4 shows a simplified1 schematic of the experimental setup used to validate the arbitrary FSR control
concept.

Optical fiber

RF coaxial cable

MLL

AWG

EOPM

DCF

Output

Signal source Spectral Talbot amplification

Input

Figure 5.4 – Arbitrary FSR control of frequency combs, experimental setup. MLL, mode-locked laser; DCF, dispersion-
compensating fiber; AWG, arbitrary-waveform generator; EOPM, electro-optical phase modulator. For a complete schematic of the
experimental setup, see Fig. D.2.

An actively mode-locked (MLL) laser generates the input frequency comb. A radio-frequency synthe-
sizer drives the laser to the desired input FSR, νr. The laser delivers transform-limited Gaussian-like optical
pulses with a full-width at half maximum (FWHM) pulsewidth of approximately 3 ps, at a central wave-
length of 1554.4 nm (approximately 193 THz), and a pulse repetition period, tr, dictated by the reciprocal
FSR.

The input pulse train propagates through a length of dispersion-compensating fiber (DCF). This optical
fiber has normal dispersion (β2 > 0) at the working wavelength, and its length is chosen to match the
required condition, set by Eq. 5.2. The output pulse train corresponds to a temporal Talbot sub-image with
pulse period q−1

1 tr, while the corresponding comb FSR remains unaltered.

Finally, the prescribed temporal phase modulation profile (given by Eq. 5.3) is loaded to the memory of
an arbitrary waveform generator (AWG) capable of delivering 50 Gs/s with an analog bandwidth of 14 GHz.
The AWG generates an analog voltage signal following the phase levels required by Eq. 5.3, and matching
the repetition rate of the pulses at the output of the GVD medium. This voltage signal is amplified and
delivered to an electro-optical phase modulator (EOPM), with an RF bandwidth of 40 GHz, that modulates
the phase of each pulse accordingly (a tunable optical delay line is used to align the optical signal to the
voltage drive, and a polarization controller is used to maximize the modulation efficiency).

1For a complete schematic of the setup, see Fig. D.2.
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5.2.2.2 Experimental results

Table 5.1 lists the parameters of the tested input signals, the set of experimental configurations for arbitrary
FSR control, and the obtained results.

Table 5.1 – Arbitrary FSR control, experimental conditions and results. List of input and output FSR values and configuration
parameters of the PCSTM for a set of 5 conducted experiments.

FSR PCSTM parameters
νr

a r−1νr
b q2

c q1
d r−1e 10 log10(r−1)f β2z

g

(1) 9.451 18.902 2 1 2 3 891.527
(2) 9.463 28.391 3 1 3 4.7 592.369
(3) 9.451 37.804 4 1 4 6 445.455
(4) 7.717 11.575 3 2 1.5 1.7 890.911
(5) 9.451 3.781 2 5 0.4 −4 890.911
a Input FSR (GHz).
b Output FSR (GHz).
c Numerator.
d Denominator.
e FSR multiplication factor, linear scale.
f FSR multiplication factor, logarithmic scale (dB).
g Second-order dispersion (ps2/rad).

Fig. 5.5 shows a detail of the input signal, corresponding to entries (1), (3) and (5) of Table 5.1.

Figure 5.5 – Arbitrary FSR control, input signal. Detail
of the input signal (output of the MLL in Fig. 5.4) used for
demonstration of the PCSTM, corresponding to entries (1),
(3) and (5) of Table 5.1. The measurements show (a) normal-
ized instantaneous power trace of a single input pulse, and (b)
full frequency comb power spectrum. The measured FWHM
pulsewidth is approximately 3 ps, and the FSR is 9.451 GHz.
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Fig. 5.6 shows a set of measurements corresponding to the experimental conditions and results listed on
Table 5.1.

The input frequency comb first propagates through a length of DCF exhibiting the required amount of
GVD (see Table 5.1). The pulse train obtained at the output of the DCF is a temporal Talbot sub-image
(pulse period division by the factor q2) of the input train, while the power spectrum of the comb at the output
of the DCF remains unaltered.

The AWG generates the voltage signals shown in Fig. 5.6(a). These voltage signals drive the EOPM,
modulating the phase of the pulse train at the output of the DCF. This produces the expected FSR modifica-
tion (multiplication of the input FSR by the factor r−1), and associated passive spectral comb line amplifica-
tion effect. Fig. 5.6(b) shows the input and output power spectra, measured with a 5 MHz resolution optical
spectrum analyzer, and normalized to the peak spectral power of the input comb.

It is important to note that the output combs preserve the envelope of the power spectrum of the input
comb. Fig. 5.7 shows the measured power spectra and corresponding envelopes of the input and output
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Figure 5.6 – Arbitrary FSR control, experimental results.
Set of measurements corresponding to the experimental con-
ditions and results listed on Table 5.1, and following the same
numbering (1)-(5). (a) Prescribed temporal phase modulation
sequences and applied EOPM drive voltages, where Vπ de-
notes the half-wave voltage of the EOPM (i.e., the required
voltage level to apply a phase sift of π rad to the optical sig-
nal); (b) optical power spectra of the input and output fre-
quency combs, normalized to the spectral peak power of the
input comb (the anticipated FSR multiplication by the factor
r−1 is observed, as well as the corresponding passive spectral
line amplification effect by energy redistribution).

combs used in the demonstration of the PCSTM reported here, corresponding to entries (1)-(3) of Table 5.1.
The match between input and output spectral envelopes is clearly observed.

5.3 Noiseless spectral amplification and sub-noise detection of frequency combs

As discussed in Section 1.4, the presence of random noise fluctuations across the frequency spectrum of a
frequency comb has a critical impact on the performance quality of the comb in practical applications. The
origin of these fluctuations is tied to amplification stages outside of the comb generation system, commonly
referred to as extracavity noise [68], which are often required to induce spectral broadening through nonlinear
effects. Active gain processes amplify both the comb lines and the background noise floor, while additionally
introducing an external noise contribution (e.g., amplified spontaneous emission, ASE, on erbium-doped
fiber amplifiers, EDFA, that can be considered additive white Gaussian noise, AWGN, as long as the entire
comb spectrum is contained within a uniform region of the gain spectrum of the EDFA).

Naming the spectral peak power of the comb Pν , and the spectral power level of the background noise
floor Nν , the visibility of the comb lines can be defined as the ratio of these two magnitudes,

η := Pν
Nν

(5.4)
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Figure 5.7 – Preservation of the comb envelope
after application of the PCSTM, experimen-
tal results. Optical power spectra (a) and as-
sociated spectral envelopes (b) of the frequency
combs listed in entries (1)-(3) of Table 5.1. In all
cases, the envelope of the output comb matches
that of the input comb.
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In a simple approximation, an active amplifier with power gain r−1 > 1, introducing an external noise
term NASE, produces a frequency comb at its output, with a visibility,

η = r−1Pν
r−1Nν +NASE

(5.5)

It is easy to see that, not only the gain term does not enhance the visibility, but rather that the additional
noise contribution degrades it.

Reducing the noise floor of a frequency comb poses significant challenges. For instance, the most
straightforward noise mitigation method based on direct frequency filtering of individual comb lines would
require extremely precise fine-tuning, alignment and stabilization of the filter [67], including accurate a priori
knowledge of the absolute frequencies of the comb lines.

The reported method for comb FSR manipulation has the capability of redistributing the energy of the
comb lines into a completely different set of lines in the output comb (see Fig. 5.6). When the FSR mul-
tiplication factor, r−1, is designed to be higher than 1, energy conservation ensures that the output spectral
peak power increases with respect to the input spectral peak power, by a factor r−1. Since the noise content
of the background noise floor is incoherent and does not satisfy any of the designed Talbot conditions in the
PCSTM, this suggests the possibility of increasing the visibility of the comb lines through the application of
the method with r−1 > 1, so that,

η = r−1 Pν
Nν

(5.6)

Fig. 5.8 shows a simplified model of the classical active amplification process (Fig. 5.8(a)) and the energy
redistribution process resulting from the PCSTM (Fig. 5.8(b)).

Indeed, similarly to the process described and demonstrated in Section 4.3, an effect of passive ampli-
fication occurs in the power spectrum of a frequency comb, as a consequence of the PCSTM, if r−1 > 1.
Fig. 5.9 shows the results of a numerical simulation where the noise floor of a frequency comb is reduced,
with respect to the spectral peak power, through application of the PCSTM with r−1 = 20. A visibility
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PCSTM

Active amplifier

Unaltered

Coherent
Comb lines

Incoherent
Noise floor

(a)

(b)

Figure 5.8 – Impact of amplification on the noise floor of a frequency comb. Simplified steady-state frequency domain model
of (a) a classical active amplifier and (b) the passive spectral amplification effect, consequence of the PCSTM with r−1 > 1. Active
amplification increases both the signal power, Pν and the noise power, Nν while introducing an additional noise term, NASE, thus
deteriorating the visibility of the comb lines, η. Passive spectral Talbot amplification (r−1 > 1) redistributes the energy of the
comb lines into a set of fewer comb lines, thus increasing their spectral peak power, while keeping the noise content of the comb
unaffected. The comb visibility is then enhanced, increasing by the FSR multiplication factor, r−1.

increase of 13 dB is observed, in agreement with the expected enhancement value, 10 log10(r−1). Further-
more, the proposed technique compares favorably to classical averaging2 of N = 20 measurements of the
power spectrum. The outcome in this situation is a spectrum with smooth power variations, however, the
noise floor level remains unchanged, and so the visibility is not enhanced.
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Figure 5.9 – Visibility enhancement by noiseless spectral Talbot amplification, numerical simulation. Noise mitigation of
a frequency comb affected by strong AWGN fluctuations (a). Comparison between (b) standard signal averaging of N = 20
measurements, and (c) a single measurement after integer spectral Talbot amplification by r−1 = 20. A clean trace of the input
signal is shown for reference.

2This result is equivalent to the effect of averaging the instantaneous power distribution of a train of optical pulses in the
presence of noise, where the extinction ratio of the pulse is not enhanced by averaging, while temporal Talbot amplification does
enhance it (see Section 4.3).
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This suggest the possibility of detecting sub-noise spectral events through energy redistribution in the
frequency domain, allowing to detect signals whose power spectra is completely buried underneath the back-
ground noise floor.

5.3.1 Experimental demonstration

In order to demonstrate the predicted noiseless spectral amplification effect, the experiment described in
Section 5.2.2 is repeated. An AWGN source is incorporated in order to increase the noise content of the
input comb, to the spectral peak power value of the input comb. The FSR period is then multiplied by integer
numbers, r−1, following the energy-preserving protocol defined by the PCSTM, thus increasing the comb
spectral peak power over the noise floor level.

5.3.1.1 Experimental setup

In order to test the effect of noiseless spectral amplification by energy redistribution, an AWGN source is
incorporated to the experimental setup depicted in Fig. 5.4.

The noise source is constructed by injecting ASE from an EDFA, leaving the input of the amplifier
disconnected, to the input comb. This way the amount of ASE injected to the signal is controllable by varying
the pump current of the EDFA. A variable optical attenuator is connected to the output of the mode-locked
laser generating the input comb, in order to set the power level of the signal. In the reported experiments, the
input comb visibility is set to 0 dB, i.e., the noise floor is at the same level as the spectral peak power of the
input comb. Fig. 5.10 shows the implementation of this noise source in the experimental setup.

AWG

EOPM

DCF

Spectral Talbot amplification
Optical fiber

RF coaxial cable
MLL

VOA

EDFA Output

Signal source Noise source

Input

Figure 5.10 – Noiseless spectral amplification of frequency combs, experimental setup. MLL, mode-locked laser; VOA, variable
optical attenuator; EDFA, erbium-doped fiber amplifier; DCF, dispersion-compensating fiber; AWG, arbitrary-waveform generator;
EOPM, electro-optical phase modulator. For a complete schematic of the experimental setup, see Fig. D.2.

5.3.1.2 Experimental results

Fig. 5.11(a) shows a set of measured spectra of input combs with a visibility of 0 dB (see Table 5.1 for a list
of experimental conditions). The PCSTM is subsequently applied to multiply the FSR of these combs by
r−1 = 2, 3, and 4.
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Fig. 5.11(b) shows the spectra of the output combs, where the comb lines are clearly visible over the
noise floor, due to the expected energy redistribution. The visibility of the obtained combs is consistent with
the expected value, 10 log10(r−1).
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Figure 5.11 – Noiseless spectral amplifi-
cation of frequency combs, experimen-
tal results. Set of measurements corre-
sponding to the experimental conditions
and results listed on Table 5.1, and fol-
lowing the same numbering (1)-(3). The
noise floor level of the input combs (a) is
increased up to the level of the comb lines,
so that the comb visibility is of 0 dB. The
output comb lines, after application of the
PCSTM with r−1 > 1, rise over the noise
floor by an amount equal to the FSR multi-
plication factor, so that the output visibility
is 10 log10(r−1).

A particularly interesting feature of the described process is that it does not require any a priori knowl-
edge of the absolute frequencies of the comb lines to increase the comb visibility. Such a feat compares
favorable with techniques that rely on direct amplitude filtering of the comb spectrum.

5.4 Generation of frequency combs with user-defined FSR

In principle, the PCSTM – generalized self-imaging-induced spectral energy redistribution – applies to any
coherent frequency comb. The method, however, relies on applying a suitable quadratic spectral phase to
the comb – temporal Talbot effect – prior to the temporal phase modulation process with the corresponding
Talbot phase sequence – spectral Talbot effect. In practice, the required amounts of GVD can be challenging
to meet in the current technological framework. The spectral phase filtering step in the PCSTM requires
phase variations between adjacent lines of the comb of the order of π rad (see Eq. 5.1). This condition can
be met using specially engineered optical dispersive media, such as linearly-chirped fiber Bragg gratings
or dispersive optical fibers when the FSR of the input comb exceeds a few GHz. It becomes particularly
challenging to meet the required GVD specifications for combs with FSR in the MHz regime, as encountered
in conventional passively mode-locked lasers.

For instance, at a central wavelength of 1550 nm, the PCSTM achieves FSR multiplication by a factor 2
from an input FSR of 10 GHz with a total GVD of |β2| z ≈ 795.775 ps2/rad; this corresponds to propagation
through ∼37 km of standard SMF-28 optical fiber3 [76]. If the original FSR is 100 MHz, the required GVD
scales up to |β2| z ≈ 7957747.155 ps2/rad, corresponding to a length of ∼367010 km of SMF-28, a highly

3For this comparison, a typical value of 17 ps/nm/km is used as the reference dispersion value of SFM-28 optical fiber, operated
at 1550 nm (see Fig. 2.6).
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Chapter 5. Processing of periodic spectral waves

unpractical4 specification. Fig. 5.12 shows the length of SMF-28, z, required by the PCSTM for different
values of the parameter q2 and the input FSR, νr.

Figure 5.12 – Dispersive propagation length required for
FSR control. Estimated length (z, measured in m) of standard
SMF-28 optical fiber required by the PCSTM for FSR manip-
ulation for different values of the FSR multiplication factor
(parameter q2, for integer FSR multiplication) and the input
FSR (νr , measured in Hz). A typical value of 17 ps/nm/km is
used as the reference dispersion value of SFM-28 at a central
wavelength of 1550 nm.
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It is worth noting that, as per the formulation of the Talbot phases, the required spectral phase variations
can be introduced through multilevel spectral phase filters. However, optical filters with complex phase
variations and the high level of finesse required for processing a comb with FSR values in the MHz regime
are extremely difficult to implement, if at all possible. Indeed, line-by-line pulse shaping techniques would
fail to provide the required spectral phase profile, due to the limited frequency resolution of conventional
pulse shapers (typically in the order of tens of GHz) [31, 32].

The temporal phase modulation operation, however, becomes less problematic at lower values of the
input FSR. A lower FSR translates into a longer pulse period, thus allowing the use of lower frequency
RF equipment (e.g., arbitrary waveform generators and amplifiers) to generate the required temporal Talbot
phase sequences.

In order to overcome these GVD limitations, the use of a special resonant cavity, known as a frequency-
shifted feedback loop [92], was proposed as a platform for versatile frequency comb generation based on
the PCSTM [APj7]. Such a cavity, when seeded by a CW laser, behaves as a mode-locked laser with a
built-in tunable quadratic spectral phase, capable of emulating propagation of a phase-coherent frequency
comb through thousands of km of optical fiber. When used in conjunction with a temporal phase modulator,
the phase transformations involved in the PCSTM can be implemented. Frequency comb generation with
tunable FSR over 6 orders of magnitude, from a few kHz to a few GHz, was experimentally achieved,
even allowing to induce very high and user-defined chirp – frequency modulation – values to the associated
temporal pulses [APj7]. A detailed description of this technique is reported in Appendix E.

4Note that, as per Eq. 5.2, there is an inversely-quadratic relationship between the total required GVD and the input FSR.

100



CHAPTER 6
Generalized spectral Talbot effect on

aperiodic waves

The effects of the universal period control method on aperiodic signals are studied in this chapter. The
method has the capability to introduce free spectral regions – frequency gaps – to the continuous spectra
of aperiodic waves. Two applications are discussed; (i) a method for full-field invisibility cloaking in the
frequency domain and, (ii) a method for compressing the spectrum of sequences of modulated pulses (e.g.,
telecommunication data signals) while preserving the original pulse duration and overall temporal shape.
The latter is additionally used as a robust, energy-efficient technique for format conversion of modulated
pulse sequences. The work presented in this Chapter was reported in [APj6] [APc2, APc3, APc7, APc10].
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Chapter 6. Generalized spectral Talbot effect on aperiodic waves

6.1 Talbot effect on aperiodic waves

As introduced in Section 2.4 and mathematically demonstrated in Section 3.1, Talbot effect requires a wave
described by a periodic function of its representation domain. This allows to write the Fourier-domain
representation of the wave as a Dirac comb, which is key in the formulation of the Talbot phases.

However, the linear transformations derived from the theory of Talbot effect reported in this dissertation
can be applied to aperiodic structures and waves, obtaining interesting results. Typically, in such situations,
the application of an intrinsically periodic Talbot phase introduces a certain degree of periodicity to the
wave of interest, in a loose sense; e.g., a CW laser, phase-modulated by a Talbot phase sequence, acquires a
spectrum consisting of a Dirac comb. Additionally, aperiodic waves with an underlying periodic component
(e.g., digitally-modulated data signals with an underlying clock frequency) also produce interesting Talbot
(sub-)images when processed through different self-imaging phenomena. The latter case gives rise to the
fascinating self-healing property of the Talbot effect, where an aperiodic structure produces Talbot images
with an emphasized periodic component.

6.1.1 Talbot array illuminators

A Talbot array illuminator (TAI) is an example of self-imaging of an object that, under normal circumstances,
would not produce Talbot sub-images. These structures were demonstrated in the Fresnel diffraction domain
of waves, as a way of transforming a uniform beam of light into a collection of localized bright spots [112–
114]. A TAI is observed when a plane wave diffracts off a phase mask, introducing a spatial Talbot phase
profile, to an integer Talbot length. At the observation plane, a periodic image of squared spots is obtained,
with a period that depends on the introduced Talbot phase. Fig. 6.1 shows a 1D numerical simulation,
depicting the formation of a TAI from a continuous constant function.

Figure 6.1 – Talbot array illuminator, numerical simulation. Talbot carpet obtained in the formation of a TAI. The simulated
phase mask corresponds to a spatial 1D Talbot phase with q1 = 3.

A temporal version of the Talbot array illuminator (T-TAI), is observed when a CW beam is phase-
modulated with a temporal Talbot phase sequence, prior to propagation through a GVD medium satisfying
a Talbot condition for the applied phase modulation, resulting on a train of rectangular pulses1. An easy
way of understanding this is by picturing a train of rectangular pulses where the repetition period is an
integer multiple of the pulsewidth, q1. A temporal Talbot sub-image of said pulse train, with denominator
q1 (see Eq. 3.19), will produce a signal with a constant instantaneous power level. The T-TAI is observed
by reversing the process, i.e., starting from the continuous signal, applying an adequate temporal Talbot
phase profile to emulate the mentioned sub-image with denominator q1 (thus making the complex amplitude
of the signal q1-periodic), and reversing the GVD propagation. The T-TAI was recently introduced as a
method to generate trains of optical pulses from CW lasers with high energetic efficiency and high levels of

1Note that this implementation arises from direct application of the space-time duality (see Appendix B) to the processes
involved in the formation of a spatial TAI.
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extinction ratio [115]. This method can be understood as an application of the PCTTM with integer period
multiplication factor, r > 1, on a limit case signal with a constant instantaneous power distribution. Fig. 6.2
shows a sketch summary of the wave transformations involved in the generation of a T-TAI.

Figure 6.2 – Temporal Talbot array illuminator as a limit case of the PCTTM. Combination of phase transformations (TPM,
temporal phase modulation; SPF, spectral phase filtering) of a CW beam to generate a train of rectangular pulses through energy
redistribution based on the PCTTM. In the shown example, r = q1 = 5.

It should be noted that while, strictly speaking, a CW beam satisfies the condition for a function to
be periodic2, the fundamental period is not defined (all values of a constant function repeat themselves
infinitely). Consequently, the spectrum of a constant function is a single component in the Fourier domain.
From the viewpoint of generating Talbot sub-images, constant functions are considered aperiodic here.

6.1.2 Self-healing property of Talbot effect

Another category of aperiodic structures, susceptible of producing Talbot (sub-)images, is obtained by in-
troducing non-uniformity to an originally periodic object, thus disrupting its periodicity. Common examples
of such “faulty” periodic structures are imperfect images of periodic optical gratings, in the position (space)
domain, and modulated temporal data signals, used in digital telecommunications systems to convey infor-
mation. In the latter case, the introduced non-uniformity codifies the information of interest, carried by the
signal.

Talbot effect on faulty periodic structures renders images where the underlying periodicity of the object
is partially recovered. The reason behind this phenomenon, is that the output individual features of a Talbot
(sub-)image are not constructed from a specific feature of the input waveform. In other words, there is no
one-to-one relationship between input and output features of a Talbot (sub-)image. This way, variations
between periods of the input waveform are washed out in the output image. This effect is enhanced in
the case of Talbot amplification, e.g., as observed through the application of the PCTTM with r > 1 to
modulated trains of pulses. This is because in the process of Talbot amplification, images with higher energy
per output feature are obtained. Fig. 6.3 shows a numerical simulation example of Talbot self-healing on a
periodic one-dimensional object, where input features are randomly eliminated.

The self-healing property of Talbot effect has been used as a way to reconstruct two-dimensional images
from periodic objects affected by faults in the image acquisition process [83,112], achieving improved results

2In general, a function, ψ, is periodic in the representation domain u if ψ(u) = ψ(u± nur) ∀ n ∈ N, where ur > 0 is the
fundamental period.
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(a)

(b)

Figure 6.3 – Self-healing property of Talbot effect, numerical simulation. Talbot effect on faulty periodic objects – aperiodic
objects with an underlying periodicity – renders Talbot images where the underlying periodicity of the object is reconstructed. (a)
Reconstruction of a periodic image from an aperiodic object through integer Talbot effect. While the underlying periodicity of
the object is reconstructed, strong amplitude fluctuations are introduced. (b) Reconstruction of a periodic image from an aperiodic
object through integer Talbot amplification, by application of the PCTTM with r = 3. The reconstructed period is r times longer
than the underlying period of the input object, however, the level of amplitude fluctuations on the obtained image is substantially
reduced with respect to the amplitude level of the output amplified features. For a fair comparison, the carpet shown in (a) represents
the third integer Talbot image; this way the output images in (a) and (b) are obtained from equal propagation lengths.

when processed through a spatial realization of the PCTTM [OPc17]. Moreover, the same principle has
been applied to modulated digital data signals in the time domain, as a method to recover the periodic
clock component, necessary for synchronization purposes on a telecommunications receiver [95]. In this
context, temporal Talbot amplification has been used as a successful method for reconstructing sub-harmonic
– decimated – clocks from such data signals, achieving clock signals with higher quality than those obtained
through the basic application of integer temporal Talbot effect [OPj4].

6.1.3 Processing aperiodic waves through the PCSTM

Although, as listed above, some some properties of Talbot (sub-)images obtained from aperiodic objects are
relatively well-known, the impact on their spectra is less understood. Nevertheless, interesting phenomena
can be observed in the frequency domain of Talbot (sub-)images when the input object processed presents
aperiodicity.

6.1.3.1 Spectral Talbot array illuminators

Following a similar procedure to the formulation of the T-TAI (see Fig. 6.2), it should be possible to obtain
a spectral manifestation of the effect, a spectral Talbot array illuminator (S-TAI). Recall that in a T-TAI,
a CW beam is focused into a train of short (ideally rectangular) optical pulses following periodic phase
modulation of the input CW and dispersive propagation of the modulated signal, where both the phase
modulation profile and the dispersive length are designed accordingly to the PCTTM (see Section 6.1.1). An
exchange of the time and frequency domains on the phase transformations of the PCTTM should obtain the
desired T-TAI effect; this would first involve the application of a discrete spectral Talbot phase to a wave
featuring a uniform continuous spectrum, followed by a cancellation of the consequently induced temporal
phase profile, as illustrated in Fig. 6.4(a).
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Figure 6.4 – Spectral Talbot array illuminator as a limit case of the PCSTM. Combination of phase transformations (SPF,
spectral phase filtering; TPM, temporal phase modulation) of a uniform continuous spectrum to generate a sequence of spectral
peaks and gaps through energy redistribution based on the PCSTM. (a) Formulation of the problem using discrete spectral Talbot
phases. (b) Formulation of the problem using continuous spectral Talbot phases, such as those introduced by conventional GVD
media. Note that that the TPM operation in (b) still follows the exact same discrete temporal Talbot phase sequence required in (a).
In the shown examples, r−1 = q2 = 5.

Remarkably, if a continuous spectral Talbot phase (i.e., one satisfying the condition given in Eq. 3.50)
is used instead of a discrete spectral phase sequence, the S-TAI still forms after the application of the cor-
responding discrete temporal Talbot phase sequence, as illustrated in Fig. 6.4(b). This finding is interesting
from a signal processing perspective, as the period of the obtained S-TAI spectrum becomes an arbitrary
factor set by the period of the applied temporal phase sequence. This is also of great interest from a practical
implementation viewpoint, as the required continuous quadratic spectral phase transformation can be easily
implemented by conventional GVD media, which presents practical advantages such as the lack of need for
frequency alignment between the filter and the signal.

Note that the S-TAI configuration corresponds to direct application of the PCSTM, with integer spectral
period multiplication factor r−1 > 1, to a temporally-localized waveform (in practical terms, a short co-
herent pulse), corresponding to a broad spectrum. This chapter deals with the application of the PCSTM to
temporally-aperiodic waves, and it studies the resulting effects on their continuous spectra. Two application
examples of the PCSTM to aperiodic temporal signals are reported and discussed: (i) a method to reversibly
transform the energy spectrum of a broadband wave, so as to avoid interaction between the wave and an ob-
ject with the purpose of concealing the object from detection (Section 6.2), and (ii) a technique to compress
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the spectrum of a sequence of modulated short pulses, e.g., a telecommunications signal, without altering
the temporal shape, including the duration, of the individual pulses of the sequence (Section 6.3). Moreover,
the latter sets the principles for a robust and energy-efficient method for converting the modulation format of
a data sequence, from return-to-zero to nonreturn-to-zero (Section 6.4).

6.2 Spectral invisibility cloaking

This section discusses the application of energy redistribution methods based on phase-controlled Talbot
effects to the field of invisibility cloaking. A method to produce phase-preserving, broadband invisibility is
presented, based on reversible transformations of the frequency spectrum of broadband waves.

6.2.1 Concealment of objects from detection

The capability of making objects invisible has captivated mankind’s imagination for centuries, becoming
fairly standard plot devices in the world of fantasy and science fiction. In real life, invisibility can be achieved
by manipulating the ways in which waves travel through space, ‘tricking’ light into not illuminating the object
one wishes to conceal from detection.

In general, an observer is able to detect and study an object by analyzing the interaction between said
object and a probe wave, coming from a known illumination source. Such an interaction imprints a signature
to the illumination wave, allowing the observer to detect and, to some extent, study the properties of the
target object. A spatial invisibility cloak is a device capable of redirecting the illumination wave around
a prescribed area [10, 116]. This way, objects located within the cloaked region avoid interaction with the
wave. The observer is then unable to detect the presence of the object. Fig. 6.5 illustrates the principle.

The last decade has witnessed a flourishing production of novel concepts and methods for concealing
objects from detection, including invisibility cloaks operating over different regions of the electromagnetic
spectrum [10, 116–131], and even for waves of very different nature, such as acoustic and thermal waves
[132, 133].

Similarly, temporal events, which are detected by the transient variation – temporal signature – they
imprint on a probe wave, can be concealed from detection through a temporal invisibility cloak. Such
a device, appropriately slows down the wave propagation speed before the target event takes place, and
speeds it up after the event is finished, effectively creating a time period during which the wave carries no
energy [134–136]. Fig. 6.6 illustrates the principle.

It should be noted that the ultimate goal of an invisibility cloak is to prevent the detection of both the
object and the cloaking device. Indeed, simply obstructing the observer’s field of view would effectively
obscure the object, however, the observer would immediately realize that an undesired external agent is
interfering with the detection process.

6.2.1.1 Broadband invisibility invisibility: Cloaking multiple colors

Early demonstrations of invisibility cloaking featured metamaterial designs based on transformation optics,
in which a conformal coordinate transformation is applied to Maxwell’s equations, obtaining the set of
electromagnetic parameters required to achieve the desired wave propagation paths [117–119]. The main
limitation of such designs was the fact that invisibility was only achieved at a single wavelength.
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Figure 6.5 – Concept of spatial invisibility cloaking. (a) Detection of an object through the spatial signature resulting from the
interaction between said object and an illumination wave. (b) Concealment of the object from detection through the operation of a
spatial invisibility cloak. The cloaking device redistributes the energy of the illumination wave in space, forming a ‘space gap’.

Figure 6.6 – Concept of temporal invisibility cloaking. (a) Detection of an event (e.g., the movement of an object, a temporal
modulation process. . . ) through the temporal signature resulting from the interaction between said event and an illumination wave.
(b) Concealment of the event from detection through the operation of a temporal invisibility cloak. The cloaking device redistributes
the energy of the illumination wave in time, forming a ‘time gap’.

Recent advances in the field have given rise to invisibility cloaks featuring large operation bandwidths,
usually relying on precise engineering of the electromagnetic response of an exotic material or a complex
optical system [120–131].
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6.2.1.2 True invisibility: The problem of full-field cloaking

One of the main fundamental challenges in the field of invisibility cloaking is the issue of phase preservation.
For an object to be fully concealed, an invisibility device must be able to restore the exact amplitude and
phase variations of the illumination wave, both spatially and temporally (i.e., the full field), at its output.

By fundamental design principles, current cloaking strategies are expected to alter the phase variations
among the different frequency components of a broadband illumination wave [125–129]. This is due to
the fact that an invisibility cloak forces different frequency components of the illumination wave to prop-
agate through different optical paths, thus undergoing different delays. Such phase distortion unavoidably
alters the illumination temporal profile, and current cloaking approaches are thus vulnerable to detection
by straightforward observation methods. For instance, a phase-coherent short pulse (corresponding to a
continuous, broadband frequency spectrum) incident in the cloaking device will be severely distorted due
to phase distortion. An observer equipped with common phase-sensitive or temporal detection instruments
could easily detect such distortion, thus revealing the presence of the cloak [125–129]. Furthermore, recent
in-depth studies, using full electromagnetic analysis, have additionally predicted that traditional spatial in-
visibility cloaks also induce further distortions directly across the energy spectrum profile of the broadband
illumination wave [128].

These fundamental shortcomings are intrinsic to invisibility designs and strategies proposed to date,
so that demonstration of full-field broadband invisibility, even for the simplest one-dimensional case (single
illumination direction), remains a significant challenge [116,125–129]. It has been argued that fundamentally
new concepts, beyond conventional invisibility solutions proposed to date, become necessary for realization
of phase-preserving, broadband cloaking [129–131].

6.2.2 Invisibility in the frequency domain through energy redistribution

Fig. 6.7 schematically illustrates the process of observation of an object through the distinct signature it
imprints on the continuous frequency spectrum of a broadband illumination wave. Such a signature can be
observed either by direct frequency-domain measurements, or through observation of the associated changes
in the temporal and/or spatial properties of the wave.

Figure 6.7 – Detection of an object through its frequency-domain siganture on a broadband illumination wave. For simplicity
of illustration, only scattering of the wave by the target is represented.

The concept proposed here is based on redistributing the incoming wave energy toward frequency regions
that will not be affected by interaction with the object to be cloaked, through energy-preserving transforma-
tions. These transformations are designed to create a reversible ‘frequency gap’ across the desired region(s)
of the illumination spectrum. The wave then propagates through the object without interacting with it, and
subsequent application of the opposite transformations restores the wave spectrum to its exact original state
– both in amplitude and in phase – when the wave has cleared the object. This ensures that both the target
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and the cloaking device remain invisible to any observer, including through broadband, phase-sensitive or
time-domain detection. Fig. 6.8 illustrates the principle.

Figure 6.8 – Concealment of the frequency-domain signature of an object through spectral invisibility cloaking. A frequency
gap is generated in the spectrum of the illumination wave through energy-preserving, reversible wave transformations. The spectral
response of the object, located within such a gap, does not interact with the illumination wave, and thus, a signature is not imprinted.
Once the wave clears the object, the opposite wave transformations restore the illumination spectrum (both in amplitude and in
phase) to its exact original state.

Not only this method has the capability of preserving the phase distribution of coherent broadband illu-
mination waves, but it also provides a new avenue towards application of invisibility concepts to the realm
of spectral analysis of waves. More generally, this concept suggests a way to tailor at will the interaction
between an incoming wave and a medium (i.e., a material, device, system, etc.), through reversible, energy-
preserving transformations of the wave spectrum. To give just a basic example, the spectrum of a wave of
interest could be reversibly transformed to avoid interaction with undesired frequency bands of a medium
or system (e.g., high-absorption spectral regions), thus preventing loss and/or distortion. Such a capability
could prove useful for many important applications, from enhanced control of linear and nonlinear wave
dynamics to unprecedented opportunities in sensing, communications and signal processing.

6.2.2.1 Operation principle

Many different implementations of energy redistribution concepts based on reversible wave transformations
could be envisioned to generate frequency gaps in the continuous spectra of coherent broadband waves. The
wave transformations defined by the PCSTM (see Section 3.2.3.2) successfully produce the desired effect.

For simplicity of explanation, consider first a train of pulses with repetition period tr as the illumination
wave. This corresponds to a frequency comb with FSR νr = t−1

r . In this situation, the PCSTM can be
used to multiply the comb FSR by an integer factor, r−1 = q2. Recall that, as per the PCSTM derivations
in Section 3.2.3.2, fist, a spectral phase shift φk;p2,q2 (general expression in Eq. 3.48) must be applied to
the k-th comb line. In the reported experiments, the value p2 = 1 is chosen to minimize the total required
amount of GVD, however, any integer value can be designed, as long as p2 and q2 are mutually prime. This
way, the applied phase sequence writes,

φk;1,q2 = ςπ
1
q2
k2 (6.1)

As per Eq. 3.50, the required amount of GVD,

2π|β2|z = 1
q2ν2

r

(6.2)
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The obtained wave is a pulse train with repetition period q−1
2 tr. Next, a temporal phase shift −ϕn;s2,q2

(general expression in Eq. 3.52, where s2 is obtained from Eq. 3.27, for the given values of q2 and p2) is
applied to the n-th pulse of the resulting train. In the reported experiments, s2 = q2 − 1, so that,

−ϕn;q2−1,q2 = ςπ
q2 − 1
q2

n2 (6.3)

The FSR multiplication factor obtained in this configuration of the PCSTM is r−1 = q2 (see Sec-
tion 3.2.3.2), resulting in a comb with FSR,

νc = r−1νr (6.4)

Due to the energy-preserving nature of the transformation (only phase manipulations are involved), the
FSR-multiplied comb can be restored to its original state by applying the opposite phase manipulations.
Fig. 6.9(a) illustrates the entire process, where the labels -PM and -GVD denote application of said opposite
phase transformations.

As described in Section 6.1.3.1, when the described transformations are applied to a coherent broadband
illumination wave with a purely continuous frequency spectrum (e.g., a single, short temporal pulse), a peri-
odic set of wideband frequency gaps is generated across the wave spectrum, forming an S-TAI with a spectral
repetition period of νc. Fig. 6.9(b) illustrates the process. The described situation can be understood as a
limit case where the pulse period of the input train in Fig. 6.9(b) is increased so that consecutive illumination
pulses do not interact with each other through the applied phase transformations.

The required phase transformations in the case of a continuous illumination spectrum are the same ones
described above for a periodic train of pulses. However, the values of r and νr can now be chosen arbitrarily
to achieve the desired frequency gap bandwidth, set by,

∆νg = (r−1 − 1)νr (6.5)

This makes the operation of the cloak independent of the properties of the illumination wave (e.g., rep-
etition rate). As discussed above, the illumination wave can be subsequently restored to its exact original
state through application of the opposite phase transformations. Fig. 6.10 shows a numerical simulation of
the process with r−1 = 4, where the original illumination spectrum is assumed to exhibit uniform intensity
and phase distributions, though it should be noted that the described process for frequency gap generation
can be generally produced on non-uniform illumination spectra (further discussions below).

Fig. 6.11 shows a numerical simulation of the process for different values of the parameter r−1.

6.2.3 Experimental demonstration

The proposed technique for phase-preserving spectral invisibility cloaking is demonstrated on a phase-
coherent optical pulse in the near-infrared. It should be noted, however, that due to the nature of the wave
transformations involved in the process, practical implementations could, in principle, be designed in any
region of the electromagnetic spectrum, and for any wave-based platform where basic wave operations –
spectral phase filtering and temporal phase modulation – are defined (e.g., acoustics, matter waves, etc.).
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Figure 6.9 – Spectral invisibility cloaking, operation principle. Summary of the steps involved in the spectral cloaking process,
based on the phase-only manipulations of the PCSTM (temporal phase modulation, PM, and group-velocity dispersion, GVD,
respectively, see Section 3.2.3.2), with r−1 = q2 (integer) for (a), a frequency comb illumination wave, and (b), the general case of
an illumination wave with a continuous spectrum, where no interaction occurs between neighbouring pulses in the cloaking device
at any given time.

6.2.3.1 Experimental setup

Fig. 6.12 shows a simplified3 schematic of the experimental setup used to validate the spectral invisibility
cloaking concept.

3For a complete schematic of the setup, see Fig. D.3.
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Figure 6.10 – Frequency gap generation process, numerical simulation. The operation of the PCSTM transformations on a
wave with a continuous, broadband spectrum produces spectral regions free of energy (frequency gaps). In the shown numerical
simulation, with r = 4, the original illumination spectrum is assumed to exhibit uniform intensity and phase distributions. The
effect of phase modulation (PM) is here depicted as a progressive process in order to reveal the intricate mechanism leading to the
formation, and subsequent reversal, of the frequency gaps.

Figure 6.11 – Frequency gaps of different bandwidths, numerical sim-
ulation. Three examples of frequency gap generation in the spectrum of a
broadband illumination wave are shown, for values of r−1 = 2, 3, and 4.
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The used illumination source consists of a mode-locked laser with a repetition rate of 250 MHz, and an
optical filter, used to select a 4 nm bandwidth around a central wavelength of 1554.5 nm (corresponding to
a 3 dB bandwidth of ∼500 GHz around 192.85 THz). The resulting phase-coherent broadband frequency
spectrum corresponds to a ∼1.4 picosecond temporal pulse.

As depicted in Fig. 6.12, the cloaking device consists of two sections of optical fiber for implementation
of the input and output GVD media, with equal dispersion magnitude and opposite signs; and two electro-
optic phase modulators driven by a radio-frequency synthesizer.

A spool of 10 km of standard single-mode fiber (SMF) was used as the input dispersive section of the
cloaking device, with a total second-order dispersion of 173 ps/nm (corresponding to −222.6 ps2/rad). The
output dispersive section is matched to the input one by concatenating a spool of dispersion-compensating
fiber, designed to compensate the dispersion of 20 km of SMF at the working wavelength, with an additional
10 km SMF spool. These dispersion values satisfy the desired Talbot condition for νr = 19 GHz and r−1 = 2
(see Eq. 6.2). Note that this value of νr is 76 times higher than the repetition rate of the illumination laser; as
such, the illumination repetition rate clearly does not satisfy a Talbot condition for the dispersion provided
by the cloak. Moreover, the amount of dispersion in the cloak is insufficient to induce interference between
any two consecutive pulses, thus ensuring no interaction among incoming pulses in the system.

Both electro-optical phase modulators are driven by a single-frequency tone at 19 GHz from the radio-
frequency synthesizer. The generated driving voltage corresponds to a first-order approximation of the r−1 =
2 temporal Talbot phase sequence. The alignment of the applied driving voltage signal to the optical signal
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Figure 6.12 – Spectral invisibility cloaking, experimen-
tal setup. MLL, mode-locked laser; SMF, single-mode
fiber; EOPM, electro-optical phase modulator; RFS, radio-
frequency synthesizer; POF, programmable optical filter; DCF,
dispersion-compensating fiber. For a complete schematic of
the experimental setup, see Fig. D.3.

is achieved by a tunable optical delay line. Polarization controllers are used at the input of each modulator
in order to maximize the modulation efficiency. Two radio-frequency amplifiers are used to boost the output
of the synthesizer before each modulation stage, in order to adapt the radio-frequency tone to the half-wave
voltage of the phase modulators. Fig. 6.13 shows a measurement of the phase modulation driving voltage,
together with a trace of the dispersed pulse to which it is applied within the cloaking device.
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Figure 6.13 – Phase modulation and dispersed pulse prop-
agating through the spectral invisibility cloak. (a) Periodic
temporal Talbot phase profile associated to a Talbot condi-
tion with r−1 = 2. Vπ represents the half-wave voltage of
the electro-optical phase modulator. (dashed line) Prescribed
phase obtained from the theory of Talbot effect. (solid line)
Measured phase modulator drive voltage used in the experi-
ments, approximating the Talbot phase by a single frequency
component. The number of periods of the phase sequence oc-
curring within the temporal duration of the dispersed pulse ap-
proximately equals the number of generated frequency gaps in
the illumination spectrum (see Fig. 6.15). (b) Photodetected
temporal amplitude trace of the dispersed pulse (after the first
dispersive fiber section, see Fig. 6.12), shown with respect to
the estimated 1.4 ps duration of the original illumination pulse,
measured by a 28 Gsa/s real-time oscilloscope equipped with
a 43 GHz photodiode.
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The object to be concealed (frequency domain characterization shown in Fig. 6.14) is a programmable
optical filter, loaded with a linear frequency response consisting of a set of resonances spaced by 38 GHz,
each with a 3 dB width of 17.5 GHz.

Figure 6.14 – Test object used in the experimental demon-
stration of spectral invisibility cloaking. Phase (top) and
log-scale magnitude of the transmission (bottom) spectral pro-
files of the linear optical filter, used as the object to be con-
cealed in the experimental demonstration of spectral invisibil-
ity cloaking. The measurements are performed with an optical
vector analyzer with a frequency resolution of 200 MHz. In
this representation, the transmission spectral response corre-
sponds to the reciprocal of the object absorption as a func-
tion of frequency; this way, a transmission value of 0 dB in-
dicates transparency, while a transmission value of −35 dB
corresponds to 35 dB of optical power absorption. The object
consists of a set of 11 resonances spaced 38 GHz apart, which
sets the value of νc that is used for design in the reported trans-
formations for spectral invisibility cloaking. Each resonance
has a 3 dB bandwidth of 17.5 GHz. The peak absorption is
measured to be approximately 35 dB. Each resonance intro-
duces an additional phase shift of π rad.

-1

-0.5

0

0.5

192.625 192.73 192.835 192.94 193.045 193.15

-35

-30

-25

-20

-15

-10

-5

0

P
h

as
e 

(r
ad

/π
)

T
ra

n
sm

is
si

o
n

 (
d

B
)

Frequency (THz)

17.5 GHz

38 GHz

π rad

35 dB

-3 dB

6.2.3.2 Experimental results

Fig. 6.15 shows a set of measured spectral traces of the waves involved in the spectral cloaking process,
captured by an optical spectral analyzer with a frequency resolution of 2 GHz.

Figure 6.15 – Spectral invisibility cloaking, ex-
perimental results, frequency domain. Mea-
sured optical power spectra of the involved
waves, normalized to the illumination peak spec-
tral intensity, illustrating the implemented trans-
formations for frequency gap generation and re-
versal. The transmission spectrum of the ob-
ject to be concealed (full characterization in
Fig. 6.14) is shown for reference. Measurement
points, as marked in Fig. 6.12, are indicated. (a)
Illumination spectrum (Fig. 6.12(a)). (b) Spectral
amplitude signature of the object, detected on the
illumination wave when the transformations are
not applied (Fig. 6.12(d)). (c) Frequency gaps in-
duced in the illumination wave when the trans-
formations are applied (Fig. 6.12(b)). (d) Object
spectral response inserted in the frequency gaps
(Fig. 6.12(c)). (e) Effect of the spectral cloak on
the output illumination spectrum in the absence
of the object (Fig. 6.12(d)). (f) Measured output
spectrum when the object is present and the cloak
is on, showing successful prevention of wave-
object interaction, and consequent concealment
of the object (Fig. 6.12(d)). The residual ripples
on the recovered spectrum are attributed to the
fact that the object resonances are slightly wider
than the generated frequency gaps.
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Fig. 6.15(a) shows the spectrum of the coherent broadband illumination wave. The spectral amplitude
signature of the object is clearly observed in Fig. 6.15(b), when the phase modulators are not driven (cloak
off). When the cloak is turned on, this configuration produces the expected set of frequency gaps in the
illumination spectrum, with a 3 dB gap bandwidth of ∆νg = 19 GHz, and a spectral period of νc = 38
GHz (Fig. 6.15(c)). Note that a 3 dB increase in the peak intensity (corresponding to a linear factor of ∼2)
is observed in the frequency gap spectrum, in agreement with the expected conservation of energy, from the
designed parameter r−1.

The presence of the frequency gaps in the illumination spectrum allows the wave to propagate unal-
tered through the filter (Fig. 6.15(d)) without interacting with it. In this situation, an observer monitor-
ing the output spectrum will detect the exact original illumination wave, as if the object was not present
(Figs. 6.15(e) and (f)).

For completeness, Fig. 6.16 shows a higher resolution measurement of the spectrum of the illumination
wave, before and after the generation of frequency gaps.

192.97 192.98 192.99 193 193.01 193.02 193.03
-25

-20

-15

-10

-5

0

5

192.97 192.98 192.99 193 193.01 193.02 193.03
-25

-20

-15

-10

-5

0

5

Frequency (THz)

Frequency (THz)

P
o
w

er
 s

p
ec

tr
u
m

 (
d
B

)
P

o
w

er
 s

p
ec

tr
u
m

 (
d
B

)

(a)

(b)

2 GHz spectral resolution140 MHz spectral resolution

193 193.005 193.01

-20

-10

0

193 193.005 193.01

-20

-10

0

Figure 6.16 – Spectral invisibility cloaking, ex-
perimental results, frequency domain – de-
tail. The solid line corresponds to a measured
power spectrum with a frequency resolution of
140 MHz, the dashed line shows the same mea-
surement with a frequency resolution of 2 GHz.
(a) Detail of the illumination spectrum. (b) Detail
of the spectrum of the frequency gaps. The illu-
mination wave has a repetition rate of 250 MHz
(observable in the high resolution measurements
in the form of spectral lines with a 250 MHz fre-
quency spacing). The designed spectral transfor-
mations introduce frequency gaps in the complex
envelope of the spectrum, regardless of the pulse
repetition rate. Note that, at 250 MHz, the illumi-
nation repetition rate clearly does not satisfy the
designed Talbot condition in the shown example.

In order to demonstrate that the spectral cloak preserves the exact original incoming illumination wave,
both in amplitude and phase, time-domain measurements of the propagating wave at the input and output of
the cloak are performed (Fig. 6.17).

Fig. 6.17(a) shows the measured autocorrelation trace of the illumination pulse. This trace is compared
to the expected autocorrelation, computed from the measured illumination spectrum, assuming a a constant
spectral phase profile. The good agreement between both traces suggests that the illumunation pulse is
Fourier transform-limited4.

When the cloak is turned off, the measured output autocorrelation is significantly distorted, revealing the
time-domain signature of the object (Fig. 6.17(b)). In contrast, the wave propagates without any observable
distortion when the cloak is turned on, regardless of whether the object is present or not (Figs. 6.17(c) and (d)).

To quantify the similarity between the measured autocorrelation traces of the illumination and output
waves, their cross-correlation coefficient, ρ, is calculated. The cross-correlation coefficient is a widely-

4A Fourier transform-limited pulse has both its temporal and spectral phase distributions linear, and thus, its temporal duration
is the shortest possible, given its bandwidth.
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Figure 6.17 – Spectral invisibility cloaking, ex-
perimental results, temporal autocorrelation.
Measured temporal autocorrelation traces of the
involved waves. Measurement points, as marked
in Fig. 6.12, are indicated. (a) Autocorrela-
tion trace of the illumination wave (Fig. 6.12(a)),
and numerical fit of the expected trace for a
transform-limited pulse (i.e., with a constant
spectral phase profile). (b) Temporal signa-
ture of the object when the cloak is turned off
(Fig. 6.12(d)). (c) Autocorrelation trace of the
wave at the output of the cloak without the target
object (Fig. 6.12(d)). (d) Autocorrelation trace
when the object is present and the cloak is on
(Fig. 6.12(d)), showing a successful concealment
of the object.
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employed metric for quantitative comparison of real-valued signals. It corresponds to the zero-lag sample of
the cross-correlation between two signals, normalized to the zero-lag sample of the autocorrelations of each
signal. For two real-valued signals ψ1(t) and ψ2(t), the definition of the cross-correlation coefficient, ρ, is,

ρ =

∫ ∞
−∞

ψ1(τ)ψ2(τ) dτ√∫ ∞
−∞
|ψ1(τ)|2 dτ

∫ ∞
−∞
|ψ2(τ)|2 dτ

(6.6)

This coefficient takes values between −1 and 1. Two real-valued signals satisfying ψ1(t) = ψ2(t) yield
a cross-correlation coefficient ρ = 1, while its value becomes −1 when ψ1(t) = −ψ2(t). If the two signals
are real-valued and positive, the cross-correlation coefficient is defined between 0 and 1. The closer this
coefficient is to 0, the more dissimilar the signals ψ1(t) and ψ2(t) are. Similarly, the degree of similitude
between the signals ψ1(t) and ψ2(t) is then higher the closer the value of ρ is to 1.

When the cloak is turned off and the object is illuminated, the similarity between the illumination and
output pulses is found to be just over 13.6% (ρ = 0.1363 in Fig. 6.17(b)). The operation of the cloak
conceals both the object’s signature and the presence of the cloaking device itself, increasing the similarity
between illumination and output pulses to a value higher than 99.9%, regardless of the presence of the object
(ρ = 0.9992 and 0.9991 Figs. 6.17(c) and (d) respectively).

Additionally, an indirect reconstruction of the complex – amplitude and phase – temporal envelope of
the illumination and output pulses is performed. This is achieved through spectral measurements, using
a frequency-domain version of the phase reconstruction through optical ultrafast differentiation technique
(PROUD) [137], referred to as S-PROUD (spectral phase reconstruction through optical ultrafast differenti-
ation) [138]. The method reconstructs the complex temporal envelope (including both amplitude and phase
profiles) of a signal under test (SUT), of the form,

ψi(t) = |ψi(t)|ei^ψi(t) (6.7)
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where i is the imaginary unit and |ψi(t)| and ^ψi(t) are the temporal amplitude and phase profiles of the
SUT, respectively.

This reconstruction requires the measurement of two power spectra: |Ψi(ω)|2, the power spectrum of the
SUT, (where ω = 2πν is the radial frequency variable, measured in rad), and |Ψo(ω)|2, the power spectrum
of the signal resulting from modulating the amplitude of ψi(t) with a linear monotonic function of time.
Following the properties of the Fourier transform5, the result of such a modulation translates into a differ-
entiation of the spectrum of the SUT, Ψi(ω). In the reported experiments, this spectral differentiation was
achieved through electro-optical temporal amplitude modulation of the incoming optical waveform (SUT)
in a Mach-Zehnder intensity modulator (MZM). The electronic modulation driving signal was a sinusoidal
function, slowly-varying as compared to the temporal envelope of the SUT, where the required linear mono-
tonic function was approximated by the rising slope of a single sinusoidal cycle. For this purpose, the MZM
was biased at the quadrature point (i.e., in the linear operation region, half way between the maximum and
minimum transmission points). The group delay distribution of Ψi(ω) (the derivative of the phase of Ψi(ω)
with respect to radial frequency) can be numerically reconstructed by means of the following equation [138],

d
dω^Ψi(ω) = 1

AΩ

1− 1
|Ψi(ω)|

√
2
T0
|Ψo(ω)|2 −

(
AΩ d

dω |Ψi(ω)|
)2
 (6.8)

where the parametersA, Ω and T0 are associated to the temporal amplitude modulation process: A is the half
amplitude of the RF tone referred to the half-wave voltage of the MZM, Ω is the frequency of the RF tone,
and T0 is the maximum throughput of the MZM. The values of these parameters in the reported experiment
are: AΩ ' 7.8 ns−1 and T0 ' 1. Note that the derivative of |Ψi(ω)| on the right-hand side of Eq. 6.8 is
performed numerically on the measured input amplitude spectrum.

The spectral phase profile of the SUT, ^Ψi(ω), is then obtained (except for an additive constant term)
by numerical integration of the calculated group delay profile. The time-domain waveform of the SUT is
finally reconstructed by simply calculating the inverse Fourier transform of the measured spectral amplitude,
|Ψi(ω)|, with the numerically calculated spectral phase profile, ^Ψi(ω), such that,

Ψi(ω) = |Ψi(ω)|ei^Ψi(ω) (6.9)

Fig. 6.18 shows the reconstructed temporal amplitude and phase profiles of the illumination pulse and the
pulse at the output of the cloaking device when the object is present and the cloak is operational. The output
pulse shows a high similarity with the illumination pulse, quantified by a cross-correlation coefficient higher
than 0.99 for the amplitude profile, and 0.95 for the phase profile, confirming that the complex temporal
envelope of the illumination wave is entirely preserved.

6.2.4 Selective spectral cloaking

The proposed cloak design has the capability to continuously shift the positions of the frequency gaps without
shifting the global envelope of the illumination spectrum, by simply delaying the temporal phase modulation
profile. When the temporal delay equals one period of the phase modulation signal (52.6 ps in the reported
experiment), the gaps are shifted to their original relative frequencies. The relationship between the fre-

5For details on the properties of the Fourier transform, consult Appendix A.
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Figure 6.18 – Spectral invisibility cloak-
ing, experimental results, temporal
phase reconstruction. Indirect recon-
struction of the complex (amplitude and
phase) temporal envelope of the involved
waves through the S-PROUD method. (a)
Illumination pulse. (b) Pulse with the
object present and the cloak turned on.
The estimated full-width at half maximum
temporal width of the pulse is of approxi-
mately 1.4 ps.
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quency sift experienced by the gaps, δν, and the associated time delay of the phase modulation signal, δt,
writes,

δν

δt
= r−1ν2

r (6.10)

Fig. 6.19 shows a set of 12 measured traces of the power spectrum of the illumination wave after the first
section of the cloak. For each trace, the temporal phase modulation sequence was delayed, producing the
expected continuous shift of the frequency gaps.
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Figure 6.19 – Spectral invisibility cloaking, experimental results, continuous shift of the frequency gaps. (a) 12 measured
spectra of the frequency gaps for different values of temporal delay of the phase modulation signal. (b) interpolation of the 12
measured spectra, showing the linearity of the observed frequency shift with the applied time delay. The dashed white line indicates
the trend of Eq. 6.10.

This capability of shifting the frequency gaps grants a unique feature to the reported reversible wave-
spectrum control method. One could selectively determine the specific frequency region(s) along which the
wave-object interaction is permitted and/or avoided. For instance, this allows one to conceal only a part of
the frequency spectrum of the object, deliberately leaving the rest detectable, by strategically selecting the
positions of the frequency gaps. This could be understood as selecting a range of colors of a multicolor
object to be cloaked, while allowing the rest of the object to remain visible. An experimental demonstration
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example is reported in Fig. 6.20, showcasing the enhanced degree of flexibility offered by the proposed
concept to selectively control the interaction between wave and object.
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Figure 6.20 – Spectral invisibility cloaking, ex-
perimental results, selective cloaking. An ob-
ject with several absorption bands (or equiva-
lently, several objects with different absorption
bands) can be selectively targeted by the cloak
spectral transformations. (a) Measured spectrum
of the illumination wave. (b) Measured transmis-
sion spectrum of the object (comprising a pair
of stop bands) and signature on the illumination
wave when the cloak transformations are not ap-
plied. (c) Measured wave spectrum at the out-
put of the first phase modulator (Fig. 6.12(b)),
showing the generation of frequency gaps. The
cloak is designed so that one of the resonances
of the object fits in a frequency gap, while the
other one is located outside of the gaps. (d) Mea-
sured wave spectrum at the output of the cloak-
ing device (Fig. 6.12(d)). The resonance located
at a frequency gap is cloaked (wave-object inter-
action avoided), while the one located outside of
the gaps is detected (wave-object interaction per-
mitted).

6.2.5 Spectral cloaking with nonuniform spectra

The proposed energy-preserving wave spectrum manipulation method also performs the desired frequency
gap generation operation for illumination waves with strong spectral amplitude and phase variations. Fig. 6.21
shows a numerical simulation example of frequency gap generation and reversal on an illumination wave with
a nonuniform spectrum.
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Figure 6.21 – Spectral invisibility cloaking, nonuniform illumination. Numerical simulations of the spectral transformations
implementing the full-wave cloaking operation (shown example with r−1 = 4) with a nonuniform illumination spectrum. (a)
Broadband illumination spectrum, presenting strong fluctuations in both amplitude and phase; (b) frequency gaps resulting from
application of the spectral cloak transformations; (c) reconstruction of the original illumination wave after reversal of the applied
transformations.

From a practical viewpoint, such spectral variations could actually be understood as the signature of other
surrounding objects. Furthermore, since the proposed spectral cloak design has a symmetric architecture, the
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cloaking process is bidirectional. These two features would allow to indistinctly exchange the positions of
the source and the observers, potentially enabling an observer to see behind the cloaked object without
distortion, and without detecting the cloaking device (see illustration in Fig. 6.22).

Figure 6.22 – Spectral invisibility cloaking, bidirectional operation. Conceptual illustration of the detection of a target located in
the background of a cloaked object. This is enabled by the inherent symmetric architecture of the spectral cloak, combined with the
capability of the energy redistribution transformations to successfully operate with nonuniform illumination spectra. In this case,
the non-uniform spectral shape ‘encodes’ the reflection signature of the background target.

6.2.6 Additional comments and remarks

As aforementioned (see Section 6.1.3.1), the reported methodology for redistributing the spectrum of a
broadband wave into a periodic set of frequency gaps could be conceptually understood as a frequency-
domain realization of a temporal Talbot array illuminator (T-TAI) [115]. In a T-TAI, a CW beam is focused
into a train of short (ideally rectangular) optical pulses following periodic phase modulation of the input
CW and dispersive propagation of the modulated signal, where both the phase modulation profile and the
dispersive length are prescribed by the PCTTM, with tr being a free parameter. Such a concept has been
previously exploited for temporal cloaking, namely to hide information in the temporal gaps that are created
in between the output short pulses [136]. The reported frequency gap generation process could then be con-
ceptually interpreted as a spectral TAI (S-TAI), in that it produces a train of rectangular spectral peaks with
high extinction ratio from a broadband wave.

Nonetheless, it is important to note that from a mathematical viewpoint, there is a key difference between
the implementations of the phase transformations involved in a T-TAI and those of the reported spectral cloak
realization. For the formation of a T-TAI, a continuous-wave beam is first phase- modulated by a periodic
Talbot phase sequence (i.e., a sequence of periodic phase steps satisfying the required Talbot condition),
after which, the phase-modulated wave propagates through a certain GVD length, implementing a contin-
uous quadratic phase filtering operation. In the reported spectral cloak implementation, the order of these
operations is exchanged (GVD before PM), however, their definition remains identical, i.e., the first oper-
ation in the S-TAI (GVD) is still a continuous quadratic phase filter, while the second operation (PM) is
a periodic step-like phase modulation. A direct duality between the realizations of a T-TAI and an S-TAI
would involve a direct exchange of the time and frequency domains, so that the S-TAI would consist of a first
periodic step-like phase filter followed by a continuous quadratic temporal phase modulation, as opposed to
the method reported here. This shows that wave operations based on Talbot phase manipulations can be de-
signed to affect the envelope of a coherent broadband wave, regardless of its repetition rate (as demonstrated
in Fig. 6.16). Furthermore, from an implementation viewpoint, this finding implies that periodic or discrete
spectral phase filters (potentially difficult to implement with good spectral resolution) are not an indispens-
able requisite for implementation of the proposed spectral cloaking approach, and that the approach could
still be implemented using a continuous quadratic spectral phase, such as that provided by widely available
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second-order dispersive media (also avoiding the need for precise alignment of the signal’s spectrum to the
filter).

6.3 Waveform-preserving spectral compression of modulated pulse sequences

In the previous section, it was shown how the spectral invisibility cloaking concept successfully generates
frequency gaps in nonuniform spectra, effectively liberating frequency regions, originally occupied by the
wave of interest. Such spectral variations could actually be the result of temporal modulation of the wave of
interest, in such a way that the mentioned nonuniformity encodes the information of the modulation pattern.
In this section, this result is used as a means to introduce frequency gaps to the spectra of data signals, con-
sisting on sequences of modulated short pulses, effectively liberating originally occupied bandwidth. Owing
to the properties of the Talbot effect, this operation results on the spectral compression of the signal, while
the associated temporal pulses maintain their original shape, including their temporal duration. As discussed
below, this feat could have important implications in ultra-wideband technologies, telecommunications and
information processing systems.

6.3.1 The Fourier transform limit

By its own definition, the Fourier transform establishes a strict relationship between the temporal duration
of a pulse and the extent of its frequency content. This relationship is ultimately dictated by the so-called
uncertainty principle.

6.3.1.1 The time/frequency uncertainty principle

The uncertainty principle is a fundamental consequence of the Fourier transform [73]. In short, this principle
states that the spreads of a function and its Fourier transform cannot be arbitrarily small simultaneously. Any
pair of Fourier-conjugate variables entails an uncertainty principle. In its original application in quantum
mechanics, Werner Heisenberg formulated the principle as the uncertainty relation of the position/momentum
pair [139, 140]. Later, Dennis Gabor established a generalization in the time/frequency representation of
waves by applying Heisenberg’s mathematical apparatus to arbitrary signals [141, 142].

Considering the Fourier-conjugate pair of variables t and ω, representing time and radial frequency
respectively, if most of the energy of a wave, represented by a complex function ψ(t), is concentrated over
a given time period, the energy of its Fourier-domain representation, Ψ(ω), must have a minimum spread
in frequency, related to the temporal spread by a scaling factor. In particular, taking |ψ(t)|2 and |Ψ(ω)|2 as
probability distributions6, with standard deviations σt and σω, respectively, so that,

6Note that this implies absolute square normalization, so that,∫ ∞
−∞
|ψ(τ)|2 dτ = 1

2π

∫ ∞
−∞
|Ψ(Ω)|2 dΩ = 1

where the Parseval’s theorem was used (for further details, consult Appendix A).
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σ2
t :=

∫ ∞
−∞

τ2|ψ(τ)|2 dτ (6.11)

σ2
ω :=

∫ ∞
−∞

Ω2|ψ(Ω)|2 dΩ (6.12)

the time/frequency uncertainty principle writes,

σtσω ≥
1

4π (6.13)

where the equality is achieved when ψ(t) is a Gaussian function.

6.3.1.2 Time-bandwidth product of pulsed waveforms

In the context of pulsed signals, the uncertainty principle determines the minimum bandwidth (range of
frequencies), ∆ν (measured in Hz), necessary to build up a pulse of a certain duration, ∆t (measured in s);
or equivalently, the minimum duration a pulse can achieve given a certain available bandwidth.

Consider an arbitrary pulsed waveform, ψ(t), and its linear frequency spectrum, Ψ(ν). If ∆t is defined
as the FWHM duration of |ψ(t)|2, and ∆ν as the 3 dB bandwidth of |Ψ(ν)|2, the product ∆t∆ν is known as
the time-bandwidth product (TBP), and it satisfies the uncertainty relation,

∆t∆ν ≥ C (6.14)

where C is a constant that depends on the complex envelope of the pulse, ψ(t). For instance, taking a pulse
with an instantaneous power profile defined by a Gaussian function of time, C = π−12 log(2) ' 0.441 [75].

6.3.1.3 Transform-limited pulses

When Eq. 6.14 is satisfied with strict equality, ψ(t) is said to be a bandwidth-limited, Fourier-transform-
limited, or simply transform-limited pulse. Transform-limited pulses have the minimum possible duration
for a given available bandwidth Fig. 6.23(a) shows a sketch of the temporal and spectral power and phase
distributions of a transform-limited pulse.

In general, both the temporal and spectral phase distributions of a transform-limited pulse are linear
functions of time and frequency, respectively [74, 75]. Linear phase transformations can be applied to a
pulse to extend its temporal duration without altering the composition of its frequency spectrum, e.g., in
the form of group velocity dispersion in a transparent optical propagation medium [75]. Similarly, the
spectrum of a pulse can be broadened without affecting its temporal duration, through nonlinear or linear
time-variant phase transformations, e.g., such as those induced by Kerr nonlinearity in optical media [75].
In both situations, the uncertainty relationship is satisfied with strict inequality (see Fig. 6.23(b)). This is
due to the fact that variations of the temporal and spectral phases of the pulse remain uncompensated for
after the corresponding transformation has taken place. If such phase variations are flattened, a pulse can
be temporally compressed, but at the expense of broadening its frequency spectrum [75]. Similarly, one can
compress the spectrum of a pulse at the expense of increasing its temporal duration [143]. The obtained
pulses in both cases are then transform-limited, and the uncertainty relation holds with strict equality (see
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Figure 6.23 – Fourier uncertainty relations in temporal/spectral compression mechanisms. Formulation of the time/frequency
uncertainty principle of the Fourier transform in different scenarios. (a) Amplitude and phase of a transform-limited pulse (top) and
its spectrum (bottom). (b) Propagation through a linear dispersive medium, resulting on the temporal stretching of the pulse while
its spectrum remains unaltered (top); the process corresponds to a quadratic transformation of the spectral phase distribution of the
pulse. Propagation through a nonlinear medium, resulting on the spectral broadening of the pulse, while its temporal shape remains
unaltered (bottom); the process corresponds to a quadratic transformation of the temporal phase distribution of the pulse. In both
cases the obtained pulses are not transform-limited. (c) Pulse compression (top), and spectral compression (bottom), produced by
combinations of temporal and spectral phase manipulations. The obtained pulses are transform-limited.

Fig. 6.23(c)). It is not possible, however, to compress a pulse or its frequency spectrum below the limit set
by the uncertainty principle. This leads to critical design constraints in applications that involve the use of
pulsed waveforms, such as for processing and communication of data signals.

6.3.2 Advantages and disadvantages of short pulses for practical applications

Data-modulated pulse sequences (e.g., as used in telecommunication and information processing systems)
are fundamental for processing, storage and transmission of information [14]. In general, a data signal can be
interpreted as a sequence of periodic pulses that are consecutively modulated to carry the desired arbitrary
(e.g., random) complex data pattern, symbol to symbol (i.e., pulse to pulse). The duration of the coded
pulses cannot exceed the inter-symbol temporal period, i.e., the inverse of the symbol rate7. In the frequency
domain, such an arbitrary-modulated pulse sequence exhibits a continuous frequency spectrum along the full
bandwidth of the individual pulses [14, 74]. The amount of information that can be transmitted or processed
per time period over the available bandwidth (i.e., the spectral efficiency) is ultimately limited by the extent

7A data pulse sequence follows a nonreturn-to-zero (NRZ) coding format when temporal duration of the pulses is fixed to
coincide with the inter-symbol period, so that there are no guard times between consecutive symbols. When the pulse duration
is shorter than the inter-symbol period, the sequence follows a return-to-zero (RZ) coding format, leaving guard times between
consecutive symbols.
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of the data signal frequency spectrum, so that a narrower data signal spectrum translates into an increased
spectral efficiency (for a prescribed number of bits per symbol, and a symbol rate).

Particularly, the use of short pulses – in the form of return-to-zero (RZ) modulation formats – provides
critical advantages, including lower power consumption, higher net data rates and simpler synchroniza-
tion operations, among others [14, 144–146]. In the particular case of optical communication and infor-
mation processing systems, short-pulse data signals offer higher tolerance to noise, nonlinear effects and
polarization-mode dispersion, all of them critical impairments in present high-capacity fiber-optics com-
munication links [147–149]. Indeed, fear of the so-called capacity crunch of fiber-optics communications,
where the mentioned propagation impairments compromise the available channel capacity, is fueling the
development of new technologies and strategies that can help fulfilling the increasing demand of data trans-
mission [147–154].

Optical coding and modulation formats based on short pulses have also been demonstrated to provide
important performance improvements in free-space communication systems under adverse atmospheric con-
ditions [155]. Power-constrained optical communication systems, deep space communications and trans-
mission through turbulent media also favor the use of short pulses, typically in the form of pulse-position
modulation schemes [156].

Sequences of data-modulated short pulses are then favored by time-division multiplexing (TDM) meth-
ods to aggregate information (e.g., optical TDM, OTDM, in the context of fiber-optics telecommunication
systems). On the other hand, as previously discussed, a shorter temporal pulse needs a broader spectral band-
width, resulting in a reduced spectral efficiency, as compared to nonreturn-to-zero (NRZ) data sequences,
which require a lower bandwidth than RZ sequences for a given data rate. As a result, NRZ signals are pre-
ferred by frequency-division multiplexing (FDM) strategies (e.g., optical wavelength-division multiplexing,
WDM, in the context of fiber-optics telecommunication systems), which are, in general, easier to implement
and operate than their TDM counterparts [14, 18, 157]. This is because, in principle, the time/frequency un-
certainty relationship prevents the spectrum of a modulated data pulse sequence to be arbitrarily compressed
without increasing the temporal duration of its pulses.

6.3.3 Reversible spectral compression of pulsed data sequences by energy redistribution

The spectral energy redistribution concepts studied in this chapter can be exploited to compress the spectrum
of a sequence of arbitrary (e.g., random) data-modulated short pulses, without altering the temporal shape –
including the temporal duration – of its constituent pulses.

This section provides a simple linear processing scheme for waveform-preserving spectral compression
of short pulse data signals, based on the PCSTM. Owing to the phase-only nature of the involved signal
operations (GVD and PM), the process is fully reversible, in such a way that the original signal can be
subsequently recovered without any loss of information, (including full recovery of the exact original pulsed
data waveform). Fig. 6.24 illustrates the concept.

The proposed waveform-preserving spectral compression process is similar to the spectral invisibility
cloaking concept, explained in Section 6.2, with the particularity that the pulse rate of the input signal, in
this case, satisfies the designed Talbot condition, as in the original formulation of the PCSTM, applied to
frequency combs (see Chapter. 5). In this situation, the temporal aperiodicity introduced by the modula-
tion sequence – data – produces a continuous spectrum where frequency gaps can be generated, following a
methodology identical to that introduced in Section 6.2.2.1 for implementation of spectral invisibility cloak-
ing. Also, similarly to the spectral cloak implementation, reversal of the PCSTM transformations fully
restores the original input signal. Fig. 6.25 illustrates the process.
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Figure 6.24 – Waveform-preserving spectral compression of modulated pulse sequences. Illustration of the proposed concept
to overcome the spectrum spread constraint of an arbitrary data-modulated pulse sequence through application of the reversible
phase-only linear transformations of the PCSTM (GVD: second-order group-velocity dispersion; PM: quadratic temporal phase
modulation). Such phase transformations act on the entire pulse sequence, rather than on individual pulses. The result is the desired
compression of the total occupied bandwidth, while maintaining the original individual pulse shape: the overall spectral width
remains unchanged, but periodic frequency gaps are introduced in the spectrum, reducing the effective occupied bandwidth. The
original data signal waveform can be fully recovered by application of the inverted linear phase transformations (-GVD, -PM).

Figure 6.25 – Spectral compression of pulsed data signals by PCSTM, operation principle. Summary of the steps involved
in the process of waveform-preserving spectral compression of modulated pulse sequences, based on the phase-only manipulations
of the PCSTM (temporal phase modulation, PM, and group-velocity dispersion, GVD, respectively, see Section 3.2.3.2.), with
r−1 = q2 (integer).

Such an energy-preserving method for spectral compression of data signals could find immediate appli-
cation for multiplexing signals in the frequency domain, while still maintaining short temporal pulses, thus
combining the spectral efficiency and convenient operation of FDM systems with the performance, versatility
and robustness advantages of short-pulse data transmission. Additionally, applications such as optical label
switching [158], and radio-over-fiber communications [159], that require data sequences to be multiplexed
within the bandwidth of broadband pulsed signals, necessarily introducing undesired distortions in these sig-
nals (e.g., associated with the need to filter out part of the signal spectrum), could immediately benefit from
the proposed spectral compression technique. The proposed method could be used to generate the needed
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spectral gaps to accommodate the additional data without affecting the original optical waveforms. Finally,
ultra-wideband radar and telecommunication technologies, using coded short pulses, could also benefit from
multiplexing techniques based on the reported spectral compression method, allowing to exploit simultane-
ously several data pulse sequences without interfering with neighbouring frequency bands [160, 161].

6.3.3.1 Operation principle

The case under consideration here is that of a data-modulated sequence of pulses with duration ∆t, obtained
by temporal modulation an originally periodic pulse train in amplitude and/or phase, pulse-to-pulse, follow-
ing an arbitrary data pattern. The symbol rate, νr, is defined by the pulse period of the sequence, tr = ν−1

r .
In the frequency domain, following such a modulation process, the resulting data sequence exhibits a contin-
uous energy spectrum along the full frequency bandwidth, ∆ν, of the short pulses in the sequence. Assuming
transform-limited pulses, the relationship between the temporal pulse duration and the frequency bandwidth
writes ∆t∆ν = C, for some constant C depending of the temporal envelope of the pulses.

The spectral compression process consists on the application of the spectral and temporal phase trans-
formations defined by the PCSTM (identical to the ones given in Eqs. 6.2 and 6.38) to the input modulated
pulse sequence. Fist, a spectral phase shift φk;p2,q2 (general expression in Eq. 3.48) is applied to the k-th
comb line. In the reported experiments, the value p2 = 1 is chosen to minimize the total required amount of
GVD, however, any integer value can be designed, as long as p2 and q2 are mutually prime. This way, the
applied phase sequence writes,

φk;1,q2 = ςπ
1
q2
k2 (6.15)

As per Eq. 3.50, the required amount of GVD,

2π|β2|z = 1
q2ν2

r

(6.16)

The obtained signal is a pulse train with repetition period q−1
2 tr, where the individual pulses maintain

their original temporal profile, including the pulsewidth ∆t.

Next, a temporal phase shift −ϕn;s2,q2 (general expression in Eq. 3.52, where s2 is obtained from
Eq. 3.27, for the given values of q2 and p2) is applied to the n-th pulse of the resulting train through a
temporal phase modulation process (PM). In the reported experiments, s2 = q2 − 1, so that,

−ϕn;q2−1,q2 = ςπ
q2 − 1
q2

n2 (6.17)

As in the spectral invisibility cloaking method, a periodic set of frequency gaps is generated across the
signal’s continuous frequency spectrum, with a spectral period νc, and gap bandwidth ∆νg, given by,

8Note that, in this case, tr is no longer an arbitrary constant, but rather it is fixed by the symbol rate of the signal of interest,
similarly to the original formulation of the PCSTM for frequency combs.
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νc = r−1νr (6.18)

∆νg = (r−1 − 1)νr (6.19)

This produces a compression of the overall frequency range that is occupied by the modulated pulse
sequence, reducing the effective bandwidth of the sequence to,

∆νe = r∆ν (6.20)

while the spectral envelope maintains its original shape and width, ∆ν.

As a result, the effective TBP of the output sequence is reduced with respect to the input, and specifically,
the uncertainty relation for the effective occupied bandwidth writes,

∆t∆νe = rC (6.21)

Finally, application of the opposite phase transformations (-PM and -GVD) restores the data pulse se-
quence to its exact original state in both the time and frequency domains.

6.3.4 Experimental demonstration

The proposed technique for waveform-preserving spectral compression is demonstrated on a typical optical
RZ pulsed data signal for fiber-optics telecommunications. It should be noted, however, that due to the
nature of the signal transformations involved in the process, practical implementations could, in principle,
be designed for other regions of the electromagnetic spectrum (e.g., for radio communications, microwave
links, etc).

6.3.4.1 Experimental setup

Fig. 6.26 shows a simplified9 schematic of the experimental setup used to validate the waveform-preserving
spectral compression concept.

A mode-locked laser generates optical pulses at a repetition rate of νr = 9.45 GHz (corresponding
pulse repetition period tr = 105.82 ps), at a central frequency of 193.4 THz (corresponding to a central
wavelength of 1551.2 nm). These pulses have a temporal FWHM of ∆t = 2.58 ps. The associated spectrum
is a frequency comb with FSR νr, and a 3 dB spectral width ∆ν = 126.2 GHz. The estimated TBP is
∼0.326, close to the expected value of C ' 0.315 for transform-limited sech2 pulses.

An electro-optical Mach-Zehnder modulator is used to introduce a 27 − 1 pseudo-random binary (0/1)
sequence (PRBS)10, generated by a 12 Gb/s bit pattern generator, to the pulse train, through direct amplitude
modulation of the incoming optical pulses, generating an RZ data signal.

9For a complete schematic of the setup, see Fig. D.4.
10A 2N−1 pseudo-random binary sequence is a deterministic succession of 2N−1 bits (N ∈ N) where the value of each element

is independent of any other element in the sequence. This way, a PRBS emulates a fully random bit sequence over 2N−1 consecutive
bits. These sequences are commonly used as test probes for communication, computing and signal processing equipment.
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Figure 6.26 – Waveform-preserving spectral compression,
experimental setup. MLL, mode-locked laser; BPG, bit
pattern generator; MZM, Mach-Zehnder modulator; DCF,
dispersion-compensating fiber; EOPM, electro-optical phase
modulator; AWG, arbitrary waveform generator; POF, pro-
grammable optical filter; SMF, single-mode fiber. For a com-
plete schematic of the experimental setup, see Fig. D.3.
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The input dispersive medium of the spectral compressor is a length of dispersion-compensating fiber,
providing a total second-order dispersion of −349.5 ps/nm at the working wavelength. This corresponds to
a value of β2z = 446.5 ps2/rad, satisfying the required temporal Talbot condition for the designed values of
νr GHz and r−1 = 4 (see Eq. 6.16). At the working wavelength, this corresponds to the opposite dispersion
of approximately 20 km of standard single mode fiber, which is used as the output dispersion of the spectral
decompressor.

Two 40 GHz electro-optical phase modulators are used to introduce the required temporal Talbot phases
to the dispersed optical signals. A 50 Gsa/s arbitrary waveform generator with 14 GHz analog bandwidth
generates a voltage signal with the required temporal profile, shown in Fig. 6.27.

Figure 6.27 – Phase modulation function for
waveform-preserving spectral compression.
Periodic temporal Talbot phase profile associated
to a Talbot condition with r−1 = 4. Vπ repre-
sents the half-wave voltage of the electro-optical
phase modulator. (dashed line) Prescribed phase
obtained from the theory of Talbot effect. (solid
line) Measured phase modulator drive voltage
used in the experiments.
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A programmable optical filter is used to verify that the generated frequency gaps contain no significant
amount of energy.

6.3.4.2 Experimental results

This section contains the results of an experimental demonstration of the described waveform-preserving
spectral compression concept. The concept is first validated on the RZ signal described above, analyzing
both its temporal and spectral properties. Then, a second experiment (supported by numerical simulation)
showcases an application scenario where a narrow-band NRZ signal is multiplexed in frequency, alongside
the spectrally-compressed RZ signal. This NRZ signal is inserted into one of the frequency gaps generated
on the RZ spectrum, in such a way that no additional bandwidth is occupied int he multiplexing process.

Waveform-preserving spectral compression

Fig. 6.28 compiles the results of an experiment where the waveform-preserving spectral compression concept
is validated.
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Figure 6.28 – Waveform-preserving spectral compression, experimental results. Generation of frequency gaps in a sequence
of short optical pulses with binary (on-off-keying, OOK) intensity modulation. Measurement points, as marked in Fig. 6.26, are
indicated. (a.1) Spectrum of the original sequence, obtained by direct amplitude modulation of a repetitive optical pulse train or
periodic optical frequency comb (shown for reference) with a binary 27−1 PRBS (Fig. 6.26(a)). (a.2) Temporal profile, eye diagram
and detail of a single pulse of the original sequence (Fig. 6.26(a)). (b.1) Spectrum and, (b.2) temporal profile, eye diagram and single
pulse detail of the sequence after application of the spectral compression process (Fig. 6.26(b)). The overall spectral envelope and
temporal pulse shape – including duration – remain unaltered, while periodic frequency gaps are induced in the sequence. (c.1), (c.2)
A periodic band-stop filter is introduced in the frequency gaps for testing purposes (Fig. 6.26(c)). Due to the energy redistribution
mechanism giving rise to the frequency gaps, the temporal sequence is unaffected by the filter, a result that confirms that the created
gaps contain no information. (d.1), (d.2) Output sequence after the application of the reverse phase transformations, closing the
frequency gaps and reverting the modulated temporal data sequence to its exact original state (Fig. 6.26(c)).
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Fig. 6.28(a.1) shows the spectra of the initial frequency comb and the modulated RZ data signal, as well
as the envelope of its power spectrum. As expected, the modulated signal spectrum is a continuum over the
full frequency bandwidth of the individual pulses, with discrete clock components at the frequencies of the
original comb lines. The corresponding time-domain representation is shown in Fig. 6.28(a.2), including the
modulated pulse train, its eye diagram11, and a detail of a single pulse of the sequence. As expected, both
the spectrum and the instantaneous power profile fit a transform-limited sech2 pulse shape, in line with the
estimated value of the TBP above.

Fig. 6.28(b.1) shows the spectrum resulting from the gap-generation process (i.e., after the GVD and
PM operations). As expected, the achieved frequency gap period is νc = 37.8 GHz, corresponding to the
suppression of 3 out of each 4 clock components (original comb lines), consistent with the designed value
of r−1 = 4. Fig. 6.28(b.2) shows that the original pulse sequence is spread out into a larger number of
short pulses, with an equivalent pulse rate increased by 4 with respect to the input one (see eye diagram on
Fig. 6.28(b.2)). As predicted, the newly obtained pulses retain the original time-width and overall temporal
shape (see single pulse detail on Fig. 6.28(b.2)).

In order to confirm the spectral compression capability of the process, a linear optical test filter with a
frequency response consisting of a set of stop bands with a spectral period νT = 36.9 GHz (close in value to
νc), overlapping with the generated frequency gaps (see measured spectra in Fig. 6.28(c.1)), is introduced.
The 3-dB bandwidth of each of the stop bands is ∆νT = 22.57 GHz. Due to the presence of the frequency
gaps, the signal propagates through the filter without interacting with it, and the temporal waveform remains
entirely unaffected (see time-domain measurements in Fig. 6.28(c.2)). This demonstrates that the effective
bandwidth of the modulated signal was compressed, at least, by a factor ν−1

T ∆νT = 0.612; in other words,
over 60% of the frequency spectrum occupied by the input data signal was freed, while maintaining the
original temporal shape of the pulses in the sequence. It should be noted that, ideally, for the designed
value of r−1 = 4, the expected spectral compression should reach 75%; however, practical imperfections
in the implementation of the phase modulation (limited by available electronic bandwidth) and dispersion
(associated to small deviations of fiber length from the ideal) lead to an imperfect suppression of the signal
energy in the frequency gaps, up to ∼20 dB in the reported experiments.

Finally, application of the opposite temporal phase modulation profile and propagation through an op-
tical fiber with opposite GVD restores the data signal to its exact original state (including the original data
modulation pattern), both in the frequency and time domains (see Figs. 6.28(d.1) and (d.2), respectively).

In-band frequency-division multiplexing of data-modulated signals

The reported process for spectral compression provides a simple method for increasing the spectral
efficiency of short-pulse arbitrary data signals. As demonstrated by the results shown in Fig. 6.28, the
generated frequency gaps contain no useful information for the reconstruction of the original data sequence.
Such free spectral regions could be used by other signals in order to share a common transmission medium
and resources, through frequency-domain multiplexing (FDM) [14, 18].

Indeed, the spectral compression process reported here significantly enhances the spectral efficiency of
RZ pulse sequences by liberating occupied bandwidth. In this way, several RZ data sequences could be mul-
tiplexed in frequency without occupying additional bandwidth, a strategy that would enable to combine the
performance, versatility and robustness advantages of short-pulse data transmission with the convenient op-

11The eye diagram of a digital data signal is a superposition of consecutive symbol intervals – periods – of the sequence, recorded
over a sufficiently long period of time. This representation is a powerful tool for evaluation of the combined effects of noise and
inter-symbolic interference, since it contains a combination of all possible realizations of the digital modulation sequence [14].
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eration of FDM. This is possible because the specific locations of the created frequency bands can be shifted
by simply delaying the Talbot temporal phase modulation pattern with respect to the incoming dispersed
optical data signal. In particular, a temporal delay of the phase modulation sequence corresponding to rtr,
shifts the central frequencies of the gaps by νr, (note that a temporal delay of tr corresponds to a spectral sift
of the frequency gaps by νc, returning the gaps to their original positions).

A numerical example of frequency-division multiplexing and demultiplexing of two RZ optical pulse
data sequences through the proposed method is shown Fig. 6.29. In this example, the simulated data se-
quences exhibit a 16-symbols quadrature amplitude modulation (16-QAM) scheme. This shows how the
described signal transformations produce a similar frequency gap generation effect in the more general case
of pulse sequences with multi-level complex (amplitude and phase) modulation formats, such as those typi-
cally used in coherent communication systems [14].
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Figure 6.29 – In-band frequency-division multiplexing, numerical simulation. Two optical RZ pulse sequences are modulated
in amplitude and phase following a 16-QAM scheme. Frequency gaps are introduced to the spectra of the two signals through
the phase manipulations of the spectral compression method with r−1 = 4, so that they can be multiplexed in frequency without
occupying additional bandwidth. The multiplexed signals are spectrally orthogonal (separable in frequency); this way, two periodic
band-pass filters can be used to demultiplex them. Application of the reverse phase manipulations restore both signals to their
original states.

In order to experimentally demonstrate this capability, a NRZ signal is inserted in one of the frequency
gaps of the RZ signal in Fig. 6.28. Fig. 6.30 shows a simplified12 schematic of the experimental setup used
to validate the concept of in-band FDM through waveform-preserving spectral compression.

The NRZ signal to be inserted is obtained by direct binary amplitude modulation of a continuous wave
laser at a bit rate equal to that of the RZ sequence, 9.45 Gb/s. Figs. 6.31(a) and (b) show the spectra of the
RZ and NRZ signals, respectively. Figs. 6.32(a.1) and (b.1) show the the corresponding instantaneous power
profiles and associated eye diagrams.

After the spectral compression process, the NRZ signal is inserted in-band, in one of the frequency gaps
introduced to the RZ spectrum; this is possible because both signals are spectrally orthogonal (i.e., their
spectra do not overlap when sharing the same transmission medium). This is illustrated in Fig. 6.31(c). The
two signals are easily separable – demultiplexed – in the frequency domain using conventional selective
amplitude filters, as shown in Fig. 6.31(d).

12For a complete schematic of the setup, see Fig. D.4.

131



Chapter 6. Generalized spectral Talbot effect on aperiodic waves

EOPM

SMF

RZ spectrum decompression

DEMUXDEMUX

RZ signal generation

Optical fiber
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Figure 6.30 – In-band frequency-division multiplexing, experimental setup. MLL, mode-locked laser; CW, continuous-wave
laser; BPG, bit pattern generator; MZM, Mach-Zehnder modulator; DCF, dispersion-compensating fiber; EOPM, electro-optical
phase modulator; AWG, arbitrary waveform generator; POF, programmable optical filter; SMF, single-mode fiber. For a complete
schematic of the experimental setup, see Fig. D.3.

Figure 6.31 – In-band frequency-division mul-
tiplexing, experimental results, frequency do-
main. Frequency-division multiplexing/demulti-
plexing of a NRZ data signal within the band-
width occupied by a RZ data signal, using the
described process for frequency gap generation.
Measurement points, as marked in Fig. 6.30,
are indicated. (a) Spectrum of the RZ signal
(Fig. 6.30(a)). (b) Spectrum of the NRZ signal
(Fig. 6.30(b)). (c) Spectrum of the NRZ signal
inserted in one of the frequency gaps induced in
the RZ spectrum (Fig. 6.30(c)). (d) Extraction of
the NRZ signal by use of an add/drop optical fil-
ter (Fig. 6.30(d)). (e) Output RZ spectrum after
the frequency gaps are closed, after the extraction
of the NRZ signal (Fig. 6.30(e)). (f) Output NRZ
spectrum (Fig. 6.30(f)). 193.35 193.4 193.45
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Subsequent application of the inverse phase manipulations (-PM and -GVD) decompresses the RZ signal
and restores it to its original state, in both the frequency and time domains (see spectrum in Fig. 6.31(e), and
instantaneous power and eye diagram in Fis. 6.32(a.2)). Fig. 6.31(f) shows the output NRZ spectrum, and
Fig. 6.32(b.2) shows the corresponding instantaneous power distribution and eye diagram.

It should be noted that, since the NRZ format leaves no guard times between consecutive bits, multiplex-
ing along the time domain (TDM) would not be possible for the two signals used here. The reported spectral
compression process provides a way to perform FDM (referred to as WDM in optical communication sys-
tems) without additional bandwidth usage.
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Figure 6.32 – In-band frequency-division multiplexing, experimental results, time domain. Frequency-division multiplex-
ing/demultiplexing of a NRZ data signal within the bandwidth occupied by a RZ data signal, using the described process for
frequency gap generation. Measurement points, as marked in Fig. 6.30, are indicated. Measured temporal sequence (instantaneous
power trace) and eye diagrams of, (a.1) input RZ signal (Fig. 6.30(a)), (b.1) input NRZ signal (Fig. 6.30(b)), (a.2) output RZ signal
(Fig. 6.30(e)), and (b.2) output NRZ signal (Fig. 6.30(f)).

In order to study the potential degradation of signal quality due to the spectral compression/decom-
pression process and overall multiplexing/demultiplexing operation, two figures of merit are measured: the
quality factor of the temporal eye diagram, Q, and the bit error rate (BER) [162].

The Q factor of the eye diagram is defined as a metric of the eye aperture,

Q = µ1 − µ0
σ1 + σ0

(6.22)

where µ1 and µ0 are the average optical power on the top and bottom levels respectively, and σ1 and σ0 are
the standard deviations of the optical power around the sampling time.

The BER is the number of erroneous bits received per unit time, and it is measured by an error perfor-
mance analyzer (EPA).

Both metrics can be used to quantify the degradation that a process under test (PUT, the spectral com-
pression/decompression process in this case) introduces on a signal under test (SUT). Fig. 6.33 shows a
simplified schematic of the BER measurement circuit.

(1)

MZM

Laser

Σ

BPG

ED

EPA

SUT

EDFAVOA2 VOA1

(2)

PUT

PD

Optical fiber

RF coaxial cable

Input

Figure 6.33 – BER measurement circuit. EPA,
error performance analyzer; BPG, bit pattern
generator; ED, error detector; MZM, Mach-
Zehnder modulator; PUT, process under test;
SUT, signal under test; VOA, variable optical at-
tenuator; EDFA, erbium-doped fiber amplifier;
PD, photodiode.
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The SUT is obtained as a result of the PUT acting on the input signal. The SUT is photodetected and
the EPA measures the BER by comparing the transmitted and received bits. This process is repeated for
different values of average SUT power. The SUT power (optical power at point (1) in Fig. 6.33) is scanned
by acting on a variable optical attenuator (VOA1 in Fig. 6.33). An EDFA and a second VOA ensure that the
received power (optical power at point (2) in Fig. 6.33) is always equal to 0 dBm. This way, measurements
with lower SUT power correspond to higher values of amplified spontaneous emission noise from the EDFA.
The measured average SUT power (with fixed 0 dBm received optical power at point (2) in Fig. 6.33) is then
a metric for the optical signal-to-noise ratio of the measurement. In the back-to-back configuration (B2B),
the PUT is not present, and the SUT (corresponding to the input signal in this case) is only affected by the
BER measurement process itself. This serves as a point of comparison to study system performance.

The Q factor is calculated directly from eye diagram measurements, captured over intervals of 10 min-
utes, following an identical protocol to that of the BER measurement (i.e., for constant 0 dBm received signal
power).

Figs 6.34(a) and (b) show the measured Q factor and BER, respectively.

Figure 6.34 – In-band frequency-
division multiplexing, experimen-
tal results, bit error rate anal-
ysis. Measured Q factor of the
eye diagram (a), and BER (b),
for different values of transmitted
signal power. Studied scenarios:
B2B, back-to-back configuration;
IN/OUT, RZ signal compressed/de-
compressed in the absence of NRZ
signal; MUX/DEMUX, NRZ signal
inserted in a frequency gap induced
on the RZ signal spectrum and sub-
sequently extracted.
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The B2B configuration corresponds to measurements on the RZ and NRZ input signals (before spectral
compression). Fig 6.34 shows measurements of Q and BER on the RZ signal when it undergoes the spectral
compression/decompression process without the NRZ signal inserted (IN/OUT configuration). When com-
pared to the B2B configuration, the observed degradation is minimal; in particular, only 1 dB of additional
optical power is required by the IN/OUT configuration to achieve the BER of the B2B configuration (power
penalty measured at the standard error-free telecommunication threshold, BER= 10−9). Finally, a scenario
where the NRZ signal is inserted and extracted from the frequency gap generated in the RZ signal spectrum
(MUX/DEMUX configuration) is analyzed. Interestingly, no degradation of the RZ signal is observed in
this configuration with respect to the IN/OUT configuration (where no additional signal was multiplexed).
This further demonstrates that no information is contained within the frequency gaps induced by the spectral
compression process, as both signals are recovered without loss of information.
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6.4 Robust RZ-to-NRZ modulation format conversion

This section presents and discusses a method for robust and energy-preserving conversion of return-to-zero
data signals to nonreturn-to-zero data signals. The method is a direct application of the energy-preserving
spectrum compression technique, proposed in Section 6.3.

6.4.1 Need for format conversion in telecommunication networks

The fast increase in the demand of transmission capacity in optical networks has led to envision hybrid
network architectures where different coding formats and multiplexing strategies, e.g., optical time-division
multiplexing and wavelength-division multiplexing, naturally co-exist [163, 164].

The requirement for high spectral efficiency in conventional frequency-division multiplexing networks
calls for the use of a coding format that enables narrow-bandwidth operation, typically NRZ. On the other
hand, the operation of a temporal multiplex (as in OTDM) requires the use of narrow return-to-zero pulses
[14, 18]. It should be noted that while the spectral compression method described in Section 6.3 provides
a way for enhancing the spectral efficiency of short-pulse data sequences, RZ-to-NRZ conversion methods
are still necessary at the interfaces between current telecommunication networks exploiting different coding
and modulation formats. Indeed, the conversion between RZ and NRZ coding formats have been the target
of substantial research effort. Current approaches include the use of injection-locking methods [164, 165],
Kerr-based nonlinear interactions in optical fibers [166], and linear optical amplitude filtering [167–170], the
latter being particularly interesting for its linear and passive nature.

6.4.2 Shortcomings of current solutions for RZ-to-NRZ format conversion

The typical spectrum of a broadband RZ signal has a periodic clock component, repeating at the symbol
rate. Data modulation produces an equal broadening of the clock components, causing them to overlap,
giving rise to a broadband continuous spectrum. The most popular and straightforward technique for RZ-
to-NRZ conversion based on optical filtering consists of two stages: first, a periodic notch filter – typically
a multi-resonant photonic structure – is employed to suppress all spectral clock lines except for the central
one; second, a band-pass filter is used to select a narrow band in around this central component, in order to
produce a smooth temporal signal [168–170]. Fig. 6.35(a) schematically illustrates the process.

Such a technique is entirely based on linear signal processing operations, and thus, no external energy
contribution is necessary. However, the design of the involved optical filters is critical. An efficient line
suppressor requires multiple high-finesse, high-suppression resonances with a very well defined free spectral
range, closely matching the symbol rate of the signal of interest. Such specifications may be challenging
to achieve in practical designs. Additionally, this configuration requires a precise matching between the
clock components of the RZ signal and the resonances of the line suppressor. Systems based on linear
amplitude filtering solutions are sensitive to the expected frequency drifts of the RZ signal and resonant
filters. Furthermore, a considerable amount of energy of the original RZ signal is discarded by the smoothing
band-pass filter, potentially incurring in degradation of the signal-to-noise ratio, and consequent bit error rate
increase.
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Line-suppressor filter Smoothing band-pass filter

(a)

1 11 0 1 0 0 1 1

1 11 0 1 0 0 1 1

RZ input NRZ output

Energy-preserving spectral compressor Smoothing band-pass filter

(b)

1 11 0 1 0 0 1 1

1 11 0 1 0 0 1 1

Figure 6.35 – Principle of RZ-to-NRZ format conversion. (a) Conventional format conversion method based on direct linear
optical amplitude filtering. (b) Proposed format conversion method based on the PCSTM-assisted, energy-preserving spectral
compression technique.

6.4.3 RZ-to-NRZ format conversion by energy redistribution

The energy-preserving spectrum compression technique, proposed in Section 6.3, provides a way of per-
forming RZ-to-NRZ conversion in an energy-efficient fashion, while avoiding the need for a line suppressor
filter altogether.

6.4.3.1 Operation principle

The energy of the RZ signal of interest can be distributed towards the central region of its spectrum through
direct application of the PCSTM, exactly as used in Section 6.3. The required phase transformations (spectral
phase filtering and temporal phase modulation) are the same ones described by Eqs. 6.16 and 6.17, for the
particular configuration q2 = 2.

Such spectral energy redistribution process generates frequency gaps on the spectrum of the RZ signal,
effectively suppressing the unwanted clock components without the use of a resonant filtering structure. Sub-
sequent processing of the obtained signal through a smoothing band-pass filter, similar to the ones used in
the second step of conventional methods based on resonant line-suppressors, produces the desired NRZ sig-
nal. This completely avoids the need for tight spectral alignment and fine tuning that makes direct amplitude
filtering methods sensitive to unavoidable frequency drifts. It should be noted that the smoothing band-pass
filter still requires some degree of alignment to the spectrum of the optical signal, however, the effect of
misalignment at this stage has a much lower impact on the quality of the obtained NRZ sequence, since the
bandwidth of such a filter is of the order of magnitude of the output NRZ signal bandwidth. Moreover, since
the spectral compression method simply redistributes the energy of the RZ signal towards the desired regions
of its frequency spectrum, subsequent use of a smoothing band-pass filter discards a lower amount of energy,
as compared to conventional methods. Fig. 6.35(b) schematically illustrates the process.

6.4.4 Experimental demonstration

The proposed robust RZ-to-NRZ format conversion method is demonstrated on a∼10 Gb/s intensity-modulated
pulsed data signal in the C-band of optical telecommunications.
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6.4.4.1 Experimental setup

Fig. 6.36 shows a simplified13 schematic of the experimental setup used to validate the proposed robust
RZ-to-NRZ format conversion method.

RZ signal generation Optical fiber

RF coaxial cable
RFS

EOPM

DCF

Robust RZ-to-NRZ converter

RZ Input

CW

MZM

BPG

MZM

RFS

NRZ Output

POF

Figure 6.36 – Robust RZ-to-NRZ format conversion, experimental setup. CW, continuous-wave laser; BPG, bit pattern genera-
tor; RFS, radio-frequency synthesizer; MZM, Mach-Zehnder modulator; DCF, dispersion-compensating fiber; EOPM, elctro-optical
phase modulator; POF, programmable optical filter.

A continuous-wave laser (CW), tuned at a wavelength of 1551.2 nm (corresponding to a central fre-
quency of ∼193.4 THz), is used as the optical carrier. A Mach-Zehnder modulator (MZM), driven by a 12
Gb/s bit pattern generator (BPG) introduces a 27 − 1 PRBS to the optical carrier. A second MZM, biased
slightly out of the quadrature point, is used in conjunction with a radio-frequency synthesizer to carve a train
of RZ 45-ps FWHM pulses out of the modulated CW beam, at a bit rate of 9.45 GHz.

The RZ signal is then injected into the converter circuit, where its spectrum is compressed following the
procedure detailed in Section 6.3.4. The used dispersive medium is a spool of dispersion-compensating fiber
(DCF) providing a total GVD of 890.91 ps2/rad. This configuration satisfies the required Talbot conditions
for r−1 = 2 (see Eq. 6.16). An electro-optical phase modulator (EOPM) introduces the required temporal
Talbot phase sequence to the dispersed pulse train (see Eq. 6.17). This sequence is approximated by a single
RF tone, generated by a radio-frequency synthesizer.

The final smoothing step is implemented by a programmable optical filter, where a band-pass filtering
function with a bandwidth of 10 GHz (corresponding to the approximate frequency separation between
the two central frequency gaps induced to the input RZ spectrum by the spectral compression process) is
programmed. The resulting signal is a NRZ version of the input RZ pulse sequence.

6.4.4.2 Experimental results

In order to assess the performance quality of the proposed RZ-to-NRZ format conversion method, the results
of two experiments are compared. First, the input RZ signal described in the previous section is converted to
NRZ by direct amplitude filtering, as in conventional RZ-to-NRZ conversion methods. The POF is used to
implement a filtering function combining both the response of a resonant line-suppressor and a smoothing
band-pass filter. Second, the described technique for robust RZ-to-NRZ format conversion based on the
PCSTM (with r−1 = 2) is implemented on the same input RZ signal.

Fig. 6.37 shows the measured optical spectra of the signals involved in the RZ-to-NRZ conversion pro-
cesses by the conventional direct amplitude filtering method (Fig. 6.37(b)), and the proposed robust method
based on energy-preserving spectral compression (Figs. 6.37(c.1) and (c.2)). The input RZ signal is shown

13For a complete schematic of the setup, see Fig. D.5.
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Chapter 6. Generalized spectral Talbot effect on aperiodic waves

for reference in Fig. 6.37(a). All signal traces are measured by an optical spectrum analyzer with a frequency
resolution of 140 MHz, while the filter transmission traces are measured by an optical vector analyzer with
a frequency resolution of 200 MHz.

Figure 6.37 – Robust RZ-to-NRZ format con-
version, experimental results, frequency do-
main. Comparison between the conventional di-
rect amplitude filtering method and the proposed
robust method based on spectral energy redis-
tribution. All shown traces are normalized to
the peak spectral power of the input RZ sig-
nal. (a) Input RZ signal spectrum. (b) Output
NRZ signal spectrum obtained through the con-
ventional direct amplitude filtering method (line-
suppressor + smoothing filter). (c.1) Energy-
preserving spectral compression of the input RZ
signal by a factor r−1 = 2; one out of each
two clock components of the input RZ signal
is suppressed, and its energy is redistributed to-
wards the surviving regions of the spectrum. (c.2)
Output NRZ signal spectrum obtained through
the proposed method (energy-preserving spectral
compression + smoothing filter).
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From Figs. 6.37(b) and (c.2), it can be seen how the energy redistribution process produces output signals
with higher energy than those obtained by the conventional method based on direct spectral line suppression.

The corresponding time domain instantaneous power traces are shown in Fig. 6.38, including the com-
plete 27−1 PRBS pulse sequence, a zoomed-in detail of the traces, and associated eye diagrams, all measured
by an optical sampling oscilloscope with an effective acquisition bandwidth of 500 GHz.
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Figure 6.38 – Robust RZ-to-NRZ format conversion, experimental results, time domain. Comparison between the conventional
direct amplitude filtering method and the proposed robust method based on spectral energy redistribution. From left to right:
instantaneous power trace of the complete 27 − 1 PRBS pulse sequence, detail of the power trace, and eye diagram. (a) Input RZ
signal. (b) Output NRZ signal obtained through the conventional direct amplitude filtering method (line-suppressor + smoothing
filter). (c.2) Output NRZ signal obtained through the proposed method (energy-preserving spectral compression + smoothing filter).
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The BER of the obtained NRZ signals is measured following a procedure similar to the one detailed
in Section 6.3.4 (see Fig. 6.33). Fig. 6.39(a) shows the BER vs. average signal power traces of the two
compared methods and the back-to-back (B2B) configuration, shown for reference. The conventional RZ-
to-NRZ conversion method incurs in a power penalty of ∼9 dB (signal power difference with respect to
the B2B configuration, measured at the standard telecommunications error-free threshold, BER= 10−9).
This is in sharp contrast to the ∼2 dB power penalty incurred by the proposed technique based on energy
redistribution.
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Figure 6.39 – Robust RZ-to-NRZ format conversion, experimental results, bit error rate analysis. Comparison between the
conventional direct amplitude filtering method and the proposed robust method based on spectral energy redistribution. (a) BER vs.
average signal power for constant received average optical power (the average signal power level is indicative of the SNR value). (b)
BER vs. frequency detuning, measured at an average signal power level corresponding to BER' 10−9 in the case of no frequency
deviation.

Finally, the robustness of the technique against central frequency drifts is studied by detuning the emis-
sion wavelength of the CW laser. Fig. 6.39(b) shows the measured values of the BER achieved by both
methods for different values of central frequency detuning. The measurements are performed, with average
signal power levels that, for perfectly tuned central frequency, yield BER values close to the error-free thresh-
old (these correspond to−7.14 dBm and−14.06 dBm for the conventional method and the method proposed
here, respectively). It can be seen how the BER for the conventional method quickly degrades when the laser
frequency deviates from the central frequency of the filters. The method based on energy redistribution, on
the other hand, retains a lower BER level for large frequency deviations, measuring a BER degradation lower
than 100.1 for a frequency deviation as high as 3.8 GHz (still remaining below the error-free threshold). It
is important to mention that a proper implementation of the conventional scheme requires the design and
fabrication of an application-specific optical periodic notch filter. A multipurpose programmable filter, as
the one used in the reported experimental demonstration, is not optimized for format conversion specifically.
However, a high-finesse filter with narrower stop-bands, specifically designed for more effective line sup-
pression will compromise even further the tolerance of the technique against frequency drifts of the input
signal and/or the optical filter.
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CHAPTER 7
Conclusion and perspectives

This chapter summarizes the work presented in this dissertation and discusses its potential prospects, as well
as tentative paths of future work.
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7.1 Conclusion

Talbot effect – or self-imaging – is observed when a periodic object or wave is affected by a propagator
imposing a phase variation across its Fourier domain representation (e.g., the discrete frequency spectrum of
a periodic temporal signal) with a specific quadratic dependence with the corresponding Fourier-conjugate
variable. The phenomenon, first reported in the Fresnel diffraction regime of paraxial optical waves, has been
independently observed in the temporal, spectral and angular domains of wave optics, as well as through
different realizations of waves, such as matter waves and quantum wavefunctions.

In this Ph.D. thesis, a general description of the Talbot effect has been reported, unifying all mani-
festations of the phenomenon under a single mathematical framework. Such a formalism, introduced in
Chapter 3, describes the phenomenon in terms of the phase distributions of the involved waves in any pair of
Fourier-conjugate variables, with independence of the observation domain (e.g., time/frequency, position/-
momentum, etc). The ability to calculate Talbot phases in Fourier-dual domains allowed for the formulation
of a general wave transformation method to turn an original periodic wave into a new wave, where the new
period can be arbitrarily set. Furthermore, since the method involves only transformations of the phase
distributions of the wave, its entire energy content is preserved in the process.

Particularly interesting cases of periodic waveforms are trains of optical pulses and their spectral coun-
terpart, optical frequency combs. These signals find extensive application in a myriad of areas of science
and engineering, in some cases, becoming the enabling factor of important recent technological advances.
The repetition period of such signals is a key factor for their use in different applications. The universal
periodicity control methodology, reported in Chapter 3, is an attractive signal processing solution to the ar-
bitrary manipulation of periodic signals, offering high flexibility in the design of the desired output period,
as well as the attractive feature of potentially preserving the energy of the signal to be processed. This
is in sharp contrast to conventional methods based on direct amplitude modulation and amplitude filtering,
where a large amount of signal energy is deliberately discarded in the process, negatively impacting the noise
characteristics of the signal, and where only period multiplication/division by integer factors is accessible.

In Chapter 4, the described universal period control method was applied to processing trains of optical
pulses, achieving energy-preserving division of the repetition period by fractional factors. This was achieved
through coherent redistribution of the energy content of the original signal, leaving its noise content unaf-
fected. Such coherent mechanism allowed for noiseless amplification of the obtained optical pulses, where
the energy per output pulse is increased by the period multiplication factor, without any external energy
injection mechanism. Not only this prevents amplification of the noise already present alongside the signal
of interest, but it also avoids external noise sources, typical of conventional active amplification schemes.
Furthermore, an interesting effect of fractional averaging of the noise fluctuations accompanying the train
was observed.

In Chapter 5, the described universal period control method was applied to processing optical frequency
combs, achieving arbitrary control of the spectral comb line spacing (free spectral range, FSR). Similarly, the
coherent energy redistribution capabilities of the method allowed for passive amplification of the individual
comb lines by the FSR multiplication factor, maintaining the original noise floor level unaltered. Such a
feat could have important implications for applications that require frequency combs with high levels of
visibility, and even for the frequency-domain detection of signals, originally buried under the noise floor.
The last section of the chapter mentions the recent application of the universal period control method to the
generation of frequency combs with tunable FSR over 6 orders of magnitude (from the kHz regime to the
GHz regime) on a single laser platform.
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In chapter Chapter 6, the described universal period control method was applied to processing the spectra
of arbitrary, aperiodic signals. Two applications were reported: (i) a method for introducing reversible
frequency gaps (frequency bands free of energy in the spectrum of a wave) to the spectrum of isolated
waveforms, allowing for implementation of a novel technique for invisibility cloaking, capable of preserving
the phase distributions of broadband, coherent illumination waves; and (ii) a method for compressing the
spectra of modulated sequences of short pulses, while preserving the temporal shape – including duration –
of the pulses, thus combining the performance advantages and robustness of short pulses for transferring and
processing information with the convenience of frequency-domain multiplexing and processing operations.
The mentioned waveform-preserving spectral compression method, was further used as the basis for an
energy-efficient RZ-to-NRZ format conversion technique, with increased energy efficiency and robustness
against frequency drifts of the involved signals, typically harmful in such systems.

As a general conclusion, considering the wide range of application of periodic temporal and spectral
optical signals (trains of pulses and frequency combs), interest in the methods reported in this dissertation
can be foreseen, based on their high flexibility and energetic efficiency. Furthermore, this project could
inspire the development of new applications that would take advantage of the energy redistribution strategies
for the design of signal processing systems and techniques. For instance, methods for noise mitigation of
arbitrary – not necessarily periodic – signals, based on energy redistribution, could be envisioned (some
additional details are discussed below, as lines of future work). Finally, the generality of the reported wave
transformations make the proposed methods attractive for application to electromagnetic waves across the
entire energy spectrum, and even to fundamentally different wave platforms, such as matter waves, quantum
wavefunctions, and potentially even acoustic and thermal waves.

7.2 Future work

This section describes possible paths of future work, considered interesting and of relevance by the author.

7.2.1 Generality of the Talbot condition

The generalization of the Talbot effect, described in depth in Section 3.1, provides a closed solution to the
problem of calculating the phases associated to Talbot sub-images in a pair of Fourier conjugate domains
(e.g., time and radial frequency).

It is worth mentioning that during the course of the work leading to completion of this Ph.D. dissertation,
a more compact solution for the Talbot coefficients, motivated by the mathematical findings reported in
Section 3.1 of this document [APj2, APj3], was formulated by Carlos Rodríguez Fernández-Pousa [102].
This further simplification represents, in the candidate’s humble opinion, an elegant final piece of the intricate
puzzle that is the mathematical description of the Talbot effect.

7.2.1.1 Universality of the results

The main focus of this dissertation is on the the manipulation of periodic signals, represented in the time/fre-
quency picture, with particular attention to the effect of phase transformations, inspired by the mathematical
formalism of the Talbot effect, in the frequency domain of optical waves.

The reported methodology, however, should apply to any wave platform where basic operations – phase
modulation and phase filtering in particular – can be implemented. This includes most regions of the elec-
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tromagnetic spectrum [171]; e.g., radio-frequency, microwaves, terahertz radiation, optics etc. Furthermore,
the reported concepts could be designed for application to wave systems of very different nature, such as
matter waves and quantum wavefunctions, where realizations of the Talbot effect have already been re-
ported [88–90], as well as potentially to acoustics and thermal waves [108].

7.2.2 Arbitrary control of 2D periodic images

The reported methods and techniques directly apply to the wave representation domains of position (space)
and transverse momentum (angular spectrum). Let us not forget that Talbot effect was, in fact, first observed
and explained in the paradigm of paraxial Fresnel diffraction of optical waves.

A spatial version of the PCTTM (see Section 3.2.3.1) can be formulated through direct application of the
space-time duality (see Section B.3). Such a technique allows for arbitrary control of 2D periodic wavefronts,
or images.

Furthermore, for periodic images with two different spatial periods (one along each transverse dimension,
x and y), independent control of the period along each coordinate is possible. Such a generalization of
the spatial Talbot effect has been recently reported, including independent period control of 2D periodic
images [OPj11].

7.2.2.1 Noise mitigation of 2D periodic images

Considering the noise mitigation properties of the PCTTM (see Section 4.3), a space domain implementation
for processing of 2D images should be expected to produce similar results.

Preliminary results on this topic have been reported, showing successful noiseless Talbot amplification
of 2D periodic images [OPc11]. Such a methodology could be useful to image acquisition systems for
applications relying on bright, clear, high-quality images, which are key to a large range of fundamental and
applied disciplines, including optics, materials science, astronomy and biomedical sciences, among many
others [65]. Computational processing methods for image denoising could also be envisioned, based on the
reported phase-controlled Talbot effects.

7.2.2.2 Enhanced restoration of faulty images

The self-healing property of the Talbot effect (see Section 6.1.2) was reported as a means to correct faults on
periodic images [83, 112], and later, its time domain version has been used as a clock recovery method [95],
including sub-harmonic clock recovery through temporal Talbot amplification [OPj4].

A space-domain implementation of the PCTTM should produce equivalent results on 2D periodic images
presenting aperiodicities – faults – on their periodic structure. Preliminary results on this topic have been
reported, showing enhanced restoration of faulty images through spatial Talbot amplification [OPc17].

Such a feat could find application in imaging of periodic structures, as well as in signal processing meth-
ods for 2D periodic wavefronts (such as those generated by antenna and microphone arrays). Computational
processing methods for periodic image restoration could also be envisioned, based on the phase-controlled
Talbot effects.
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7.2.2.3 Arbitrary control of 2D angular spectra

Similarly, a spatial version of the PCSTM (see Section 3.2.3.2) can be formulated through direct application
of the space-time duality (see Section B.3). Such a technique would allow for arbitrary control of the angular
spectra of 2D periodic wavefronts, potentially applicable to methods for beamsteering, beamforming, and
far-field wavefront processing.

Similarly, the developed concept for spectral invisibility cloaking (see Section 6.2) could be directly
transferred to the transverse momentum domain of waves. In this way, a method based on such concepts
could be envisioned to cloak anisotropic spatial objects, i.e., objects sensitive to the specific direction in
which they are illuminated, by only allowing light to shine the object in a controlled set of angles.

7.2.3 Processing and generation of CEO-stable frequency combs

The first reported application of the PCSTM (see Section 3.2.3.2) in this dissertation was to energy-preserving
processing of frequency combs, in order to arbitrary tailor their frequency spacing (see Section 5.2). Several
areas of application of frequency combs require stabilization of the carrier-envelope offset (CEO), so that the
comb lines are tightly aligned to a specific reference spectral component, avoiding any frequency drifting.
High-resolution spectroscopy techniques and high-precision spectrograph calibration methods are examples
of such applications, the first one requiring comb FSR values in the MHz regime, while the second one steps
deep into the GHz regime.

The reported theory and numerical simulations suggest that the output combs, generated through the
PCSTM, do retain the exact original frequency grid reference of the input comb. This way, the method
should preserve the state of CEO stabilization of the comb being processed. A preliminary experimental
verification of this hypothesis has been reported, showing that basic spectral Talbot effect, through temporal
phase modulation of a CEO-stable, broadband optical frequency comb, does not deteriorate its state of CEO
stabilization [OPc30]. Experimental validation of CEO-stable comb generation and processing through the
complete PCSTM would be an interesting achievement, as it would signify that the methods reported in this
dissertation are compatible with applications of frequency combs where CEO stabilization is indispensable,
such as the aforementioned ones.

7.2.4 Arbitrary coherent control of quantum frequency combs

Particularly interesting applications of the theory and methodology reported in this dissertation could be
found in the field of quantum optics. Linear signal processing methods have already been applied to the
generation and coherent control of quantum states, supported by single-photon optical frequency combs
[43] [OPj13], which are a promising emerging technological candidate for future quantum computing and
information processing systems. The capability of manipulating the comb spacing of such platforms could
substantially enhance their versatility, as well as providing new avenues towards the arbitrary control of
single- and multi-photon quantum states.

7.2.5 Spectral control and noise mitigation of arbitrary signals

The energy-preserving methods for coherent manipulation of the spectra of aperiodic signals, studied in
Chapter 6, could be generalized to the coherent control of arbitrary spectra through phase-only transforma-
tions (not necessarily limited to, but including, the reported methods based on Talbot effect). For instance,
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appropriately designed phase manipulations could be envisioned to compress the bandwidth of arbitrary data
signals, not limited to the case of short pulses reported in Section 6.3.

Schemes similar to the spectral invisibility cloaking concept (see Section 6.2) could be used to redis-
tribute the energy spectrum of a weak signal with a high noise content, allowing for sub-noise detection and
accurate measurement of arbitrary signals, including isolated events, beyond the periodic frequency comb
case reported in Section 5.3.

Similarly, continuous aperiodic signals, such as modulated data sequences, could be temporally sampled,
thus introducing redundancy to their spectra, and subsequently processed through a method similar to the
robust RZ-to-NRZ format conversion method reported in Section 6.4, in order to increase their energy content
while reducing the impact of noise. Such a technique would allow for in-band noise mitigation of arbitrary
signals, a feat of prime importance, not only in communications, but in general metrology.

Finally, the mentioned generalization of the process to denoising of arbitrary temporal and spectral wave-
forms could be implemented in the domain of arbitrary spatial 2D images.
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APPENDIX A
Review of continuous-variable Fourier

analysis

This Appendix provides a brief review of basic concepts of the Fourier transform for functions of continu-
ous independent variables. The contents of this Appendix are a summary of concepts, compiled from the
following sources: [73, 74].
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A.1 Harmonic decomposition

Fourier analysis deals with the representation of functions as superpositions of fundamental periodic oscil-
latory functions, generally, complex exponentials.

A complex exponential oscillates with period 2π. Euler’s formula1 gives the form of the complex expo-
nential in terms of trigonometric functions, as its real and imaginary parts,

ei
2π
ur
u = cos

(2π
ur
u

)
+ i sin

(2π
ur
u

)
(A.1)

where u ∈ R is the independent variable, and ur ∈ R is the period of the complex exponential.

These functions are harmonic, with a unique oscillation frequency, Ur, given by,

Ur = 2π
ur

(A.2)

A.1.1 Fourier series

A function ψ(u) is periodic in u if,

ψ(u±Nur) = ψ(u) ∀ N ∈ N (A.3)

where ur > 0 is the fundamental period of ψ(u).

Any reasonably well-behaved periodic function2 can be expressed as a sum of weighted complex expo-
nentials,

ψ(u) =
∞∑

k=−∞
cke

i 2kπ
ur

u (A.4)

where the coefficient ck ∈ C writes,

ck = 1
2π

∫ u0+ur

u0
ψ(u)e−i

2kπ
ur

u du (A.5)

with u0, an arbitrary point in the domain of definition of ψ(u).

1Euler’s formula writes,
eiθ = cos(θ) + i sin(θ)

2A useful criterion of convergence of the Fourier series is that the function under analysis, ψ(u), is absolutely integrable in one
period, ∫ u0+ur

u0

|ψ(µ)|dµ <∞

where u0 is an arbitrary point in the domain of definition of ψ(u).
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Note that the oscillation period of each complex exponential in the sum in Eq. A.4 is an integer multiple
of the fundamental period of ψ(u), ur.

Eq. A.4 is a synthesis equation, as it constructs the functionψ(u) from its harmonic components. Eq. A.5,
on the other hand, is the associated analysis equation, as it gives the set of harmonic components, constituents
of the function ψ(u). Applying Euler’s formula to Eq. A.4 gives an alternative formulation of the Fourier
series,

ψ(u) = a0
2

∞∑
k=1

(
ak cos

(2kπ
ur

u

)
+ bk sin

(2kπ
ur

u

))
(A.6)

where,

ak = 2
ur

∫ u0+ur

u0
cos

(2kπ
ur

u

)
du (A.7)

bk = 2
ur

∫ u0+ur

u0
sin
(2kπ
ur

u

)
du (A.8)

The complex Fourier coefficients, ck, are related to the real coefficients of the trigonometric Fourier
series, ak and bk, by,

ak = ck + c−k (A.9)

bk = i(ck − c−k) (A.10)

and,

ck = 1
2(a|k| − isgn{k}b|k|) (A.11)

where sgn{k} is the sign of the index k, so that,

sgn{k} :=


−1 ⇐⇒ k < 0

0 ⇐⇒ k = 0
+1 ⇐⇒ k > 0

(A.12)

A.1.1.1 Parseval’s relationship

A ur-periodic function of the variable u, ψ(u), with Fourier coefficients ck, satisfies the following relation-
ship,

1
ur

∫ u0+ur

u0
ψ∗(u)ψ(u) du =

∞∑
k=−∞

c∗kck (A.13)
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where ·∗ indicates complex conjugation3.

This relationship is particularly useful for calculating the energy of a periodic signal over the duration of
one period, from the coefficients of its Fourier series decomposition.

A.2 Fourier transform

Similarly to the Fourier series, the Fourier transform decomposes a function ψ(u) into its harmonic com-
ponents. Fourier transforms, however, operate on aperiodic functions. The synthesis and analysis equations
write, respectively,

ψ(u) = 1√
(2π)1+a

∫ ∞
−∞

Ψ(U)eiUu dU (A.14)

Ψ(U) = 1√
(2π)1−a

∫ ∞
−∞

ψ(u)e−iUu du (A.15)

where U is the Fourier-conjugate variable of u, Ψ(U) is often referred to as the spectrum of ψ(u), and a
is an arbitrary real constant. The normalization factors in Eqs. A.14 and A.15 are arbitrary, as long as their
product equals (2π)−1. In the following, a = 1.

The analysis equation, Eq. A.15, is often referred to as the Fourier transform, denoted by the operator
F{·}. The synthesis equation, Eq. A.14, is known as the inverse Fourier transform, denoted by the operator
F−1{·}.

A.2.1 Properties of the Fourier transform

Table A.1 lists some useful properties of the Fourier transform. These can be proved by direct application of
Eqs. A.14 and A.15.

An operation of interest here is the convolution integral. Given two functions ψ1(u) and ψ2(u), their
convolution integral is defined as,

ψ1(u) ∗ ψ2(u) :=
∫ ∞
−∞

ψ1(µ)ψ2(u− µ) dµ (A.16)

The convolution operation is commutative, associative and, owing to the linearity of the integral, dis-
tributive.

A.2.1.1 Uncertainty principle

There exists a reciprocity between the spreads of a function and its Fourier transform, in that both cannot be
arbitrarily concentrated simultaneously. In short, if most of the area under the squared value of a function,
|ψ(u)|2, is concentrated over a given interval in u, the area under the absolute squared value of its Fourier

3Note that, for a complex-valued quantity, c, the product c∗c = |c|2
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Table A.1 – Properties of the Fourier transform.

Property
Representation domain

Real space, u Fourier space, U

Fourier transform pair ψ(u) Ψ(U)

Linearity
K∑
k=1

ckψk(u)
K∑
k=1

ckΨk(U)

Shift in real space ψ(u− u0) Ψ(U)e−iUu0

Shift in Fourier space ψ(u)eiU0u Ψ(U − U0)

Domain inversion ψ(−u) Ψ(−U)

Convolution ψ1(u) ∗ ψ2(u) ∗ · · · ∗ ψK(u)
K∏
k=1

Ψk(U)

Multiplication
K∏
k=1

ψk(u) 1
(2π)K Ψ1(U) ∗Ψ2(U) ∗ · · · ∗ΨK(U)

Scaling ψ(u0u) 1
|u0|

Ψ
(
U

u0

)

Differentiation in real space
dK

duK ψ(u) (iU)KΨ(U)

Differentiation in Fourier space (−iu)Kψ(u) dK

duK Ψ(U)

Symmetry Ψ(u) 2πψ(−U)

transform, |Ψ(U)|2, must have a minimum spread in the domain U , related to the spread in the real domain,
by a scaling factor.

In particular, taking |ψ(u)|2 and |Ψ(U)|2 as probability distributions4, with standard deviations σu and
σU , respectively, so that,

4Note that this implies absolute square normalization, so that,∫ ∞
−∞
|ψ(µ)|2 dµ = 1
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σ2
u :=

∫ ∞
−∞

µ2|ψ(µ)|2 dµ (A.17)

σ2
U :=

∫ ∞
−∞

Ω2|ψ(Ω)|2 dΩ (A.18)

the Fourier uncertainty principle writes,

σuσU ≥
1

4π (A.19)

The equality in Eq. A.19 is achieved when ψ(u) is a Gaussian function.

A.2.1.2 Parseval’s relationship

A function, ψ(u), and its Fourier transform, Ψ(U), satisfy the following relationship,

∫ ∞
−∞

ψ∗(u)ψ(u) du = 1
2π

∫ ∞
−∞

Ψ∗(U)Ψ(U) dU (A.20)

This relationship is particularly useful for calculating the energy of a signal, from its spectrum.

A.2.2 Fourier transform of periodic functions

The Fourier transform can be generalized to periodic functions by introducing the Dirac’s delta function.

A.2.2.1 Dirac’s delta

Dirac’s delta is a generalized function, typically used to model abstractions such as a point mass, a point
charge, an infinitely-short impulse, etc.

The delta can be loosely thought of as a function of the real line, defined as zero everywhere except at
the origin, where it is infinite,

δ(u) :=
{
∞ ∀ u = 0
0 ∀ u 6= 0

(A.21)

and whose area is defined to be unitary,

∫ ∞
−∞

δ(µ) dµ := 1 (A.22)

From Eqs. A.21 and A.22, important properties of the delta can be derived. In particular,

∫ ∞
−∞

ψ(µ)δ(µ) dµ = ψ(0) (A.23)
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is known as the sampling property. This way, the delta function is the unitary element of the convolution,
defining the identity,

ψ(u) ∗ δ(u) = ψ(u) (A.24)

The two properties formulated above can be generalized as follows,

∫ ∞
−∞

ψ(µ)δ(µ− u0) dµ = ψ(u0) (A.25)

ψ(u) ∗ δ(u− u0) = ψ(u− u0) (A.26)

Using Eq. A.23 in Eq. A.15 gives the Fourier transform of the delta function,

F{δ(u)} = 1 ∀ U (A.27)

which can also be found by taking Fourier transforms in Eq. A.24 and applying the convolution property
(see Table A.1).

A.2.2.2 Discrete spectra of periodic functions

Consider a periodic function, ψ(u), with fundamental period ur. Defining ψr(u) as a windowed version of
ψ(u) over a single period,

ψr(u) :=
{
ψr(u) ∀ u ∈ [u0, u0 + ur]

0 ∀ u 6∈ [u0, u0 + ur]
(A.28)

where u0 is an arbitrary point in the domain of definition ofψ(u), the periodic functionψ(u) can be described
in terms of a summation of Dirac’s deltas,

ψ(u) = ψr(u) ∗
∞∑

n=−∞
δ(u− nur) (A.29)

The spectrum of ψ(u), Ψ(U) is obtained by calculating the Fourier transform of Eq. A.29,

Ψ(U) = Ur

∞∑
k=−∞

Ψr(kUr)δ(U − kUr) (A.30)

where Ur = u−1
r 2π, and Ψr(U) = F{ψr(u)}.

Periodic functions have then discrete spectra. The spectrum of a periodic function is a weighted Dirac
comb, i.e., a sum of delta functions with coefficients given by the Fourier transform of a single windowed
period of the function. The separation between deltas is the harmonic oscillation frequency, Ur, associated
with the period ur.

153



Appendix A. Review of continuous-variable Fourier analysis

A.2.2.3 Poisson’s summation formula

Poisson’s summation formula relates the Fourier series coefficients of the periodic summation of a function
to values of the function’s continuous Fourier transform.

∞∑
n=−∞

ψr(u− nur) = 1
ur

∞∑
k=−∞

Ψr(kUr)eikUru (A.31)

The periodic summation of a function and, consequently, any periodic function, is completely defined
by discrete samples of the original function’s Fourier transform, related to the Fourier series as described by
Eq. A.32. Conversely, the periodic summation of a function’s Fourier transform is completely defined by
discrete samples of the original function. Nyquist’s sampling theorem5 is a corollary of this result.

As stated above, Poisson’s formula relates the Fourier series representation of a periodic function with
the Fourier transform of the function in a single period. Indeed, Eq. A.30 has the form of a continuous
expansion of a Fourier series, where the complex coefficients, ck, take the value,

ck = 1
ur

Ψr

(2kπ
ur

)
(A.32)

A.2.3 Useful Fourier transform pairs

Table. A.2 lists some useful Fourier transform pairs.

A.2.4 Multidimensional Fourier transforms

A scalar function ψ(u) of RN , where,

u =
N∑
n=1

unûn (A.33)

has a Fourier transform defined in U ∈ RN , where,

U =
N∑
n=1

UnÛn (A.34)

The N -dimensional Fourier transform pair ψ(u)↔ Ψ(U) writes,

5Nyquist’s sampling theorem roughly states that periodic sampling of a signal is enough to perfectly reconstruct the signal,
provided that its maximum frequency is at most half the sampling rate.
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Table A.2 – Useful Fourier transform pairs.

Function
Representation domain

Real space, u Fourier space, U

Fourier transform pair ψ(u) Ψ(U)

Fourier series
∞∑

k=−∞
cke

ikUru 2π
∞∑

k=−∞
ckδ(U − kUr)

Dirac’s delta δ(u) 1 ∀ U

Constant 1 ∀ u 2πδ(U)

Sinusoidal function cos(Uru+ θ) π
(
δ(U − Ur)eiθ + δ(U + Ur)e−iθ

)

Complex exponential ei(Uru+θ) 2πδ(U − Ur)eiθ

Rectangular function

{
1 ∀ |u| ≤ 1

2
0 ∀ |u| > 1

2

sin (U/2)
U/2

Sinc function
sin(u/2)
u/2

{
2π ∀ |U | ≤ 1

2
0 ∀ |U | > 1

2

Step function

{
0 ∀ u < 0
1 ∀ u ≥ 0

πδ(U) + 1
iU

Gaussian function e−u
2 √

πe−
U2
4

Decaying exponential

{
0 ∀ u < 0
e−u ∀ u ≥ 0

1
1 + iU

Dirac comb
∞∑

n=−∞
δ(u− nur)

2π
ur

∞∑
k=−∞

δ

(
U − k2π

ur

)

ψ(u) = 1√
(2π)N(1+a)

∫
RN

Ψ(U)eiU·u dU (A.35)

Ψ(U) = 1√
(2π)N(1−a)

∫
RN

ψ(u)eiU·u du (A.36)
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The two-dimensional case with a = 1, is commonly used in the analysis of images and wavefronts,

(2π)2ψ(u1, u2) =
∫ ∞
−∞

∫ ∞
−∞

Ψ(U1, U2)ei(U1u1+U2u2) dU1 dU2 (A.37)

Ψ(U1, U2) =
∫ ∞
−∞

∫ ∞
−∞

Ψ(u1, u2)ei(U1u1+U2u2) du1 du2 (A.38)

A.3 Fourier analysis formalism for continuous-variable signals and systems

In a broad sense, a signal is any measurable variation of a physical quantity that typically conveys information
about the process that generated it. These include sound, pressure, heat, light, etc. Signals are mathematically
described as generally complex functions of an independent variable (which can be of vector nature if the
signal is represented in a multidimensional space), commonly referred to as the support or representation
domain of the signal. A system can then be defined as a process that takes a number of input signals and
produces a generally different number of output signals, which can be represented in either the same support
or in a different one. The input-output relationship of a general multiple-input multiple-output (MIMO)
system is given by a mathematical operator, h, that transforms a set of N functions ψi;n(ui) (the input signal
space) into a different set of L functions ψo;l(uo) (the output signal space),

[ψo;1(uo), ψo;2(uo), . . . , ψo;L(uo)] = h {[ψi;1(ui), ψi;2(ui), . . . , ψi;N (ui)]} (A.39)

where {ψi;n, ψo;l} ∈ C ∀ {n, l} ∈ N, and ui and uo are generally complex-valued vectors of different
dimension; although, in the context of this dissertation, the real-valued scalar u, representing domains such
as position, momentum, time and frequency, is considered as the common support for both input and output
sets of signals.

A.3.1 Linear and shift-invariant systems

A linear system satisfies the superposition principle, so that the net response caused by a given set of input
signals is the sum of the responses associated to each signal, individually exciting the system. The system
must be both additive and homogeneous in order to be linear, so that,

h

{
N∑
n=1

cnψn(u)
}

=
N∑
n=1

cnh {ψn(u)} (A.40)

where cn ∈ C ∀ n ∈ N are constant values, independent of u.

A shift-invariant system preserves displacements of the representation domain. This way, if a system
generates an output signal ψo(u) in response to an input signal ψi(u), such a system is shift-invariant if its
response to ψi(u− u0) is ψo(u− u0) for any value of the shift u0.

Linear and shift-invariant (LSI) systems satisfy both properties, and they are extremely important in
disciplines relying on the signals and systems formalism to represent physical phenomena. In particular,
when the variable u represents time, LSI systems are known as linear and time-invariant (LTI).
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A.3.1.1 Impulse response and transfer function

LSI systems can be mathematically described in terms of an unambiguous, generally complex function of
the representation domain u, referred to as the impulse response, h(u). The input-output relationship of such
systems is described by a convolution integral operation,

ψo(u) =
∫ ∞
−∞

h(µ)ψi(u− µ) dµ (A.41)

The Fourier transform of the impulse response, H(U) = F{h(u)}, describes the system in Fourier
space, also unambiguously, where U is the Fourier-conjugate of u. Given the Fourier spectra of the input
and output signals, Ψi(U) = F{ψi(u)} and Ψo(U) = F{ψo(u)}, respectively, the input-output relationship
of the system in Fourier space is reduced to a product (see Section A.2.1),

Ψo(U) = H(U)Ψi(U) (A.42)

This way, LSI systems describe filters, as the output spectrum is obtained from the product of the input
spectrum and the generally complex operator H(U). The magnitude of the transfer function, |H(U)|, de-
scribes the ranges in U along which input signals linearly exchange energy with the system. The phase of the
transfer function, ^H(U), provides information of the ways in which the system shifts the different spectral
components of the input signal in real space u. In the time-frequency picture (where u← t and U ← ω) this
is quantified by the group delay of the system,

tg(ω) := − d
dω^H(ω) (A.43)

A MIMO LSI system is described by a transfer matrix, where each output signal is obtained as a linear
superposition of each input signal, weighted by a specific transfer matrix element.


Ψo;1(U)
Ψo;2(U)

...
Ψo;L(U)

 =


H1,1(U) H1,2(U) · · · H1,N (U)
H2,1(U) H2,2(U) · · · H2,N (U)

...
...

. . .
...

HL,1(U) HL,2(U) · · · HL,N (U)

 ·


Ψi;1(U)
Ψi;2(U)

...
Ψi;N (U)

 (A.44)

where the Fourier spectrum of the l-th output signal is obtained as,

Ψo;l(U) =
N∑
n=1

Hl,n(U)Ψi;n(U) (A.45)

A.3.1.2 Unitary elements and eigenfunctions

As shown in Section A.2.2.1, the delta function is the unitary element of the convolution. Using this property
in Eq. A.41, it follows that a system excited by δ(u) will respond with its impulse response, h(u). In the
Fourier space picture, this is easily understood from Eq. A.42 by noting that the Fourier transform of the
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delta function is 1 ∀ U . A stimulus exciting every spectral component of a system with equal amplitude and
phase will result in a response perfectly mapping the Fourier spectrum of the system, H(U).

A signal, ψe(u), is an eigenfunction of a system if the corresponding response of the system is the same
signal multiplied by a constant, generally complex, eigenvalue, λe, so that,

h{ψe(u)} = λeψe(u) (A.46)

In the case of LSI systems,

h(u) ∗ ψe(u) = λeψe(u) (A.47)

H(U)Ψe(U) = λeΨe(U) (A.48)

where Ψe(U) = F{ψe(u)}.

Each LSI system has its own set of eigenfunctions, however, the complex exponential is always an
eigenfunction of any LSI system. This is easy to verify from Eq. A.48 by noting that the Fourier transform
of a complex exponential is a shifted Dirac’s delta function,

h(u) ∗ eiUru = H(Ur)eiUru (A.49)

H(U) (2πδ(U − Ur)) = H(Ur) (2πδ(U − Ur)) (A.50)

The associated eigenvalue is the the complex value of the spectrum of the system at the oscillation
frequency of the complex exponential. This property is extensively used as a method to test the response of
an LTI system to a single input frequency.
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APPENDIX B
Review of Fourier optics and the

space-time duality

This Appendix provides a brief summary of the Fourier optics formalism for modeling the paraxial propaga-
tion of waves, as well as the space-time duality, a mathematical symmetry between the equations describing
paraxial wave propagation and temporal wave evolution. The contents of this Appendix are a summary of
concepts, compiled from the following sources: [16, 56, 71, 96].
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B.1 Propagation of paraxial waves

As described in Chapter 2 (Section 2.2.2.2), the complex amplitude of a plane wave writes

ψ(r) = ψ0e
−ik·r (B.1)

where ψ0 is a generally complex constant, and k is the wavevector.

Taking z as the reference dimension, the wavevector makes angles θx and θy with the planes {y, z} and
{x, z}, respectively, as shown in Fig. 2.2 (repeated here as Fig. B.1 for convenience of the reader), so that,

k sin(θx) = kx (B.2)

k sin(θy) = ky (B.3)

(a) (b) (c)

Figure B.1 – The wavevector. The wavevector, k = kxx̂ + ky ŷ + kz ẑ, unambiguously describes a plane wave with wavenumber
k = |k|, propagating in the direction of k. (a) Components of the wavevector in Cartesian coordinates; vy,z denotes the direction of
the projection of the vector k onto the plane {y, z}. (b) Detail of the wavevector components in the plane that contains the vector
k and its projection onto the plane {y, z}. (c) Wavefronts of a plane wave (note that the equiphase surfaces of a plane wave are
boundless planes, here depicted as squares for illustration purposes).

If kx � k and ky � k, the angles θx and θy are small. Taking the first term of the Taylor series
expansion of the sine function, and noting that λ = k−12π, the angles write,

θx ≈ λ
kx

2π (B.4)

θy ≈ λ
ky

2π (B.5)

This is known as the paraxial approximation, and it holds true when the normal directions of the wave-
fronts make small angles with the propagation axis.
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Consider an arbitrary wave propagating in the positive direction of the z axis. The complex amplitude
writes,

ψ(r) = ψ̃(r)e−ikz (B.6)

The amplitude ψ̃(r) is known as the complex envelope of the wave. If this envelope is a slowly varying
function of position, so that ψ̃(r) remains approximately constant within a wavelength, ψ(r) is a paraxial
wave. In this situation, the envelope experiences a change δψ̃(r) over a distance δz = λ, that satisfies
δψ̃(r)� ψ̃(r). Taking the rate of change of δψ̃(r) in the z direction as the partial derivative,

∂

∂z
ψ̃(r) � kψ̃(r) (B.7)

∂2

∂z2 ψ̃(r) � k2ψ̃(r) (B.8)

Using Eq. B.6 in the formulation of the Helmholtz equation (Eq. 2.7), and neglecting the appropriate
terms, as per the relationships B.7 and B.8, gives the paraxial Helmholtz equation for the complex envelope,

(
∂

∂z
− i

2k ∇̃
2
)
ψ̃(r) = 0 (B.9)

where ∇̃2 is the transverse Laplacian operator,

∇̃2 := ∂2

∂2x
+ ∂2

∂2y
(B.10)

B.2 Fourier optics

Fourier optics provides a powerful and convenient mathematical formalism for describing wave propaga-
tion in terms of linear operators, based on the principle of harmonic decomposition, governing the Fourier
transform.

B.2.1 Plane-wave decomposition and the angular spectrum

The complex amplitude ψ(r) in Eq. B.1 is a harmonic function of space. For instance, in the plane, z = 0,

ψ(x, y, 0) = ψ0e
−i(kxx+kyy) (B.11)

According to the principles of Fourier analysis1, an arbitrary function of an arbitrarily-dimensional space
can be written as a superposition of harmonic functions of said space. This suggests that the wavefront of an
arbitrary monochromatic wave – taking z as the propagation direction – can be expressed as a superposition
of plane waves with different amplitudes, characterized by wavevectors with different angles θx and θy.

1For a review of Fourier analysis, consult Appendix A.
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Assuming propagation under paraxial conditions, where the approximations B.4 and B.5 are satisfied, the
transverse wavevector components of such spatial harmonics, kx and ky, play the roles of spatial radial
frequencies, measured in rad/m (see Fig. B.2).

Figure B.2 – Plane wave spectrum. Decomposition of a
wave with an arbitrary wavefront (a), taken at a fixed spatial
point, as a collection of plane waves propagating at different
angles (b). For simplicity, only the plane {x, z} is shown.

(a) (b)

The set of complex amplitudes of the plane-wave decomposition at a given point along the propagation
axis, z, represents the transverse momentum distribution of the wave, and it is often referred to as the angular
spectrum, Ψ̃(k). The spatial complex amplitude and the angular spectrum are related by a two-dimensional
Fourier transform pair,

Ψ̃(kx, ky) =
∫∫ ∞
−∞

ψ̃(x, y)e−i(kxx+kyy) dx dy (B.12)

(2π)2ψ̃(x, y) =
∫∫ ∞
−∞

Ψ̃(kx, ky)ei(kxx+kyy) dkx dky (B.13)

B.2.2 Spatial wave propagators

Within the formalism of Fourier optics, the propagation of scalar electromagnetic waves through optical
media can be described in the context of linear signals and systems2.

An optical system is characterized by a linear operator, known as a wave propagator, that describes the
evolution of the wave of interest along its propagation through the optical system. The propagator can be
expressed both in real space, h(x, y), and in transverse-momentum space (angular spectrum), H(kx, ky). If
the operation is linear and invariant to displacements in x and y, h(x, y) is said to be the impulse response of
the system, and H(kx, ky) its transfer function, forming a Fourier transform pair. Fig. B.3 shows a schematic
depiction of the Fourier optics wave propagation model.

Most linear phenomena of scalar waves can be described within this formalism. In the following, two
important examples of wave propagation through optical systems – diffraction and spatial modulation – are
discussed.

B.2.2.1 Spatial modulation

Spatial modulation is the process by which an optical system introduces a localized change to the complex
amplitude of a wave in real space. The process is described by the multiplication of the complex amplitude

2For a review of the mathematical formalism of signals and systems theory, consult Appendix A.
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Figure B.3 – Operator model of wave propagation. Trans-
mission of a wave through an optical system of length L, de-
scribed as an operator, following the postulates of Fourier op-
tics.

of the wave of interest in real space, ψ(x, y; z = 0), by the complex amplitude transmittance function of the
system, hSM(x, y), so that,

ψ(x, y; z = L) = hSM(x, y)ψ(x, y; z = 0) (B.14)

where L is used here as an indicator of the length of the optical system, assuming that the wave enters the
system at z = 0, and then travels through it along the propagation axis, z.

In the Fourier domain, the operation is described by the convolution integral between the angular spec-
trum of the wave, Ψ(kx, ky; z = 0), and the Fourier transform of the complex transmittance function,
HSM(kx, ky),

Ψ(kx, ky; z = L) = 1
(2π)2

∫∫ ∞
−∞

HSM(κx, κy)Ψ(kx − κx, ky − κy; z = 0) dκx dκy (B.15)

The complex amplitude transmittance can be a purely real function, in which case the process is referred
to as amplitude modulation, a complex function with uniform magnitude, in which case the process is re-
ferred to as phase modulation, or a combination of both, in which case the process is referred to as complex
modulation. Apertures are examples of spatial amplitude modulation, while lenses are examples of spatial
phase modulation. Spatial light modulators are devices capable of applying a user-defined spatial modulation
pattern to an impinging optical wave.

If ψ(x, y; z = 0) is a plane wave (i.e., a wave consisting of a single spatial frequency pair {kx, ky}),
the spatial modulation process will generate an output angular spectrum, Ψ(kx, ky; z = L), with additional
spatial frequency components.

Fig. B.4 schematically depicts the operation.

B.2.2.2 Diffraction

Diffraction is most commonly defined as the transformation that a wave experiences when it propagates
away from an object. The wavefront of a plane wave retains its shape along its propagation through free
space; the wavefront of an arbitrary wave, made out of a set of plane waves, will experience variations
along its propagation. This is due to the fact that the different constituent plane waves have different spatial
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Figure B.4 – Spatial modulation. Operator model of the spatial modula-
tion process. The shown example consist on a periodic object, with a binary
amplitude transmittance (i.e., alternating regions of full transparency with
regions of full opacity). The object is considered infinitesimally thin, mak-
ing the process spatially localized; the notation z = 0+ and z = 0− refer to
the planes immediately before and after the object, respectively. (top) Real
space. (bottom) Fourier space.

frequencies, thus making different angles with the propagation axis (see Eqs. B.4 and B.4). Diffraction is the
result of the different constituent spatial harmonics of a wavefront propagating away from each other.

Diffraction is mostly observed when a plane wave, incident on a spatial modulation system (e.g., an
aperture), propagates away from the system (e.g., producing a blurred shadow of the aperture function). The
wave phenomenon responsible for diffraction is simply free space propagation. The process is described by
the multiplication of the angular spectrum of the wave of interest, Ψ(kx, ky; z = 0), by the transfer function
of free space, HD(kx, ky), so that,

Ψ(kx, ky; z = L) = HD(kx, ky)Ψ(kx, ky; z = 0) (B.16)

where the transfer function of free space, in the paraxial approximation, can be written as a two-dimensional
phase factor presenting a quadratic variation with spatial frequency,

HD(kx, ky) = ei
k2
x+k2

y
2k z (B.17)

where z = L indicates the propagation length.

This is known as the Fresnel approximation. Similarly, the process in real space is described by the
convolution integral of the complex amplitude of the wave ψ(x, y; z = 0), with the impulse response of free
space, hD(x, y), so that,

ψ(x, y; z = 0) =
∫∫ ∞
−∞

hD(χ, ξ)ψ(x− χ, y − ξ; z = 0) dχdξ (B.18)

164



Appendix B. Review of Fourier optics and the space-time duality

where the impulse response of free space, in the paraxial approximation, writes,

hD(x, y) = e−i
x2+y2

2z k (B.19)

Fig. B.5 schematically depicts the operation.

Figure B.5 – Diffraction. Operator model of the paraxial
diffraction modulation process. In the shown example, the
wave obtained after the spatial modulation process shown in
Fig. B.4 propagates a distance L away from the periodic ob-
ject. (top) Real space. (bottom) Fourier space.

B.3 The space-time duality

The space–time duality originates from the similarity of the equations describing spatial diffraction of an
electromagnetic beam and temporal dispersion of an electromagnetic pulse, along their propagation. This
elegant symmetry has inspired substantial development in optical technology, and it is an extremely powerful
tool in the design and analysis of optical systems.
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B.3.1 Formulation

Following the approximations used in Section 2.3.1.2, the nonlinear Schrödinger equation3 (see Eq. 2.22)
can be written in a simplified form as follows,

(
∂

∂z
− iβ2

2
∂2

∂t2

)
ψ̃(t, z) = 0 (B.20)

Eq. B.20 describes the temporal evolution of optical waves along their linear propagation through trans-
parent media, under the narrow-band approximation. This equation is isomorphic to the paraxial Helmholtz
equation (see Eq. B.9), written here in one transverse dimension,

(
∂

∂z
− i

2k
∂2

∂x2

)
ψ̃(x, z) = 0 (B.21)

The mathematical symmetry existing between Eqs. B.20 and B.21 establishes a duality between the
temporal dynamics of optical waveforms and the spatial evolution of optical beams. This symmetry is known
as the space-time duality of optical waves.

B.3.2 Equivalence between wave parameters in space and time

In short, the outcome of an optical system, operating over a the spatial wavefront of a wave, can be replicated
on the temporal envelope of a wave if one manages to emulate an equivalent transformation in the time do-
main. From Eqs. B.20 and B.21, the relationship between temporal and spatial parameters is clear. Table B.1
lists such relationships.

Similarly, a direct equivalence can be established between the operators governing processes in space
and time (see Section 2.3.2). For instance, The narrow-band chromatic dispersion operator, HGVD(ω) (see
Section 2.3.2.2), acting over the frequency spectrum of a temporal waveform, is analogous to the paraxial
diffraction operator, HD(kx) (taken along a single spatial dimension), acting over the angular spectrum of a
spatial wavefront. A similar relationship exists between their corresponding impulse responses, as well as
between the operators governing spatial and temporal modulation (see Section 2.3.2.1).

Fig. B.6 illustrates the symmetry existing between the spatial modulation and temporal modulation pro-
cess, as well as between the paraxial diffraction and narrow-band group velocity dispersion processes, mod-
eled as wave propagators in the Fourier optics paradigm.

B.3.3 Space-time duality of the Talbot effect

The spatial and temporal realizations of the Talbot effect (briefly described in Section 2.4 and further related
in Section 3.1.2), are mathematically related by the space-time duality. Recall that spatial Talbot effect is
a particular case of Fresnel diffraction of spatially-periodic wavefronts (with wavelength λ and transverse
spatial period xr, along the x dimension), while temporal Talbot effect is a particular case of second-order

3Recall that the nonlinear Schrödinger equation models the temporal evolution of optical waves along their propagation through
dielectric media.
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Appendix B. Review of Fourier optics and the space-time duality

Table B.1 – Space-time duality. Relationship between spatial and temporal parameters of waves in the paraxial diffraction and
narrow-band dispersion regimes. Space-domain magnitudes are expressed in one transverse dimension, here represented by the
coordinate x.

Space domain Time domain

Paraxial Helmholtz equation Eq. B.21 Eq. B.20 Narrow-band Schrödinger equation

Propagation direction z z Propagation direction

Wavefront dimension x t Waveform dimension

Spatial radial frequency kx ω Radial frequency

Spatial wavefront ψ̃(x) ψ̃(t) Temporal waveform

Angular spectrum Ψ̃(kx) Ψ̃(ω) Frequency spectrum

Paraxial diffraction
1

2k
β2
2 Narrow-band dispersion

dispersion of temporally-periodic waveforms (with second-order dispersion coefficient β2 and temporal pe-
riod tr).

From Eqs. 2.44 and 2.47, it is easy to verify that the second order dispersion coefficient in temporal
Talbot effect, plays the role of the wavelength in spatial Talbot effect. The spatial and temporal Talbot
conditions4 write,

λz = p

q
x2
r (B.22)

2π|β2|z = p

q
t2r (B.23)

respectively, where p and q are two mutually prime natural numbers. Fig. B.7 shows the distribution of
spatial and temporal Talbot images and sub-images for some values of the fraction q−1p.

Using the definitions for the Talbot length, zT, given in Eqs. 2.44 and 2.47 for spatial and temporal Talbot
effects, respectively, the Talbot condition can be written for both realizations of the effect as,

z = p

q
zT (B.24)

Finally, a realization of the Talbot effect in the transverse momentum domain of optical waves – known
as angular Talbot effect – can also be formulated by direct application of the space-time duality to the
mathematical description of the spectral Talbot effect. This phenomenon was first postulated and observed
by José Azaña and Hugues Guillet de Chatellus in 2014 [103].

4Note that the temporal Talbot condition is written here for the particular case or propagation through a dispersive medium. A
more general formulation of the temporal Talbot condition is given in Eqs. 2.46 and 3.7.
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Space domain

Transverse momentum domain

Time domain

Frequency domain

Figure B.6 – Space-time duality. Illustration of the mathematical symmetry between the operators describing the spatial modulation
and temporal modulation process, as well as between the paraxial diffraction and narrow-band group velocity dispersion processes.

Figure B.7 – Space-time duality of the Talbot
effect. Distribution of Talbot images and sub-
images along the propagation of a wave with
a periodic transverse profile. (a) Spatial Talbot
effect, observed in the paraxial diffraction of a
periodic transverse wavefront (here, depicted as
the spatial modulation of a monochromatic plane
wave by a periodic amplitude transmittance). (b)
Temporal Talbot effect, observed in the narrow-
band dispersion of a periodic train of pulses.

Spatial Talbot effect
Paraxial diffraction of a periodic wavefront

Temporal Talbot effect
Narrow-band dispersion of a periodic waveform

(a) (b)

T
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APPENDIX C
MATLAB code listings

This Appendix contains the MATLAB code used in the calculation of Fourier-dual Talbot phase profiles.
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Appendix C. MATLAB code listings

C.1 Modular arithmetic functions

Listing C.1 – Computation of the modular multiplicative inverse. Based on Eq. 3.22

1 %% Modular multiplicative inverse
2
3 function a = invmod(p,q)
4
5 [~,a,~] = gcd(p,q);
6 a = mod(a,q);
7
8 end

Listing C.2 – Computation of the Jacobi symbol. Based on Eq. 3.23

1 %% Jacobi symbol
2
3 function J = jacobi(a,b)
4
5 if mod(b,2)==0
6 error(’lower parameter must be odd’);
7 end
8
9 a = mod(a,b);

10
11 if a == 0
12 J = 0;
13 elseif a == 1
14 J = 1;
15 elseif mod(a,2) == 0
16 if abs(mod(b,8)) == 1
17 J = jacobi(a/2,b);
18 else
19 J = -jacobi(a/2,b);
20 end
21 else
22 if mod(b,4)==3 && mod(a,4)==3
23 J = -jacobi(b,a);
24 else
25 J = jacobi(b,a);
26 end
27 end
28
29 end

C.2 Gauss sums

Listing C.3 – Computation of the quadratic Gauss sum. Based on Eq. 3.18

1 %% Evaluation of quadratic Gauss sum
2
3 function [G] = GaussSum(n,p,q)
4
5 N = length(n);
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Appendix C. MATLAB code listings

6
7 G = zeros(1,N);
8 for l = 0:q-1
9

10 G_l = exp(1i*pi/q*(p*l^2+(p*q^2+2*n)*l));
11 G = G+G_l;
12
13 end

C.3 Computation of the Talbot phases

Listing C.4 – Computation of Talbot parameters. Based on Table 3.3

1 %% Talbot phase parameters in Fourier-dual domains
2
3 function [s,m,c] = TalbotParameters(p,q)
4
5 if ((rem(p,1) ~= 0) || (rem(q,1) ~= 0)) || ((p < 1) || (q < 1))
6 error(’p and q must be possitive integers’);
7 end
8
9 if gcd(p,q) ~= 1

10 error(’p and q must be mutually prime’);
11 end
12
13 m = q;
14
15 if (mod(p,2) == 0) && (mod(q,2) == 1) % p even, q odd
16
17 s = p.*invmod(p,q).^2;
18 c = (q-1)/4+1/2.*(1-jacobi(p,q));
19
20 elseif (mod(p,2) == 1) && (mod(q,2) == 1) % p odd, q odd
21
22 s = 8.*p.*invmod(2,q).*invmod(2*p,q).^2;
23 c = (q-1)/4+1/2.*(1-jacobi(p,q));
24
25 elseif (mod(p,2) == 1) && (mod(q,2) == 0) % p odd, q even
26
27 s = p.*invmod(p,q).^2;
28 c = -p/4-1/2.*(1-jacobi(q,p));
29
30 end
31
32 s = mod(s,2*m);
33 c = mod(c,2);
34
35 end

C.4 Execution example

Listing C.5 – Benchmark code for computation of Talbot phases. Shown example with p = 1, q = 5
1 close all
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Appendix C. MATLAB code listings

2 clear variables
3 clc
4
5
6 %% Talbot phase, domain U
7
8 p = 1;
9 q = 5;

10
11 K = 4*q;
12 k = 0:K;
13
14 phi_k = mod(pi*p/q*k.^2,2*pi);
15
16
17 %% Talbot phase, domain u
18
19 % Analytic definition
20
21 [s,m,c] = TalbotParameters(p,q);
22
23 N = 4*q;
24 n = 0:N;
25
26 phi_n = mod(-pi*s/m*n.^2-pi*c,2*pi);
27
28 % Evaluation of Gauss sum
29
30 G_n = GaussSum(n,p,q);
31
32
33 %% Results
34
35 disp([’p = ’ num2str(p) ’, q = ’ num2str(q)])
36 disp([’s = ’ num2str(s) ’, m = ’ num2str(m) ’, c = ’ num2str(c)])
37 disp([’sqrt(q) = ’ num2str(sqrt(q)) ...
38 ’, |G_{1,’ num2str(p) ’,’ num2str(q) ’}| = ’ num2str(abs(G_n(1)))])
39
40 figure
41
42 subplot(2,1,1)
43 bar(k,phi_k/pi,1,’facecolor’,[0 0 0])
44 xlabel(’k’)
45 ylabel(’Phase (rad/\pi), domain U’)
46 axis([k(1)-0.5 k(end)+0.5 0 2])
47 box on
48
49 subplot(2,1,2)
50 hold on
51 bar(n,phi_n/pi,1,’facecolor’,[0.6 0.6 0.6],’edgecolor’,[0.6 0.6 0.6])
52 plot(n,mod(angle(G_n),2*pi)/pi,’kx’)
53 xlabel(’n’)
54 ylabel(’Phase (rad/\pi), domain u’)
55 legend(’Analytical’,’Gauss sum’)
56 axis([n(1)-0.5 n(end)+0.5 0 2])
57 box on
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Appendix C. MATLAB code listings

Listing C.6 – Command prompt output. Result of execution of Code C.5

p = 1, q = 5
s = 6, m = 5, c = 1
sqrt(q) = 2.2361, |G_{1,1,5}| = 2.2361
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Figure C.1 – MATLAB figure output of benchmark code. Result of execution of Code C.5.
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APPENDIX D
Detailed circuit schematics

This Appendix contains detailed schematics of the electro-optical circuits used in the experimental demon-
stration of the systems, techniques and phenomena reported in this dissertation.
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Appendix D. Detailed circuit schematics
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APPENDIX E
Generation of frequency combs with

user-defined FSR

This Appendix reports the theoretical foundations and experimental demonstration of a technique for fre-
quency comb generation with user-defined line frequency spacing, based on a realization of phase-controlled
Talbot phenomena on a CW-seeded frequency-shifted feedback loop cavity. The work presented in this Ap-
pendix was reported in [APj7] [APc4].
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Appendix E. Generation of frequency combs with user-defined FSR

E.1 CW-seeded frequency-shifted feedback loop

A frequency-shifted feedback loop is a resonant cavity with a frequency up/down-converting element – typi-
cally an acousto-optical frequency shifter – and a gain mechanism that compensates for the loss accumulated
in a cavity round-trip. Fig. E.1(a) shows a schematic sketch of the steady-state model of the FSFL structure.

(a) (b)

Power spectrum

Figure E.1 – Steady-state model of a CW-seeded frequency-shifted feedback loop. A CW-seeded FSFL, in the steady state,
behaves as a mode-locked laser with a tunable quadratic spectral phase. If the loop is designed to achieve an equivalent GVD value
that satisfies a temporal Talbot condition, a train of pulses is obtained at its output, with the characteristics of a temporal Talbot
(sub-)image. (a) Simple model of the loop, assuming a bandwidth of the cavity spectral response H(ν), satisfying ∆ν ≤ Kνs,
where νs is the shifting frequency (up-shifting, ↑ ν, is assumed in the depicted sketch), and ν0 is the seed frequency (note that, in
general ν0 � νs). Depending on the value of the fraction ν−1

c νs ≡ q−1
2 p2, the loop generates a train of pulses with repetition rate

q2νs and a pulse-to-pulse temporal Talbot phase. (b) Simplified depiction of the transient dynamics in the generation of the FSFL
comb spectrum. The seed frequency is simultaneously shifted (by νs) and delayed (by tc = ν−1

c ) upon completion of each round-
trip in the loop. In the steady state (t � Ktc), a frequency comb with FSR νs and linear group delay distribution (corresponding
to a quadratic spectral phase) is obtained. Note that both the FSR and equivalent GVD parameter – the slope of the group delay
distribution – are tunable by the parameters νs and νc.

E.1.1 Expression of the output field amplitude

A comprehensive analysis of the derivations reported in this section can be found in [92].

The FSFL structure is seeded with a single optical frequency, ν0, e.g., a CW laser,

ψs(t) := ψ0e
iω0t (E.1)

where ψ0 is the initial seed amplitude, and ω0 = 2πν0.
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Appendix E. Generation of frequency combs with user-defined FSR

In this situation, the optical seed frequency is up/down-converted in discrete steps of the shifting fre-
quency, νs, upon completion of each round-trip. In particular, assuming frequency up-conversion in the
cavity, the field amplitude obtained after K round-trips (see Fig. E.1) can be written as the summation of the
field resulting from each round-trip, adequately delayed by the round-trip time,

ψ(t) = ψ0H
′
0e
iω0t

+ ψ0H
′
0H
′
1e
i(ω0+ωs)tei(ω0+ωs)tc

+ ψ0H
′
0H
′
1H
′
2e
i(ω0+2ωs)tei(ω0+ωs)tcei(ω0+2ωs)tc

+ ψ0H
′
0H
′
1H
′
2H
′
3e
i(ω0+3ωs)tei(ω0+ωs)tcei(ω0+2ωs)tcei(ω0+3ωs)tc

+ · · ·

+ ψ0

K∏
k=0

H′ke
i(ω0+Kωs)tei(Kω0tc)ei

1
2K(K+1)ωstc (E.2)

where,

H′k is the single-pass gain coefficient of a cavity mode with frequency ν0 + kνs,
ωs = 2πνs is the radial shifting frequency,

tc is the cavity round-trip time,

The envelope of the optical spectrum of the cavity, H(ν), results from the competition between gain and
loss mechanisms. The total gain coefficient seen by the k-th cavity mode, i.e., Hk = H(ν0 + kνs) is then,

Hk :=
k∏

n=0
H′n (E.3)

Assuming that H(ν) has a bandwidth ∆ν = Kνs, i.e., Hk = 0 ∀ k > K, the field amplitude at the
output of the loop, in the steady state, writes,

ψ(t) = ψ0e
iω0t

K∑
n=0

Hne
in(ωst+ω0tc)ei

1
2n(n+1)ωstc (E.4)

Rearranging Eq. E.4 and isolating all phase terms that are linear in n, the complex amplitude of each
cavity mode writes,

cn := ψ0Hne
in(ω0+ 1

2ωs)tc (E.5)

and the field amplitude,

ψ(t) = eiω0t
K∑
n=0

cne
inωstei

1
2n

2ωstc (E.6)
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Appendix E. Generation of frequency combs with user-defined FSR

Noting the Fourier series structure of Eq. E.6, the spectrum of the FSFL in the steady state writes,

Ψ(ν) =
K∑
k=0

ckδ(ν − ν0 − kνs)eiπ
νs
νc
k2

(E.7)

where νc = t−1
c .

This spectrum is, indeed, a Dirac comb with a frequency spacing dictated by the shifting frequency, νs,
and where the first component oscillates at the seed frequency, ν0 (see Fig. E.1(b)). The bandwidth, ∆ν,
and overall spectral envelope, H(ν), are set by the resulting competition of gain and loss mechanisms in the
cavity.

The key point to notice here is the quadratic dependence of the spectral phase sequence with the comb
line index parameter k,

φk := π
νs
νc
k2 (E.8)

Remarkably, this sequence is isomorphic to a spectral Talbot phase (see Eq. 3.48), where,

νs
νc
≡ p2
q2

(E.9)

Provided that the term ν−1
c νs can be expressed as an irreducible fraction of two natural numbers, q−1

2 p2,
the output of the FSFL in the time domain has the form of a temporal Talbot (sub-)image (see Fig. E.1(a));
i.e., it is a train of pulses with repetition period,

tr = 1
q2νs

(E.10)

E.1.2 Group delay and equivalent dispersion

A wave circulating within the FSFL cavity completes a cycle with the round-trip time, tc, and its simulta-
neously up(down)-converted by the shifting frequency νs. Each frequency component of the comb is then
delayed a time tc with respect to the previous comb line. The group delay distribution of the comb writes
then,

tg(ν) = ν

νsνc
(E.11)

As per the definition of the group delay1,

tg(ω) := − d
dωφ(ω) (E.12)

where φ(ω) is the spectral phase distribution as a function of radial frequency.

1For further details, consult Section 2.3.2.2
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Solving Eq. E.12,

φ(ω) = −
∫
tg(ω) dω

= − 1
2πνsνc

∫
ω dω

= − ω2

4πνsνc
+ C (E.13)

where C is an undetermined integration constant that simply translates into a uniform spectral phase shift
for all components of the comb, and can, thus, be neglected for practical purposes.

Identifying terms with the general expression of the second-order approximation of a dispersive medium2,
and using tr = ν−1

s , the equivalent dispersion of the FSFL writes,

2π|β2|z = νs
νc
t2r (E.14)

Note that, while Eq. E.14 has interest in that it follows the exact mathematical structure of the tempo-
ral Talbot condition for a GVD medium (see Eq. 3.50), it can be written in a more convenient form for
calculation of experimental parameters as,

2π|β2|z = tc
νs

(E.15)

E.1.3 Tunability

As per Eq. E.7, the shifting frequency, νs determines the FSR of the comb at the output of the FSFL.
In a practical implementation, the up(down)-converter element can be implemented by an acousto-optical
frequency shifter. The shifting frequency is then set by a radio-frequency synthesizer, driving the shifter.
This parameter can be electronically reconfigured, without the need for altering the physical architecture of
the loop. Typical acousto-optical frequency shifters operate in the MHz regime, where RF signals can be
easily generated and amplified.

The bandwidth of the obtained comb is determined by H(ν). Factors at play include the gain/loss balance
in the cavity, the conversion efficiency of the shifting element (typically, a function of frequency), and the
coupling efficiency of the FSFL output. A gain mechanism is required to compensate for the intrinsic cavity
loss, as well as for the fraction of the wave coupled outside of the loop. A band-pass filter can be inserted
in the cavity to limit the impact of noise arising from the gain mechanism, as well as to shape the output
spectrum.

As shown above, the output field amplitude of the FSFL depends on the value of the factor ν−1
c νs,

and when this fraction produces a rational number, the FSFL generates a train of pulses that emulates a
temporal Talbot (sub-)image. A particular desired Talbot condition can be achieved by modifying the shifting
frequency, νs and/or, the cavity length (and associated round-trip time, tc). The cavity round-trip time can

2For details on modeling dispersive media as linear filters, consult Section 2.3.2.2.
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be calculated, as a first approximation, from the cavity length, Lc, and the effective refractive index of the
propagation medium, neff, so that,

tc = neff
Lc
c0

(E.16)

where c0 is the speed of light in the vacuum. It should be noted that this derivation assumes that every cavity
mode sees the same effective refractive index. This is a reasonable assumption for FSFL implementations in
fiber optics technology with optical bandwidths ranging from a few tens to a few hundreds of GHz.

For an FSF implemented in fiber-optics technology, a cavity length of a few m of fiber will translate into
round-trip times in the order of tens of ns; with associated values of νc in the order of tens to a few hundreds
of MHz. For instance, taking a value of neff = 1.468, with a cavity length of Lc = 10 m, the round-trip
time is of approximately 50 ns, corresponding to νc = 20 MHz. As per Eq. E.15, a shifting frequency of
100 MHz in this configuration produces an equivalent dispersion value of |β2| z ≈ 79577471.546 ps2/rad,
corresponding to an emulated propagation through ∼3670104.1562 km of standard SMF-28 optical fiber at
a working wavelength of 1550 nm (see Fig. 2.6). Such an extreme propagation length is simply unattainable,
and renders the dispersion steps of the PCSTM impractical.

E.2 PCSTM in a CW-seeded FSFL

Taking advantage of the properties of the CW-seeded FSFL architecture, in particular, the capability to
generate frequency combs with built in tunable quadratic spectral phase distributions, the phase-controlled
spectral Talbot method, as presented and demonstrated in Section 5.2, can be used to generate frequency
combs with user-defined FSR, tunable over several orders of magnitude. This is due to the extremely high
amounts of GVD that the FSFL can emulate, thus providing access to a wide range of Talbot conditions,
typically inaccessible due to stringent implementation requirements. It should be noted that, as explained in
the previous Section, the capability for re-configuring the emulated GVD without modifying the system is
an interesting feature of the proposed architecture; in a direct implementation using dispersive media, GVD
tunability is limited, if at all possible, and only attainable through manipulation of the physical properties
(e.g., length) of the propagation medium itself.

The FSFL generates a frequency comb with FSR νs and a quadratic spectral phase distribution that
emulates the dispersion value given in Eq. E.15. In order to transform the FSR νs into a new FSR r−1νs
– where r−1 = q−1

1 q2 – through application of the PCSTM, the required GVD is calculated following the
directives given in Section 3.2.3.2, with νr ← νs. The the loop is then configured to generate a frequency
comb with the desired input FSR, νs, and the desired emulated dispersion value, from Eq. E.15, by adjusting
the round-trip time, tc. Finally, also following Section 3.2.3.2, the required temporal phase modulation
sequence is computed normally, as if the method started from a phase-free comb with input FSR νs. Fig. E.2
shows the realization of the method, using the CW-seeded FSFL as the generator of the signal in step 2 (see
Section 3.2.3.2).

E.2.1 Experimental demonstration

In the following the proposed variation of the PCSTM, using a CW-seeded FSFL architecture as the starting
point, is experimentally validated. The combs generated by the FSFL have FSR in the vicinity of 80 MHz
(well within the RF bandwidth specifications of widely-available commercial acousto-optical frequency
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Figure E.2 – PCSTM implemented with a CW-seeded FSFL. Phase modulation of the frequency comb generated by a frequency-
shifted feedback loop (a frequency comb with a built-in tunable quadratic spectral phase profile, designed to satisfy a temporal Talbot
condition). The PM operation completes the sets of transformations of the phase-controlled spectral Talbot method to arbitrarily
tailor the FSR of the generated comb. In the shown example, r−1 = 5/2.

shifters). The obtained output combs, after the temporal phase modulation step, have FSR ranging from
∼8 kHz to ∼8 GHz. This represents an FSR tunability range of 6 orders of magnitude, achieved through
variations of electronic and RF parameters exclusively, i.e., the shifting frequency and the voltage output of
the AWG that follows the temporal Talbot phase sequence.

E.2.1.1 Experimental setup

Fig. E.3 shows a simplified3 schematic of the experimental setup used in the experimental demonstration of
frequency comb generation with user-defined FSR.

A continuous-wave laser (CW) generates the seed, at a wavelength of 1550 nm (ν0 ≈ 193.55 THz). The
seed is then coupled into the loop, where an erbium-doped fiber amplifier (EDFA) compensates for the losses
in the cavity, and an optical band-pass filter (BPF) sets the bandwidth of the comb (adjustable between a few
GHz and a few hundreds of GHz), and removes excess noise from the EDFA. A free-space acousto-optical
frequency shifter (AOFS), driven by a radio-frequency synthesizer around νs ∼ 80 MHz, acts as the shifting
element in the cavity. The AOFS is set to down-convert the signal frequency. An RF amplifier boosts the
driving signal, in order to maximize the AOFS conversion efficiency.

A fraction of the optical field circulating in the loop is coupled out and directed to an electro-optical phase
modulator (EOPM), with an RF bandwidth of 40 GHz. The modulator is driven by an arbitrary waveform
generator (AWG) capable of delivering 24 Gs/s with an analog bandwidth of 7 GHz. The AWG generates
an analog voltage signal following the phase levels given by Eq. 5.3, and matching the repetition rate of the
pulses at the output of the FSFL. A tunable optical delay line is used to align the optical signal to the voltage
drive, and a polarization controller is used to maximize the modulation efficiency.

All the experimental results reported in the following section are obtained with a FSFL designed for a
round-trip time of tc = 76.2 ns, corresponding to νc ≈ 13.13 MHz. Different configurations of the loop are
obtained by electronically modifying the value of νs.

3For a complete schematic of the setup, see Fig. D.6.
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AWG

EOPM

CW

Output

Seed injection

RFS

EDFA

Frequency-shifted feedback loop Phase modulation

Input

BPF

Optical fiber RF coaxial cable

AOFS

Figure E.3 – Generation of frequency combs with user-defined FSR, experimental setup. CW, continuous-wave laser; RFS,
radio-frequency synthesizer; AOFS, acousto-optical frequency shifter; EDFA, erbium-doped fiber amplifier; BPF, band-pass filter;
AWG, arbitrary waveform generator; EOPM, electro-optical phase modulator. For a complete schematic of the experimental setup,
see Fig. D.6.

E.2.1.2 Experimental results

First, the output signal of the CW-seeded FSFL is analyzed in the absence of temporal phase modulation.
Fig. E.4 shows a typical trace of the output spectrum of the CW-seeded FSFL, measured with an optical
spectrum analyzer.

Figure E.4 – Typical output spectrum of
a CW-seeded fiber FSFL. Measured optical
power spectrum at the output of the fiber loop.
The shown spectrum has a bandwidth of ∆ν ≈
96 GHz. The AOFS is driven at νs ≈ 80
MHz in the down-shifting configuration (i.e., the
rightmost comb line corresponds to the seed fre-
quency). The resulting frequency comb has then
K ≈ 1200 lines, starting from the seed fre-
quency, ν0 ≈ 193.55 THz.

193.2 193.25 193.3 193.35 193.4 193.45 193.5

Frequency (THz)

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

P
o
w

er
 s

p
ec

tr
u
m

 (
d
B

m
)

193.333 193.334 193.335

-90

-80

-70

-60

-50

-40

FSFL output spectrumSeed

Table E.2 lists for tested values of the shifting frequency, νs, the emulated Talbot parameters, p2 and q2,
and corresponding emulated GVD.
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Table E.2 – FSFL operation, experimental conditions and results. List of parameters of the CW-seeded FSFL and the obtained
output signals for a set of 4 conducted tests in the absence o temporal phase modulation. In all cases, tc = 76.2 ns.

FSFL parameters FSFL signal characteristics
νs

a νc
b p2

c q2
d νr

e tr
f |β2|zg

(1) 78.80 13.13 6 1 78.80 12.690 1.539 · 108

(2) 78.84 13.13 78.84 12.684 1.538 · 108

(3) 80.42 13.13 49 8 80.42 12.435 1.508 · 108

(4) 81.41 13.13 31 5 81.41 12.284 1.490 · 108

a Shifting frequency (MHz).
b Inverse cavity round-trip time (MHz).
c Numerator of the Talbot condition emulated by the FSFL.
d Denominator of the Talbot condition emulated by the FSFL.
e FSR of the generated frequency comb (MHz).
f Repetition period of the generated pulse train (ns).
g Equivalent second-order dispersion (ps2/rad).

Fig. E.5 shows a set of measurements corresponding to the experimental conditions and results listed
on Table E.2. The traces in Fig. E.5(a) show the measured line-to-line spectral phase distribution of the
generated frequency comb. These traces are obtained by mixing the generated comb with a fraction of the
seed CW laser4 in a 28 GHz bandwidth photodiode, a process commonly referred to as optical heterodyning.
The resulting photocurrent is captured by an oscilloscope and the phase of its Fourier transform is computed,
resulting on the represented traces. The traces in Fig. E.5(b) show the photocurrent resulting from direct
detection of the output pulse train of the FSFL.
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Figure E.5 – FSFL operation, experimental re-
sults. Set of measurements corresponding to the
experimental conditions and results listed on Ta-
ble E.2, and following the same numbering (1)-
(4). (a) Spectral line-to-line phase distribution of
the generated optical frequency combs, and, (b)
instantaneous power traces of the generated trains
of optical pulses. Experiment (1) corresponds to
an integer temporal Talbot condition; the spec-
tral phase is flat and the obtained pulse train re-
peats at the rate set by the shifting frequency, νs.
Experiments (3) and (4) corresponds to fractional
Talbot conditions, resulting in rate-multiplied op-
tical trains, by the emulated Talbot parameter q2
(see Table E.2(3),(4)). The configuration of the
loop in experiment (2) does not correspond to a
Talbot condition; a train of stretched (chirped)
optical pulses is then obtained.

4For a detailed depiction of the heterodyne measurement process, see Fig. D.6.
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Experiment (1) corresponds to a configuration of the FSFL to emulate an integer Talbot condition; the
obtained optical signal is a transform-limited (no spectral phase variations) train of optical pulses with a rep-
etition rate dictated by the cavity shifting frequency, νs (also setting the FSR of the corresponding frequency
comb). Note that the values of νs and νc listed on entry (2) of Table E.2 do not satisfy a Talbot condition.
The generated optical signal behaves as a train of pulses with excess dispersion, thus resulting in broader
optical pulses with a quadratic spectral phase distribution (see Fig. E.5(2)), resulting on linear frequency
modulation of the pulses, or chirp. The loop satisfies fractional Talbot conditions for experiments (3) and
(4), thus obtaining rate-multiplied optical pulse trains with associated spectral Talbot phases.

Next, the PCSTM is tested with the proposed FSFL architecture as its starting point. For this purpose, the
required temporal Talbot phase sequences are introduced to the pulse trains generated by the loop. Table E.3
lists the parameters of the generated FSFL signals, applied temporal Talbot phases and obtained results.

Table E.3 – Generation of frequency combs with user-defined FSR, experimental conditions and results. List of experimental
conditions and results of 7 experiments showing generation of frequency combs with tunable FSR, ranging from ∼8 kHz to ∼8
GHz.

FSFL parameters PCSTM parameters Output comb
νs

a νc
b p2

c q2
d q1

e r−1f r−1νs
g |β2|zh

(1) 78.91 13.13 601 100 1 100 7.89 · 103 1.537 · 108

(2) 82.46 13.13 157 25 2 12.5 1.03 · 103 1.471 · 108

(3) 83.16 13.13 19 3 11 0.27 22.68 1.458 · 108

(4) 78.80 13.13 6 1 10 0.1 7.88 1.539 · 108

(5) 78.80 13.13 6 1 100 0.01 7.88 · 10−1 1.539 · 108

(6) 78.80 13.13 6 1 1000 0.001 7.88 · 10−2 1.539 · 108

(7) 78.80 13.13 6 1 10000 0.0001 7.88 · 10−3 1.539 · 108

a Shifting frequency (MHz).
b Cavity round-trip frequency, t−1

c (MHz).
c Numerator of the Talbot condition emulated by the FSFL.
d Denominator of the Talbot condition emulated by the FSFL (numerator of the FSR multiplication factor).
e Denominator of the FSR multiplication factor (set by the PM process).
f FSR multiplication factor.
g Output FSR (MHz).
h Equivalent second-order dispersion (ps2/rad).

Fig. E.6(a) shows the optical spectrum of the signal generated by the FSFL, measured with an optical
spectrum analyzer, as well as the output of the EOPM, showing energy-preserving multiplication of the
original FSR by r−1 = 100. Fig. E.6(b) shows the voltage signal applied to the EOPM, compared to the
Talbot phase sequence prescribed by the PCSTM for the desired FSR multiplication factor. The shown
results correspond to entry (1) of Table E.3.

The measured results, shown in Fig. E.6(a) confirm multiplication of the FSR of the comb generated by
the FSFL, 78.91 MHz, by the desired factor r−1 = 100, producing an FSR of 7.89 GHz. As per the charac-
teristics of the PCSTM, the overall comb energy is nearly preserved; the power ratio between the measured
output and input comb lines is ∼17 dB, approaching the expected ideal value of 10 log10(100) = 20 dB.
Residual energy remains in the output spectrum at discrete frequencies corresponding to the input comb
lines. This imperfect realization of the process is mainly attributed to practical deviations in the temporal
PM profile imposed on the FSFL output, as compared with the theoretical prescription (Fig. E.6(b)). The
spectral envelope, bandwidth, and frequency grid of the input comb are not modified by the FSR multiplica-
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Figure E.6 – FSR multiplication
of the FSFL output comb by a
factor 100, experimental results.
(a) Measured optical spectra of the
comb generated by the FSFL (78.91
MHz FSR) and the obtained out-
put comb after energy-preserving
FSR multiplication by a factor 100
(7.89 GHz FSR). Conservation of
the comb energy, spectral envelope,
and input frequency grid is ob-
served. (b) Temporal phase modula-
tion sequence and generated EOPM
driving voltage, required by the PC-
STM for the FSR multiplication
process. The shown example cor-
responds to the parameters listed in
Table E.3(1).

tion process. Additionally, the individual output lines (inset of Fig. E.6(a)) show no noticeable broadening
(within the limit of the measurement integration time). Finally, as expected in the application of the PCSTM,
the spectral noise floor level of the comb – mainly due to amplified spontaneous emission in the FSFL cavity
– is not affected by the FSR multiplication process.

Fig. E.7 shows a set of measurements of the frequency combs generated by the FSFL, and the output
combs, after application of the temporal phase modulation. The shown traces are obtained following the
same procedure used in the characterization of the spectral phase sequences of the FSFL combs, shown in
Fig. E.5(a), i.e., by mixing the seed laser with the generated comb in a 28 GHz photodiode, and calculating
the Fourier spectrum of the resulting photocurrent in an electrical real-time oscilloscope.

Fig. E.7(1) (corresponding to Table E.3(1)) shows the RF spectra corresponding to the optical spectra
shown in Fig. E.6(a). The FSR multiplication factor and energy redistribution effects are clearly noticeable.

Fig. E.7(2) (corresponding to Table E.3(2)) shows an example of FSR multiplication by a fractional
factor, r−1 = 12.5 > 1, from 82.46 MHz at the output of the FSFL to 1.03 GHz after the PM process.
The measured power ratio between output and input comb lines is ∼9 dB, slightly short of the expected
10 log10(12.5) ≈ 11 dB. Once more, this is mainly attributed to practical deviations in the temporal PM
profile.

Fig. E.7(3) (corresponding to Table E.3(3)) shows an example of FSR multiplication by a fractional
factor, r−1 = 0.27 < 1, from 83.16 MHz at the output of the FSFL to 22.68 MHz after the PM process.

Fig. E.7(4)-(7) (corresponding to Table E.3(4)-(7)) show examples of FSR multiplication by the factors
0.1, 0.01, 0.001 and 0.0001, respectively. The resulting combs have respective FSR values of 7.88 MHz,
788 kHz, 78.8 kHz and 7.88 kHz. These combs are generated from an input FSFL comb with FSR of 78.8
MHz and uniform spectral phase distribution (i.e., starting from an integer temporal Talbot condition).

These results demonstrate the unique capabilities of the FSFL architecture to generate frequency combs
with user-defined FSR, through the application of the PCSTM. The reported results illustrate the unprece-
dented tunability of the FSR by purely electronic means (simply modifying the frequency of an RF tone in
the MHz regime), here demonstrated over 6 orders of magnitude on the generated frequency combs (from
∼8 kHz to ∼8 GHz), while preserving the energy and overall characteristics (bandwidth, spectral envelope
and frequency grid) of the generated input comb.
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Figure E.7 – Arbitrary FSR comb generation by the
PCSTM with a FSFL, experimental results. Mea-
sured RF spectra of frequency combs generated by the
FSFL and processed by the PCSTM. The figure num-
bering corresponds to the entry list of Table E.3.
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Index

A
attenuation coefficient, 22
autocorrelation, 115
averaging, 14, 81

fractional, 86, 142

B
Bézout’s identity, 66

C
carrier-envelope offset, 5
chirp, see frequency, instantaneous
chromatic dispersion, see group velocity dispersion
comb, see frequency comb
complex amplitude, 20, 161

transmittance, 163
complex envelope, 23, 54
cross-correlation coefficient, 115

D
diffraction, 163, 166
Dirac

comb, 37, 45, 153
delta, 38, 39, 152

dispersive medium, see group velocity dispersion
duty cycle, 55

E
eigenfunction, 158
eigenvalue, 158
energy redistribution, 10, 14
Euler’s formula, 148

F
fiber Bragg grating, 71
filter, see spectral filtering
Fourier

analysis, 21, 148, 156, 161
coefficients, 149
optics, 21, 161
series, 148

transform, 21, 150
multidimensional, 154

transform-limited, 115, 121
uncertainty principle, 121, 150

free spectral range, 5, 53, 90, 142
frequency

carrier, 23
grid reference, 92
instantaneous, 29
linear, 19, 53
radial, 19, 53, 121
spatial, 21, 162

frequency comb, 5, 33, 36, 46, 53, 90, 142
visibility, 95

frequency gap, 108, 117, 126, 136, 143
frequency-shifted feedback loop, 100, 184

G
Gauss sum, 37, 41
group delay, 26, 117, 157
group velocity, 26
group velocity dispersion, 27, 39, 70, 77, 91, 99, 109,

166
coefficient, 27, 29, 46, 167

H
harmonic, 19

decomposition, see Fourier, analysis
Helmholtz equation, 20

paraxial, 161, 166
Hurwitz’s theorem, 70

I
impulse response, 24, 157, 162
invisibility cloak, 106, 143

broadband, 106
full-field, 108
spatial, 106
spectral, 108

selective, 117
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temporal, 106
invisibility cloaking, see invisibility cloak

J
Jacobi symbol, 42

L
Laplacian, 19

transverse, 161
laser, 2

continuous-wave, 3
mode-locked, 4, 8

M
mode-locking, see laser, mode-locked
Modular multiplicative inverse, 42
modulator, see temporal modulation
multiplexing, 124, 130

N
narrow-band approximation, 23
noise, 12, 73, 142

additive white Gaussian, 12, 81, 95
amplified spontaneous emission, 12, 82, 95
extracavity, 13, 95
floor, 96, 142
intracavity, 12
mitigation, 12, 81, 96, 143
uncorrelated, 83

nonlinear Schrödinger equation, 23, 166

O
offset frequency, 5
optical fiber

single-mode, 29, 71, 99

P
paraxial approximation, 160, 165
Parseval’s relationship, 54, 149, 152
Parseval’s theorem, see Parseval’s relationship
periodicity, 2, 38

aperiodic optical signals, 15, 102, 143
control, 53, 142
periodic optical signals, 3, 142

technological considerations, 6
temporal period, 19

Phase velocity, 21
Poisson’s summation formula, 154
power

average, 55

instantaneous, 54
peak, 54
spectrum, 54, 117

propagation constant, 22
pulse period, 5, 36, 38, 53, 76, 142
pulse train, 4, 31, 36, 46, 53, 76, 122, 142
pulsed waveform, see pulse train

R
refractive index, 18, 21
repetition rate, 5

S
self-imaging, see Talbot effect
sgroup velocity dispersion, 126
space-time duality, 31, 165
spatial modulation, 162, 166
spectral analysis, 109
spectral compression, 121, 124, 135, 143
spectral filtering

amplitude, 9, 14, 135
phase, 10, 39, 56, 70

spectrum
angular, 161, 166
frequency, 22, 39, 105, 123, 166

speed of light, 18

T
Talbot

array illuminator, 102
spectral, 104
temporal, 102

carpet, 48, 50, 57
condition, 31, 33, 37, 39, 40, 56
effect, 11, 30, 46, 166

angular, 167
fractional, 32, 33, 36
integer, 31, 33, 36
inverted, 52
phase-controlled, 58
spatial, 31, 166
spectral, 33, 36, 167
temporal, 31, 36, 166

image, 31, 33, 36, 103, 167
length, 30, 167
method

phase-controlled spectral, 66, 90, 104, 188
phase-controlled temporal, 59, 76

phase, 37, 49, 50, 55, 105
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propagator, see Talbot, condition
sub-image, 32, 33, 36, 103, 167

Talbot effect, 142
temporal modulation, 24, 121, 126, 166

amplitude, 9, 25, 117
complex, 25, 131
phase, 10, 25, 46, 57, 70, 77, 92, 126

time-bandwidth product, 44, 122
time-frequency duality, 44
transfer function, 24, 157, 162
transfer matrix, 157
transformation optics, 106
transverse momentum, 46, 162

W
wave, 18

illumination, 106
monochromatic, 19, 22, 25, 161
optical, 19
plane, 20, 22, 160
polychromatic, 25
pulsed, see pulse train

wave equation, 19
wave propagator, 24, 39, 162
wavefront, 20, 160
wavefunction, 19
wavelength, 21, 46
wavenumber, 20, 22
wavevector, 20, 160
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