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Abstract. The dust storm is one of the severe natural disasters that has been recently threatening the Middle East 9 
region due to climate changes and human activities. This phenomenon has become a national crisis in some countries 10 
in this region over the previous years, especially in spring and summer. This research aims to detect and monitor the 11 
areas covered by the seasonal and occasional dust storm from MODIS (Moderate Resolution Imaging 12 
Spectroradiometer) satellite imagery. MODIS imagery possesses impressive spectral and temporal characteristics that 13 
are essential for such an environmental application of Earth observations. An efficient algorithm, based on the spectral 14 
and statistical analysis of both thermal and reflectance bands of MODIS data, was developed through a decision tree 15 
method. To this end, an index was proposed to detect the dusts over the land using the brightness temperature of 16 
thermal bands. The results of the proposed algorithm were assessed utilizing ground-based observation of synoptic 17 
stations. The proposed method showed high reliability and performance, as well as the automatic capability of dust 18 
detection in land and sea areas of the image simultaneously. The evaluation of results showed that the proposed 19 
algorithm could detect thin and thick dust storms with an overall accuracy of about 80%. Moreover, the dust 20 
monitoring results visually agreed well with the Ozone Monitoring Instrument Aerosol Index (OMI-AI) dust products. 21 
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1 Introduction 27 

Dust storms are one of the most hazardous environmental phenomena that frequently take place in 28 

arid and semi-arid regions [1, 2]. A dust storm is the consequence of particles or sand dust picked 29 

by stormy winds from the surface of the desert. These solid particles are suspended in the air and 30 

reduce the visibility to near-zero in nearby regions [3, 4]. According to the World Meteorological 31 

Organization (WMO), the dust particles affect the cloud droplets and crystals, thus affecting the 32 

location and amount of precipitation. Therefore, the effects of dust on drought and the environment 33 

and climate change must be carefully assessed [5].  34 

Suspended particles can cause environmental, economic, and social problems. In other 35 

words, air pollution affects people’s health, quality of agricultural products, soil fertility, and 36 
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infrastructures [6, 7]. Various reports have also shown that dust storms seem to impact the quality 37 

of communications [4, 8, 9, 10, 11, 12]. Besides that, they can create irrecoverable health issues 38 

for children and people having breathing disorders [4, 13, 14].  39 

Various factors, including atmospheric interactions, severe winds, bare soil, and lack of 40 

vegetation cover, geological structures, little rain, decreasing soil moisture, and arid climate, create 41 

such storms [15, 2, 16, 17]. These particles may rise into a higher level of the troposphere after 42 

released, and come down in the other urban or agriculture areas [18]. Consequently, real-time and 43 

automatic monitoring of dust particles is primordial for the population health [19, 6]. 44 

There are various technologies for monitoring dust storms, including ground-based 45 

observations, video surveillance, wireless sensors, satellite remote sensing [20]. The ground-based 46 

observations are among the most accurate technologies; nevertheless, they are unable to monitor 47 

the displacement of dust on a large-scale. The properties of dust particles are frequently measured 48 

by ground measurements using sun photometers [5]. The AERONET (AErosol RObotic 49 

NETwork) is a network of ground-based sun photometers that provide high temporal resolution 50 

Aerosol Optical Depth (AOD) measurements [21]. 51 

Compared to the other methods, remote sensing is recognized as the best approach for 52 

assessing the process of dust from the beginning, and over the space and time. Besides, satellite 53 

imagery can be efficient in studying how the meteorological parameters such as wind speed, wind 54 

direction, atmospheric pressure, and surface temperature affect the rise and distribution of dust in 55 

time and space [22, 23, 24]. Dust can be detected in the ultraviolet range by absorption (0.315 – 56 

0.4 µm), in the visible spectrum by scattering and in the thermal infrared region by the difference 57 

of ground surface/aerosol emissivity [25, 26, 5, 27, 28]. 58 
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Several studies have been carried out for dust detection using satellite sensors such as 59 

MODIS [25, 29, 30], NOAA-Advanced High-Resolution Radiometer (AVHRR) [31, 32], Ozone 60 

Monitoring Instrument (OMI) and Total Ozone Mapping Spectrometer (TOMS) [33, 34, 23, 35] 61 

and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) [36]. MODIS 62 

sensor has been significantly utilized in dust detection because of its high spectral and temporal 63 

resolution and extensive ground coverage [37, 38].  64 

By considering the surface background, various algorithms have been developed, e.g., 65 

Dark Target for detecting dust on the sea surface [39] and Deep Blue for bright surfaces such as 66 

deserts [40, 41, 42]. Moreover, a variety of approaches based on different parts of the 67 

electromagnetic spectrum are proposed, including, thermal-based bands [43, 44, 45, 46, 47, 48, 68 

49], visible- and near infrared-based bands [50, 51], and combination of visible and infrared 69 

spectral bands [52, 53, 25, 54, 55, 10]. Many studies focused on the temporal and spatial variability 70 

of dust aerosol frequency [33], while others concentrate on identifying dust source regions [56]. 71 

Some researches declared that the Middle East is one of the principal sources of dust in the 72 

world [57]. The primary source of these dust storms is originated from Iraq, Kuwait, Saudi Arabia, 73 

and Syria [47]. In recent years, the recurrence of dust storms in this region has been increased [58, 74 

17]. The Shamal winds often spur dust storms in the Middle East region. Hot and dry north-75 

westerly winds blowing across the Persian Gulf frequently in summer (in June and July), but can 76 

happen any time of year. The occurrence of the dust storms in Iran, north eastern Iraq, and Syria, 77 

the Persian Gulf, and the southern Arabian Peninsula is frequently in the summer. However, in 78 

western Iraq and Syria, the northern Arabian Peninsula is usually in the spring [59]. 79 

Numerous research works have investigated the dust storms in this region; however, most 80 

of them have several general limitations. First, some of these algorithms are not capable of 81 
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distinguishing between dust and desert due to their similar spectral behavior [43, 44, 18]. Second, 82 

they have trouble discriminating between dust and clouds and dark and bright surfaces [47, 43, 44, 83 

50, 18, 46]. Finally, most of them are not able to detect thin dust over water [43]. 84 

This paper aims to propose a method that overcomes the limitation of the previous 85 

approaches by using a combination of the visible and infrared spectra. This method is based on the 86 

spectral and statistical analysis of thermal and spectral observations to discriminate dust from other 87 

phenomena and can detect dust over both land and water areas. This method consists of four main 88 

steps as follows: i) masking clouds using reflective and thermal bands ii) detecting water bodies 89 

iii) detecting dust over lands based on an efficient index using thermal bands, and finally, iv) 90 

detecting thin dust over the water. 91 

2. Materials and Method 92 

2.1. Study Area 93 

The study area is consisting of the western part of the Middle East, which includes the west and 94 

southwest of Iran, Iraq, Saudi Arabia, Kuwait, Yemen, and the United Arab Emirates (see Fig. 1). 95 

Most of these regions are located in the semi-arid and arid region and have a little annual rainfall. 96 

There are many deserts in this area. Due to Shamal winds, the areas mentioned above are typically 97 

experiencing dust in the spring and summer. 98 
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Fig. 1 The study area, the Middle East region around the Persian Gulf. 

2.2. Earth Observations 99 

2.2.1. MODIS Data 100 

MODIS is a passive satellite sensor that provides data in the visible and infrared spectral domain, 101 

including thermal infrared. Thermal bands of MODIS sensor, installed on Aqua and Terra satellites 102 

launched in 1999 and 2002, is widely used for detecting dust in satellite images [55, 26]. MODIS 103 

has 36 bands in the visible to thermal infrared spectrum (0.4 – 14.4 µm). From these bands, bands 104 

1 and 2 have a 250-meter resolution, while bands 3 to 7 have 500-meter resolution, and bands 8 to 105 

36 have 1 km of resolution [25]. Thermal bands have a spatial resolution of 1 km by 1 km. These 106 

sensors are observing the entire surface of the planet Earth every day or two. Due to its extensive 107 

spatial coverage and high temporal resolution, MODIS data are useful to track large-scale 108 

phenomena and environmental changes.  109 
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In this study, we used MODIS level 1B images from both Aqua and Terra satellites. Daily 110 

MODIS Level 1B calibrated radiance data of MODIS sensors with 1 Km resolution are available 111 

through the NASA website, i.e., at http://ladsweb.nascom.nasa.gov/. Level1 B MODIS data are 112 

calibrated, geo-referenced, and geometrically corrected [60]. Re-projection and resampling were 113 

applied to the data using the MODIS conversion toolkit (MCTK). Moreover, Level 1B images 114 

were converted to brightness temperature using the MCTK toolkit. A list of the bands used for 115 

dust detection is presented in Table 1. 116 

Table 1 List of the MODIS bands used in this study. 117 

Resolution (m) Wavelength (µm) Band’s number 

250 0.620 – 0.670 1 

250 0.841 – 0.876  2 

500 0.459 – 0.479 3 

500 0.545 – 0.565 4 

500 1.230 – 1.250 5 

500 2.105 – 2.155 7 

1000 3.660 - 3.840 20 

1000 4.020 - 4.080 23 

1000 10.780 - 11.280 31 

1000 11.770 - 12.270 32 

 118 

In this study, ten MODIS images from 2008 to 2018 were used to test and evaluate the proposed 119 

dust detection algorithm. Table 2  presents a summary of these images. Three of these dust 120 

events/images were used for sample data collection and threshold estimation, while the remaining 121 

data were used to evaluate the proposed algorithm.  122 

http://ladsweb.nascom.nasa.gov/
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Table 2 Summary of dust event case studies and MODIS images used in this study. 123 

Product Satellite Date 

MOD021KM Terra October 29, 2017 

MYD021KM Aqua July 05, 2009 

MOD021KM Terra May 12, 2018 

MYD021KM Aqua October 31, 2017 

MOD021KM Terra October 31, 2017 

MYD021KM Aqua June 19, 2012 

MOD021KM Terra June 19, 2012 

MOD021KM Terra March 05, 2010 

MYD021KM Aqua June 03, 2011 

MYD021KM Aqua June 07, 2008 

 124 

2.2.2. OMI Data 125 

OMI is a nadir-viewing near-ultraviolet (UV) and visible charge-coupled device (CCD) 126 

spectrometer aboard NASA’s Aura spacecraft with a resolution of 13 km by 24 km at nadir [61]. 127 

Aura was launched on July 15, 2004. The OMI observes the Earth’s surface through two UV bands, 128 

UV1 (270–314 nm) and UV2 (306–380 nm), and one visible band, VIS (350–500 nm). It is 129 

essential to mention that the time difference between Aqua’s MODIS data and OMI was less than 130 

15 min [62]. 131 

The OMI can distinguish between different aerosol types, such as dust and smoke. It can 132 

measure cloud pressure and coverage that can provide data to derive tropospheric ozone. 133 

Considering the Lambert Equivalent Reflectivity (LER) assumption, the difference between the 134 

measured and calculated radiance is described as the Aerosol Index [63]. The OMI near-UV 135 

aerosol algorithm calculates the LER at 388 nm (i.e., R388
∗ ) by assuming the atmosphere scattering 136 

is purely Rayleigh [64]. Calculation of the UV Aerosol Index (UVAI) as follows: 137 

UVAI = −100 log10 [
I354

obs

I354
calc(R354

∗ )
] (1) 
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where I354
obs is the radiation recorded by sensor and I354

calc is calculated by assuming LER of R354
∗ . 138 

Positive UVAI values indicate absorbing aerosol (carbonaceous aerosols, desert dust, 139 

volcanic, etc.), While Negative values indicate non-absorbing aerosol. Near-zero values of UVAI 140 

also indicate clouds, minimal aerosol, or other non-aerosol [64]. 141 

In this study, OMI-Aura_L3-OMAERUV daily data was used for visual evaluation of the 142 

dust detection model. 143 

2.2.3. Ground Observations 144 

For performance evaluation of the proposed algorithm, the ground observations obtained from 212 145 

synoptic stations, managed by Iran’s Meteorological Organization (IMO), which observe several 146 

weather parameters every hour. These weather parameters were horizontal visibility and code 06. 147 

Code 06 is a ground observation that measures the extensive and suspended dust particles, which 148 

is not raised by the wind at or near the station at the time of observation. The remnants of dust 149 

particles that came close to the observatory station due to sandstorms of trans-local origin and 150 

reduced vertical visibility are also reported in Code 6. Due to the limited access to the synoptic 151 

data from other countries, in this study, we used only the synoptic data of the IMO. It worths 152 

mentioning that we used synoptic data at and near the time of satellite overpasses. Fig. 2 shows 153 

the distribution of these synoptic stations across the whole country.  154 
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Fig. 2 The distribution of 212 synoptic stations utilized in this study. 

2.3. Proposed Methodology  155 

In this study, different steps were followed to identify the dust pixels from MODIS imagery. 156 

Statistical analysis was first performed to find suitable bands and proper thresholds for better dust 157 

detection. This analysis was based on the sampling of diverse objects (cloud, land, water, and dust 158 

over different surfaces) in the MODIS images. Training data was used to extract the relevant 159 

formula and thresholds. Three of the dust storms that occurred in 2012/06/19 (Aqua), 2011/06/03, 160 

and 2010/03/05 are considered in this study to collect training data. After sampling and finding the 161 

appropriate bands, the clouds were masked from the image. The next step was to identify water 162 

bodies. Finally, using two separate methods, the dust was detected over water and land. The 163 

flowchart of the proposed approach is shown in Fig. 3. 164 

    To implement the proposed algorithm, we need to calculate the brightness temperature 165 

of thermal bands. The brightness temperature is the temperature of a blackbody that emits the same 166 
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intensity when viewed with the same detector. The amount of radiation emitted by a black body 167 

depends on its temperature, and is defined by Planck’s Law: 168 

B(λ, T) =
2hc2λ−5

exp (
hc

kTλ
) − 1

 (2) 

where B(λ,T) is the Planck function at wavelength λ(m), T is brightness temperature, c=2.99×108 169 

m s-1 is the speed of light, h=6.626×10-34 m2 kg s-1 is the Planck’s constant, and k=1.38×10-23 J K-170 

1 is the Boltzmann’s constant. Using this equation, the temperature can be derived as follows: 171 

T =  
hc

λkln (1 +  
2hc2

Lλ5 )
 

(3) 

where L is the radiance value for a given pixel. 172 
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Fig. 3 The proposed dust detection approach. 

2.3.1. Threshold estimation 173 

Modeling of the spectral behavior of different objects was performed based on all the MODIS 174 

bands. Then, useful(valuable) bands were selected for each object. Approximately 10,000 pixels 175 

of each class in three images were sampled for five classes, and then, their statistical parameters 176 

were calculated. Fig. 4 represents the extracted spectral signatures of clouds, clear water, dust over 177 

water, desert, and dust over land. 178 
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Fig. 4 Spectral Reflectance (top), and Brightness Temperature (bottom) signatures of different objects. 

By calculating the statistical parameters and thresholds, the proposed indices were modeled and 179 

applied to the images. Fig. 5 shows the results in the box plots. A box plot displays the distribution 180 

of quantitative data so that it facilitates comparisons between variables. The box shows the 181 

quartiles of the distribution, and the whiskers show the rest of the dataset.  182 

As is evident in Fig. 4-a, bands 1, 2, and 5 are suitable(becoming) bands for detecting water 183 

since they have a low reflection among the classes. One of the standard indices for identification 184 

and detection of water bodies is the Normalized difference water index (NDWI). Besides that, the 185 

Normalized difference vegetation index (NDVI) is suitable for finding water bodies that thin dust 186 

is present over water (Eq. (4) and (5)). 187 
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where R0.645 µm , R0.858 µm , and R1.24 µm is the reflectance of band 1, 2, and 5. 188 

Considering all datasets and bands, we noticed that the brightness temperature difference 189 

between band 20 and band 31, as well as a relationship between band 4 and band 7 is suitable to 190 

detect dust over water: 191 

𝐵𝑇𝐷3.7−11 μm = 𝐵𝑇3.7 μm − 𝐵𝑇11 μm , (6) 

𝑅4,7 =
𝑅0.545 μm − 𝑅2.105 μm

𝑅0.545 μm + 𝑅2.105 μm
 (7) 

where R0.545 µm and R2.105 µm are reflectance values in bands 4 and 7. BT3.7 µm and BT11 µm are the 192 

brightness temperature of bands 20 and 31. 193 

𝑁𝐷𝑊𝐼 =
𝑅0.858 μm − 𝑅1.24 μm

𝑅0.858 μm + 𝑅1.24 μm
 (4) 

𝑁𝐷𝑉𝐼 =
𝑅0.858 μm − 𝑅0.645 μm

𝑅0.858 μm + 𝑅0.645 μm
 (5) 
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Fig. 5 Statistical analysis of a) NDVI of different phenomena, b) Normalized difference of band 4 and band 7, c) 

NDWI of different phenomena, d) Brightness temperature of band 23, and e) Brightness temperature difference of 

band 20 and band 31. 
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2.3.2. Clouds Masking 194 

As shown in the flowchart (Fig. 3), the first step in implementing the proposed method is to mask 195 

clouds in the images. Clouds exhibit a much lower value of brightness temperature than other 196 

objects (Fig. 4-b). Brightness temperature is not capable of detecting thin clouds alone. Song et 197 

al. [65] suggested a method for mask clouds using reflection of band 1 (0.66 µm)-because of 198 

clouds’ high reflection in this band-and brightness temperature of band 32 (12 µm). Unfortunately, 199 

after applying these formulas, clouds are not entirely masked, therefore, besides the mentioned 200 

bands, band 3 is utilized for cloud detection because of high reflection in this band (Fig. 4-a). Fig. 201 

6-a depicts the result for the cloud mask of the proposed method on the image of the dust event in 202 

2012. 203 

 

Fig. 6 Result of cloud masking (a), and the MODIS RGB image (b). 

2.3.3. Water Delamination 204 

The spectral behavior of thin dust over water differs from that of thick dust. Conventional strategies 205 

cannot detect thin dust over water. Accordingly, we mapped the water bodies in the image. Using 206 



16 

spectral and statistical analysis, three formulas were selected for the identification of water bodies.  207 

The amount of NDWI (Eq. (4)) to detect water is greater than zero (Fig. 5-c) [66, 67]. As 208 

well as, the value of NDVI (Eq. (5)) is less than zero, but According to Fig. 5-a, if thin dust was 209 

presented above the water bodies, the value of NDVI will be slightly higher than zero accordingly. 210 

Therefore, the threshold is set to a value above zero. Moreover, the brightness temperature of band 211 

23 was used to detect water bodies with respect to the difference in value with other objects (Fig. 212 

4-b and Fig. 5-d). 213 

Fig. 7-a showed the results for the water bodies’ delamination of the proposed method 214 

implemented on the image of the dust event in 2012. 215 

 

Fig. 7 Result of water delamination (a), and the MODIS RGB image (b). 

2.3.4. Dust detection over the water surface 216 

As mentioned earlier, the detection of thin dust over the water was one of the problems with 217 

previous algorithms. Therefore, to detect dust over water, first, we have to extract the water bodies. 218 

After identifying the water pixels in the image, we developed a method to distinguish between 219 
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transparent and opaque water pixels. Considering the statistical analysis of the transparent and 220 

opaque water pixels, BTD3.7-11 µm and R4,7 (Eq. (6) and (7)) were applied to distinguish these two 221 

classes. MODIS Aqua and Terra images have sun-glint over water. In order to remove this effect, 222 

we detect dust for the sun-glint free region (with a sun-glint angle greater than 30 degrees) [68]. 223 

2.3.5. Dust detection over the land surface 224 

The main challenge in detecting dust using satellite data is the separation of the spectral signal of 225 

dust from the surface of the Earth and the cloud, and this is especially challenging for bright 226 

surfaces [41, 42]. Due to similar reflectivity of dust particles and deserts in the visible bands, dust 227 

storm detection in the Middle East region is more complicated. Furthermore, using a single thermal 228 

band cannot distinguish between dust and other objects. As a solution to these limitations, using a 229 

combination of thermal, visible, and infrared bands from MODIS imagery can efficiently detect 230 

the dust [44, 24].  231 

 

Fig. 8 The Eq. (8) and (9) results; image data captured on June 19, 2012. 
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Ackerman [43, 44] used the brightness temperature difference of band 20 (3.66-3.84 µm) and band 232 

31 (11.28 – 1.78 µm), i.e., BTD 3.75-11 µm, and difference of band 32 (12.22 – 11.77 µm) and band 233 

31, i.e., BTD12-11 µm. Although BTD 3.75-11 µm can efficiently make a distinction between dust and 234 

ground surface, it cannot discriminate cloud and dust [44]. 235 

Based on the analysis of different bands, as well as the statistical analysis of different 236 

classes, we found that the brightness temperature of bands 20, 31, and 32 is suitable for dust 237 

detection over the land surfaces. These bands have been used in various studies to detect dust [43, 238 

44]. For this reason, we have found two relationships to detect dust on land cover areas (Eq. (8) 239 

and (9)). 240 

𝐵𝑎𝑛𝑑 𝑅𝑎𝑡𝑖𝑜3.7𝜇𝑚−11𝜇𝑚 =
BT3.7 μm

BT11 μm
 (8) 

BTD11−12 = BT11 μm − BT12 μm (9) 

where BT3.7 µm , BT11 µm and BT12 µm are the brightness temperature of band 20, 31, and 32. 241 

 The 2012’s satellite image was selected to perform this analysis. The results of these two 242 

equations are shown in Fig. 8-a and Fig. 8-b. Using these two equations separately, we cannot 243 

extract dust entirely from the image. For this reason, training regions were used to analyse these 244 

equations. Sampling was performed on thin and thick dust and different parts of the land, including 245 

bright and dark surface. More than 8000 pixels of land objects and about 1800 pixels of dust were 246 

selected. Sampling results showed that by combining the above two equations, dust over land could 247 

be well detected. Using these surveys, we found a relationship for dust detection (Eq. (10)). 248 
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Improved Dust Index = (
BT3.7 μm

BT11 μm
)

(BT12 μm−BT11 μm)

 
(10) 

The threshold for this index was calculated using the Otsu algorithm [69]. This algorithm is based 249 

on an iterating procedure through all the possible thresholds. It calculates a measure of spread on 250 

each side of the threshold and ultimately finds the optimal threshold values with the minimum 251 

inter- or the maximum intera- class variance. The dust index (Eq. (10)) was applied to the dust 252 

event images, and the result was classified into three classes of dust, land, and cloud (Fig. 9). The 253 

two threshold values (T1 and T2) are generally not constant and vary based on the season of 254 

occurring dust storms. 255 

 

Fig. 9 Result of classification of the improved index with Otsu’s thresholding (a), and the histogram of the image 

(b). 

3. Results and Discussion 256 

The proposed algorithm was applied and evaluated on ten dust occurrences from 2008 to 257 

2018. Fig. 10-b, Fig. 11-b, and Fig. 12-b show the results of the proposed algorithm 258 
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implementation on test images. In Fig. 10-b, it is apparent that the clouds masked well. Although 259 

there are many clouds in this image, the algorithm has been able to detect dust with decent 260 

accuracy. Thin dust over the water was also detected well. In the 2011 dust event, the algorithm 261 

has detected many dust particles over the water. The clouds are relatively well masked in the image 262 

(Fig. 11-b). In the 2012 dust event, water bodies were identified well, and thin and thick dust over 263 

them was detected with reasonable accuracy. Clouds were masked well. Finally, dust over the land 264 

was detected (Fig. 12-b). 265 

 

Fig. 10 Results of the proposed algorithm (a), MODIS RGB images (b), and OMI AI (c) obtained on March 5 

2010. 
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Fig. 11 Results of the proposed algorithm (a), MODIS RGB images (b), and OMI AI (c) obtained on June 3 2011. 

Bin Abdulwahed, Dash and Roberts [5] evaluated various dust detection algorithms in the Middle 266 

East [5]. Their results showed that the Middle East Dust Index (MEDI) had difficulty 267 

distinguishing dust from dark and deserts regions. Also, their results showed that the brightness 268 

temperature difference is not capable of distinguishing dust from the bright surfaces well. They 269 

stated that the Normalized Difference Dust Index (NDDI) was more agree with the AERONET 270 

among the indicators they examined. 271 
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Fig. 12 Results of the proposed algorithm (a), MODIS RGB images (b), and OMI AI (c) obtained on June 19 2012. 

Jafari and Malekian [61] also studied dust detection methods. They stated that available algorithms 272 

worked well in thick dust conditions, but in cloudy conditions, over water, and bright surfaces 273 

have different performance. As well as, they stated that examined algorithms generally misclassify 274 

thick clouds as dust. 275 

Comparing the similar results from other research works, our results show that the clouds 276 

were relatively well masked in all images. The significant challenge for dust detection algorithms 277 
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using the brightness temperature is to distinguish dusty pixels from the cloud. Because of the low 278 

spatial resolution of MODIS, thin clouds in pixels may have the same behavior of dust in the 279 

image. Appropriate cloud masking helped us to identify dust pixels better and might significantly 280 

reduce the number of false alarm pixels; in other words, pixels that were not dust but identified by 281 

the algorithm as dust. The next significant limitation of dust detection algorithms is the inability 282 

to detect dust over water bodies. It is challenging to identify thin dust pixels over water bodies 283 

with the brightness temperature merely. We need to detect thin dust over these areas with a separate 284 

method. Fortunately, in the proposed method, we were able to identify the dust smoothly by using 285 

statistical analysis. 286 

Furthermore, distinguishing between dust pixels and bright surfaces such as deserts, which 287 

are abundant in the Middle East, is another challenge. Accurate threshold estimation in these areas 288 

is essential. We were able to overcome this problem to an acceptable level by automatically finding 289 

the threshold. Moreover, Lower threshold values in the improved index to detect dust over the land 290 

surface may cause problems between dust and desert. The proposed algorithm has a higher 291 

capability to distinguish between dust and other objects. 292 

3.1. Validation 293 

There are several ways to evaluate dust detection algorithms. In this paper, three separate panels 294 

were created to evaluate the proposed method for each three dust events. In each case, the results 295 

of the proposed method visually evaluated with MODIS RGB images where red, green, and blue 296 

are band 1, band 4, and band 3, respectively. Also, the results visually evaluated with OMI AI 297 

products. Although the OMI resolution is lower than the MODIS resolution, these products can 298 

indicate the intensity and location of the dust particles. Finally, the results of the method were 299 

evaluated with Iran synoptic data.  300 
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3.1.1. Visual evaluation of MODIS’s dust detection  301 

The results of the proposed algorithm are in good accordance with MODIS RGB images. Although 302 

MODIS images can be good at visually detecting thick dust, they have poor performance at 303 

detecting dust, especially in desert areas. 304 

In the 2010 dust event, although the dust on the water and land is thin, the algorithm has 305 

been able to identify it relatively well (Fig. 10 a and b). However, a significantly lower threshold 306 

may be able to detect dust over the land more accurately. In the 2011 dust event, it is challenging 307 

to identify dust pixels over water and land visually. In this image, although the cloud is present in 308 

the image, the number of false alarms is near zero (Fig. 11 a and b). In the 2012 dust event, many 309 

south-western synoptic stations of IMO recorded a reduction in visibility to less than 1km. There 310 

is also some dust in the middle part of the image, but it cannot be seen in the RGB image (Fig. 12 311 

a and b). There are some clouds in this image, but the number of false alarm pixels is deficient.  312 

3.1.2. Visual companion with OMI-AI 313 

OMI-AI for three dust events are presented in Fig. 10-c, Fig. 11-c, and Fig. 12-c. In the 2012 dust 314 

event, the results of the OMI-AI measurement are very consistent with the output of the proposed 315 

algorithm over water. An examination of the results of the proposed algorithm and images of OMI-316 

AI shows that our method was able to perform better for the AI larger than 1.7. In the 2011 dust 317 

event, the results showed a good agreement between the proposed algorithm and OMI-AI over 318 

water and land. 319 

 Comparisons between the results of the proposed method and OMI-AI products showed 320 

that in Aqua images, due to the short time difference between Aqua and Aura satellite, the 321 

algorithm has been able to detect dust well. However, in the Terra satellite, due to the significant 322 
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time difference, and the dynamic behavior of the dust, the results of the algorithm may be different 323 

from OMI.  324 

3.1.3. Accuracy assessment 325 

Because some of the synoptic stations were exterior of the studied region for dust detection, the 326 

analytical evaluation of the proposed algorithm was limited to the only overlapped areas. 327 

Horizontal visibility is a suitable parameter for the identification of the days that dust storms are 328 

occurred [26]. Therefore, 3-hourly synoptic data (i.e., horizontal visibility and code 06) records 329 

from 212 synoptic stations used to evaluate the proposed method. It should be noted that the 330 

maximum time difference between the MODIS images and the synoptic data was about 15 331 

minutes. 332 

For classification assessment, a confusion matrix is widely used to evaluate the 333 

performance of the algorithm. The confusion matrix, for a binary classification case, is a table with 334 

two rows and two columns. It reports the number of true positives (TP), true negatives (TN), false 335 

positives (FP), and false negatives (FN). For each of ten dust events, image pixels were classified 336 

into two classes of “dust” and “no dust.” Here, TP represents the number of pixels where both 337 

synoptic data and proposed algorithm indicate the presence of “dust.” FP is the number of pixels 338 

where synoptic data indicates “no dust.” FN is the number of pixels where synoptic data indicates 339 

“dust,” but the proposed algorithm indicates “no dust.” Finally, the variable TN represents the 340 

number of pixels where both synoptic and proposed algorithms indicate “no dust.” 341 

Three statistical metrics, including accuracy, True Positive Rate (TPR), and False 342 

Discovery Rate (FDR), were calculated using the following equations and used for accuracy 343 

assessment. 344 
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Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(11) 

TPR =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(12) 

FDR =  
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 

(13) 

The performance of the proposed algorithm is evaluated using contingency Table 3. 345 

Table 3 The results of validation with synoptic data 346 

Date Accuracy TPR FDR 

29 Oct 2017 0.76 0.74 0.30 

05 Jul 2009 0.78 0.77 0.28 

12 May 2018 0.77 0.76 0.28 

31 Oct 2017 0.82 0.72 0.29 

31 Oct 2017 0.81 0.73 0.29 

19 Jun 2012 0.83 0.71 0.27 

07 Jun 2008 0.81 0.78 0.31 

Overall 0.80 0.74 0.29 

As shown in Table 3, the overall accuracy for the dust detection algorithm was ~80 %. TPR and 347 

FDR were about 74 % and 29 %, respectively. 348 

4. Conclusion 349 

The real-time and automatic detection of dust, as a hazardous environmental phenomenon, is an 350 

essential and challenging application for different purposes. In this study, we proposed a method 351 

to detect and monitor the dust over water and land. This method was applied to daily MODIS 352 
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Level-1B data. The output dust maps were visually compared with MODIS RGB images and OMI-353 

AI products as well as, the results of the proposed method were evaluated with observations from 354 

several synoptic ground stations of the Iranian meteorological organization. In total, three dust 355 

events were selected to collect sampling data and seven dust events to evaluate the efficiency of 356 

the proposed method. The overall accuracy of the dust detection algorithm was about 81%. The 357 

results showed that this model has acceptable accuracy for dust detection over both water and land 358 

areas. In particular, in contrast to the previous models, the proposed method was capable of 359 

detecting thin dust on the water. Low-density dust is not always visible in MODIS images due to 360 

its low spatial resolution. Therefore, there may be an uncertainty of detection over the 361 

corresponding areas. As a solution, higher spatial and temporal resolution satellite imagery can 362 

help better detection of dust in our future research. The proposed algorithm is planned to be 363 

implemented in the Google Earth Engine and to be served as the basis of a Spatial Support Decision 364 

System for various end-users. 365 
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