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Abstract: Unsupervised feature selection (UFS) is a standard approach to reduce the dimensionality of 13 

hyperspectral images (HSIs). The main idea in UFS is to define a similarity metric, and select the features 14 

minimising the metric to reduce the data redundancy. In this paper, we proposed a novel criterion for 15 

unsupervised dimensionality reduction based on the representation of spectral reflectance to capture 16 

dominant reflectance variations. Since capturing all the spectral information from an entire hyperspectral 17 

dataset is a time-consuming process, we proposed a greedy search algorithm for spectral representation 18 

(GSSR). It divides the spectrum into spectral regions with less spectral variations and merges them. This 19 

algorithm, similar to FS techniques, preserves the original data from being distorted or compromised by a 20 

transformation. We compared the GSSR algorithm with well-known existing algorithms in different 21 

experiments using various datasets. Comparison with the best approximation to represent single spectra as 22 

well as entire hyperspectral scene revealed that spectral representation is almost the same. The difference 23 

between the best spectral representation and the ones provided by GSSR is less than 0.01%;  while on 24 

average, GSSR is about 660 times faster to represent single spectra and 37 times faster for a complete 25 

hyperspectral scene. Five well-known unsupervised dimensionality reduction methods were also 26 

implemented and used for comparison analysis. Based on the image classification accuracy over two 27 

hyperspectral datasets, the spectral features identified by the proposed criterion improved the classification 28 

accuracy as well.  29 

Keywords: Hyperspectral, spectral representation, unsupervised feature selection, dimensionality 30 

reduction, greedy search, image classification. 31 
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1. Introduction 32 

Hyperspectral imagers, also termed imaging spectrometers, capture reflected radiance in an image 33 

form, where every pixel in the image contains detailed spectral information in hundreds of adjacent 34 

narrow spectral channels. Unlike multispectral sensors, with three to ten spectral bands, 35 

hyperspectral sensors offer better potential for recognizing particular spectral properties 36 

(Manolakis, Marden, and Shaw 2003; Shaw and Burke 2003), such as absorption bands in minerals 37 

(Ben-Dor et al. 2008) or the leaf pigment content in vegetation types (Sims and Gamon 2002). On 38 

the other hand, the analysis of hyperspectral data may be very challenging because well-known 39 

image analysis algorithms are not easily extendable from the multispectral into the hyperspectral 40 

data. Classification of hyperspectral images, for example, is often based on notions of distance in 41 

the feature space, as in “minimum distance,” “minimum Mahalanobis distance,” and “k-Nearest 42 

Neighbor” classifiers or in variants of k-means clustering algorithms (Gorte 1998). Part of the 43 

challenge is that large sets of parameters usually are needed to describe the high-dimensional 44 

statistical distributions of attributes. To have a reliable estimation of these parameters, a large 45 

number of training samples is indispensable (Hughes 1968). Furthermore, the interpretation of 46 

distance metrics in high dimensional spaces is not straightforward, but instead highly unintuitive 47 

(Jain and Waller 1978; Jimenez and Landgrebe 1998; Durrant and Kaban 2009; Jia, Kuo, and 48 

Crawford 2013).  49 

A solution to the problems raised by the hyper-dimensionality is to reduce the 50 

dimensionality while retaining the information required for various applications. In general, 51 

dimensionality reduction (DR) is the process of reducing the number of random variables under 52 

considerations. DR is categorized into two groups of feature extraction (FE) and feature selection 53 

(FS) methods. FE transforms the data into a new data space based on particular criteria (Kumar, 54 



 

 

 

 

3 

Ghosh, and Crawford 2001; Jimenez-Rodriguez, Arzuaga-Cruz, and Velez-Reyes 2007). Principal 55 

Component Analysis (PCA), as a classical and well-known method, eliminates the linear 56 

dependency or correlation between the components (new features) in the new feature space 57 

(Kaewpijit, Le Moigne, and El-Ghazawi 2002). Zhang et.al (2018) adopted manifold learning and 58 

structure sparse learning algorithms to project the spectral and spatial feature into a lower-59 

dimensional subspace (Zhang et al. 2018). Recently, the low-rank matrix factorization techniques 60 

showed good potential for FE as well (Zhang et al. 2019).   61 

 The FE techniques might have better discriminating potential between the classes in a 62 

scene than the FS methods (Zaatour, Bouzidi, and Zagrouba 2017; Hira and Gillies 2015), but the 63 

main issue with FE is the loss of some critical and crucial information. Since the original data are 64 

no longer represented in the new data space, the information might have been compromised or 65 

distorted by the transformation. FS approaches, on the other hand, have the advantage of preserving 66 

the original information which is essential to analyse the spectral properties of observed materials 67 

(Chein and Su 2006; Martinez-Uso et al. 2007; Carmona et al. 2011; Jia et al. 2014). These 68 

techniques, also called band/channel selection, select subsets from original channels and are usually 69 

preferable for analysing hyperspectral data. 70 

DR can be applied using both supervised and unsupervised strategies. Having labelled 71 

information, i.e., a priori knowledge about land covers in a scene paves the way for supervised DR. 72 

In other words, by selecting image samples for each class, a supervised DR algorithm provides a 73 

class-specific feature set. An example is the selection of channels maximizing the discrimination 74 

between given classes in the feature space (Huang and He 2005; Yang et al. 2011; Hosseini Aria, 75 

Menenti, and Gorte 2017). Contrary to supervised algorithms, unsupervised DR or unsupervised 76 

FS (UFS) techniques do not require any a priori information. Consequently, all the pixels in an 77 

image are considered for analysis. These methods are usually preferable for hyperspectral images 78 
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lacking the availability of labelled information (Du and Yang 2008; Cariou, Chehdi, and Le Moan 79 

2011; Jia et al. 2012), which is the main objective of this study. 80 

Different criteria can be applied to obtain features from a given dataset. A frequently used 81 

criterion in UFS is to define a similarity metric between the spectral channels and then select those 82 

channels with minimum similarity (Martinez-Uso et al. 2007; Du and Yang 2008; Cariou, Chehdi, 83 

and Le Moan 2011; Jia et al. 2012). The similarity is considered as the amount of the dependent 84 

information between features as well (Mitra, Murthy, and Pal 2002). The more similar the features, 85 

the more the dependent. Usually, in hyperspectral data, narrow adjacent spectral channels are 86 

highly correlated. As a result, the data suffer from redundancies. Therefore, by selecting less 87 

dependent spectral channels, the redundant information will be minimized, and consequently, the 88 

dimensionality reduces. 89 

In this paper, unlike classical approaches using similarity metrics, the identification of the 90 

spectral features, which accurately represent the spectral reflectance, was applied as an 91 

unsupervised dimensionality reduction criterion. It means we developed an algorithm to obtain the 92 

most dominant variations of spectral signals of a hyperspectral scene, which can be indicators to 93 

distinguish different land covers and targets in a scene. For this purpose, instead of selecting 94 

individual channels, the adjacent spectral channels were categorized based on their spectral 95 

variations and then averaged; since having wider spectral bands provide more accurate image 96 

classifications (Hosseini Aria, Menenti, and Gorte 2017). Hereafter, the spectral features from the 97 

original hyperspectral data are called “channels,” and the ones made by averaging the neighbouring 98 

channels are named “bands.” 99 

To achieve the objective, the spectral signal sampled by an imaging spectrometer is 100 

represented by a few spectral bands approximating the spectra with a required representation 101 

accuracy; i.e., the difference between an original spectrum and the approximated one is low enough 102 
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to recognize a specific target using its representation spectrum (Price 1994; Jensen and Solberg 103 

2007). By doing this, the most relevant spectral properties of all pixels in an image, e.g., absorption 104 

features would be preserved for further analyses. When the spectral properties of pixels in an image 105 

are accurately identified, they could be classified correctly with a low number of features. 106 

Therefore, in this approach, a spectral band configuration is identified while minimizing the loss 107 

in accuracy of representation. One of the challenges here is to find a spectral configuration, i.e. the 108 

spectral locations of boundaries between spectral bands which can accurately represent all the 109 

pixels in a scene. This process is mainly a very time-consuming process in unsupervised scenarios 110 

since all the image pixels have to be considered for analysis. Employing a greedy search algorithm 111 

(Bendall and Margot 2006; Cormen 2009) makes a locally optimal choice at each iteration and 112 

provides spectral representations in a faster and more efficient fashion. Therefore, we propose an 113 

algorithm called GSSR (Greedy Search for Spectral Representation) to represent the spectra and 114 

evaluated it by comparisons with well-known existing algorithms for the same proposes in different 115 

experiments.  116 

The paper is organized as follows. Section 2 reviews the criteria frequently utilized in UFS, 117 

the methods applying them to HSIs, and the algorithms applied for an accurate representation of 118 

spectral reflectance. Section 3 articulates the details of the proposed criterion and how it can be 119 

applied to a hyperspectral scene. The characteristics of the hyperspectral datasets used to assess the 120 

proposed method are given in Section 4. Section 5 describes the evaluation procedures followed 121 

by the results of different experiments, including the accuracy of spectral representation and image 122 

classification. Section 6 is the conclusion. 123 

2.  Related Works 124 

In this section, we first present the criteria and the methods frequently used in UFS of HSIs. 125 
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Secondly, we review the algorithms for accurate spectral representation, since as mentioned, our 126 

proposed criterion for UFS is to identify the most dominant spectral features from the reflectance 127 

spectra of a hyperspectral scene by accurately representing the spectra.   128 

2.1. UFS Criteria and methods 129 

This section reviews the criteria mostly used in UFS and the algorithms applying them to HSIs. 130 

These criteria are usually based on similarity (or dependency) between hyperspectral features. 131 

Accordingly, the least similar spectral features have to be selected as the ones carrying less 132 

redundant information. A group of UFS criteria are obtained by calculating the similarity between 133 

just two spectral features and creating a matrix for all the features in a dataset. This matrix is 134 

symmetric. So, if 𝐑 is a hyperspectral image with 𝑛 spectral channels, 𝐑 = {𝑹1, 𝑹2, … , 𝑹𝑛}, and 135 

every channel (𝑹𝑖) is a vector with 𝑚 pixels; 𝑹𝑖 = {𝒓𝑖1, 𝒓𝑖2, … , 𝒓𝑖𝑚}, where r values are defined in 136 

space Ω, i.e. 𝑝 ∈ Ω; the similarity matrix is presented as follows: 137 

 𝚺 = [

𝑓1(𝑹1,  𝑹1) 𝑓1(𝑹1,  𝑹2)
𝑓1(𝑹2, 𝑹1) 𝑓1(𝑹2,  𝑹2)

… 𝑓1(𝑹1,  𝑹𝑛)
… 𝑓1(𝑹2,  𝑹𝑛)

⋮ ⋮
𝑓1(𝑹𝑛,  𝑹1) 𝑓1(𝑹𝑛,  𝑹2)

⋱ ⋮
… 𝑓1(𝑹𝑛,  𝑹𝑛)

], (1) 

 138 

where 𝚺 is the similarity or dependence matrix of R, and 𝑓1(𝑹𝑖,  𝑹𝑗) is the value of the dependence 139 

of the named variables. In this group, a specified search strategy is applied to the matrix and selects 140 

the channels with minimum similarity to the other channels in the dataset (Gu and Zhang 2003; 141 

Martinez-Uso et al. 2007; Qian, Yao, and Jia 2009; Jihao, Yisong, and Zhanjie 2010; Cariou, 142 

Chehdi, and Le Moan 2011; Jia et al. 2012). 143 

 144 
The other group of UFS criteria can be calculated as a unique score without making a 145 

similarity matrix; i.e. the similarity or dependence score is not obtained just based on two features, 146 
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but more than two features. So, there is no need to make a similarity matrix. Given a set of features, 147 

the score can indicate the amount of dependent or independent information of a feature in a set. In 148 

both cases, a model taking into account multiple variables applies to a hyperspectral dataset to 149 

calculate the score. So, in a general way, the score of a channel in a hyperspectral dataset can be 150 

obtained as follows: 151 

 𝐷𝑅𝑖
= 𝑓2(𝑹1, 𝑹2, … , 𝑹𝑛), (2) 

where 𝐷𝑅𝑖
 is the score of the channel 𝑹𝑖 which is calculated by the model 𝑓2 taking into account 152 

multiple channels. A list of UFS criteria mostly used and the methods of applying them are 153 

presented in the next subsections. 154 

2.1.1. Correlation Coefficient 155 

The Pearson coefficient of correlation was utilized in (Gu and Zhang 2003; Jihao, Yisong, and 156 

Zhanjie 2010) to automatically subspace hyperspectral data in an unsupervised manner. After 157 

making the correlation coefficient matrix, the authors used the local minimum of the correlation 158 

coefficient between adjacent channels of the datasets to partition the spectral channels.   159 

2.1.2. Mutual Information 160 

Mutual information (I ) is a quantitative measurement of the amount of shared information between 161 

two random variables. Despite the correlation coefficient, it takes into account both linear and non-162 

linear dependencies (Dionisio, Menezes, and Mendes 2004). Less mutual information between two 163 

random variables indicates more of uncertainty. As a result, zero, as the minimum value of the 164 

metric, means the variables are not dependent at all. It is a dimensionless quantity, generally, with 165 

units of bits (logarithms of base 2) (Cover and Thomas 2006):  166 
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𝐼(𝑹𝑖 , 𝑹𝑗) = ∑ ∑ 𝑝(𝒓𝑖 , 𝒓𝑗)𝑙𝑜𝑔
𝑝(𝒓𝑖 , 𝒓𝑗)

𝑝(𝒓𝑖)𝑝(𝒓𝑗)
𝒓𝑗∈𝛺𝒓𝑖∈𝛺

, (3) 

where 𝑝(𝒓𝑖, 𝒓𝑗) is the joint probability distribution function of 𝑹𝑖 and 𝑹𝑗, and 𝑝(𝒓𝑖) and 𝑝(𝒓𝑗) are 167 

the marginal probability distribution function of them. 168 

The mutual information measure was utilized for UFS to cluster spectral channels with 169 

minimum-shared information by a recursive binary search algorithm (Cariou, Chehdi, and Le Moan 170 

2011). Martínez-Usó et al. (2007) normalized the mutual information metric and converted it into 171 

a dissimilarity metric between two channels (Martinez-Uso et al. 2007). By building a symmetric 172 

dissimilarity matrix for the entire hyperspectral dataset, a hierarchical clustering process (Jain and 173 

Dubes 1988) was applied, to form clusters of channels as similar as possible within each cluster. 174 

After obtaining k-desired clusters, a channel was selected by using a weighting method to provide 175 

the best representative channel predicting the information content of the other channels in each 176 

cluster. Eventually, it selects channels with minimum shared information. This algorithm used 177 

Ward’s linkage method (Ward 1963) in hierarchical clustering, so it is named WaLuMI (Ward’s 178 

Linkage strategy using Mutual Information). The advantage of this method is that it is not a ranking 179 

or incremental method that selects channels taking into account the previously selected channels, 180 

i.e., k selected channels in the clustering-based strategy are not equal to the k-1 selected channels 181 

plus another relevant channel. 182 

2.1.3. Kullback-Liebler Divergence 183 

This metric is also based on the information theory, which was applied for UFS of hyperspectral 184 

images (Martinez-Uso et al. 2007; Qian, Yao, and Jia 2009). The metric was considered as a 185 

dissimilarity distance between two probability distributions and interpreted as the cost of using one 186 

of the distributions instead of the other one (Martinez-Uso et al. 2007). Martínez-Usó et al. (2007) 187 
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applied an algorithm similar to WaLuMI by replacing the normalized mutual information metric 188 

with the Kullback-Liebler criterion, and they named it WaLuDi (Ward’s Linkage strategy using 189 

Divergence).   190 

2.1.4. Euclidean Distance 191 

The negative Euclidean distance was used as a similarity measure in an affinity propagation-based 192 

channel selection algorithm. It is used to indicate how well a spectral channel represents other 193 

channels by making a similarity matrix. The channels are, then, clustered based on their similarities 194 

(Jia et al. 2012). 195 

2.1.5. Dependent Information Metric 196 

Sotoca. et al. (2007) defined a metric to obtain the dependent information of a set of random 197 

spectral channels. The set can have more than two variables, and therefore, there is no need to make 198 

a dependence matrix of pairs of variables (Sotoca, Pla, and Sanchez 2007). The metric measures 199 

the dependent information of a set of channels by employing the joint entropy and the conditional 200 

entropy. Applying the metric in a greedy search algorithm, the authors selected channels having 201 

the minimum-shared information (Sotoca, Pla, and Sanchez 2007).  202 

2.1.6. Linear Prediction  203 

Du et al. (2007) applied two similarity-based endmember extraction algorithms to select spectral 204 

channels in an unsupervised manner (Plaza et al. 2004; Du and Yang 2007, 2008). They searched 205 

the most distinctive channels based on linear unmixing methods. These methods model an HSI 206 

pixel as a linear mixture of a set of finite image endmembers and select the most distinctive 207 

channels in a sequential forward selection searching strategy (Du, Ren, and Chang 2003). They can 208 
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jointly evaluate the similarity between a given channel and multiple channels. 209 

The first one, linear prediction (LP) criterion, makes a linear estimation of the selected 210 

channels and searches for the most dissimilar one. To find a channel that is the most dissimilar to 211 

channel 𝑹1 and  𝑹2, one can first estimate 𝑹′ as the linear prediction of the two channels by solving 212 

the following linear model using the least-squares solution:  213 

𝛼0 + 𝛼1𝑹1 + 𝛼2𝑹2 = 𝑹′, (4) 

where 𝛼0, 𝛼1, and 𝛼2 are the parameters that can minimize the LP error. Then they searched for a 214 

channel having the maximum dissimilarity with the estimated channel, i.e., having the maximum 215 

𝑒 = ‖𝑹′ − 𝑹𝑖‖, where ‖. ‖ can be the Euclidean norm of the vector.  216 

2.1.7. Orthogonal Subspace Projection 217 

Du et al. (2007) used orthogonal subspace projection (OSP) as the second criterion to map a channel 218 

onto an orthogonal subspace (Du and Yang 2007). With this criterion, first, an orthogonal subspace 219 

based on the pre-selected channels is constructed. Then, each channel is projected into the 220 

orthogonal space. The channel yielding the maximum orthogonal component is considered as the 221 

most dissimilar one to the pre-selected channels. 222 

2.1.8. Independent Component Analysis 223 

Independent component analysis (ICA) is a method that extracts independent source signals by 224 

searching for a linear transformation that minimizes the statistical dependence between the 225 

components (Comon 1994). Unlike PCA, ICA imposes higher-order dependence than the second-226 

order one, so the components are not always orthogonal (Comon 1994; Hyvärinen and Oja 2000). 227 

ICA is used as a feature extraction technique in several approaches (Chiang, Chang, and Ginsberg 228 
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2000; Lennon et al. 2001; Robila and Varshney 2004; Liu et al. 2017), while Du et. al. (2003) 229 

presented an ICA-based method for feature selection as well to reduce the dimensionality of HSIs 230 

(Du et al. 2003). The authors weighed the spectral channels using the independent components and 231 

selected those having maximum information. 232 

The ICA-based model represents a hyperspectral image, R, as the multiplication of an 233 

unmixing matrix, A, and a number of independent components called “sources”, S : 234 

𝐑𝑛×𝑚 = 𝐀𝑛×𝑐 × 𝐒𝑐×𝑚, (5) 

 235 

where c is the number of source signals. Following this model, the ICA aims at deriving the best 236 

possible estimation of S by approximating the unmixing matrix A under some constraints. Based 237 

on the approximation of the unmixing matrix, Du et. al. (2003) calculated a mean absolute weight 238 

per spectral channel as the indicator of the information content of each channel. These weights 239 

were then sorted, and the channels with the highest weights were selected as the most informative 240 

ones. 241 

2.2. Spectral representation 242 

There are several methods for spectral approximation and representation (Price 1975; Price 1990; 243 

Li et al. 1999; Wang et al. 2007; Huynh and Robles-Kelly 2008; Angelopoulou 2000; 244 

Angelopoulou, Molana, and Daniilidis 2001), mostly used in colourimetric sciences. Their scope 245 

is to represent spectra accurately with a limited number of samples e.g. Discrete Fourier Transform 246 

(DFT) (Agrawal, Faloutsos, and Swami 1993), Singular Value Decomposition (SVD) (Keogh et 247 

al. 2001) or Discrete Wavelet Transform (DWT) (Kahveci and Singh 2001). A common way for 248 

the approximation is the replacement of local variations in a spectrum with a constant value over a 249 

small range in wavelength. Chakrabarti et. al. (2002) presented such a technique, named Adaptive 250 
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Piecewise Constant Approximation (APCA), and proved that this technique yields a better 251 

representation than other existing methods such as DFT and DWT for approximating signals in 252 

time series analyses (Chakrabarti et al. 2002). The APCA algorithm degrades a curve into a 253 

constant segment-based approximation, where the user specifies the number of segments. It 254 

includes two main steps. At first, it converts the signal approximation issue into a wavelet 255 

compression problem, for which there are well-known optimal solutions; and next, it converts the 256 

solution back to the APCA representation and makes minor modifications. The term ‘segment’ is 257 

equivalent to ‘band’ in our approach. More details on APCA can be found in (Chakrabarti et al. 258 

2002). Approximating spectra by piecewise constant functions has also been used in other fields, 259 

taking into account the physical characteristics of the spectra to determine the location of the 260 

spectral segments (Thomson, Lue, and Bannerman 2014; Zehentbauer and Kiefer 2012).    261 

Konno and Kuno (1998) proposed a method that provides the best piecewise approximation 262 

(Konno and Kuno 1988). They used the maximum norm and the Euclidean norm to find the 263 

approximation of a function of a single variable with less than a predefined number of constant-264 

value segments. Another study applied the Bayesian approach for piecewise smoothing of one-265 

dimensional signals (Winkler and Liebscher 2002). Later, an extension of this method was used 266 

for multiple spectral curves to reduce the dimensionality of hyperspectral scenes (Jensen and 267 

Solberg 2007). The goal of the last approach was also to partition the spectra of a hyperspectral 268 

scene into a fixed number of contiguous intervals with fixed intensities using the piecewise constant 269 

function approximations (PCFA) algorithm. The intensity in a spectral band is the mean value of 270 

the signal in its constitutive channels per pixel. Considering the number of bands, the algorithm 271 

examines all the possible spectral locations for the breakpoints and finds the best approximation 272 

having the lowest error of representation.  273 
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3. Spectral Representation Criterion  274 

As reviewed, the criteria used in UFS algorithms applied to HSIs are based on defining a similarity 275 

metric between spectral features and selecting the ones having minimum similarity with other 276 

features. Following this procedure, the redundant information is decreasing while the 277 

dimensionality of the original dataset is reducing. In this approach, we suggest a criterion for UFS 278 

with regards to capturing the most relevant spectral information concerning all the pixels in a 279 

hyperspectral image. It means all the spectral reflectance of an entire scene are approximated in a 280 

way that the approximated spectra represent the original ones accurately.  281 

For this purpose, we partition the reflectance signals of a hyperspectral scene into a 282 

predefined number of adjacent bands with fixed intensities. Figure 1 schematically illustrates the 283 

idea for a spectral signature with 195 channels, which is divided into six bands. In this figure, the 284 

blue line is the representation (approximation) of the original spectral signal (the red line). In fact, 285 

using this method, the channels are transformed into a new feature space but the transformation is 286 

in a way that the relations between the reflectance spectra and their wavelength are retained, similar 287 

to the FS techniques. 288 

Figure 1 ---- >>> 289 

 290 

We use the square error between the original reflectance spectrum (r) and the approximated 291 

(a) one to identify the error of representation. Since the intensity is a constant value in every 292 

spectral band of the representation; to minimize the error, the intensity of a spectral band should 293 

be the mean value of its constitutive channels. So, the root means square error (RMSE) is used to 294 

calculate the error of spectral representation. For a complete hyperspectral scene, the following 295 

procedure is performed.  296 
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let the hyperspectral dataset defined in Section 2 be divided into k+1 bands where 𝑘 ≤ 𝑛 297 

and k is the number of breakpoints. The set of the spectral locations of breakpoint is 𝑺 =298 

{𝒔0, 𝒔1, … , 𝒔𝑘, 𝒔𝑘+1}; where 𝒔0 = 0, 𝒔𝑘+1 = 𝑛, and 𝒔1, … , 𝒔𝑘 indicate the channel numbers in an 299 

ascending order where the breakpoints are placed after them. Therefore, a new band set with m 300 

pixels in each band is 𝑨 = {𝑨1, 𝑨2, … , 𝑨𝑘} where  301 

 302 

𝑨𝑖 =
∑ 𝑹𝑡𝒔𝑖−1<𝑡≤𝒔𝑖

𝒔𝑖−𝒔𝑖−1
. (6) 

 303 

To compute the error of representations for the entire scene, first, the reduced spectral 304 

configuration is expanded at each pixel back into the original channel configuration. Then, the 305 

values of each band are duplicated in the adjacent channels covered by the band. Next, the 306 

reconstructed and full spectra per pixel are compared by computing the RMSE between the two 307 

spectra. The difference between the expanded and the original spectra, then, can be calculated and 308 

averaged over all pixels to obtain the error (𝐸rep) of the representation for the entire scene: 309 

𝐸rep =
∑ √1

𝑛
∑ (𝒓𝑖𝑗 − 𝒂𝑖𝑗)

2𝑛
𝑖=1

𝑚
𝑗=1

𝑚
, 

(7) 

where 𝒓𝑖𝑗 and 𝒂𝑖𝑗 are the ith signal value in the jth pixel of the original and the approximated spectra 310 

respectively.  311 

Having the representation error of different band configurations, we can select the optimal 312 

band set representing the signals with adequate accuracy. There is a huge number of combinations 313 

to select the location of the breakpoints and every band configuration gives different representation 314 

errors. Ideally, the best locations are the places where the total error (𝐸rep) is minimum. It can be 315 

achieved by an exhaustive search (Nievergelt 2000), i.e. all band configurations with the given 316 

number of bands are considered and evaluated. In a practical situation, however, the computational 317 
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cost for large datasets is prohibitive. This method can be used for a limited number of spectral 318 

signatures (Jensen and Solberg 2007).  319 

In our approach, we apply a greedy search strategy to determine the spectral location in a 320 

sequential manner. This strategy was used in the FS algorithms to apply different criteria for DR 321 

of hyperspectral images as well (Pudil, Novovicova, and Kittler 1994; Sotoca, Pla, and Sanchez 322 

2007; Le Moan et al. 2011; Yang et al. 2011; Han, Lee, and Bien 2013; Hosseini Aria, Menenti, 323 

and Gorte 2017). Using the spectral representation as a criterion, we named the algorithm as Greedy 324 

Search for Spectral Representation (GSSR). In this procedure, the algorithm iteratively selects a 325 

spectral location of a breakpoint that appears to be the best with regards to the representation error 326 

and the previously selected subset of breakpoints. The method significantly reduces the complexity 327 

by progressively ranking the evaluated subset. 328 

3.1. Greedy search for spectral representation (GSSR). 329 

Given a hyperspectral dataset, R, and the number of bands, k+1, the algorithm scans all possible 330 

spectral locations by taking into account the previously selected breakpoints to determine a new 331 

breakpoint in each iteration. For every tentative breakpoint, it creates the band set (A) (Eq. (6)) 332 

based on the preselected breakpoints and the new one, and then calculates the representation error 333 

(𝐸rep). Therefore, all possible locations for a new breakpoint are examined, and the best 334 

approximation having the lowest error of representation is identified. Then, the determined 335 

breakpoint is added to set S. This procedure terminates when the number of bands reaches the 336 

predefined value (k+1). Figure 2 illustrates the flowchart of the procedure.  337 

Figure 2 ---- >>> 338 

 339 
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The GSSR algorithm complexity for a single spectrum is of the order 𝑂(𝑘𝑛), where k is the 340 

number of breakpoints, and 𝑛 is the number of channels in the original hyperspectral dataset. The 341 

complexity of the metric for spectra representation is of the order 𝑂(𝑚𝑛), where 𝑚 is the number 342 

of pixels. Hence, the overall computation time of the GSSR algorithm is 𝑂(𝑘𝑚𝑛2). 343 

In the next section, the data sets used for the assessment of the proposed algorithm are 344 

presented. 345 

4. Hyperspectral Datasets 346 

The GSSR algorithm was evaluated by applying it to different hyperspectral datasets, including a 347 

spectral library. We have done the necessary pre-processing steps before using the datasets, 348 

including atmospheric correction and removal of the noisy channels for the scenes. The noisy 349 

channels are those that do not have any signal, located at water absorption spectral regions, and the 350 

ones having a low signal to noise ratio (SNR). The channels with low SNR were identified by 351 

estimating the SNR using the geostatistical method described in (Curran and Dungan 1989), and 352 

visual inspection. We used the following datasets for the experiments:  353 

 A spectral library: it comprised 1365 spectra from different materials and was developed 354 

by researchers at the Spectroscopy Lab, USGS, in 2007. The library is divided into six 355 

chapters: 1. Minerals, 2. Mixtures, 3. Coatings, 4. Volatiles, 5. Man-Made; and 6. Plants, 356 

Vegetation Communities, Mixtures with Vegetation, and Microorganisms. There is more 357 

than one spectrum for many of materials since different factors have been considered for 358 

the collection of the spectra such as the type of the spectrometer, the spectral resolution, the 359 

purity of the materials, the grain size, the presence of other elements in the sample, etc. The 360 

chapters contain 881, 138, 12, 24, 110, 200 spectra respectively. The library is used as a 361 
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reference for material identification in remote sensing images. The database is over 6000 362 

webpages. More details of the spectral library can be found at 363 

https://speclab.cr.usgs.gov/spectral-lib.html. We used the convolved version of the library 364 

corresponding to the AVIRIS channels. After analyzing the spectral library, we found out 365 

that three pairs of the spectra are the same, and they cannot be distinguished from each 366 

other. These spectral pairs are from Mixtures and Plants chapters. The duplicated spectra 367 

were removed. Consequently, the final number of spectra in Chapter 2 and 6 became 136 368 

and 199 respectively.  369 

 Moffett Field: AVIRIS has acquired this dataset in California with 224 bands. The band 370 

set covers the spectrum from 365nm to 2497nm continuously with approximately 10nm-371 

wide channels. The channels located at 366-385, 1353-1433, 1811-1948, 2337-2497 nm 372 

wavelength were removed due to noise and water absorption. As a result, the final dataset 373 

has 177 channels (Figure 3). 374 

Figure 3 ---- >>> 375 

 Indian Pines: the scene consists of 145*145 pixels with a spatial resolution of about 20m. 376 

Two-thirds of the Indian Pines scene is covered by agriculture, and one-third by forest and 377 

other natural perennial vegetation (Figure 4). The ground truth available documents sixteen 378 

classes, not mutually exclusive. Since three classes in the scene contain less than 50 379 

samples, we do not use them for the experiments. After the atmospheric correction and the 380 

removal of noisy channels, the number of channels was reduced to 178. We removed water 381 

absorption channels (104-108, 150-163, and 220), noisy bands (1-4, 103, 109-111, 148-382 

149, 164-166, and 217-219), and seven channels that are spectrally overlapping channels 383 

(32, 33, 95, 96, 158, 191, and 192). The Indian Pines dataset is available free of charge via 384 
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Purdue University website: 385 

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html. 386 

Figure 4 ---- >>> 387 

 Salinas: This scene (Figure 5) is characterized by high spatial resolution (3.7m). The area 388 

covered comprises 512 lines by 217 pixels. The dataset is available at 389 

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes only as 390 

at-sensor radiance. So, it has been atmospherically corrected, and the noisy and duplicated 391 

channels have been removed. The final dataset has 190 channels. The ground-truth is also 392 

available and documents 16 classes, including vegetables, bare soils, and vineyard fields, 393 

which we used in the experiments.  394 

Figure 5 ---- >>> 395 

5. Evaluation of the Proposed Method 396 

Two types of experiments were performed to evaluate the GSSR algorithm: a) single signal 397 

representation and b) unsupervised dimensionality reduction of hyperspectral scenes. In both types 398 

of experiments, the accuracy of representation and the running time were evaluated, while for the 399 

second type of experiment, the image classification accuracy was also considered. We performed 400 

the assessments by comparing the algorithm with well-known existing algorithms for the same 401 

purposes.  402 

5.1. Evaluation of the algorithm using single spectra 403 

Two experiments were performed in order to assess the GSSR algorithm for representing a single 404 

spectrum. In the first experiment, the GSSR algorithm is compared with APCA and PCFA (Section 405 

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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2.2) using various spectra. Both algorithms represent spectra with a set of constant signal value 406 

segments as GSSR (Figure 1). In this experiment, the three algorithms were compared in terms of 407 

the spectral representation and the running time.  408 

In the second experiment, the reduced spectral configurations obtained by the algorithms 409 

were evaluated for material detection, i.e. different materials were detected by comparing the 410 

approximated spectra with the full spectra available in the spectral library.  411 

5.1.1. Experiment 1: single spectra representation 412 

This evaluation was performed as a benchmark to identify the error of representation of single 413 

spectra using the three methods: GSSR, PCFA, APCA. At first, three dominant reflectance spectra; 414 

soil, water, and vegetation, were compared, and the three algorithms were applied to represent the 415 

spectra with 5, 10, and 15 bands. These reflectance spectra were obtained from the pixels with the 416 

same land cover in the Moffett Field scene. Figure 6 illustrates the results, and Table 1 gives the 417 

error of the estimate by different algorithms for all the spectral configurations.  418 

Figure 6 ---- >>> 419 

 420 

Table 1 ---- >>> 421 

 422 

As expected, the PCFA algorithm gave the smallest error of estimate in all cases, while 423 

APCA gave the largest error (Table 1). Interestingly, GSSR represented the spectra almost twice 424 

as accurately as APCA and with an accuracy comparable with the PCFA algorithm. For example, 425 

using ten bands to approximate the soil spectrum, the error of the estimate was 0.0230 with APCA, 426 

0.0115 with GSSR, and 0.0096 with the PCFA algorithm. The difference in the error between 427 

GSSR and PCFA is less than 0.002, and it became lower when 15 bands were used, with the 428 
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difference in RMSE being 0.0005 only. It is also observed (Figure 6) that the locations of the 429 

breakpoints determined by the PCFA and GSSR algorithms are almost identical.  430 

The GSSR and PCFA algorithm always divide the spectrum into the exact predefined 431 

number of bands, while APCA does not, as shown in this experiment. This situation occurred, for 432 

example, when seeking to approximate the water spectrum, with ten bands by the APCA algorithm. 433 

In this case, the reduced spectral configuration had one spectral band less than the prescribed 434 

number of bands, while the error of estimate would have been lower with one additional band. 435 

APCA is based on the Haar wavelet transform, so the number of samples in the original signal fed 436 

into the algorithm has to be a power of two. In the case that the signal does not have enough 437 

samples, it is padded with zeros, and later truncated. This process sometimes may yield fewer bands 438 

than expected. 439 

We repeated the same experiment using more than 1000 pixels with different reflectance 440 

spectra derived from the Moffett Field AVIRIS image. The pixels were chosen to sample various 441 

land cover types, including different types of water, soil, vegetation, man-made features such as 442 

buildings, roads, etc. The reflectance spectra were represented separately for each pixel with a 443 

different number of bands starting from 5 to 30, in steps of 5. Figure.7 shows the results. 444 

Figure 7 ---- >>> 445 

 446 

 The mean RMSEs decrease with an increasing number of bands. Similar to the previous 447 

results, the APCA error was the largest one, while the error for GSSR and PCFA algorithms were 448 

very similar and lower than when using APCA. The mean RMSE difference between PCFA and 449 

GSSR over all the spectra samples was about 0.0003 in the unit of the spectral reflectance, i.e. in 450 

[0,1], with the 5-band representation to 0.0001 with the 30-band one. The difference between GSSR 451 

and PCFA representation errors decreased with an increasing number of bands.  452 



 

 

 

 

21 

We also considered the run time required to carry out the numerical experiment on the 453 

dataset with more than 1000 spectra (Table.2). The time estimate is based on the implementation 454 

of the algorithms on a desktop computer that has the following characteristics: Operating system: 455 

Windows 7, Processor: Intel Core 2 and 16 GB RAM. The algorithms were written in IDL 456 

programing language, version 8.2.  457 

Table 2 ---- >>> 458 

 459 

The APCA algorithm is fast. The running time was less than two seconds for all the spectral 460 

configurations, while it was increasing with the number of bands for GSSR: started at less than 14 461 

seconds for the 5-band representations and reached more than two and half minutes for the 30-band 462 

ones. PCFA consumed much more time than the two other algorithms. In the worst case, i.e. the 463 

30-band representation, the run time was more than two days to find the representations for the 464 

1089 spectra, which was about 1200 times slower than GSSR. On average, GSSR ran 660 times 465 

faster than PCFA. The main issue affecting the running time of the PCFA algorithm is that the 466 

algorithm recursively calls itself with respect to the number of bands, and checks all the possible 467 

situations. When the number of bands increases, the run time increases dramatically.    468 

5.1.2. Experiment 2: material detection using approximated spectral signatures  469 

The previous experiment showed that the GSSR algorithm yields comparable spectral 470 

configurations to the best representation provided by PCFA with much shorter run time. In the 471 

second experiment, we evaluated the spectral configurations obtained by GSSR by applying them 472 

to material detection.  473 

This experiment reveals the number of bands needed to correctly identify a target spectral 474 

signature using the reduced spectral configurations derived by the algorithms GSSR and PCFA. 475 

The APCA algorithm was omitted since the spectral representations provided by this algorithm are 476 
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not as accurate as of the representations obtained by the other algorithms. For this experiment, we 477 

used the spectral library that contains different and well–defined spectra.  478 

In this experiment, a spectrum from the library is selected as a “target spectrum.” Then the 479 

GSSR and PCFA algorithms were applied to identify the breakpoints in such a way that is the 480 

reduced spectral configuration represents the full spectrum with increasing accuracy. At each 481 

iteration, the reduced spectral signature of the target spectrum was compared with all the spectra 482 

in the spectral library to check whether the approximated spectrum could correctly be identified, 483 

i.e. the approximated target spectrum and the full detailed one has the least difference. The iterative 484 

procedure was ended when the reduced spectral configuration of the target signature had been 485 

correctly identified, or the number of bands was more than 30. We used a distance-based identifier 486 

and a spectral angle based identifier to measure the difference between the known and unknown 487 

spectra (Kruse et al. 1993; Price 1994; Cochrane 2000). Finally, we calculated the percentage of 488 

spectra correctly identified vs. the number of bands (Figure 8).  489 

Figure 8 ---- >>> 490 

 491 

In general, the accuracy of the distance-based identifier is higher than the angle-based one. 492 

For instance, the 10-, 15-, and 20-band spectral configurations achieved correct identification of 493 

materials in 97%, 99%, and 100% of cases with the distance-based identifier, while with the angle-494 

based identifier, the correct identification reached to 61%,79%, 86% respectively. The latter 495 

normalises the spectra and removes the signal intensity dependence, i.e., reflectance in this 496 

experiment. 497 

Using either identifier, the reduced spectral configurations obtained with PCFA and GSSR 498 

gave a comparable accuracy in material detection. The spectral configurations obtained with PCFA 499 

gave slightly more identifications than the ones obtained with GSSR. The difference in 500 



 

 

 

 

23 

performance between PCFA and GSSR was higher when the number of bands is small, and it 501 

decreased with an increasing number of bands. However, if the spectral configuration obtained 502 

with GSSR has just one band more than the PCFA configuration, the detection accuracy for GSSR 503 

is higher. For example, using the angle–based identifier, the 16-band configurations obtained by 504 

GSSR were correctly identified in 80.7% of the cases, while the 15-band configuration obtained 505 

with PCFA was accurate in 80.6 % of cases. It should be noted that the computational cost of the 506 

15-band PCFA configuration is much higher than the one of the 16-band configuration obtained 507 

by GSSR. In the example mentioned, GSSR was more than 2000 times faster than PCFA. 508 

Both experiments (Section 5.1.1 and 5.1.2) revealed that the spectral representation of 509 

single spectra using GSSR is almost identical with the best spectral representation and has 510 

comparable accuracy with it in the representation and in detecting materials using the reduced band 511 

configurations. Meanwhile, GRRS provides the representations in a much faster way than 512 

obtaining the best representation. In the second type of experiment, we evaluated the algorithm 513 

applying to an entire hyperspectral scene.  514 

5.2. Evaluation of the algorithms using the entire scene 515 

In the second type of experiment, the GSSR algorithm was evaluated by two experiments 516 

using the entire hyperspectral scenes. In this case, the spectral locations of the breakpoints must be 517 

the same for all pixels to reduce the dimensionality of the image. At first, it was again compared 518 

with PCFA to assess the error of representation and the running time, since PCFA provides the best 519 

spectral approximations for all the spectral reflectance in a hyperspectral scene with the same 520 

situation as GSSR. It means that both algorithms take the average of adjacent channels to form 521 

wider spectral bands. Therefore, the band configurations, i.e., the spectral locations of breakpoints 522 

over the spectrum identified by the algorithms, exert the principal influence on the spectral 523 
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representations; having the same spectral configurations would provide similar spectral 524 

representations. 525 

The second experiment was a standard methodology to compare different feature sets 526 

obtained by various algorithms in an image classification procedure (Shaw and Burke 2003; 527 

Martinez-Uso et al. 2007; Sotoca, Pla, and Sanchez 2007; Cariou, Chehdi, and Le Moan 2011; Jia 528 

et al. 2012). A better image classification generally means that the process of assigning a label to 529 

a pixel using its spectral information is more accurate, which leads to better recognition of objects 530 

and land covers in the image.  531 

Therefore, to validate the performance of the proposed method, we presented a comparison 532 

with five other unsupervised DR algorithms by evaluating the image classification accuracy. Four 533 

of them are in the FS category, and the last one is in the FE category. The FS algorithms are 534 

WaLuMI, LP, OSP, and ICA-based model. Similar to GRRS, they preserve the physical 535 

relationship between the selected features and their wavelength. The FE algorithm is the Principal 536 

Component Analysis (PCA). We compared the GSSR algorithm with PCA since GSSR, similar to 537 

PCA, transforms the data into a new feature space but without using a rotation.  538 

5.2.1. Experiment 1: HSI Spectra Representation: 539 

In this experiment, we applied the PCFA and GSSR algorithm to an entire Moffett Field 540 

dataset. The dataset contains various spectral reflectance with different variations in the spectrum. 541 

We computed the mean RMSE of the spectral configurations provided by the PCFA and GSSR 542 

algorithms with respect to the number of bands in the reduced spectral configuration. The error is 543 

the average of the spectral approximation error of all pixels in the scene (Eq. (7)). 544 



 

 

 

 

25 

It should be noted that PCFA was developed to minimize the sum of squared error (SSE) 545 

as a performance metric. However, minimizing SSE concerning the approximated spectrum with 546 

k predefined number of breakpoints is equivalent to minimizing RMSE with the same conditions. 547 

The running time of the algorithms is also computed. Figure 9 shows the results and Table 548 

3 presents more details about six band sets. The error of spectral representation using the same 549 

configuration for an entire scene reveals an almost complete overlap between the two graphs 550 

showing the mean representation error obtained by the PCFA and GSSR algorithm. Table 3 551 

indicates that the difference between the mean errors of the two methods is about 0.0001. On the 552 

other hand, the PCFA was about 37 times slower than GSSR, on average. The higher the number 553 

of bands, the slower the PCFA than GSSR, as clearly illustrated in Figure 9 (left).  554 

Figure 9 ---- >>> 555 

 556 

Table 3 ---- >>> 557 

 558 

Jensen et. al. (2007) applied PCFA to a set of sampled spectra of a hyperspectral scene 559 

derived from the classes in a scene and identified a single spectral configuration for the spectra to 560 

reduce the dimensionality of the data (Jensen and Solberg 2007). The PCFA algorithm is applicable 561 

when the number of spectra is low; however, when the number increases, PCFA is slow. The 562 

complexity of the algorithm is 𝑂(𝑘𝑚𝑛3) (Jensen and Solberg 2007), i.e. the order of the algorithm 563 

has a direct relation with the cube of the number of spectral samples multiplied by the number of 564 

pixels. Therefore, if the number of pixels increases, the time consumption of the algorithm 565 

drastically goes up. As a consequence, the PCFA algorithm becomes a prohibitive method in an 566 

unsupervised DR situation, where applied to all pixels in a hyperspectral scene.  567 

On the other hand, GSSR provides a spectral configuration for the entire scene as accurate 568 

as of the best spectral configuration supplied by the PCFA algorithm but in a much faster way.  569 
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5.2.2. Experiment 2: Image Classification 570 

The evaluation has been done by examining the number of features selected by the proposed and 571 

reference methods vs. the classification overall accuracy using different classifiers to check the 572 

relevance of the features selected. We applied the five mentioned methods to compare the results 573 

with the band sets obtained by the GSSR method. These comparisons were performed using two 574 

datasets: the Indian Pines and Salinas scene. We used two types of classifiers: maximum likelihood 575 

classifier (MLC) and support vector machine (SVM), a parametric classifier, and a non-parametric 576 

classifier, respectively. Figure 10 shows the results.  577 

Figure 10 ---- >>> 578 

 579 

As observed, the proposed method gives better overall accuracy than its competitors from 580 

the FS category. It means that the criterion used in our approach in an unsupervised manner, i.e., 581 

extraction the most relevance spectral features by spectral reflectance representation provides 582 

higher accuracy of classification than the frequently used criteria based on the similarity between 583 

the spectral features in UFS techniques.  584 

Comparison with PCA, an FE algorithm, shows that GSSR has better accuracy in 585 

classification when using MLC while using the SVM classifier, PCA provided higher accuracy. 586 

The reason is that the feature extraction techniques often have a higher potential in distinguishing 587 

between different classes in a scene, leading to better accuracy in image classification. However, 588 

the problem of the FE algorithms is that the critical information of the reflectance spectra can be 589 

distorted. One of the main objectives of this study is to keep the critical information of the 590 

reflectance spectra like the FS methods. This information, e.g. the absorption spectral features of a 591 

specific target, is of interest to a wide range of HSI users. The GSSR algorithm, while retaining the 592 
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key spectral information, classified more accurately than PCA when using MLC. In addition, it 593 

obtained a better result than its competitors in the UFS category as well. 594 

Using SVM, WaLuMI sometimes provided channel sets with comparable classification 595 

accuracy to GSSR. The channel selection algorithms based on ICA and the linear unmixing 596 

methods (LP and OSP) mostly gave less accurate results than GSSR. 597 

6. Conclusions 598 

This study showed the advantage of applying the representation of reflectance spectra of HSIs as 599 

the criterion to the unsupervised dimensionality reduction purpose. The typical rules applied in 600 

unsupervised feature selection techniques are based on finding the most dissimilar spectral 601 

channels, while the proposed criterion focuses on the extraction of the most spectral variations 602 

from the spectral reflectance. Since obtaining accurate spectral representations for all the pixels in 603 

a scene; i.e., in an unsupervised manner, is a time-consuming process, we applied the proposed 604 

criterion to a greedy algorithm, GSSR; to create spectral bands approximating the original 605 

reflectance. The final band configurations obtained by GSSR are sets of continuous spectral bands 606 

covering the whole spectrum, which preserves the physical meaning of the features like the FS 607 

techniques. Compared with the PCFA method providing the best spectral configuration minimizing 608 

the representation error, GSSR yields band configurations almost as accurate as PCFA, but in a 609 

much faster way. Applying the algorithms to more than 1000 diverse spectra to provide spectral 610 

configurations with 5 to 30 bands, GSSR was 50 to 1200 times faster than PCFA, while the mean 611 

difference in RMSE was 0.0002 on reflectance scale, i.e. in [0,1]. The difference was even less 612 

when both algorithms provided the same spectral configuration for an entire hyperspectral scene, 613 

i.e. 0.0001. Using the reduced band configurations in a target detection experiment showed that the 614 

bands provided by GSSR are more correctly identified than by PCFA if the spectral configuration 615 
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has one band more, while the former can be obtained 2000 times faster. The classification overall 616 

accuracy over two hyperspectral datasets using two classifiers revealed that the proposed criterion 617 

provides a band configuration giving a higher classification accuracy than its FS competitors.  618 
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