Environmental Science and Pollution Research

Comparative review of the distribution and burden of contaminants in the body of polar **bears** --Manuscript Draft--

Manuscript Number:	ESPR-D-19-06060R2			
Full Title:	Comparative review of the distribution and burden of contaminants in the body of polar bears			
Article Type:	Review Article	Review Article		
Corresponding Author:	Valérie Langlois Institut national de la recherche scientifique CANADA			
Corresponding Author Secondary Information:				
Corresponding Author's Institution:	Institut national de la recherche scientifique	2		
Corresponding Author's Secondary Institution:				
First Author:	Mélanie Dominique			
First Author Secondary Information:				
Order of Authors:	Mélanie Dominique			
	Robert J. Letcher	Robert J. Letcher		
	Allison Rutter			
	Valerie S. Langlois			
Order of Authors Secondary Information:				
Funding Information:	Ontario Genomics Institute (OGI-123)	Not applicable		
	Canada Research Chairs	Dr. Valerie S. Langlois		
	Genome Canada	Dr. Valerie S. Langlois		
Abstract:	Historical (or legacy) contaminants, such as metals and persistent organic pollutants (POPs; e.g., polychlorinated biphenyls) have been measured in circumpolar subpopulations of polar bears, especially from Hudson Bay, East Greenland and Svalbard, but substantially less is currently known about new and/or emerging contaminants such as polychlorinated naphthalenes, current-use pesticides, organotins, and polycyclic aromatic compounds. The polar bear is an apex Arctic predator that accumulates high levels of POPs and mercury, but there is currently no comprehensive profiling of the present knowledge on contaminants in tissue and body compartment in polar bears. Based on current literature reports and data, and including archived museum samples (as far back as the 1300s) and up to 2018, the aim of this review is to use available data to examine the comparative distribution and burden of mainly lipophilic contaminants in kidney, liver, fat, and other body compartments, such as milk, blood, and brain. Highlights from this review include the following: 1) the kidneys are one of the most important tissue depots of contaminants in polar bears; 2) there is a critical lack of data concerning the presence of metals of concern (other than mercury); and 3) there currently are no data available on the concentrations of many newer and emerging contaminants, which is especially relevant given the increasing oil and gas development in regions such as the Beaufort Sea (Canada). Additionally, given the vulnerability of polar bear populations worldwide, there is a need to develop non-invasive approaches to monitor contaminant exposure in polar bears.			
Response to Reviewers:	Reponses to reviews			
	R: The pages are not correctly paged, all p	ages are paged "no. 8"!		

A: Done.

R: First page of Introduction: Not all contaminants are biomagnified in polar bears. The DDTs is one good example, also some toxic elements are not biomagnified as such, but are still bioaccumulated. I suggest to specify that "some" or "many" contaminants biomagnify. Then the sentence will be correct.

A: Done

R: Second page of Introduction, second paragraph. Please identify bioaccumulative metals. Just insert "such as" and provide relevant examples. This is valuable information for students and scientists in other disciplines, and the info is not present in the manuscript.

A: Done.

R: Second last line on this page: "In Hudson Bay polar bears....". As the sentence reads now, it seems that the concentrations have decreased constantly pre 2000. But they have not. Thus, insert an approximate "starting-year". When did the levels start to decrease (for instance ca. 1950, 1960, 1980)?

A: Done

	Νο
Question	Response
Additional Information:	
Additional Information:	 disciplines will understand the content of the paper. Thus, info on which elements that are of interest is important to highlight. A: Done. R: Finally, sorry for the confusion about "RER". What I meant was REEs (Rare Earth Elements). The authors should at least insert a citation or two that support the statement that these are being increasingly used, and also that they can accumulate in biota following releases into the environment. A: This reference was added to the text as requested by the reviewer: MacMillan GA, Chételat J, Heath JP, Mickpegak R, Amyot M (2017). Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic. Environ Sci Process Impacts. 19(10):1336-1345.
	also were used. I guess these are those listed in the Suppl Info (SI) reference list? However, as far as I can see there are only listed 71 references in that reference list. In some way, all the 81 publications should be listed in the SI, and the authors should refer to the SI so that the readers can identify them when reading the M&M section. Also, I is not clear if the AMAP reports are included in the number of 81. A: Everything is now clarified in the text. R: At some point in the materials and methods, maybe in relation to the reference to Table S2, the authors should provide information on which metals that were included in the study. This will prepare the reader for what is presented in the Results. Also, the term "other metals" (than Hg) is used now and again in the manuscript, so I think most readers would like to know which elements these are. In the review-criteria the journal highlights that the text should be presented in a manner that scientists in other
	R: Methods: The authors have inserted a few sentences on how relevant papers were selected. This part should be expanded a bit. When reading the revision, my question is: How did the authors narrow down the papers published? I guess by identifying papers that provided relevant data for the present study. Although it may seem obvious to the authors, it is not obvious to the reader. This is an important part of the present paper, because if presented in a more accurate form, the reader will have more confidence in the data, i.e., that the authors really have conducted a thorough evaluation before selecting the appropriate papers to assess. Please note that I do not doubt the work of the authors, but other readers may. The inserted sentence "AMAP reports were also located into individually, in addition to the Scopus database research" gives no meaning. Please rephrase. It is stated that 81 published papers were identified and used, and that AMAP-reports

Reponse to reviews

- R: The pages are not correctly paged, all pages are paged "no. 8"!
- A: Done.
- R: First page of Introduction: Not all contaminants are biomagnified in polar bears. The DDTs is one good example, also some toxic elements are not biomagnified as such, but are still bioaccumulated. I suggest to specify that "some" or "many" contaminants biomagnify. Then the sentence will be correct.

A: Done

R: Second page of Introduction, second paragraph. Please identify bioaccumulative metals. Just insert "such as" and provide relevant examples. This is valuable information for students and scientists in other disciplines, and the info is not present in the manuscript.

A: Done.

R: Second last line on this page: "In Hudson Bay polar bears....". As the sentence reads now, it seems that the concentrations have decreased constantly pre 2000. But they have not. Thus, insert an approximate "starting-year". When did the levels start to decrease (for instance ca. 1950, 1960, 1980)?

A: Done

R: Methods: The authors have inserted a few sentences on how relevant papers were selected. This part should be expanded a bit. When reading the revision, my question is: How did the authors narrow down the papers published? I guess by identifying papers that provided relevant data for the present study. Although it may seem obvious to the authors, it is not obvious to the reader. This is an important part of the present paper, because if presented in a more accurate form, the reader will have more confidence in the data, i.e., that the authors really have conducted a thorough evaluation before selecting the appropriate papers to assess. Please note that I do not doubt the work of the authors, but other readers may. The inserted sentence "AMAP reports were also located into individually, in addition to the Scopus database research" gives no meaning. Please rephrase. It is stated that 81 published papers were identified and used, and that AMAPreports also were used. I guess these are those listed in the Suppl Info (SI) reference list? However, as far as I can see there are only listed 71 references in that reference list. In some way, all the 81 publications should be listed in the SI, and the authors should refer to the SI so that the readers can identify them when

reading the M&M section. Also, I is not clear if the AMAP reports are included in the number of 81.

A: Everything is now clarified in the text.

R: At some point in the materials and methods, maybe in relation to the reference to Table S2, the authors should provide information on which metals that were included in the study. This will prepare the reader for what is presented in the Results. Also, the term "other metals" (than Hg) is used now and again in the manuscript, so I think most readers would like to know which elements these are. In the review-criteria the journal highlights that the text should be presented in a manner that scientists in other disciplines will understand the content of the paper. Thus, info on which elements that are of interest is important to highlight.

A: Done.

R: Finally, sorry for the confusion about "RER". What I meant was REEs (Rare Earth Elements). The authors should at least insert a citation or two that support the statement that these are being increasingly used, and also that they can accumulate in biota following releases into the environment.

A: This reference was added to the text as requested by the reviewer:

MacMillan GA, Chételat J, Heath JP, Mickpegak R, Amyot M (2017). Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic. Environ Sci Process Impacts. 19(10):1336-1345.

Formatted: Numbering: Continuous

1 Comparative review of the distribution and burden of contaminants in the body of

2 polar bears

- 3 Mélanie Dominique¹, Robert J. Letcher², Allison Rutter³, and Valerie S. Langlois^{1,2*}
- 4 ¹Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS),
- 5 Québec City, QC, Canada
- 6 ²Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science
- 7 Directorate, Environment and Climate Change Canada, National Wildlife Research
- 8 Centre, Carleton University, Ottawa, ON, Canada
- 9 ³School of Environmental Studies, Queen's University, Kingston, ON, Canada
- 10

11 *Corresponding author:

- 12 Valerie Langlois, Ph. D.
- 13 Canada Research Chair in Ecotoxicogenomics and Endocrine Disruption

- 14 Associate Professor
- 15 Centre Eau Terre Environnement
- 16 Institut national de la recherche scientifique (INRS)
- 17 490, rue de la Couronne, Québec (Québec), Canada G1K 9A9
- 18 T: +1.418.654.2547
- 19 W: http://www.ete.inrs.ca/valerie-langlois
- 20 E: valerie.langlois@inrs.ca

22231. Abstract

24	Historical (or legacy) contaminants, such as metals and persistent organic pollutants
25	(POPs; e.g., polychlorinated biphenyls) have been measured in circumpolar
26	subpopulations of polar bears, especially from Hudson Bay, East Greenland and
27	Svalbard, but substantially less is currently known about new and/or emerging
28	contaminants such as polychlorinated naphthalenes, current-use pesticides, organotins,
29	and polycyclic aromatic compounds (PACs). The polar bear (Ursus maritimus) is an apex
30	Arctic predator that accumulates high levels of bioaccumulative POPs and mercury (Hg),
31	but there is currently no comprehensive profiling of the present knowledge on
32	contaminants in tissue and body compartment in polar bears. Based on current literature
33	reports and data, and including archived museum samples (as far back as the 1300s) and
34	up to 2018, the aim of this review is to utilize available data to examine the comparative
35	distribution and burden of mainly lipophilic contaminants in kidney, liver, fat, and other
36	body compartments, such as milk, blood, and brain. Highlight outcomes from this review
37	include the following: 1) the kidneys are one of the most important tissue depots of
38	contaminants in polar bears; 2) there is a critical lack of data concerning the presence of
39	metals of concern (other than Hg); and 3) there currently are no data available on the
40	concentrations of many newer and emerging contaminants, such as PACs, which is
41	especially relevant given the increasing oil and gas development in regions, such as the
42	Beaufort Sea (Canada). Additionally, given the vulnerability of polar bear populations
43	worldwide, there is a need to develop non-invasive approaches to monitor contaminant
44	exposure in polar bears.

45 **Keywords:** Polar bears, Arctic, tissues, body distribution, contaminants, review.

46

47 Funding sources

- 48 This work was funded by the Government of Canada through Genome Canada and the
- 49 Ontario Genomics Institute (OGI-123) and by the Canada Research Chair program to

50 VSL.

2. Introduction 52

53	The polar bear (Ursus maritimus) is a sentinel species of environmental changes and
54	stressors in the Arctic. The total number of polar bears is estimated to be between 23000
55	and 26000 bears (Hamilton and Derocher, 2018; Wiig et al., 2015). There are 19
56	subpopulations worldwide with 13 being fully or partly under Canadian jurisdiction
57	(Obbard et al., 2010; Thiemann et al., 2008a). Polar bears live in both terrestrial and
58	marine environments, and their home range can vary between 140000 km ² to over
59	350000 km ² (Auger-Méthé et al., 2016; McCall et al., 2015). Polar bears are considered
60	vulnerable by the International Union of Conservation of Nature (IUCN) (Wiig et al.,
61	2015) as their population is affected by several environmental factors, including climate
62	change (AMAP, 2018; McKinney et al., 2013; Letcher et al., 2010). Another major stress
63	experienced by polar bears is the exposure to a growing number of anthropogenic and
64	natural chemical contaminants via local Arctic sources, but mostly via long-range
65	atmospheric as well as oceanic transport to the Arctic (AMAP, 2017; AMAP, 2016;
66	Routti et al., 2019).
67	Consumption of the fat-rich blubber layer of seals or other marine mammal prey is
68	crucial for the survival of polar bears (Peacock et al., 2010). As a top marine predator,
69	polar bears biomagnify many contaminants in their tissues via the diet. They feed mainly
70	on ringed seals (Pusa hispida), but also on other marine species, e.g., bearded seals
71	(Erignathus barbatus), harp seals (Pagophilus groenlandicus), harbor seals (Phoca
72	vitulina), hooded seals (Cystophora cristata), walrus (Odobenus rosmarus), beluga
73	(Delphinapterus leucas), narwhal (Monodon monoceros), and can also scavenge on other
74	whale species such as bowhead whale (Balaena mysticetus) carcasses (Thiemann et al.,

Formatted: Highlight

75	2008b; AMAP, 1998; Routti et al., 2019). There have been shifts in the diet (prey	
76	consumption) of polar bears as well as to the underlying food web structure, and in	
77	connection to climate change, which influences pollutant concentrations in polar bear	
78	tissues. For example, an increase in the proportion of open water-associated seals species	
79	and a decrease of the ice-associated seal species consumed has been shown for Hudson	
80	Bay and East Greenland polar bears (McKinney et al., 2009). Using fatty acids as tracers	
81	of diet for East Greenland bears, McKinney et al. (2013) estimated that there was 14%	
82	reduction/decade of ringed seal consumption compared to an 9.5% increase/decade in	
83	feeding on hooded seal (from 1984 to 2011). In the same study, it was reported that this	
84	diet shift was associated with a reduction in the concentration of several chlorinated	
85	POPs (persistent organic pollutants), but with an increase of the brominated POPs, since	
86	the ringed seals were less contaminated than the hooded seals in brominated POPs	
87	(McKinney et al., 2013). Harp seals yielded higher levels of contaminants compared to	
88	ringed seals (e.g., 6-fold for chlordanes, 4-fold for polychlorinated biphenyls (PCBs), and	
89	3-fold for dichlorodiphenyltrichloroethane (DDT)) (Kleivane et al., 2000).	
90	The levels of POPs and bioaccumulative metals such as cadmium or lead are generally	Formatted: Highlight
91	the highest in the polar bear as compared to other Arctic wildlife, and they are an ideal	
92	wildlife receptor for the biomonitoring of spatial and temporal trends, distribution,	
93	dynamics, fate, biomagnification, and potential effects of anthropogenic contaminants as	
94	has been reported for Hg (mercury), and legacy and emerging POPs (AMAP, 2018;	
95	AMAP, 2017; Letcher et al., 2010). In Hudson Bay polar bears, levels of some legacy	
96	POPs, such as PCBs, have been shown to have decreased prior and up to 2000 starting	Formatted: Highlight
97	from 1980), but have since remained relatively unchanged up to recent times (Letcher et	
I		

98	al., 2018; Brown et al., 2018). A number of new and emerging environmental pollutants,
99	such as polybrominated diphenyl ether (PBDE) flame retardants and per-/poly-
100	fluoroalkyl substances (PFAS; especially, the highly bioaccumulative perfluorooctane
101	sulfonic acid (PFOS)) have been reported (Letcher et al., 2018; AMAP, 2017; AMAP,
102	2016). There are potentially many more POPs in polar bears. Using non-target chemical
103	analysis, Liu et al., (2018) recently reported on the discovery of many additional
104	contaminants in the serum of polar bears from Hudson Bay and the Beaufort Sea,
105	including novel PCB metabolites and many fluorinated or chlorinated substances not
106	previously detected. Using non-target chemical analysis of archived polar bear serum
107	samples (mid-1980s), all fluorinated classes of contaminants showed increasing over
108	time. Altogether, polar bears are exposed to a complex array of known contaminants to
109	multiple routes of exposure, but mainly through diet.
10)	
110	As polar bears are being monitored over time by governmental agencies for contaminant
110	As polar bears are being monitored over time by governmental agencies for contaminant
110 111	As polar bears are being monitored over time by governmental agencies for contaminant burden, it is critical to understand what is presently known about the contaminant
110 111 112	As polar bears are being monitored over time by governmental agencies for contaminant burden, it is critical to understand what is presently known about the contaminant exposome in polar bear tissues and body compartments. A recent review by Routti et al.
 110 111 112 113 	As polar bears are being monitored over time by governmental agencies for contaminant burden, it is critical to understand what is presently known about the contaminant exposome in polar bear tissues and body compartments. A recent review by Routti et al. (2019) focused entirely on trends, fate, and potential health effects of contaminants in
 110 111 112 113 114 	As polar bears are being monitored over time by governmental agencies for contaminant burden, it is critical to understand what is presently known about the contaminant exposome in polar bear tissues and body compartments. A recent review by Routti et al. (2019) focused entirely on trends, fate, and potential health effects of contaminants in polar bears. However, to our knowledge, there has yet to be comprehensive comparative
 110 111 112 113 114 115 	As polar bears are being monitored over time by governmental agencies for contaminant burden, it is critical to understand what is presently known about the contaminant exposome in polar bear tissues and body compartments. A recent review by Routti et al. (2019) focused entirely on trends, fate, and potential health effects of contaminants in polar bears. However, to our knowledge, there has yet to be comprehensive comparative assessment and review of the distribution and burdens of contaminants in the body of
 110 111 112 113 114 115 116 	As polar bears are being monitored over time by governmental agencies for contaminant burden, it is critical to understand what is presently known about the contaminant exposome in polar bear tissues and body compartments. A recent review by Routti et al. (2019) focused entirely on trends, fate, and potential health effects of contaminants in polar bears. However, to our knowledge, there has yet to be comprehensive comparative assessment and review of the distribution and burdens of contaminants in the body of polar bears. The main objective of the present review is to compile all available
 110 111 112 113 114 115 116 117 	As polar bears are being monitored over time by governmental agencies for contaminant burden, it is critical to understand what is presently known about the contaminant exposome in polar bear tissues and body compartments. A recent review by Routti et al. (2019) focused entirely on trends, fate, and potential health effects of contaminants in polar bears. However, to our knowledge, there has yet to be comprehensive comparative assessment and review of the distribution and burdens of contaminants in the body of polar bears. The main objective of the present review is to compile all available contaminant data in polar bears. Reported data came from papers published between

121	relative importance of	f contaminant	burdens in tiss	sues and blood.	We also highlighted
-----	------------------------	---------------	-----------------	-----------------	---------------------

- 122 current deficiencies in the understanding of the distribution of contaminants in polar
- 123 bears and provided recommendations that should be considered for continued monitoring
- 124 assessment of contaminants in circumpolar polar bear populations.

125 **3. Methods**

126

127	In order to understand the distribution of contaminants in the tissues and body
128	compartments of polar bears, an exhaustive review of the literature was conducted.
129	Briefly, the keywords used included: polar bear + contaminant or toxicity and articles
130	were searched in the Scopus database during September 2017 to September 2018. Most
131	literature studies only assessed one tissue type in polar bears and for a select number of
132	contaminants (AMAP, 2017; AMAP, 2016; Letcher et al., 2010). By narrowing down the
133	papers published (meaning papers that were measuring the levels of contaminants in
134	polar bear tissues) and by compiling data from available studies, we were able to estimate
135	the amount of burden for each tissue and contaminant or contaminant class. Furthermore.
136	data from the published reports produced by the Arctic Monitoring and Assessment
137	Programme of the Arctic Council (AMAP) were also included, in addition to the Scopus
138	database research. In total, 81 published research articles and AMAP reports were found,
139	and the median concentration was used in this review (i.e., for each contaminant and
140	tissue). The median concentrations were a better representation of the data as compared
141	to mean concentrations, as the former are less skewed due to exceptionally high or low
142	concentration data. The concentration intervals were based on quantiles, thus the first
143	quartile (25 %) and the third quartile (75 %) were used to show the variation between

each median value. Data were distinguished based on pre- and post-2000 and categorized

6

Formatted: Highlight

Formatted: Highlight

145	according to the year the samples were collected. Available data over sampling periods	
146	(e.g., 1993-2008) were classified according to the longest portion of the sampling period	
147	occurring pre- or post-2000. The year 2000 is a logical contaminant delineation point for	
148	the Arctic as 1) temporal studies show that prior to 2000 many of the legacy	
149	contaminants deceased substantially in biota and in wildlife tissues (mainly in the fat) had	
150	more-or-less remained constant post-2000, 2) UNEP's Stockholm Convention on POPs	
151	came into existence in 2001 and listed the original 12 "dirty dozen" POPs, 3) in the early	
152	2000s "newer" POPs, such as PBDEs and PFOS, had been voluntarily phased out by	
153	industry, and 4) the POPs list was expanded in 2009 to include 9 new compounds	
154	including PBDEs and PFOS (and related compounds), and subsequently has been	
155	expanded further with newer POPs listed up until 2018 (e.g., polychlorinated	
156	naphthalenes (PCNs), short-chain chlorinated paraffins (SCCPs) and	
157	hexabromocyclododecane (HBCDD)). A comprehensive summary of contaminant data	
158	according to the tissue or body compartment can be found in the Supplementary file for	
159	total mercury (THg), pesticides, metals, PCBs, and flame retardants (Tables S1 to S5). In	Formatted: Highlight
160	order to be included in Table S24, metals studieds needed to provide data for at least two	Formatted: Highlight
161	different metals in the same tissue in order to calculate a median excluding TH2. Metals	Formatted: Highlight
162	reported in previous studies were: Ag (silver), As (arsenic), Ba (barium), Bi (bismuth).	Formatted: Highlight
163	Cd (cadmium), Co (cobalt), Cr (chromium), Cu (copper), Fe (iron), Mn (manganese), Mo	
164	(molybdenum), Pb (lead): Rb (rubidium), Se (selenium), Sr (strontium), V (valium) and	
165	Zn (zinc). Studies have reported contaminant levels on a wet, dry, or lipid weight basis	
100		
166	and the published concentrations were compiled as is, as performed in Letcher et al.,	
167	2010. As a result, most of the contaminants were reported on a wet weight basis, except	

168	for the fat, which was mostly measured as lipid weight and hair data were entirely
169	reported as fresh weight. Biological information on polar bears, such as age and sex, were
170	not used in the present assessment as the focus of the review is on organic contaminant
171	concentrations in tissues and body compartments regardless of gender or age. The data
172	for specific studies can be found via several Arctic reviews (AMAP, 2018; AMAP, 2016;
173	Sonne, 2010; Letcher et al., 2010; Braune et al., 2005). Statistical analysis was conducted
174	with JMP Genomics 6.0. Non-parametrical data were analyzed with a Wilcoxon test with
175	chi square approximation.

176

179

177 **4. Results and discussion**

178 *4.1 Cocktail of contaminants present in polar bears*

180 Figure 1 illustrates the sum of all contaminant concentrations reported in polar bear 181 tissues, blood, and other compartments (brain, brainstem, lymph nods, spleen, and teeth) 182 and encompassing all available data published up to 2018. A maximum of 121 individual 183 contaminants have been reported at quantifiable levels in polar bear tissues and/or body 184 compartments, including metals, pesticides, FRs (flame retardants), such as PBDEs, 185 among others (Tables S1 to S5) pre-2000; whereas up to 336 individual contaminants 186 have been measured post-2000. Therefore, data presented in Figure 1 must be carefully 187 interpreted. A general approach was used to present known data of contaminants in polar 188 bears. The median is formed with wet, dry and lipid weight and also depends of 189 contaminants analyzed. If a compound was or was not analyzed and/or detected in polar 190 bear tissues, it changes the values obtained in Figure 1. The main goal of this figure is to 191 give an idea of the distribution of contaminants and a summary of previous research. Of

192	note, out of the 209 PCB congeners, only 127 of them had levels above the detection
193	limit. Except for blood, there were significant differences in the overall median sum
194	concentrations for each tissue or body compartment (i.e., hair and milk) pre- and post-
195	2000. The median level of the overall sum concentration of contaminants were
196	significantly greater pre-2000 ($p < 0.0001$), except for milk, blood, and other tissues
197	where there was no significant difference. For hair, the opposite was observed, as the
198	level of contaminants was significantly greater post-2000 (p < 0.0003). Closer
199	examination of the pre- and post-2000, overall median concentrations of POP and THg
200	contaminants in different tissues and body compartments are shown in Figure 1; whereas,
201	Figure 2 shows the median concentrations for the detailed contaminant categories. Also,
202	in Figure 2 "ND" represent compounds that were analyzed but below the detection limit.
203	As presented in Figure 2, there is a lack of consistency in contaminants analysis
204	depending of the period and the tissue. Therefore, it is crucial to gather more information
205	to allow a better monitoring on polar bears. More data will be helpful to compare the
206	burden and distribution of different compounds in polar bear tissues and change of
207	contaminant levels through time.

208 4.2 Kidneys

209
210 As shown in Figure 1, kidneys have the highest concentrations pre-2000, after liver, pre211 2000 with medians of 11640 ng/g (25 %: 5405 ng/g; 75 %: 26550 ng/g). For example, in
212 the liver ΣPCBs reached 7240 ng/g; whereas, in the kidneys they yielded 7020 ng/g post2000. Of note, lipid normalization was more frequent when reporting kidneys'
214 contaminant levels post-2000, but should not have affected this trend given that kidneys
215 are a lean tissue. These high kidney levels are driven by three groups of contaminants:

216	metals, SPCBs, and SPFAS (Figure 2A). Elevated levels of Cd (cadmium) and Se
217	(selenium) were reported in kidney samples as compared to all the other tissues (not
218	shown). Cd is a non-essential element, while Se is an essential element and is believed to
219	reduce the toxicity of some metals, and in particular Hg (AMAP, 1998). Inorganic Hg
220	binds with Se, allowing sequestration and making Hg non-toxic (AMAP, 2011). Other
221	studies have shown that Cd and Se concentrations were also higher in the kidneys than in
222	the liver. For example, Woshner et al. (2001) calculated that Cd is at 20 times higher
223	concentration in the kidneys relative to liver. Dietz et al. (2000) found that levels of Cd,
224	Se, THg (includes inorganic Hg and organic MeHg (methylmercury)), and Zn (zinc) were
225	the most concentrated in bears from North-West Greenland subpopulations. That is,
226	median concentration of THg in kidneys was similar pre-2000 (i.e., 12700 ng/g; quantile
227	25 %: 10543 ng/g; quantile 75 %: 28533 ng/g) and post-2000 (18000 ng/g; quantile 25
228	%: 11000 ng/g; quantile 75 %: 24000 ng/g). Similarly, THg medians found in liver pre-
229	2000 (12900 ng/g; quantile 25 %: 7560 ng/g; quantile 75 %: 24800 ng/g) were similar to
230	post-2000 (18000 ng/g; quantile 25 %: 11250 ng/g; quantile 75 %: 31468 ng/g) (kidneys:
231	p = 0.4892, liver: p = 0.1442; Figure 2B). AMAP (2005) and Dietz et al. (1995) have
232	previously reported THg concentrations to be highest in the kidneys, compared to liver
233	and muscle in polar bears from Central East Greenland (sampling years from 1983 to
234	1987). This discrepancy could be explained by the large numbers of samples assessed for
235	liver as compared to kidneys, which could have skewed the median calculations.
236	High burdens of organochlorine pesticides, as well as PCBs, had a high burden in tissues
237	of polar bears. Based on mostly on fat tissue levels, chlorinated biphenyls (CB)-99, CB-
238	138, CB-153, CB-170/190 and CB-180 congeners generally constituted 79-95 % of

239	Σ PCB concentrations in polar bears (Gebbink et al., 2008b; Kannan et al., 2005). The
240	presence of only a few dominant PCB congeners in polar bears is a reflection of the
241	efficient metabolic biotransformation of most PCB congeners (Kannan et al., 2005;
242	Letcher et al., 2000). According to Weijs et al. (2010b), the concentration of PCB
243	congeners, such as CB-153 can be estimated using the lipid content in the kidneys or the
244	liver. Also, PCBs with a higher degree of chlorination tend to accumulate more in the
245	kidneys and liver as compared to fat, probably because these compounds cannot pass
246	through the biological membranes (Weijs et al., 2010a). Those congeners have a high
247	hydrophobicity and membrane permeation resistance slows the uptake of those PCBs,
248	resulting in a less effective food chain transfer (Kannan et al., 1998). Other contaminants
249	such as PBDEs, DDTs, CHLs, and ClBzs had much lower levels in polar bear liver.
250	Future research or monitoring assessments of polar bear populations should include
251	kidneys as one of the tissues of interest for the important role of kidneys in detoxification
252	and in bioconcentration of pollutants (organism sink for contaminants).
253 254	4.3 Hair
255	After the kidney, hair was the third highest contaminated tissue in polar bears (1635 ng/g
256	pre-2000 (quantile 25 %: 29 ng/g; quantile 75 %: 4998 ng/g) Figure 1). Although hair's
257	contaminant levels were reported as fresh weight, hair yielded very high proportion of
258	THg compared to the other contaminants detected (including Σ CHL (chlordane), Σ DDT,
259	ΣHCH (α-, β- and γ-hexachlorocyclohexane isomers), ΣPBDE, and ΣPCBs; Figure 2C).
260	Hg is known to bind to proteins and hair growth is one of the mechanisms of excretion of
261	Hg-bounded proteins in mammalian species (St Louis et al., 2011; AMAP, 2011).

263	intake (from milk to solid food) (Bechshoft et al., 2016). Similarly, when POPs are
264	present in the blood, they can be incorporated in different tissues, including in hair
265	(Bechshøft et al., 2012). However, there is a point of saturation at which contaminants
266	can no longer bioconcentrate in hair (Bechshøft et al., 2012). Although it is well
267	documented that polar bear hair can accumulate elevated amounts of Hg (Bechshoft et
268	al., 2016; St Louis et al., 2011; Dietz et al., 2011; AMAP, 2011; Dietz et al., 2006;
269	AMAP, 2005), the tissue comparison in Figure 1, highlights the contrast of Hg loading
270	among polar bear tissues and the Hg proportion compared to the other contaminants.
271	Jaspers et al. (2010) suggested that polar bear hair may reflect the internal body burden of
272	PCBs since its chemical profile is similar to internal tissues (adipose, liver, brain, and
273	blood). However, our data analysis did not come to the same conclusion. On the contrary,
274	our data suggested that hair would significantly misrepresentative of the polar bear body
275	burden for some contaminants, such as PCBs (Figure 1). Jasper and colleagues (2010)
276	also stated that in general, organohalogen contaminant concentrations in hair are lower
277	than concentrations in adipose or liver tissue, but are similar to brain tissue and higher
278	than concentrations in blood (Jaspers et al., 2010), which is the same pattern observed in
279	this present review. Hair could be a good bioindicator of polar bear loading for some
280	contaminants, especially since long-term dietary exposure dependent on the period of hair
281	growth (Cardona-Marek et al., 2009). However, hair does not appear to be the best tissue
282	to represent the overall polar bear pollutant exposure.
	r

4.4 Liver

285 As shown in Figure 1, the median pre-2000 contaminant concentration is high in the 286 liver, and where the processes of detoxification take place and one of the most studied 287 organs in polar bear ecotoxicology based on this literature review (AMAP 2018; 288 Bechshøft et al., 2018), with a median of 1395 ng/g (quantile 25 %: 41 ng/g; quantile 75 289 %: 30675 ng/g) pre-2000 and a median of 115 ng/g (quantile 25 %: 19 ng/g; quantile 75 290 %: 965 ng/g) post-2000. Similar chemical fingerprints were found for the liver (Figure 291 2B) and kidneys (Figure 2A) for metals and **SPCBs**, where both had the highest levels of 292 contaminants; however, the median analysis found that the metals (other than Hg) and 293 ΣPCBs were approximatively 4- to 5-fold less concentrated in the liver compared to the 294 kidneys. Chlordanes and dieldrin were the next most concentrated contaminant measured 295 in the polar bear liver (Figure 2B). Chlordanes encompassed a group of six congeners, 296 with oxychlordane representing around 72 % and 79 % of Σ CHL (AMAP 2016; Bentzen 297 et al., 2008b; Bernhoft et al., 1997; Letcher et al., 2010, 2018). 298 As the top Arctic predator, contaminant levels are higher in polar bears compared to its 299 mainly seal prey, although this was not the case in the present study for PBDEs. Most 300 BFRs (brominated flame retardants) were reported to be at lower concentrations in the 301 polar bear compared to the ringed seal, which suggested a different rate of 302 biotransformation and biodegradation (AMAP 2017; Sørmo et al., 2006). Polar bears 303 showed a significantly lower concentration of the congener brominated diphenyl ethers 304 (BDE)-47 compared to ringed seals (Wolkers et al., 2004), but only a few PBDEs have 305 previously been detected (BDE-47, BDE-99, BDE-100, BDE-153 and BDE-154) 306 (Letcher et al., 2009, 2018). PBDEs such as BDE-209 have been shown to be depleted by

307 polar bears microsomes, and a smaller depletion was also found for BDE-99, BDE-100,

308 and BDE-154 (McKinney et al., 2011). Other BFRs such as HBCDD

309 (hexabromocyclododecane) isomers were not found to biomagnify from ringed seals to
310 polar bears, which indicates that it is metabolized in polar bears (Sørmo et al., 2006).
311 Future studies should include a more detailed analysis on the sexual dimorphism of the
312 hepatic enzymes involved in biotransformation and biodegradation to further assess the
313 contaminant burden risk between sexes.

314 4.5 Milk

316	Milk (375 ng/g (quantile 25 %: 326 ng/g; quantile 75 %: 2607 ng/g) pre-2000 and 201
317	ng/g (quantile 25 %: 28 ng/g; quantile 75 %: 374 ng/g) post-2000) showed a more
318	elevated sum contaminant concentrations than in adipose tissue (Figure 1). This is partly
319	explained by the high levels of Σ CHL found in milk. More specifically, Σ CHLs, Σ ClBzs,
320	Σ HCHs, Σ PCBs, and THg were reported in polar bears milk (Figure 2D). Polar bears
321	milk contains from 5-46% lipid (Oftedal, 2011; Hedberg et al., 2011; Derocher et al.,
322	1993), whereas liver contains around 5-15% of fat (Jaspers et al., 2010; Gebbink et al.,
323	2008b; Kannan et al., 2005; Corsolini et al., 2002; Wiberg et al., 2000). Milk is a
324	pathway of elimination for the contaminants in reproductive females (Henriksen et al.,
325	2001) due to lipid mobilisation for lactation (Polischuk et al., 1995). This elimination
326	function is highlighted by data that demonstrated that females with young cubs who had
327	nursed for less than a year showed the highest body burden depuration through nursing
328	(Henriksen et al., 2001). In spring, females with yearlings had lower concentrations of β -
329	HCH than other females, most likely a consequence of POP transfer from mother to
330	young (Tartu et al., 2017). In lactating bears, similar levels of CHLs, DDE
331	(dichlorodiphenyldichloroethylene), HCB (hexachlorobenzene), HCHs, and PCBs were

332	found in lipids of milk and plasma (Bernhoft et al., 1997). HCHs are present in the
333	environment in different forms, and β –HCH is the most persistent and bioaccumulative
334	of the HCH isomers (Kannan et al., 2005). It represents around 70 $\%$ and 82 $\%$ of $\Sigma HCHs$
335	levels found in polar bear (McKinney et al., 2010; Bentzen et al., 2008a; Kannan et al.,
336	2005; Bernhoft et al., 1997). According to Bernhoft et al. (1997), high HCH level in milk
337	was found, which was similar to what was found in subcutaneous tissue and plasma,
338	which differs from our results, as milk has a more elevated burden than plasma.
339	However, no differences of Σ PCB levels was observed between adult female and male
340	polar bears (Sonne et al., 2005; Kannan et al., 2005; Henriksen et al., 2001; Bernhoft et
341	al., 1997), suggesting that there was a low rate of transfer of PCBs into milk (Bernhoft et
342	al., 1997). Also, as there are similar PCB congeners found in milk and blood of polar
343	bears, this suggests that there is little selective chemical transfer from the diet to maternal
344	blood to milk during mid to late lactation (Knott et al., 2012). The lactational transfer of
345	contaminants from dietary sources may be more prominent in female polar bears that
346	have minimal fat reserves after maternal fasting (Knott et al., 2012). However, Bernhoft
347	et al. (1997) found lower levels of PCBs in milk compared to plasma, as the most
348	lipophilic PCBs seems less transferable to milk lipids than to plasma lipids (Bernhoft et
349	al., 1997). Also, for the more metabolizable PCBs, the metabolic capacity may make
350	excretion into milk relatively less important than believed (Olsen et al., 2003; Bernhoft et
351	al., 1997). In addition, Knott et al. (2012) found that when THg concentration data are
352	adjusted to lipid level, milk was three times less concentrated than blood. Therefore,
353	pollutants presence in milk seem to vary depending of the chemical compound in the

354 general condition of the female polar bear. Further research is required to understand the

355	possible	accumul	ation of	of co	ontaminants	in	milk a	and	their	transfer	to	offst	oring	<u>y</u>

356 *4.6 Adipose tissue*

357

358 POPs (e.g., Σ PCBs, Σ DDTs, Σ CHLs, Σ HCHs, and Σ ClBzs) were the predominant

359 contaminants measured in adipose tissue (fat). Indeed, it is well known that more than 91

360 % of total body POP burden are sequestered in adipose tissue (Gebbink et al., 2008a).

361 The presence of contaminants in adipose tissue may change throughout the year since fat

362 levels fluctuate as has been reported for Hudson Bay (Polischuk et al., 1995) and

363 Svalbard polar bears (Tartu et al., 2017). For Svalbard bears, POP concentrations in the

364 blood were shown to be higher in the spring than in the other seasons as during the

365 fasting period polar bears metabolize their lipid stores, which releases contaminants into

366 the blood stream (Tartu et al., 2017). On the contrary, in the fall polar bears increase their

367 fat reserves, and along with increased POP deposition (Tartu et al., 2017). Noteworthy,

368 Hg has not been reported or was below the detection limit in polar bear adipose tissue

369 (Woshner et al., 2001). Fat is one of the most studied tissues and the diversity of

370 contaminants analyzed is greater than in other tissues. For example, 13 contaminant

371 groups were measured in pre-2000 and 17 contaminants groups were measured post-

372 2000, which is less than liver with 14 groups (pre-2000) and 8 groups (post-2000) (Figure

373 2E).

374 *4.7 Muscle*

375

376 Adipose and muscle tissue have similar overall median contaminant burdens, but with

377 adipose tissue containing higher concentrations of ΣCHLs (Figure 2E), while muscle has

378 higher levels of Σ PCBs (Figure 2F). Though some authors observed lower levels of 379 contaminants in muscles compared to adipose tissue (Welfinger-Smith et al., 2011), here 380 we show that some contaminants do have similar or higher levels than in adipose tissues, 381 such as metals, Σ DDT, dieldrin, and Σ PFAS (Figure 2F). Due to the different physicochemical properties of the various POPs and metals, and their varying interaction with 382 383 proteins, lipids, and other endogenous molecules, it is important to understand the 384 properties of the contaminants of interest in order to sample the proper tissues. For 385 example, it has been found that in polar bears Hg accumulates with age in liver and 386 kidney, but not in the muscle (Rush et al., 2008; Dietz et al., 2000; Dietz et al., 1995; 387 Braune et al., 1991). Some studies have attributed this difference to an efficient catabolic 388 function of the polar bear liver (Dietz et al. 1995). Also, muscle is a very heterogeneous 389 tissue as it has a lot of fat and the lipid percentage depends on the muscle type, which 390 could affect concentrations levels (Verreault et al., 2006). However, chemical 391 composition has an impact on its accumulation in polar bear tissues, as the presence of 392 contaminants such as PFOS in muscle may be related to age, which had significant age 393 effects (Greaves et al., 2012). 20H-PBDEs are found in the blood and adipose tissue at 394 very low levels (Gebbink et al., 2008a). In addition, no OH-PBDEs were detectable in 395 polar bear liver, suggesting that the low levels in blood and adipose tissue are due to 396 protein-binding (Gebbink et al., 2008a).

397 *4.8 Blood*

398

399 In polar bear blood (Figure 2G), THg has the highest concentration of all contaminants

400 (pre-2000, 56 ng/g (quantile 25 %: 51 ng/g; quantile 75 %: 73 ng/g) and post-2000, 70

401 ng/g (quantile 25 %: 51 ng/g; quantile 75 %: 156 ng/g) even if it is relatively low

402	compared to the levels found in kidneys (Figure 2A) or liver (Figure 2C). Blood samples
403	represent real-time dietary and contaminant uptake (from previous weeks to 2 or 3
404	months) (Cardona- Marek et al., 2009), compared to other tissues that accumulate in the
405	longer-term. OH-PCB metabolites are less lipophilic than their PCB parent compounds
406	and are mainly present and detectable in the blood due to their non-covalent binding to
407	hormone transport proteins (Erdmann et al., 2013; Letcher et al., 2000). OH-PCB
408	concentrations in polar bears blood is largely a reflection of the time of their prey
409	consumption and accompanying PCB exposure and/or mobilization of lipid (and PCBs)
410	from their tissue lipid stores (Olsen et al., 2003). It has been determined that plasma lipid
411	content affects PCB concentrations and the lipid content changes after feeding (Olsen et
412	al., 2003). When polar bears eat seal blubber, the plasma lipid content increases and so
413	does the concentration of PCBs associated with the seal fat (Olsen et al., 2003).
414 415	4.9 Other tissues
415	4.9 Other tissues
415 416	4.9 Other tissues The "Others" category (Figure 1) groups the other tissues, such as brain, brainstem,
415 416 417	4.9 Other tissues The "Others" category (Figure 1) groups the other tissues, such as brain, brainstem, cerebellum, lymph nods, spleen, and teeth (Figure 2H). Metals are the most abundant
415416417418	4.9 Other tissues The "Others" category (Figure 1) groups the other tissues, such as brain, brainstem, cerebellum, lymph nods, spleen, and teeth (Figure 2H). Metals are the most abundant contaminants found for this group of tissues and body compartments, but other
 415 416 417 418 419 	4.9 Other tissues The "Others" category (Figure 1) groups the other tissues, such as brain, brainstem, cerebellum, lymph nods, spleen, and teeth (Figure 2H). Metals are the most abundant contaminants found for this group of tissues and body compartments, but other contaminants yielded similar median concentrations. For example, in brain tissue of East
 415 416 417 418 419 420 	4.9 Other tissues The "Others" category (Figure 1) groups the other tissues, such as brain, brainstem, cerebellum, lymph nods, spleen, and teeth (Figure 2H). Metals are the most abundant contaminants found for this group of tissues and body compartments, but other contaminants yielded similar median concentrations. For example, in brain tissue of East Greenland polar bears, OH-PCBs were measurable, indicating that OH-PCBs could
 415 416 417 418 419 420 421 	4.9 Other tissues The "Others" category (Figure 1) groups the other tissues, such as brain, brainstem, cerebellum, lymph nods, spleen, and teeth (Figure 2H). Metals are the most abundant contaminants found for this group of tissues and body compartments, but other contaminants yielded similar median concentrations. For example, in brain tissue of East Greenland polar bears, OH-PCBs were measurable, indicating that OH-PCBs could penetrate the blood-brain barrier (Gebbink et al., 2008a). For many contaminant classes,

425 concentrations found in brain tissue of bears from central East Greenland were similar to

426 hair for the OHCs. Reports show that polar bears do not accumulate high level of THg in 427 the brain stem (Basu et al., 2009). However, the bioaccumulative form of Hg, MeHg, was 428 reported to account for 100 % of the THg in polar bear brain (Krey et al., 2015; Krey et 429 al., 2012). The Hg concentration depends of the brain region, as it was found to be 430 different in frontal lobe (highest THg level), cerebellum and brain stem (lowest THg 431 level) (Krey et al., 2012). As shown in Figure 2H, studies report a median THg 432 concentration of 230 ng/g in brain tissue. This THg concentration does not exceed the 433 level at which neuropathological effects or neurochemical disruptions can be detected, 434 but it is of concern since it is more elevated than 100 ng/g and could affect polar bears 435 (Krey et al., 2015). There is little experimental evidence that reported polar bears from 436 central East Greenland are experiencing Hg-induced neurological damage (Basu et al., 437 2009). Similar conclusions were made for PFAS (mainly PFOS), as concentrations were 438 the highest in the lowest part of the brain, like brain stem (Eggers Pedersen et al., 2015). 439 For the teeth, low dental concentrations of THg were reported for East Greenland polar 440 bears (Aubail et al., 2012). Teeth were thought to reflect the Hg exposure through diet at 441 the time of formation since dental Hg matches blood Hg at the time of formation and 442 mineralisation of the tooth (Aubail et al., 2012), but might not indicate the overall load of 443 Hg in the animals.

444

5. PACs have not been measured in polar bears

445

446 The Arctic is subject to PAC (polycyclic aromatic compound) contamination as PACs

- 447 can be transported to the Arctic as a part of large-scale atmospheric and oceanic
- 448 circulation patterns (AMAP, 1998). PACs differ from many other POPs and chemicals of
- 449 emerging concern in that they are unintentional by-products of fossil fuel use and

450	emissions are ongoing (AMAP, 2017). Since PACs are less prone to biomagnification,
451	there is less concern about these compounds (AMAP, 1998), and thus, there are few data
452	available for their presence in marine mammals (AMAP, 2017). PACs biodilute, which
453	means that their concentrations decrease with higher trophic level due to the increase of
454	biotransformation rate (De Laender et al., 2011). Recently, modelling of oil spill's impact
455	on polar bears was calculated and it was found that around 27-38 % of polar bears from
456	the Chukchi sea region would be affected (Wilson et al., 2018). Indeed, it was noted that
457	oil spills could probably reach important habitats for polar bears, such as areas of denning
458	or summer terrestrial habitats (Wilson et al., 2018). Wilson et al. (2018) estimated that it
459	would take approximately 2-3 weeks for an oil spill to reach polar bear environment,
460	which likely provides time for clean-up efforts. In addition, a study has detected up to 31
461	PACs in the surface sediments of the Chukchi Sea (Harvey and Taylor, 2017). The
462	presence of PACs was also measured in muscle tissues of both the of the Neptune whelk
463	(Neptunea heros) and the mussel Musculus discors (Harvey and Taylor, 2017).
464	Stimmelmayr et al. (2018) found 6.4 ng/g of PACs in muscles and 4.4 ng/g of PACs in
465	skin of unoiled Alaskan ringed seals sampled in 2012-2014, and higher levels where
466	obtained in tissues of oiled seals. Thus, there is a critical need to monitor PACs in polar
467	bears in order to develop baseline that could be used in the event of an Arctic oil spill.

468

6. Overall recommendations and conclusions

469

470 As polar bears are known to be exposed to a variety of contaminants, this review

471 summarized polar bears burden in various tissues. It also allowed a better understanding

472 of contaminant distribution and patterns of accumulation in polar bears. Although CHLs

473 were banned in most countries in the '80s-'90s and were listed in the Annex I of the

474	Stockholm Convention as one of the POPs in 2001, this group of contaminants are still of
475	interest as it continues to be among the highest concentration of POPs measured in polar
476	bears. Therefore, CHL monitoring should continue, especially that CHLs are known to
477	induce renal lesions, such as thickening kidneys' globular capillary wall in adult male
478	polar bears (Sonne et al., 2012; Sonne et al., 2006) and to interfere with polar bear's
479	reproduction (Sonne et al., 2009). Similarly, for metals, although they have been heavily
480	studied prior to 2000, their presence in the environment remains high and will persist
481	given the importance of metals in daily consumer products and human activities (e.g.,
482	rare-earth elements). Thus, additional efforts should be put forward to evaluate the
483	concentrations of metals in polar bear tissues, including the less studied metals, such as
484	rare-earth elements (REEs), which are increasing been used in nowadays technology
485	(MacMillan et. 2017). Other emerging contaminants, such as PFOS and its replacing
486	compounds should be given priority in the Arctic monitoring programs. Future research
487	and monitoring assessments should also include PACs to generate robust baselines for
488	polar bears given the increased risk for oil spills in the Arctic with the development of the
489	Northern regions of Canada.
490	Giventhat some polar bear populations are starting to decline, there is an increasing
491	need to develop novel non-lethal and non-invasive approaches to evaluate polar bear's
492	contaminant burden.

- 493 **7. Acknowledgements**
- 494

Formatted: Highlight

Formatted: Highlight

- 495 This work was funded by the Government of Canada through Genome Canada and the
- 496 Ontario Genomics Institute (OGI-123) and by the Canada Research Chair program to
- 497 VSL.

498 **8. Declaration of interests**

- 499
- 500 The authors declare no conflict of interest.

	9.	References

501 502	9. References	
503 504 505	AMAP (1998) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP).	
506 507 508	AMAP (2005) AMAP Assessment 2002: Heavy Metals in the Arctic. Arctic Monitoring and Assessment Programme (AMAP).	
509 510 511	AMAP (2011) AMAP Assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP).	
512 513 514	AMAP (2016) Temporal trends in persistent organic pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP).	
515 516 517	AMAP (2017) AMAP Assessment 2016: Chemicals of Emerging Arctic Concern. Arctic Monitoring and Assessment Programme (AMAP).	
518 519 520	AMAP (2018) Biological Effects of Contaminants on Arctic Wildlife and Fish. Arctic Monitoring and Assessment Programme (AMAP).	
521 522 523 524	Aubail A, Dietz R, Riget F, Sonne C, Wiig O and Caurant F (2012). Temporal trend of mercury in polar bears (Ursus maritimus) from Svalbard using teeth as a biomonitoring tissue. <i>Journal of Environmental Monitoring</i> 14(1):56-63.	
524 525 526 527	Auger-Méthé M, Lewis MA and Derocher AE (2016). Home ranges in moving habitats: polar bears and sea ice. <i>Ecography</i> 39(1):26-35.	
528 529 530 531	Basu N, Scheuhammer AM, Sonne C, Letcher RJ, Born EW and Dietz R (2009). Is dietary mercury of neurotoxicological concern to wild polar bears (<i>Ursus maritimus</i>)? <i>Environmental Toxicology and Chemistry</i> 28(1):133-140.	
532 533 534 535	Bechshøft TØ, Derocher AE, Richardson E, Lunn NJ and St. Louis VL (2016). Hair Mercury Concentrations in Western Hudson Bay Polar Bear Family Groups. <i>Environmental Science & Technology</i> 50(10):5313-5319.	
536 537 538 539	Bechshøft TØ, Derocher AE, Viengkone M, Routti H, Aars J, Letcher RJ, Dietz R, Sonne C, Jenssen BM, Richardson E, Lunn NJ (2018). On the integration of ecological and physiological variables in polar bear toxicology research: a systematic review. <i>Environmental Reviews</i> 26:1-12.	
540 541 542 543 544	Bechshøft TØ, Rigét FF, Sonne C, Letcher RJ, Muir DCG, Novak MA, Henchey E, Meyer JS, Eulaers I, Jaspers VLB, Eens M, Covaci A and Dietz R (2012). Measuring environmental stress in East Greenland polar bears, 1892–1927 and 1988–2009: What does hair cortisol tell us? <i>Environment International</i> 45:15-21.	

545	Bentzen TW, Follmann EH, Amstrup SC, York GS, Wooller MJ, Muir DCG and O'Hara						
546	TM (2008a). Dietary biomagnification of organochlorine contaminants in Alaskan						
547	polar bears. Canadian Journal of Zoology 86(3):177-191.						
548							
549	Bentzen TW, Muir DC, Amstrup SC and O'Hara TM (2008b). Organohalogen						
550	concentrations in blood and adipose tissue of Southern Beaufort Sea polar bears.						
551	Science of the Total Environment 406(1-2):352-367.						
552							
553	Bernhoft A, Wiig O and Skaare JU (1997). Organochlorines in polar bears (Ursus						
554	maritimus) at Svalbard. Environmental Pollution 95(2):159-175.						
555							
556	Braune B, Norstrom R, Wong M, Collins B and Lee J (1991). Geographical distribution of						
557	metals in livers of polar bears from the Northwest Territories, Canada. Science of						
558	The Total Environment 100:283-299.						
559							
560	Braune BM, Outridge PM, Fisk AT, Muir DC, Helm PA, Hobbs K, Hoekstra PF, Kuzyk						
561	ZA, Kwan M, Letcher RJ, Lockhart WL, Norstrom RJ, Stern GA and Stirling I						
562	(2005). Persistent organic pollutants and mercury in marine biota of the Canadian						
563	Arctic: an overview of spatial and temporal trends. Science of The Total						
564	<i>Environment</i> 351-352:4-56.						
565							
566	Brown TM, Macdonald RW, Muir DCG and Letcher RJ (2018). The distribution and trends						
567	of persistent organic pollutants and mercury in marine mammals from Canada's						
568	Eastern Arctic. Science of The Total Environment 618:500-517.						
569	5						
570	Cardona- Marek T, Knott KK, Meyer BE and O'Hara TM (2009). Mercury concentrations						
571	in southern Beaufort Sea polar bears: variation based on stable isotopes of carbon						
572	and nitrogen. Environmental Toxicology and Chemistry 28(7):1416-1424.						
573							
574	Corsolini S, Kannan K, Imagawa T, Focardi S and Giesy JP (2002).						
575	Polychloronaphthalenes and Other Dioxin-like Compounds in Arctic and Antarctic						
576	Marine Food Webs. Environmental Science & Technology 36(16):3490-3496.						
577							
578	Derocher AE, Andriashek D and Arnould JPY (1993). Aspects of milk composition and						
579	lactation in polar bears. Canadian Journal of Zoology 71(3):561-567.						
580	1 5 65 (7						
581	Dietz R, Born EW, Agger CT and Nielsen CO (1995). Zinc, cadmium, mercury and						
582	selenium in polar bears (Ursus maritimus) from central east Greenland. Polar						
583	<i>Biology</i> 15(3):175-185.						
584							
585	Dietz R, Born EW, Rigét F, Aubail A, Sonne C, Drimmie R and Basu N (2011). Temporal						
586	Trends and Future Predictions of Mercury Concentrations in Northwest Greenland						
587	Polar Bear (Ursus maritimus) Hair. Environmental Science & Technology						
588	45(4):1458-1465.						
589							
	45(4):1458-1465.						
202							

590	Dietz R, Riget F and Born EW (2000). Geographical differences of zinc, cadmium,
591	mercury and selenium in polar bears (Ursus maritimus) from Greenland. Science
592	of The Total Environment 245(1):25-47.
593	
594	Dietz R, Riget F, Born EW, Sonne C, Grandjean P, Kirkegaard M, Olsen MT, Asmund G,
595	Renzoni A, Baagøe H and Andreasen C (2006). Trends in Mercury in Hair of
596	Greenlandic Polar Bears (Ursus maritimus) during 1892-2001. Environmental
597	Science & Technology 40(4):1120-1125.
598	
599	Eggers Pedersen K, Basu N, Letcher R, Greaves AK, Sonne C, Dietz R and Styrishave B
600	(2015). Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic
601	acid (PFCA) accumulation and neurochemical biomarker responses in east
602	Greenland polar bears (Ursus maritimus). Environmental Research 138:22-31.
603	
604	Erdmann SE, Dietz R, Sonne C, Bechshoft TO, Vorkamp K, Letcher RJ, Long M and
605	Bonefeld-Jorgensen EC (2013). Xenoestrogenic and dioxin-like activity in blood
606	of East Greenland polar bears (Ursus maritimus). Chemosphere 92(5):583-591.
607	
608	Gebbink WA, Sonne C, Dietz R, Kirkegaard M, Born EW, Muir DCG and Letcher RJ
609	(2008a). Target Tissue Selectivity and Burdens of Diverse Classes of Brominated
610	and Chlorinated Contaminants in Polar Bears (Ursus maritimus) from East
611	Greenland. Environmental Science & Technology 42(3):752-759.
612	
613	Gebbink WA, Sonne C, Dietz R, Kirkegaard M, Riget FF, Born EW, Muir DC and Letcher
614	RJ (2008b). Tissue-specific congener composition of organohalogen and
615	metabolite contaminants in East Greenland polar bears (Ursus maritimus).
616	Environmental Pollution 152(3):621-629.
617	
618	Greaves AK, Letcher RJ, Sonne C, Dietz R and Born EW (2012). Tissue-specific
619	concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East
620	Greenland polar bears. Environmental Science & Technology 46(21):11575-11583.
621	
622	Hamilton SG and Derocher AE (2018). Assessment of global polar bear abundance and
623	vulnerability. Animal Conservation 22: 83-95.
624	······································
625	Harvey HR and Taylor KA (2017). Alkane and polycyclic aromatic hydrocarbons in
626	sediments and benthic invertebrates of the northern Chukchi Sea. Deep Sea
627	Research Part II: Topical Studies in Oceanography 144:52-62.
628	
629	Hedberg GE, Derocher AE, Andersen M, Rogers QR, Depeters EJ, Lönnerdal B, Mazzaro
630	L, Chesney RW and Hollis B (2011). Milk composition in free-ranging polar bears
631	(Ursus maritimus) as a model for captive rearing milk formula. Zoo Biology
632	30(5):550-565.

634	Henriksen EO, Wiig Ø, Utne Skaare J, Gabrielsen GW and Derocher AE (2001).
635	Monitoring PCBs in polar bears: lessons learned from Svalbard. Journal of
636	Environmental Monitoring 3(5):493-498.
637	
638	Jaspers VL, Dietz R, Sonne C, Letcher RJ, Eens M, Neels H, Born EW and Covaci A
639	(2010). A screening of persistent organohalogenated contaminants in hair of East
640	Greenland polar bears. Science of the Total Environment 408(22):5613-5618.
641	
642	Kannan K, Nakata H, Stafford R, Masson GR, Tanabe S and Giesy JP (1998).
643	Bioaccumulation and toxic potential of extremely hydrophobic polychlorinated
644	biphenyl congeners in biota collected at a superfund site contaminated with Aroclor
645	1268. Environmental Science and Technology 32(9):1214-1221.
646	
647	Kannan K, Yun SH and Evans TJ (2005). Chlorinated, Brominated, and Perfluorinated
648	Contaminants in Livers of Polar Bears from Alaska. <i>Environmental Science</i> &
649	Technology 39(23):9057-9063.
650	10011101089 59(25):9051 9005.
651	Kleivane L, Severinsen T and Skaare JU (2000). Biological transport and mammal to
652	mammal transfer of organochlorines in Arctic fauna. <i>Marine Environmental</i>
653	Research 49(4):343-357.
654	Research +7(+).5+5-557.
655	Knott KK, Boyd D, Ylitalo GM and O'Hara TM (2012). Lactational transfer of mercury
656	and polychlorinated biphenyls in polar bears. <i>Chemosphere</i> 88(4):395-402.
657	and poryemormated orphenyls in polar ocars. Chemosphere oo(4).595-402.
658	Krey A, Kwan M and Chan HM (2012). Mercury speciation in brain tissue of polar bears
659	(Ursus maritimus) from the Canadian Arctic. Environmental Research 114:24-30.
660	(07sus marannas) from the Canadian Frede. Environmental Research 114.24-50.
661	Krey A, Ostertag SK and Chan HM (2015). Assessment of neurotoxic effects of mercury
662	in beluga whales (<i>Delphinapterus leucas</i>), ringed seals (<i>Pusa hispida</i>), and polar
663	bears (Ursus maritimus) from the Canadian Arctic. Science of the Total
664	Environment 509-510:237-247.
665	
666	Laender FD, Hammer J, Hendriks AJ, Soetaert K and Janssen CR (2011). Combining
667	monitoring data and modeling identifies PAHs as emerging contaminants in the
668	arctic. Environmental Science & Technology 45(20):9024-9029.
669	arctic. Environmental Science & Technology 45(20).9024-9029.
	Latahan DI Dustras IO Dista D. Jansson DM Jansanan Ell Canno C. Varrasult J.
670 671	Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jorgensen EH, Sonne C, Verreault J, Vijourn MM and Cabridean CW (2010) Europure and offsate accessment of
	Vijayan MM and Gabrielsen GW (2010). Exposure and effects assessment of
672	persistent organohalogen contaminants in arctic wildlife and fish. Science of the
673	<i>Total Environment</i> 408(15):2995-3043.
674 675	Latahan DL Cabhink WA Sama C Dam EW Makinnay MA and Dista D (2000)
675 676	Letcher RJ, Gebbink WA, Sonne C, Born EW, McKinney MA and Dietz R (2009).
676	Bioaccumulation and biotransformation of brominated and chlorinated
677	contaminants and their metabolites in ringed seals (<i>Pusa hispida</i>) and polar bears
678	(Ursus maritimus) from East Greenland. Environment International 35(8):1118-
679	1124.

10	\mathbf{n}
nx	

681 682 683 684 685	 Letcher RJ, Klasson-Wehler E, Bergman Å (2000). Methylsulfone and hydroxylated metabolites of polychlorinated biphenyls, J. Passivita (ed), In: <i>The Handbook of Environment Chemistry: New Types of Persistent Halogenated Compounds</i> (ISBN: 3-540-65838-6), Springer-Verlag (Heidelberg, Germany) (2000), vol. 3, Part K, pp. 315-360. 		
686 687 688 689	Letcher RJ, Morris AD, Dyck M, Sverko E, Reiner EJ, Blair DAD, Chu SG and Shen L (2018). Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada. <i>Science of the Total Environment</i> 610-611:121-136.		
690 691 692 693 694	Liu Y, Richardson E, Derocher A, Lunn N, Lehmler H-J, Li X, Zhang Y, Yue Cui J, Cheng L and W Martin J (2018). Hundreds of Unrecognized Halogenated Contaminants Discovered in Polar Bear Serum. Angewandte Chemie International Edition 57(50):16401-16406.		
695	MacMillan GA, Chételat J, Heath JP, Mickpegak R, Amyot M (2017). Rare earth elements	 Formatte	d: Font: Not Italic,
696	in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.		
697	Environ Sci Process Impacts. 19(10):1336-1345.	 Formatte	d: Highlight
698	M.C.II AC Develop AE of Leven NI (2015) How many distribution of a local sector	 Formatte	d: Font: Not Italic,
699 700	McCall AG, Derocher AE and Lunn NJ (2015). Home range distribution of polar bears in western Hudson Bay. <i>Polar Biology</i> 38(3):343-355.	Formatte	d: Font: Not Italic
700	western Hudson Bay. Polar Biology 38(3):343-355.		
702 703 704 705 706	McKinney MA, Iverson SJ, Fisk AT, Sonne C, Riget FF, Letcher RJ, Arts MT, Born EW, Rosing-Asvid A and Dietz R (2013). Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. <i>Global</i> <i>Changd Biology</i> 19(8):2360-2372.		
708 707 708 709 710 711	McKinney MA, Letcher RJ, Aars J, Born EW, Branigan M, Dietz R, Evans TJ, Gabrielsen GW, Peacock E and Sonne C (2011). Flame retardants and legacy contaminants in polar bears from Alaska, Canada, East Greenland and Svalbard, 2005-2008. <i>Environment International</i> 37(2):365-374.		
712 713 714 715	McKinney MA, Peacock E and Letcher RJ (2009). Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears. <i>Environmental Science & Technology</i> 43(12):4334-4339.		
716 717 718 719 720	McKinney MA, Stirling I, Lunn NJ, Peacock E and Letcher RJ (2010). The role of diet on long-term concentration and pattern trends of brominated and chlorinated contaminants in western Hudson Bay polar bears, 1991-2007. <i>Science of the Total</i> <i>Environment</i> 408(24):6210-6222.		
721 722 723 724	Obbard, ME, Thiemann, GW, Peacock, E, and DeBruyn, TD (eds) (2010). Polar Bears: Proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Copenhagen, Denmark, 29 June–3 July 2009. Gland, Switzerland and Cambridge, UK: IUCN. vii + 235 pp.		

Formatted: Font: Not Italic, Highlight

Formatted: Highlight Formatted: Font: Not Italic, Highlight

725	
726	Oftedal, OT (2011). Milk of marine mammals. In Encyclopedia of dairy sciences. Vol. 3.
727	Edited by JW Fuquay, PF Fox, and PLH McSweeney. Academic Press, San Diego.
728	pp. 563–58.
729	
730	Olsen GH, Mauritzen M, Derocher AE, Sørmo EG, Skaare JU, Wiig Ø and Jenssen BM
731	(2003). Space-Use Strategy Is an Important Determinant of PCB Concentrations in
732	Female Polar Bears in the Barents Sea. Environmental Science & Technology
733	37(21):4919-4924.
734	
735	Peacock E, Derocher A, Lunn N and Obbard M (2010). Polar bear ecology and
736	management in Hudson Bay in the face of climate change. A little less Arctic,
737	Springer 93-116.
738	-18
739	Polischuk S, Letcher R, Norstrom R and Ramsay M (1995). Preliminary results of fasting
740	on the kinetics of organochlorines in polar bears (<i>Ursus maritimus</i>). Science of The
741	Total Environment 160:465-472.
742	
743	Routti H, Atwood T, Bechshøft T, Boltunov A, Ciesielski TM, Desforges J-P, Dietz R,
744	Gabrielsen GW, Jenssen BM, Letcher RJ, McKinney MA, Morris AD, Rigét FF,
745	Sonne C, Styrishave B, Tartu S (2019). State of knowledge on current exposure,
746	fate and potential health effects of contaminants in polar bears from the circumpolar
747	Arctic. Science of The Total Environment Submitted.
748	
749	Rush SA, Borga K, Dietz R, Born EW, Sonne C, Evans T, Muir DC, Letcher RJ, Norstrom
750	RJ and Fisk AT (2008). Geographic distribution of selected elements in the livers
751	of polar bears from Greenland, Canada and the United States. <i>Environmental</i>
752	Pollution 153(3):618-626.
753	
754	Sonne C, Letcher RJ, Leifsson PS, Riget FF, Bechshoft TO, Bossi R, Asmund G and Dietz
755	R (2012). Temporal monitoring of liver and kidney lesions in contaminated East
756	Greenland polar bears (Ursus maritimus) during 1999-2010. Environment
757	International 48:143-149.
758	
759	Sonne C (2010). Health effects from long-range transported contaminants in Arctic top
760	predators: An integrated review based on studies of polar bears and relevant model
761	species. Environment International 36(5):461-491.
762	1
763	Sonne C, Gustavson K, Riget FF, Dietz R, Birkved M, Letcher RJ, Bossi R, Vorkamp K,
764	Born EW and Petersen G (2009). Reproductive performance in East Greenland
765	polar bears (Ursus maritimus) may be affected by organohalogen contaminants as
766	shown by physiologically-based pharmacokinetic (PBPK) modelling.
767	<i>Chemosphere</i> 77(11):1558-1568.
768	
769	Sonne, C, Dietz, R, Leifsson, PS, Born, EW, Kirkegaard, M, Letcher, RJ, Muir, DC, Riget,
770	FF and Hyldstrup, L (2006). Are organohalogen contaminants a cofactor in the

771	development of renal lesions in East Greenland polar bears (Ursus maritimus)?.
772	Environmental Toxicology and Chemistry 25: 1551-1557.
773	
774	Sonne C, Dietz R, Leifsson PS, Born EW, Letcher RJ, Kirkegaard M, Muir DCG, Riget
775	FF and Hyldstrup L (2005). Do Organohalogen Contaminants Contribute to
776	Histopathology in Liver from East Greenland Polar Bears (Ursus maritimus)?
777	Environmental Health Perspectives 113(11):1569-1574.
778	
779	Sørmo EG, Salmer MP, Jenssen BM, Hop H, Bæk K, Kovacs KM, Lydersen C, Falk-
780	Petersen S, Gabrielsen GW, Lie E and Skaare JU (2006). Biomagnification of
781	polybrominated diphenyl ether and hexabromocyclododecane flame retardants in
782	the polar bear food chain in Svalbard, Norway. Environmental Toxicology and
783	Chemistry 25(9):2502-2511.
784	
785	St Louis VL, Derocher AE, Stirling I, Graydon JA, Lee C, Jocksch E, Richardson E,
786	Ghorpade S, Kwan AK, Kirk JL, Lehnherr I and Swanson HK (2011). Differences
787	in mercury bioaccumulation between polar bears (Ursus maritimus) from the
788	Canadian high- and sub-Arctic. Environmental Science & Technology
789	45(14):5922-5928.
790	
791	Stimmelmayr R, Ylitalo GM, Sheffield G, Beckmen KB, Burek-Huntington KA, Metcalf
792	V and Rowles T (2018). Oil fouling in three subsistence-harvested ringed (Phoca
793	hispida) and spotted seals (Phoca largha) from the Bering Strait region, Alaska:
794	Polycyclic aromatic hydrocarbon bile and tissue levels and pathological findings.
795	Marine Pollution Bulletin 130:311-323.
796	
797	Tartu S, Bourgeon S, Aars J, Andersen M, Polder A, Thiemann GW, Welker JM and Routti
798	H (2017). Sea ice-associated decline in body condition leads to increased
799	concentrations of lipophilic pollutants in polar bears (Ursus maritimus) from
800	Svalbard, Norway. Science of the Total Environment 576:409-419.
801	
802	Thiemann GW, Derocher AE and Stirling I (2008a). Polar bear Ursus maritimus
803	conservation in Canada: an ecological basis for identifying designatable units. Oryx
804	42(4):504-515.
805	
806	Thiemann GW, Iverson SJ and Stirling I (2008b). Polar bear diets and arctic marine food
807	webs: insights from fatty acid analysis. Ecological Monographs 78(4):591-613.
808	
809	Verreault J, Norstrom RJ, Ramsay MA, Mulvihill M and Letcher RJ (2006). Composition
810	of chlorinated hydrocarbon contaminants among major adipose tissue depots of
811	polar bears (Ursus maritimus) from the Canadian high Arctic. Science of the Total
812	Environment 370(2-3):580-587.
813	
814	Weijs L, van Elk C, Das K, Blust R and Covaci A (2010a). Persistent organic pollutants
815	and methoxylated PBDEs in harbour porpoises from the North Sea from 1990 until
816	2008: Young wildlife at risk? Science of The Total Environment 409(1):228-237.

 817 818 819 820 821 822 822 	 Weijs L, Yang RSH, Covaci A, Das K and Blust R (2010b). Physiologically Based Pharmacokinetic (PBPK) Models for Lifetime Exposure to PCB 153 in Male and Female Harbor Porpoises (<i>Phocoena phocoena</i>): Model Development and Evaluation. <i>Environmental Science & Technology</i> 44(18):7023-7030. Welfinger Smith C, Michele H, Berre S, Wechiei V, Colegerger L, Keyn L, Apatihi M, Status K, Status
823 824 825 826 827	Welfinger-Smith G, Minholz JL, Byrne S, Waghiyi V, Gologergen J, Kava J, Apatiki M, Ungott E, Miller PK, Arnason JG and Carpenter DO (2011). Organochlorine and metal contaminants in traditional foods from St. Lawrence Island, Alaska. <i>Journal</i> of Toxicology and Environmental Health A 74(18):1195-1214.
828 829 830 831 832	Wiberg K, Letcher RJ, Sandau CD, Norstrom RJ, Tysklind M and Bidleman TF (2000). The Enantioselective Bioaccumulation of Chiral Chlordane and α-HCH Contaminants in the Polar Bear Food Chain. <i>Environmental Science & Technology</i> 34(13):2668-2674.
833 834 835 836	Wiig Ø, Amstrup S, Atwood T, Laidre K, Lunn N, Obbard M, Regehr E and Thiemann G (2015). Ursus maritimus. The IUCN Red List of Threatened Species 2015: e. T22823A14871490.).
837 838 839 840	Wilson RR, Perham C, French-McCay DP and Balouskus R (2018). Potential impacts of offshore oil spills on polar bears in the Chukchi Sea. <i>Environment Pollution</i> 235:652-659.
841 842 843 844	Wolkers H, van Bavel B, Derocher AE, Wiig Ø, Kovacs KM, Lydersen C and Lindström G (2004). Congener-Specific Accumulation and Food Chain Transfer of Polybrominated Diphenyl Ethers in Two Arctic Food Chains. <i>Environmental</i> <i>Science & Technology</i> 38(6):1667-1674.
845 846 847	Woshner VM, O'Hara TM, Bratton GR and Beasley VR (2001). Concentrations and interactions of selected essential and non-essential elements in ringed seals and polar bears of arctic Alaska. <i>Journal of Wildlife Diseases</i> 37(4):711-721.

849 List of figures

851	Figure 1. The median concentrations (ng/g) are the sum of all available contaminant
852	data for a given polar bear tissue or body compartment and based on 81 different
853	studies conducted between 1990 and 2018 (Supplementary file Tables S1 to S5).
854	"Others" include tissue from brain, brainstem, cerebellum, lymph nods, spleen, and
855	teeth. Samples were categorized from pre-2000 and post-2000. Asterisks (*) represent
856	significant differences over periods for a same tissue. Concentrations of contaminants
857	include: aldrin; chlordane; chlorobenzene; dichlorodiphenyltrichloroethane; dieldrin;
858	endosulfan; hexabromocyclododecane; hexachlorobenzene; hexachlorocyclohexane;
859	mirex; total mercury; octachlorostyrene; other metals; brominated biphenyl;
860	polybrominated diphenyl ether; polychlorinated biphenyls ; polychlorinated
861	naphthalenes; pentachlorophenol; per-/poly-fluoroalkyl substances;, short-chain
862	chlorinated paraffin and toxaphene.
863	
864	Figure 2. Concentrations (ng/g) based on individual or sum classes of contaminants
865	in the kidneys, hair, liver, milk, adipose tissue, muscle, other tissues, and blood of
866	polar bears based on data from 81 different studies from 1990 to 2015.
867	Abbreviations: Σ CHL, chlordane; Σ Cl \underline{B} $+$ z, chlorobenzene; Σ DDT,
868	dichlorodiphenyltrichloroethane ; Σ HBCD, hexabromocyclododecane; HCB,
869	hexachlorobenzene; Σ HCH, hexachlorocyclohexane Hg, mercury; OCS,
870	octachlorostyrene; SPBB, brominated biphenyl; SPBDE, polybrominated diphenyl
871	ether ; $\Sigma PCBs$, polychlorinated biphenyls ; $\Sigma PCNs$, polychlorinated naphthalenes;

- 872 PCP, pentachlorophenol; ΣPFAS, perfluoroalkyl substances; ΣSCCP, short-chain
- 873 chlorinated paraffin; THg, total mercury. ND (No Data) indicates that no data was
- 874 available for the specific group contaminant of a tissue. Concentrations lower than the
- 875 limit of detection (LOD) as analyzed by (1) Gebbink *et al.*, 2008a; (2) Bechshøft *et*
- 876 *al.*, 2012; (3) Letcher *et al.*, 2018; (4) Gabrielsen *et al.*, 2015; (5) Bentzen *et al.*,
- 877 2008b; and (6) Tartu *et al.*, 2017.

Figure 1

Figure 2

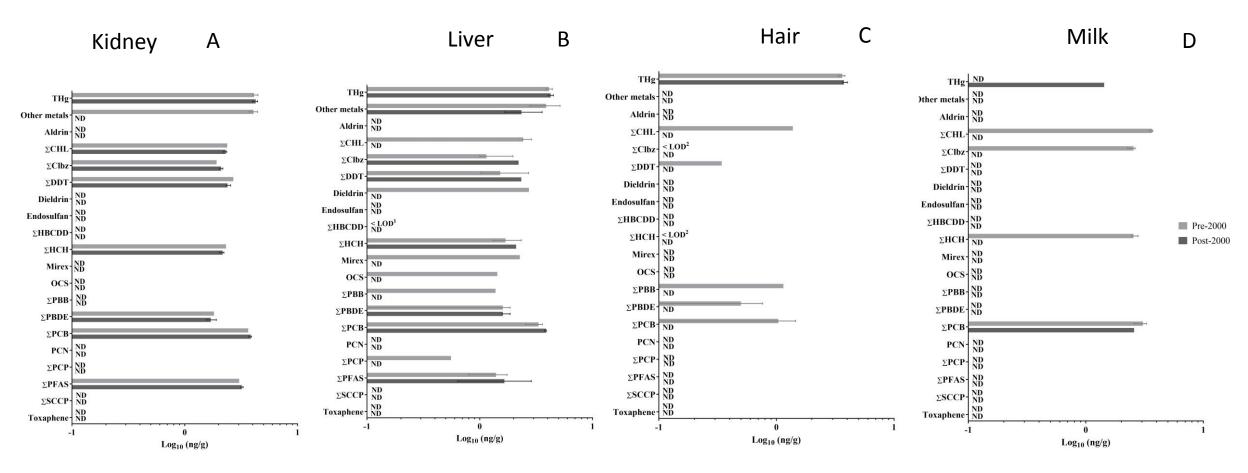
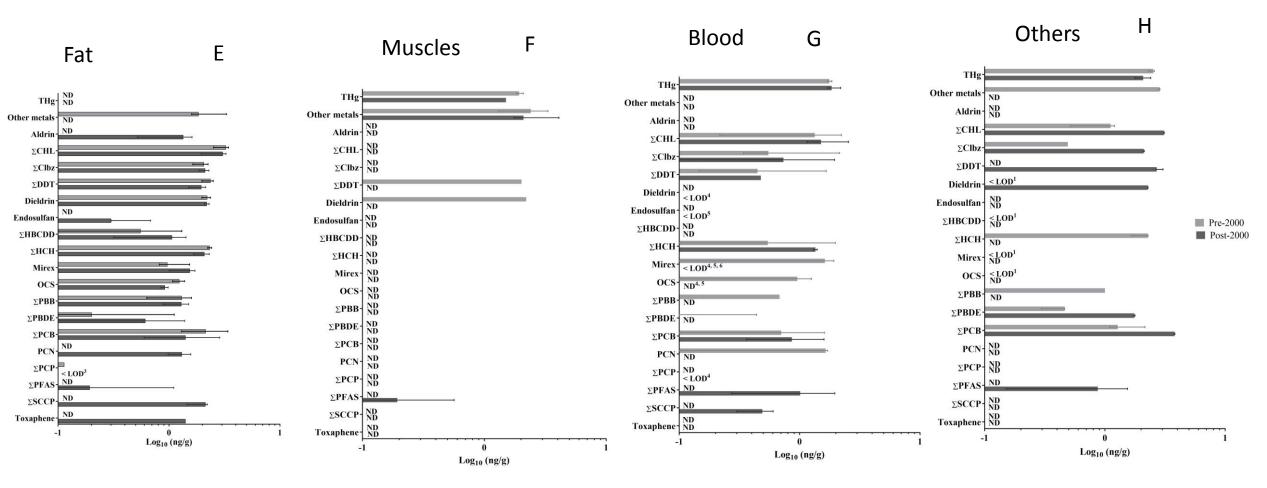



Figure 2

Supplementary Tables

Click here to access/download Supplementary Material Dominique_et_al-Supplementary_file.docx