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Abstract

This paper presents a three-dimensional nonhydrostatic model to solve the Navier-Stokes equations using

an unstructured finite volume method. The physical domain could be geometrically arbitrary. To avoid

the checkerboard problem caused by non-staggered grids, a momentum interpolation method is used by

introducing face-normal velocities at the mid-points of the cell faces. As the Large Eddy Simulation (LES)

requires at least second-order accuracy in time and in space for all the terms, a central scheme combined

with an explicit Adams-Bashforth scheme is proposed in this model. The projection method is applied to

decouple the velocity field and pressure. Several benchmark test cases are used to validate the second-order

accuracy, the numerical stability and the performance of the model. Analysis on divergence noise using

an unstructured collocated triangular grid, as well as on the ratio between vertical and horizontal spacing

steps have been done to show the reliability of the model. The proposed model has been used to simulate

backward-facing step flows, lid-cavity flows, turbulent open channel flows and the turbulent flows around

a vertical cylinder. The convergence of the linear solver is analyzed in terms of the iterations and CPU

time. The results are fairly in agreement with the references in the literature. The proposed model is able

to correctly reproduce the characteristic flow features in all the test cases.

Keywords: Unstructured collocated grid, Finite volume method, Projection method, Momentum

Interpolation Method, Large eddy simulation, Nonhydrostatic flow.

1. Introduction

Due to the complex physics processes and the limitation of computing power, traditional numerical

efforts devoted to the geophysical flow problems, are usually confined into two-dimensional (2D) modeling

∗Corresponding author at: EDF R&D 6, quai Watier, 78400 Chatou cedex, France, Tel.: +33 1 30 87 80 86.
Email address: kimdan_nguyen@yahoo.fr (Kim Dan Nguyen)

Preprint submitted to EJMFLU December 21, 2019

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



using the hydrostatic approach [1, 2]. These models can provide rough estimation for future scenarios but

lack the capability to handle with three-dimensional (3D) near-field flows such as nonhydrostatic turbulent

flows around obstacles in complex geometry. They usually fail in capturing velocity profiles and coherent

structure of flows due to the hydrostatic approximation and the absence of correct turbulence modeling [3].

With the development of high performance computer, nowadays LES has been largely used to simulate high

turbulent geophysical flows by massive parallel [4, 5, 6].

This paper proposes an accurate, robust and efficient solver for the incompressible Navier-Stokes (N-S)

equations using LES in collocated unstructured grids. It is well-known that a collocated grid arrangement for

incompressible flows could generate unrealistic pressure oscillations due to the pressure-velocity decoupling,

which is known as the checkerboard problem. This problem can be solved using the Momentum Interpolation

Method (MIM) [7, 8]. In the past few years, the finite volume method with collocated unstructured grid has

been used for both steady and unsteady flows [9, 10, 11, 12]. In these work, the mass flux was calculated

by introducing a face-normal velocity, defined at the mid-point of each cell face. This mass flux or the

face-normal velocity was interpolated from the cell centers and later corrected by the pressure gradient,

which is obtained by the least square method. Depending on the circumstances of different applications,

both first order interpolation [13, 14, 15] and second order interpolation [9, 10, 11, 16] could be used.

The originality of this paper is based on the reconstruction of the Projection Methods (PM) using

Adams-Bashforth scheme and the Momentum Interpolation Method (MIM) to determine the face-normal

velocity combined with central schemes for both convection and diffusion terms. The approximation of the

cross diffusion term is improved to handle non-orthogonal, unstructured grids with moderate skewness by

introducing an additional correction term. Based on the foregoing method, the second-order accuracy in

space and in time is insured in simulating flows at moderate Reynolds numbers.

The structure of the theoretical part is now organized as follows. First, the governing equations in-

cluding the LES model are presented. The projection method, the time integration, and the finite volume

discretization are described in the next section. The numerical results are organized in three sections: ac-

curacy, validation and performance. In the accuracy section, analytical solutions are used to quantify the

numerical error of the proposed numerical techniques including the divergence errors, the diffusive and con-

vective terms approximations, and the overall accuracy in time and space. In the validation section, the

proposed model is now tested by several well-known benchmarks in comparing the results with experimental

solutions, or with other numerical formulations existing in the literature. The test cases include the back-

ward facing step flow, the turbulent channel flow, the lid-driven cavity flow and the flow around a vertical

cylinder at a moderate Reynolds number. In the performance section, the convergence of the linear solver

is analyzed in terms of iteration numbers and CPU time. Finally, a brief summary and the proposition for

future work are also included.
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2. Governing equations

The non-dimensional Navier-Stokes equations for unsteady incompressible viscous flow are given by

∂ui
∂t

+
∂ (uiuj)

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

+ fi, (1)

∂ui
∂xi

= 0, (2)

where the subscripts i, j = 1, 2, 3 represent the directions in the Cartesian coordinates, ui is the non-

dimensional velocity component in the xi direction, p is the non-dimensional pressure, and fi is an external

force. The Reynolds number is defined as Re = urefLref/ν where the reference scales uref and Lref are for

the velocity and length, respectively. The kinematic viscosity is given by ν = µ/ρ. The fluid is assumed to

have a constant density ρ and dynamic viscosity µ. The non-dimensional velocity and pressure are defined

as ui = (ui)phy/uref , p = pphy/(ρu
2
ref ), where (ui)phy and pphy are the corresponding dimensional velocity

and pressure.

2.1. LES turbulence modeling

The Direct Numerical Simulation (DNS) method solves equations (1) and (2) with a suitable numerical

technique, introducing no turbulence model. However, such calculations are not feasible for practical flows

with high Reynolds numbers. The idea of LES is to apply an implicit spatial filter of characteristic space

size to equations (1) and (2). The resulting filtered N-S equations are given by

∂ūi
∂t

+
∂ (ūiūj)

∂xj
= − ∂p̄

∂xi
+

1

Re

∂2ūi
∂xj∂xj

−
∂τsgij
∂xj

, (3)

∂ūi
∂xi

= 0, (4)

where the bar over any variable denotes filtering, ūi are the resolved velocity components of the velocity

vector, p̄ is the resolved pressure, and

τsgij = uiuj − ūiūj , (5)

is the Sub-Grid Stress (SGS) tensor used to take into account the effect of unresolved length scales. For

simplicity, the external forces are set to be fi = 0.

As suggested by Smagorinsky, the smallest turbulent eddies are almost isotropic and the Boussinesq eddy

viscosity assumption can be used to provide an accurate approximation of the effects of these unresolved

smallest eddies. According to the Boussinesq assumption, the momentum transfer can be modeled with an

eddy viscosity, and equation (5) can be described as

τsgij = −2νtSij +
1

3
τsgii δij , (6)

where Sij = 1
2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
is the resolved strain rate-tensor and δij is the Kronecker delta.
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The SGS viscosity is given by

νt = l2sg
∣∣S̄
∣∣ ,

∣∣S̄
∣∣ =

√
2SijSij (7)

where lsg is the sub-grid length scale. In the near wall region, the length scale of the sub-grid scale motions

cannot be described with a constant value; it decreases as the wall is approached. Thus, a wall damping

function must be additionally implemented to the standard Smagorinsky SGS model in order to capture

this boundary layer effect. In the current study, the near wall damping model of Mason and Thomson [17]

is used to obtain a modified length scale, described by

1

lnsg
=

1

(Cs∆)n
+

1

(κlw)n
, (8)

where n = 2 is the Mason wall matching power, Cs is the Smagorinsky constant, and ∆ is the average

spacing ∆ = V 1/3 with V being the volume of the control cell, κ is the von Kármán constant, and lw is the

distance from the cell center of a control volume to the wall. The value of Cs = 0.1 previously proposed for

channel flow [18] is used in the current study, where strong anisotropic turbulence occurs in the near-wall

region.

The isotropic part in equation (6) containing the sum of the normal stresses τsgii is usually added to the

filtered pressure term. Thus, the Smagorinsky model can be easily implemented by introducing the total

viscosity term νT = 1
Re + νt in the momentum equation (3) as follows

∂ui
∂t

+
∂ (uiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
νT

uj
∂xj

)
, (9)

∂ui
∂xi

= 0, (10)

For the sake of simplicity, henceforth the bar in the resolved variables are omitted. The technique to

discrete equations (9) and (10) is based on a projection method to decouple the velocity and pressure fields.

A second-order explicit Adams-Bashforth scheme for the time integration and a finite volume-method on

triangular prisms for the space discretization have been used.

2.2. Grid system

A non-staggered unstructured grid system is used in this paper. In a traditional non-staggered grid, all

the velocity field and pressure variables are defined at the cell-centered nodes; however, unrealistic pressure

oscillations may occur due to pressure-velocity decoupling. In order to avoid this problem, we follow the

non-staggered grid formulation proposed by Kim and Choi [9] as shown in Fig. 1 (a). The pressure p and

the velocity components ui are defined at each cell center, and the face-normal velocity is defined as

U = (ui)faceni, (11)
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at the mid-point of each cell face. Here, (uj)face and ni represent the velocities and the outward-normal unit

vector on each face, respectively. It is worth noting that the grid system differs from the standard C-grid

staggered discretization, in which only a face-normal horizontal momentum equation is approximated by

dotting the face-normal vector [19, 20]. The benefit of the proposed non-staggered grid system is that it

is free from the pressure oscillation problem, and simple to implement in comparison with staggered grids,

especially for 3D flows [9].

3. Projection method and time integration

The projection method (PM) was initially proposed by Chorin [21] to decouple the velocity and pressure

fields. To ensure a second order of accuracy in time, the Adams-Bashforth scheme is applied for the diffusion,

convection and pressure terms. Thus, equations (9) and (10) are explicitly approximated in the following

form
un+1
i − uni

∆t
= c1 rhs

n + c2 rhs
n−1 −

(
c1

∂p

∂xi

n+ 1
2

+ c2
∂p

∂xi

n− 1
2

)
, (12)

where

rhs =
∂

∂xj

(
νT
∂ui
∂xj

)
− ∂uiuj

∂xj
, (13)

superscript n donates the variables at time tn, c1 = 3/2, c2 = −1/2 and ∆t is the time step. In the projection

algorithm, which is employed by the method in this paper, the first step calculates an intermediate velocity

as follows

u∗i = uni + ∆t

(
c1 rhs

n + c2 rhs
n−1 + c2

∂p

∂xi

n− 1
2

)
, (14)

where u∗i is an intermediate velocity field. To calculate the new pressure, a Poisson equation for pn+ 1
2 is

implicitly obtained by taking the divergence-free condition (10) into

un+1
i = u∗i − c1∆t

∂p

∂xi

n+ 1
2

, (15)

which yields

∂

∂xi

(
∂p

∂xi

n+ 1
2

)
=

1

c1∆t

∂u∗i
∂xi

, (16)

where the right-hand side corresponds to the divergence of the intermediate velocity which is calculated

using equation (14). Finally, the velocity components at tn+1 is calculated from equation (15) and the

face-normal velocity is also obtained as

Un+1 = U∗ − c1∆t
∂p

∂n

n+1

. (17)

The intermediate face-normal velocity U∗ is obtained by

U∗ = ũ∗ini, (18)
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where ũi denotes interpolation from adjacent cell-center velocities. We remark that approximation (17)

satisfies the divergence-free condition and it ensures a strong coupling between pressure and velocity.

4. Finite-volume method

A second-order unstructured finite-volume method is chosen to discretize equations (14)-(17). The 3D

domain Ω is discretized into triangular elements in the horizontal direction and into layers in the vertical

direction. As a consequence the domain is discretized into prisms denoted by V . Thus, each prism-shaped

control volume has five faces (k = 1, 5): three with vertical orientation (lateral faces) and two with horizontal

orientation (top and bottom face). A schematic plot of a control volume and its neighbors are shown in

Fig. 1 (b) and (c).

4.1. Discretization

In order to apply a finite-volume method, the integral form of the governing equations is considered. We

integrate over a control volume V and apply the divergence theorem (assuming sufficient regularity). The

integral form of the convection-diffusion term in equation (14) is given by

∫

V

rhs dV =

∮

S

(
νT
∂ui
∂xj
− uiuj

)
njdS =

∮

S

(
νT
∂ui
∂n
− uiU

)
dS,

where S denotes the cell face and n is the outward-normal unit vector on each face. Last equation was

obtained by substituting the face-normal velocity definition (11). Here, ∂/∂n represents the outward-normal

derivative on the face shared by two elements. The pressure Poisson equation (16) is computed in a similar

manner with ∮

S

∂p

∂n

n+ 1
2

dS =
1

c1∆t

∮

S

U∗dS,

Note that up to this point we have not introduced any approximation in space. A scheme of second order

of accuracy is obtained by applying the mid-point rule integral approximation for the prism control volume

and each of its five faces. Thus, a second-order approximation for the cell-center velocities is given by

u∗i = uni +
∆t

mV

5∑

k=1

mSk

[
c1r

n
f + c2r

n−1
f

]
k

+ c2

5∑

k=1

mSk

[
∂p

∂n

n− 1
2

f

]

k

, (19)

where rf = νT
∂ui
∂n f
− (ui)fUf and subscript f indicates that a variable is evaluated at the mid-point on each

face Sk (k = 1, 5). mV is the volume of the prism element, and mS is the area of each face. The Poisson

equation reduces to a second-order approximation of the form

5∑

k=1

mSk

[
∂p

∂n

n+ 1
2

f

]

k

=
1

c1∆t

5∑

k=1

mSk(U∗f )k. (20)
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After the pressure is calculated and using equation (15), the new velocity at the cell-center is given by

un+1
i = u∗i − c1

∆t

mV

5∑

k=1

mSk

(
p
n+ 1

2

f ni

)
k
, (21)

where the face-normal pressure pf is interpolated from the cell-centers. Finally, the face-normal velocity

Un+1
f is calculated using equation (17) and the face-normal derivative of the pressure is given as follows

Un+1
f = U∗f −∆t

∂p

∂n

n+1

f
. (22)

The intermediate face-normal velocity U∗f is obtained using equation (18) as follows

U∗f = (ui)
∗
fni. (23)

We remark that the divergence of the intermediate velocity is only employed for the right-hand side of

Poisson equation (20). Furthermore, it is approximated using the interpolation of the known velocity values

at the cell-centers u∗i by
∫

V

∂u∗i
∂xi

dV ≈
5∑

k=1

mSk [(ui)
∗
fni]k,

This is an important difference with the staggered grid formulations where the divergence is calulated from

previous face-normal velocities [19].

The proposed finite-volume formulation is completed in performing interpolations at the mid-point on

each face, using the equations (19)-(23). The values φf and ∂φ
∂n f

have to be evaluated by using adjacent

values, where φ is an arbitrary flow variable. In this paper, both φf and ∂φ
∂n f

are obtained by using the

values at neighboring cell centers and vertices, as shown in Fig. 1 (b) and (c).

4.2. Interpolations

In this paper, vertical face interpolations are calculated as a two-dimensional formulation because all the

horizontal cell-centers are located at the same height, see Fig. 1. We denote xI and xJ as the cell-centers of

the two elements sharing a face. The intersection point between the line connecting these two cell centers

and the shared face is denoted by xO, and the mid-point on each face is denoted by xf , as shown in Fig. 2.

Note that for unstructured grids the point xO does not necessarily coincide with the face center xf in the

horizontal direction.

4.2.1. Values at the cell face

The velocity components (ui)f (i = 1, 2, 3) and pressure p at the mid-point of the faces may be approx-

imated in several ways. In this paper, any flow variable φf is obtained using a second-order interpolation

equivalent to a central difference scheme as follows

φf = αφI + (1− α)φJ +
1

2
(∇φI +∇φJ) · ε, (24)
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where α is the distance from the normalized distance from the xJ to the intersection point xO (α =

‖xJ − xO‖/‖xJ − xI‖) and ε is the vector from the intersection point of the cell-centers and the mid-point

of the face (ε = xO − xf ). The gradient at any cell center is calculated using the least squares method

presented by Davidson [15]. Note that ε = 0 at the top and bottom faces because xO and xf are located at

the same point.

4.2.2. Normal derivative at the cell face

The outward-normal derivatives on the cell face at the mid-points are approximated as proposed by Kim

and Choi [9]
∂φ

∂n f
=
φJ − φI
δIJ

+
φv2
− φv1

δv1v2

tan(θ), (25)

where δIJ is the sum of the normal distances from xI and xJ to the cell face; δv1v2
is the distance from the

vertex xv1
to xv2

; θ is the angle between the normal vector n and the line containing xI and xJ , as shown

in Fig. 2(b). Equation (25) is composed of two terms: the first one corresponds to the principal diffusion

and the second one corresponds to the cross diffusion. Note that for orthogonal grids, the cross diffusion

is equal to zero as θ = 0. The value of φv at any vertex is obtained by averaging over all surrounding cell

centers as follows

φv =

∑
m
ωmφm
∑
m
ωm

, (26)

where ωm = 1/Lm is a weighting value, where Lm is the distance between the vertex and the cell center.

The cross diffusion term ensures second-order of accuracy for non-orthogonal unstructured grids with

moderate skewness. However, for the problems with high skewness grids, such as a real estuary, this approx-

imation needs to be improved to reach high accuracy. Xue and Barton [22] proposed a new interpolation

using the values at a shifted position from the cell center, as shown in Fig. 2(c). Two projected points

(xI′ and xJ′) parallel to the connecting line are constructed by moving the corresponding cell centers along

the distance vector ε. The values of the projected points are obtained by a linear interpolation. Thus, the

normal derivative on the face at the mid-point is approximated as follows

∂φ

∂n f
=

(φJ +∇φJ · ε)− (φI +∇φI · ε)

δIJ
+
φv2 − φv1

δv1v2

tan(θ). (27)

In the top and bottom face, ε = 0 and θ = 0 in equations (25) and (27) as xO = xf .

4.3. Pressure linear system and solvers

The intermediate and final velocity field can be explicitly calculated using the proposed PM. The finite-

volume discretization for the Poisson equation results in a linear system. Substitution of the interpolation
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(25) into (20) yields the discrete Poisson equation for the nonhydrostatic pressure field as follows

5∑

k=1

mSk

δIJk
(pJk − pI) +

3∑

k=1

mSk tan(θk)

(δv1v2
)k

(pv2
− pv1

)k =
1

c1∆t

5∑

k=1

mSk(U∗f )k. (28)

The resulting linear system is given by

A−→p +
−→
bv = −→ru, (29)

where the vector −→p consists of the total unknown variables pI (I = 1, . . . , Ncell) at the cell-centers in the

3D computational domain; the matrix A contains only the coefficients obtained from the geometric values

and variables at the cell-centers; the vector
−→
bv contains the values related to the vertices; and the vector

−→ru corresponds to the known right-hand side related to the intermediate velocity. The vector
−→
bv depends

linearly on the solution −→p as
−→
bv = B−→p , where B is the matrix related to the vertex interpolation and

normal-face derivative approximations.

Linear system (29) yields a non-symmetric, sparse matrix in which the bandwidth is a strong function

of the ordering of the unstructured cells. In this work, the numerical solutions are performed using the

Bi-Conjugate Gradient Stabilized (BICGSTAB) method. The performance analysis of this solver is given in

the last section.

4.4. Boundary conditions

Boundary conditions are applied by constructing artificial ghost cells, which are symmetrically opposite

to the physical boundaries. For Dirichlet boundaries, the ghost value is calculated by φghost = 2C − φc,
where C is the exact value given at the boundary. The exact value C is also imposed at the boundary

vertices. For Neumann boundaries, the ghost cells are updated using φghost = φc, while the values on the

boundary vertices are interpolated using only the inner cell-centers. For periodic boundaries, boundary

conditions are imposed on two corresponding cells at the inflow and outflow boundary, with φout ghost = φin

and at the same time φin ghost = φout.

4.5. Numerical Stability

The numerical stability for the present formulation is limited by the explicit discretization of the con-

vection and diffusion terms. In the current study, the Courant-Friedrichs-Lewy (CFL) number is specified

according to the original definition given by Kim and Choi [9]

CFL =
1

2

(
1

mV

5∑

k=1

|(Uf )kmSk |
)

∆t (30)

where the sum is taken over the total number of cell faces in a control volume V .

9
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5. Accuracy of the numerical techniques

The accuracy of the proposed numerical method for incompressible turbulent flows depends a great deal

on the approximation of the normal velocity and the outward-normal derivative on the face as well as the

type of computational grids. In this section, analytical solutions are used to quantify the numerical error

of the proposed numerical techniques. First, the divergence approximation is analyzed in order to study

the triangular C-grid divergence noise issue. Next, the numerical performance of the face-normal derivative

approximation in the diffusion terms is studied for a Poisson problem, and the central scheme for a normal-

face value is tested using a pure advection problem. Finally, the overall accuracy of the method in time and

space is analyzed using the Taylor decaying vortex problem.

The order of accuracy is defined by

order =
log
(
‖·‖N1

/ ‖·‖N2

)

log (N2/N1)
,

where ‖·‖N1
and ‖·‖N2

correspond to norm errors with a resolution associated with grid size N1 and N2

respectively. The error is computed using the L2 and L∞-norm given by

‖e‖2 =

[
1

Ncell

Ncell∑

i=1

e2
i

]1/2

, ‖e‖∞ = max
i=1,Ncell

(ei),

respectively. In these equations, Ncell is the total number of cell-centers and ei = |φnu − φan|, where φnu

and φan are the numerical and analytical variables, respectively.

In the following examples, structured and unstructured grids are used in the horizontal direction for the

numerical simulations. In a structured equilateral grid, all cells are equilateral and have the same size as

shown in Fig. 3 (a). For structured right-angled grid, the domain is firstly divided into N × N uniform

rectangles and then each rectangle is split to two isosceles right-angled triangles as shown in Fig. 3 (b). For

a fully unstructured grid, triangles point in multiple directions and change size. Unstructured grids have

been generated using the free software Blue Kenue developed by the Canadian Hydraulic Centre, National

Research Council (1998). Fig. 3 (c) shows an example of these three types of grid.

5.1. Divergence noise analysis

For a triangular grid, the divergence approximation by the face-normal velocities may produce high-

frequency checkerboard error patterns. These errors can significantly affect the general solution of the

problem [23, 24]. In this example, we first carry out the analysis of the divergence approximation and later

the effect in general approximation. To focus on the triangular geometry, the simulations are performed

only in 2D along a horizontal plane.

10
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For a generic vector field u, we denote the cell average and discrete divergence operator over a cell A as

follows

∇ · u =
1

mA

∫

A

∂ui
∂xi

ds =
1

mA

3∑

j=1

[∫

L

(uini)dl

]

j

, (31)

and

div(u) =
1

mA

3∑

j=1

[∆l (ui)fni]j =
1

mA

3∑

j=1

[∆l Uf ]j , (32)

respectively, where mA stands for the area of the cell and ∆l is the length of the triangle edge L. As

presented by Wan et al. [23], a truncation error analysis can be performed to show the checkerboard error

patterns of the divergence operator on equilateral triangular grids (∆l = ∆x). It can be proved that div(u)

is a first-order approximation of both ∇ · u and (∇·u)c, where the subscript ()c denotes the value evaluated

at the triangle center. More importantly, the first-order error term changes sign from an upward-pointing

triangle to a downward-pointing one, which results in a checkerboard error pattern.

The order and checkerboard behavior are studied by performing different numerical simulations with the

vector field

u =
1

2
√

2π

(√
105

2
cos(2x) cos2(y) sin(y), −

√
15 cos(x) cos(y) sin(y)

)
,

and the analytic divergence solution

∇ · u = − 1

2
√

2π

(√
105 sin(2x) cos2(y) sin(y) +

√
15 cos(x) cos(2y)

)
.

over the computational domain [0, 2π]× [−π2 , π2 ]. The discrete divergence, div(u), is calculated by evaluating

the velocity field at the cell centers and then approximating Uf by the central interpolation (24). The

numerical solution is compared against the divergence at cell-centers, (∇ · u)c. For this case, the numerical

error analysis confirms that the divergence operator (32) yields a first-order checkerboard error pattern, as

shown in Fig. 4 (a), (c) and Table 1. The results are nearly identical to the ones presented by Wan et al.

[23]. It is expected as the central interpolation in equilateral grids is reduced to an average value between

the two surrounding neighbors.

Table 1: Convergence analysis of the divergence term at the cell-centers and vertices.
Grid div(u) F [div(u)]

N ∆l L∞-norm Order L2-norm Order L∞-norm Order L2-norm Order
16 0.418 2.71× 10−1 — 1.08× 10−1 — 2.90× 10−1 — 1.22× 10−1 —
32 0.202 1.27× 10−1 1.09 5.03× 10−2 1.10 7.75× 10−2 1.90 3.24× 10−2 1.91
64 0.099 6.11× 10−2 1.06 2.49× 10−2 1.01 1.93× 10−2 2.01 8.19× 10−3 1.98
128 0.049 2.99× 10−2 1.03 1.22× 10−2 1.03 4.77× 10−3 2.02 2.04× 10−3 2.01
256 0.024 1.48× 10−2 1.01 6.09× 10−3 1.00 1.19× 10−3 2.00 5.10× 10−4 2.00

The checkerboard error pattern can be avoided by applying explicit or implicit filtering operations [24]. In

this paper, we improve the divergence operator by using the values located at the vertices. This is equivalent

to a Shapiro first-order implicit nodal filter using node downsampling and upsampling [24]. Smoothed values
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are interpolated back onto cell centers via the Barycentric interpolation, one third of the sum of the vertex

values (filtering technique), as follows

F [div(u)](xc) =
1

3

3∑

j=1

div(u)(xvj). (33)

where the vertex value div(u)(xvj) is calculated by a distance-weighted averaging of the cell-center values

using equation (26). Thus, the stencil will be enlarged to all cells sharing a vertex (13 cell-centers for

equilateral grids). Note that as cell-center velocities are available in the proposed formulation, we do not need

to downsample face-normal velocities onto cell centers with any cell-center velocity reconstruction such as the

filtering techniques proposed by Perot [25]. The numerical solution and errors using the filtering technique

are shown in Fig. 4 (b) and (d). Note that all checkerboard errors are already eliminated. Furthermore, the

method is now second-order accurate as shown in Table 1. Numerical results also show that the discrete

divergence at the vertices given by div(u)(xv) is already a second-order approximation of (∇ · u)v.

The divergence errors due to the use of unstructured grids present similar checkerboard behavior as

compared with the structured grid, see Fig. 5 (a). In particular, the checkerboard patterns are more distinct

in regions with distortion. However, the employment of filter technique (33) eliminates the divergence noise

even for unstructured grids, as shown in Fig. 5 (b). Numerical results are also more accurate using this

filter. Note that the largest errors are concentrated close to the boundary; it is expected as less number of

cell-centers are available for the vertex calculation.

In a classic finite volume C-grid staggered approach, vertical velocities are constructed using cell-center

horizontal divergences [19, 20]. Consequently, divergence errors are projected onto the vertical velocity.

However, in the MIM, the vertical velocity is calculated using the gradient of the known pressure as described

in equations (21) and (22). The checkerboard error pattern enters the proposed nonhydrostatic model system

by the discrete Poisson equation for the nonhydrostatic pressure (20) and by the velocity convective fluxes

in equation (19). However, the divergence term is used explicitly only in computing of the right-hand side

of the Poisson equation.

In order to show the possible effect of the divergence errors in the pressure and velocity field approxi-

mation, we consider the two-dimensional decaying Taylor vortex test case. The equations are solved on the

square domain [−1, 1]× [−1, 1] which exact velocity field and pressure are given by

u = (− cos(πx) sin(πy), sin(πx) cos(πy)) e−
2π2t
Re ,

p = − 1
4 (cos(2πx) + cos(2πy)) e−

4π2t
Re .

(34)

In this test, starting from t = 0 and a constant time step is used ∆t = 0.001. An intermediate velocity field

is obtained by solving equation (19). In this case, the right-hand side of the convection-diffusion equation is

updated using the variables at time tn. Then, the divergence of this velocity is calculated with the filtering
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technique or not. Next, the pressure is calculated using the Poisson equation (20). Finally, the new velocity

is update by equation (21).

Numerical solution of the divergence of the intermediate velocity field, of the pressure and velocity

magnitude for the 2D Taylor Vortex problem are shown in Fig 6. If the filter is not applied, then a

checkerboard error pattern is observed in the divergence approximation which is also projected to the

numerical solution of the pressure. On the other hand, the filtered solution eliminates the checkerboard

pattern and decreases the magnitude of the horizontal divergence field. Note that the largest errors are

located close to the boundary as previously discussed. However, the numerical solution of the velocity field

for both calculations looks alike. In fact the maximum difference between them is 2.85×10−3. The reduction

in the noise can be related to the method used to calculate the pressure gradient in the final step. More

details about the accuracy of the Taylor vortex problem will be investigated in Section 5.4.

Although, the proposed filtering strategy can be computed in the pressure step, it cannot directly be

employed in the nonlinear convection terms (velocity field computations are combined with the scalar in-

terpolation). In this case, an alternative is to filter the velocity components in hopes that the resultant

approximation adequately smooths the divergence field [24]. It is important to note that the face-normal

velocity Un applied in the convective fluxes satisfies the divergence free condition,
∫
L
Undl = 0 because it is

obtained from equation (22) rather than interpolation from adjacent cell-center velocities ui. This property

may help to the noise reduction of the discrete divergence calculation. Further discussions in this direction

will be included in a future paper.

5.2. Poisson problem

Now, the numerical methods for the normal face derivative approximations (25) are tested using the

pressure Poisson equation
∂

∂xi

(
∂φ

∂xi

)
= f, (35)

where f is a given right-hand side term and Ω is the rectangular domain [−1, 1] × [−1, 1] × [−1, 1]. The

right-hand side function and its corresponding analytical solution are given by

f = −3

4
π2 sin

(π
2
x
)

sin
(π

2
y
)

sin
(π

2
z
)
, (36)

and

φ = sin
(π

2
x
)

sin
(π

2
y
)

sin
(π

2
z
)
, (37)

respectively. Dirichlet boundary conditions are imposed at all boundaries. This example examines the

method’s capacity for simulating problems with different grid type and resolution. The simulations have

been performed using the BICGSTAB solver with a tolerance value of 10−5. At the end of this paper, we

study the efficiency of our numerical simulations with iterations and CPU time.
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Three types of grid are used in example (36)-(37), as illustrated in Fig. 3. Table 2 shows the number of

vertices and cell-centers used to discretize the domain [−1, 1]× [−1, 1]. Here, ∆x is the length of the triangle

in the x-direction. In the case of the unstructured grid, it was generated by taking a mean triangle edge

close to ∆x. The triangles in the horizontal plane are extended in the form of prism for the 3D domain in

Nz layers.

Table 2: Size of the structured and unstructured grids used in numerical experiments for the horizontal computational domain.
Grid Structured equilateral Structured right-angled Unstructured

N ∆x Vertices Cells Vertices Cells Vertices Cells
16 1.33× 10−1 295 522 256 450 256 450
32 6.45× 10−2 1166 2196 1024 1922 1188 2234
64 3.18× 10−2 4636 9000 4096 7938 4752 9234
128 1.56× 10−2 18743 36938 16384 32258 18355 36121
256 7.81× 10−3 75373 149646 65536 130050 72351 143473

The three-dimensional numerical solution and absolute errors at z = 0.5 for equilateral and unstructured

grids are shown in Fig. 7 using N = 32. The results demonstrates that the proposed method approximates

accurately the exact solution, as expected. Although, the largest errors are located close to the highest

values of the forcing function for both types of grids, the absolute error behaves different in both cases. The

errors are smoothly distributed for structured grids. However for an unstructured grid, triangles change

size and clusters of five, six, or seven cells share a vertex, making the errors larger in some regions than

others. The full convergence analysis of the numerical solution of the Poisson equation using structured

grids is shown in Table 3. The errors are measured in the Euclidean and maximum norm at all grid points

for N = Nx = Nz. In all the cases, the results show a good approximation of the numerical solution and

the convergence analysis indicates that the method is of second order of accuracy. Note that the errors and

order of accuracy of both structural grids are almost the same.

Table 3: Convergence analysis for the 3D pressure Poisson test case using structured grids.
Structured equilateral grid Structured right-angled grid

N L∞-norm Order L2-norm Order L∞-norm Order L2-norm Order
16 3.82×10−3 — 1.08×10−3 — 3.63×10−3 — 1.12×10−3 —
32 1.04×10−3 1.87 2.55×10−4 2.08 1.00×10−3 1.86 2.61×10−4 2.10
64 2.74×10−4 1.92 6.17×10−5 2.04 2.69×10−4 1.89 6.30×10−5 2.05
128 7.09×10−5 1.95 1.53×10−5 2.01 7.01×10−5 1.94 1.55×10−5 2.02

The convergence analysis for unstructured grids is shown in Table 4. This table also shows the influence

of the cross diffusion term in discretizing the Poisson equation. The analysis of this term is not necessary

for structured grids as the intersection point of the cell-centers and the mid-point of the face are the same

(xO = xf ). A loss of accuracy is immediately observed without the cross diffusion. Furthermore, norm errors

can be larger using a finer grid, as the numerical result for N = 64 demonstrates. More accurate results

are obtained using the approximation including the cross diffusion, as expected. The order of accuracy is
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second-order using the L2-norm as it measures a global average error. However, the order of accuracy using

the maximum norm decreases as finer grids are used. It is because the unstructured grid is not homogeneous;

thus the error is directly related to the particular distribution and the size of the elements in the unstructured

grid.

Table 4: Convergence analysis for the 3D pressure Poisson equation using unstructured grids.
Without cross diffusion With cross diffusion

N L∞-norm L2-norm L∞-norm Order L2-norm Order
16 2.63×10−2 5.38×10−3 4.90×10−3 — 1.21×10−3 —
32 7.55×10−3 8.41×10−4 1.12×10−3 2.13 2.63×10−4 2.20
64 4.88×10−3 1.40×10−3 3.00×10−4 1.90 6.44×10−5 2.03
128 9.76×10−3 2.38×10−3 1.01×10−4 1.57 1.68×10−5 1.94

The approximations in the vertical direction are not calculated in the same way as the horizontal one.

Thus, the magnitude of the errors should be different in both directions. Fig. 8 shows the norm errors for

structured and unstructured horizontal grids as the vertical resolution (Nz) is increased. The hydrostatic

solver perform well for a wide range of the grid aspect ratio R = ∆x/∆z values. Note that for the structured

equilateral grid, Nz should be the double of Nx to obtain the minimum error for the 3D Poisson problem.

This can be explained as the approximation of the outward-normal derivative is based on the distance from

the cell-center to the face cell: 0.5∆z at the top and bottom faces, and 1
3

√
3∆x
2 ≈ 0.28∆x at the faces in

the horizontal direction. However, Nz = Nx already gives a precise solution as previously shown in Table 3.

In the case of unstructured grids, the horizontal approximations dominates the global accuracy for values

∆x/∆z ≈ 1, as shown in Fig. 8.

It is important to remark that the numerical solution is still accurate for the grid aspect ratio R � 1.

For example, Fig. 9 shows the numerical solution with a different uniform vertical resolution containing

Nz = 32, 128 and 512 points, such that R varies from 2 to 34. In order to better understand these results,

let us consider a grid of equilateral triangles and a homogeneous discretization in the z−direction. In this

case, the Poisson equation (28) is reduced to

∆z√
3/3

3∑

k=1

(pJk − pI) +A

(
pJT − pI

∆z

)
+A

(
pJB − pI

∆z

)
= fI , (38)

where I and J refers to the cell center and neighbor cells, respectively, and fI is the corresponding dis-

cretization of the right-hand side of the Poisson equation. Substituting the value of the cell area, the system

is equivalent to

pI + aH (pJ1 + pJ2 + pJ3) + aV (pJT + pJB ) =
1

a0
f, (39)

where

aH = −
(

1

3 + 1
2R

2

)
, aV = −1

2

( 1
2R

2

3 + 1
2R

2

)
, a0 = −

√
3∆z

(
3 +

1

2
R2

)
, (40)
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Note that the resulting matrix is diagonally dominant and the horizontal coefficients are smaller than those

of the vertical by an amount of 1
4R

2. Moreover, if R → ∞ (corresponding to the hydrostatic limit), then

aH → 0 and aV → − 1
2 . It means that equation (39) degenerates to a tridiagonal linear system; however,

the condition number of the corresponding matrix becomes larger. Table 5 shows the condition number1 of

the 3D global matrix varying the number of layers in the vertical direction. The missing values for Nx = 16

are due to a computational restriction to storage the full matrix. Note that both aH and aV agree with the

coefficients in equation (40). More important, the solver still converges to the exact solution for structured

and unstructured grids even the condition number on the Poisson problem degrades, as shown in Fig. 8 and

Fig. 9.

Table 5: Condition number analysis for the 3D pressure Poisson equation using equilateral grids and varying the number of
layers in the vertical direction.

∆x = 0.285 (Nx = 8) ∆x = 0.133 (Nx = 16)

Nz ∆x/∆z aH aV Con3D ∆x/∆z aH aV Con3D

8 1.00 -2.85×10−1 -0.071 86.34 0.46 -3.21×10−1 -0.017 354.10
16 2.14 -1.88×10−1 -0.216 126.13 1.00 -2.85×10−1 -0.071 385.00
32 4.42 -7.80×10−2 -0.382 299.13 2.06 -1.94×10−1 -0.207 554.70
64 9.00 -2.29×10−2 -0.465 1007.06 4.20 -8.46×10−2 -0.373 1265.62
128 18.14 -5.96×10−3 -0.491 3860.59 8.46 -2.57×10−2 -0.461 —
256 36.42 -1.50×10−3 -0.497 15362.49 17.00 -6.77×10−3 -0.489 —

5.3. Advection problem

This test aims to check the performance of the proposed central scheme (24) as well as the type of grid

used for a pure advection problem. The governing equation is given by

∂φ

∂t
+
∂(ujφ)

∂xj
= 0, (41)

where φ is the unknown variable, and uj is a prescribed flow field. For all of the test simulations, the

computational domain is set as [−1, 1]× [−1, 1]× [−1, 1]. Dirichlet boundary conditions are imposed at all

boundaries. The numerical performance is quantified for the solid-body cosine bell example. The initial

condition and velocity field are given by

φ1(x) =





cos2(2πr), r ≤ 1
4 ,

0, r > 1
4 ,

(42)

and

u =
2π√

3
(z − y, x− z, y − x) , (43)

respectively, where r = ‖x − xc‖ and xc =
(
− 1

2
√

2
, 1

2
√

2
,− 1

2
√

2

)
. A full revolution is completed at t = 1.0.

The computational domain is divided into different grid resolutions (Nx = Ny) in the horizontal direction

1The condition number was estimated using the condest function of the MATLAB sofware
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and Nz vertical layers. The total number of elements (N = Nx = Ny = Nz) are ranging from 65,536

(N = 32) to 33,554,432 (N = 256) using structured right-angled grids. A constant time step, ∆t = 10−4, is

used in all simulations in this section.

The numerical solution at different time stages are shown in Fig. 10. The grid resolution corresponds to

N = 128 using right-angled triangles. Note that the scheme recovers the shape of the sphere when it moves

around the domain. Details about the absolute errors after one revolution in coarse mesh at z = −1/(2
√

2)

are also given in Fig. 10. Note that structured and unstructured grids have the same error behavior. Table

6 shows the accuracy using L∞- and L2-norm error for the right-angled grids. The central scheme exhibits

a very good performance in terms of absolute error. Results shows that the numerical errors become closer

to a second order of accuracy by increasing the grid resolution. The peak values are also shown in Table

6; they are calculated based on the vertex values resulting from the interpolation of surrounding cell-center

values. The peak values are accurately recovered in all cases. Note that the proposed numerical method

still exhibits a high peak value even with a low grid resolution. By increasing the grid resolution, the peak

value is closer to the exact one.

Table 6: Convergence analysis for the 3D cosine bell test case using structured grids.
Right-angled grid

L∞-norm L2-norm Peak value

N Error Order Error Order Numerical Exact Absolute error
32 7.21×10−1 — 2.69×10−2 — 0.45942 0.99980 5.40×10−1

64 4.15×10−1 0.80 1.34×10−2 1.01 0.88425 0.98435 1.00×10−1

128 1.46×10−1 1.51 4.32×10−3 1.63 0.99561 0.99993 4.32×10−3

256 3.96×10−2 1.88 1.35×10−3 1.68 0.99684 0.99870 1.86×10−3

For non-quasi uniform unstructured grids, the numerical approximation using the central scheme is more

sensitive to the grid deformations in terms of size and shape. This problem can be better understood if

we focus only on the two-dimensional horizontal plane where the unstructured formulation is applied. As

a demonstration, we simulate the 2D cosine bell example, the center location of which is xc = (− 1
2 , 0) and

the velocity field is given by u = (−2πy, 2πx). The mesh and the numerical solution for N = 32, 64 and

128 are illustrated in Fig. 11. As expected, the proposed techniques can simulate the cosine bell on general

unstructured grids. Table 7 shows the errors after one revolution using the L∞- and L2-norm, and the peak

values for different grid resolutions. Note that the errors are small and peak values are recovered. Although

peak values decreases, they keep close to one as the simulations go forward in time, see Fig. 12.

Table 7: Convergence analysis for the 2D cosine bell test case using unstructured grids.
Unstructured grid Peak values

N L∞-norm L2-norm Numerical Exact Absolute error
32 5.47×10−1 7.47×10−2 0.70260 0.96758 2.64×10−1

64 2.95×10−1 3.57×10−2 0.91102 0.99295 8.15×10−2

128 7.17×10−1 7.16×10−3 0.95130 0.99829 4.69×10−2
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For unstructured grids, we remark that the largest errors of numerical solutions are located in regions

where cell sizes rapidly change. If this change in size is too large or the number of cells sharing a vertex

varies a lot, then the solution may become unstable. In this paper, besides structured grids, unstructured

grids are selected so that smooth transitions between cells are preserved.

Finally, although the central scheme accurately solves the cosine bell example, the scheme is restricted to

regular solutions. Discontinuous problems may present spurious oscillations near sharp gradients. Instead

of the central scheme, discontinuous problems can be solved by the introduction of a second-order upwind

scheme with a flux-limiter technique as described in [26, 27].

5.4. Taylor vortex problem

Finally, the decaying Taylor vortex test case aims to investigate the overall temporal and spatial accuracy

of the proposed method in solving the N-S equations. The temporal and spacial convergence analysis is

initially studied using the analytical solution given by equation (44) on the same computational domain. In

this way, we can only focus in the performance of the horizontal approximation using triangular grids. The

Reynolds number for the 2D simulation is set as Re = 20. To check the spatial accuracy, different grids are

used ranging from ∆x = 0.1 (N = 20) to 0.0083 (N = 240) while a fixed time step ∆t = 0.015 is used for

all simulations. To check the temporal accuracy, five different time steps are used, ranging from ∆t = 0.015

to 0.1, but keeping the mesh size constant. Here, the grid corresponding to N = 240 is used to minimize

the spatial error. Only five vertical layers are used in the vertical direction. The numerical velocity field is

compared with the analytical solution at t = 0.5. The numerical results show that the proposed numerical

scheme has clearly the second-order accuracy for both spatial and temporal discretization, as shown in

Fig. 13.

The N-S equations are also studied on the cubic domain [0, 2π] × [0, 2π] × [0, 2π] using the analytical

solution

u = − 1
2 (
√

3 cos(πx) sin(πy) sin(πz) + sin(πx) cos(πy) cos(πz))e−
3π2t
Re ,

v = − 1
2 (
√

3 sin(πx) cos(πy) sin(πz)− cos(πx) sin(πy) cos(πz))e−
3π2t
Re ,

w = cos(πx) cos(πy) sin(πz)e−
3π2t
Re ,

p = − 1
2

(
u2 + v2 + w2

)
.

(44)

This solution, firstly derived in [28], is a 3D generalization of the 2D Taylor vortex problem presented

before. Initial conditions are based on the exact solution and periodic boundary conditions are imposed

at all the boundaries. We solve the 3D Navier-Stokes equations with Re = 1600. The evolution of the

iso-surface of the z-component of vortices for a grid resolution of N = 128 and ∆t = 0.001 is shown in

Fig. 14. The rectangular domains use a structured right-angled grid of resolution N and N sub-divisions of

the z−direction. As expected, the numerical solution approximates quite well the velocity field. Similarly
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to the decaying homogeneous turbulence, the flow transits to turbulence with the creation of small scales

followed by a decay phase.

6. Validation test cases

In this section, the proposed model is tested with several benchmark problems using experimental solu-

tions or numerical simulations from other authors to quantify the numerical error.

6.1. Backward-facing step flow

For the first test case, we select the flow behind a backward-facing step in a channel. It is a widely

used benchmark problem to examine the accuracy of numerical methods for DNS. In this case, the 2D

computational domain is set as [0, 30h] × [0, 2h], where h = 0.5 is the step height, so the expansion ratio

is 1 : 2. A grid resolution of 600 × 50 triangles is used in this example. A fully developed parabolic

velocity profile u = 24y(0.5 − y) and v = 0 is prescribed at the inlet (x = 0) above the step. No-slip

boundary conditions are imposed along the step and the channel walls, and Neumann boundary conditions

are used at the outflow boundary. Calculations are performed at Re = 100, 200, 400, 600, and 800, where

Re = Uavg(2h)/ and Uavg is the bulk velocity. The time step is fixed at ∆t = 0.01.

Fig. 15 shows the calculated reattachment length as a function of the Reynolds number. The numerical

results are compared with previous results presented by Armaly et al. [29], Kim and Moin [30], Lee and

Mateescu [31] and Williams and Baker [32]. Note that the solution of the proposed numerical formulation are

in good agreement with the computational results of Williams and Baker [32] for all the Reynolds numbers

calculated. However, at Re > 400, a difference exists between the computational and experimental results.

This difference results from the three-dimensionality of the flow as Armaly et al. [29] pointed out. At

Re > 400, a secondary separation bubble exists on the upper wall (see Fig. 16).

6.2. Turbulent channel flow

In order to further validate the proposed model, particularly its behavior in simulating turbulent flows,

test cases of open channel flow is done using DNS and LES. This test case represents a great interest

to the engineering and scientist community, as most applications can be simplified into either circular or

rectangular in cross section. This can also serve as the first step to model real rivers and estuarine flows.

Periodic boundary condition is applied in the streamwise and spanwise directions and a constant body force

fx = 1.0 is used to drive the flow. No-slip boundary condition is used on bottom and free-slip boundary on

top. The initial velocity fields are set as random perturbation field.

19

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



6.2.1. DNS of turbulent channel flow

The Reynolds number based on the friction velocity (Reτ = uτh/ν) is set as 180 to match the Kim et

al. [30], where h is half channel depth. The computational domain is set as [0, 6h] × [0, 4h] × [0, 2h] in x,

y, z direction, respectively. The horizontal plane is discretized on structured triangle grid of 128× 84 with

128 irregular vertical layers. The values of the grid spacing in terms of wall units is ∆x+ = 16,∆y+ = 11

and ∆z+
max = 4.2. The center of the first layer grids is located at z+ ≈ 0.7, which is within the laminar

boundary layer. The time step is fixed at ∆t = 3 × 10−4 to keep the Courant number smaller than 1.0

during the whole simulation. The plane-averaged turbulence statistics values are gathered from t+ = 70 to

t+ = 100.

The mean velocity profile at different vertical layers is shown in Fig. 17 (a) along with the reference

DNS data of Kim et al. [30]. In general, the current result exhibits good capability in capturing the mean

flow field, with the first point sits in the viscous sub-layer. In the buffer region, small discrepancy with the

reference data can be observed in this region with a smaller mean velocity. In the region (z+ > 20), the

computed results closely follow the log-law, denoting a fully developed turbulent flow. Clearly, DNS results

show the capability of the model in simulating turbulence. Using the iso-surface Q-criterion of instantaneous

flow, Fig. 17 (b) shows the tube-like vertical structures, which are randomly distributed over the turbulent

flow field.

6.2.2. LES of turbulent channel flow

Large eddy simulation is done at the friction Reynolds number as 395. Computations have been per-

formed using the constant coefficient Smagorinsky sub-grid scale model (Cs = 0.1). The computational

domain is [0, 2πh]× [0, πh]× [0, 2h] in x, y, z direction and discretized by two computational grids N = 64

and N = 96, respectively. Vertically, a normal irregular grid is given by a hyperbolic-tangent type stretching

function:

z(j) =
tanh

(
(2.25

(
2j
N − 1

))

tanh(2.25)
, j = 0, 1, . . . , N (45)

The grid spaces for coarse mesh are ∆x+ = 38, ∆y+ = 19 and the first mesh point away from the wall is at

z+ ≈ 1.4 and ∆z+
max = 28.2; while for fine mesh, the grid spaces are ∆x+ = 16, ∆y+ = 13, ∆z+

min = 0.86,

∆z+
max = 18.92. The time step is ∆t = 5 × 10−4 and the plane-averaged turbulence statistics values are

gathered from t+ = 60 to t+ = 80.

Jarrin [33] and Okong’o et al. [34] are chosen as references, in which LES has been used in an unstructured

grid. Fig. 18 shows the planar average of time-averaged velocity, normalized by the friction velocity. The

experimental log-law from Eckelmann [35] is u+ = 2.65 In(z+) + 5.9 for a nearby friction Reynolds number

cases. Obviously, LES result in this paper using coarse mesh has excellent agreement with experimental

data of Eckelmann [35] and numerical data from Okong’o et al. and Jarrin. Using fine mesh, LES result

is close to numerical results of Jarrin [33] with the same mesh, the predicted velocities from both are very
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slightly higher than the log law u+ = 2.5 In(z+) + 5.5 given by Kim et al. [30] using DNS. A discrepancy of

about 6% between DNS and Experimental results from Eckelmann [35] has been observed. The explanation

about this discrepancy can be found in Kim et al. [30].

The computed streamwise turbulent intensity (urms, vrms, wrms, where the subscript rms stands for root

mean squared) and Reynolds stress using two meshes are shown in Fig. 19. The tendency of current results is

in good agreement with the reference data, with a very slight difference of the turbulent intensity, compared

with the references in streamwise direction. Results in the current study exhibit increased turbulence

generation in the buffer region, which leads to a higher turbulence intensity and a higher mean velocity

profile. Using the iso-surface Q-criterion of instantaneous flow in the lower half channel, Fig. 20 shows

the hairpin structures, which are randomly distributed over the turbulent flow field and an instantaneous

velocity profile in the full channel.

6.3. Lid-driven cavity flow

Many researchers have investigated the lid-driven cavity flow test-case using either simulations or exper-

iments since the work by Ghia et al. [36]. The typical computational domain for this problem is a cubic

domain. On the top, a uniform constant horizontal velocity is imposed, serving as the moving lid that drives

the flow. The rest are set as no-slip boundaries. Two sets of boundary conditions are proposed for this

problem: first, periodic boundary condition in the spanwise (y) direction, representing a 2D problem [37];

and second wall boundary condition in the spanwise (y) direction, representing a fully 3D problem. Here,

simulations are conducted in low and moderate Reynolds number (Re = 100, 400, 1000) using DNS or LES

as Bouffanais et al. [37]. For low Reynolds number cases (Re = 100, 400), the domain is discretized using a

structured right-angled grid resolution of Nx = 32 and Nz = 64 uniform vertical layers. A refined mesh in

the corner in the x− y plane is used for Re = 1000 to capture the secondary vortex. Uniform vertical layers

are used for all these tests.

6.3.1. Low Reynolds number

The velocity profiles at the horizontal and vertical midsections for both 2D and 3D problem at low

Reynolds numbers are shown in Fig. 21 and Fig. 22. The results of Ghia et al. [36] with fine grid configuration

is plotted for comparison. For 2D simulation, fair agreement with the reference data is observed. Close to

the top boundary, the gradient of the streamwise velocity is relatively small, which means a very weak shear

stress here. As the flow moves close to the center, the streamwise velocity drops rapidly, indicating the

presence of a vortex structure and reverse pressure gradient. Close to the bottom wall, a nearly parabolic

distribution of the streamwise velocity is observed, implying that the shear stress is the dominating factor

to sustain this velocity field. For the vertical midsection velocity distribution, a nearly symmetry profile and

mild velocity gradient are observed from the left wall to the right wall, indicating the vertical midsection is
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not greatly disturbed by the vortex structure at the top but mostly affected by the confinement of the side

walls.

For 3D simulation, as no direct reference data is available, another finite-volume method based code

CgLES [38, 39] was applied for validation at Re = 400. The simulations by CgLES are run under the same

geometry and boundary conditions, but with much finer grid resolution (N = 256). The results obtained

from our code and the reference code are almost identical and are different from the 2D results, which means

that the boundary wall affects the flow field and makes the problem fully three-dimensional.

6.3.2. Moderate Reynolds number

The steady state on a vertical plane (y = 0.5) at Re = 1000 is presented in Fig. 23. Note that driven

by the top lid, the velocity field forms a rotational pattern with a main vortex slightly shifting into the top

right section and a pair of secondary vortex near the bottom corners. From the top wall to the vortex center,

the streamwise velocity gradually decreases and becomes negative as it moves away from the vortex center

towards the bottom wall. The highest vertical velocity is observed to be near the top-left and top-right

corner, indicating a change of flow direction due to the confinement of the side walls. The velocity profile

agrees very well with the results of Tang et al. [40].

6.4. Flow over a static vertical cylinder

The flows around a circular cylinder is another well-known benchmark problem for validating external

flows [9]. At lower Reynolds number (ReD < 47), where D is the diameter of the cylinder, the flow will form

a stable re-circulation bubble behind the cylinder. If ReD increases up to 200, then a stable vortex shedding

is formed and the flow remains two-dimensional. For ReD > 1000, flows become fully three-dimensional.

6.4.1. Low Reynolds number

Here we present the results of computing flows using the direct numerical simulations at Reynolds

numbers from 50 to 200, where the flow shows 2D properties. The non-dimensional diameter of the cylinder

D = 1. The computational domain is set as [−10, 20] × [−15, 15] × [0, 1.12] in the streamwise, spanwise,

and vertical direction, respectively. A uniform inflow boundary condition is imposed at the inlet with a

non-dimensional unit velocity. In the spanwise direction, free slip boundary condition is used to minimize

the effect of wall boundaries. In the vertical direction, periodic boundary condition is used to mimic an

infinite long cylinder. The computational domain in x − y direction is about 20, 000 triangular elements

(unstructured) with 20 vertical layers. To ensure the first layer points lie within the boundary layer, 157

mesh points are constructed around the cylinder and the distance from the first layer cell centers to the

wall is about δ = 0.01. In the numerical study presented by Qu et al. [41], a similar rectangle size was

employed, but with a closer distance from the wall to the first grid point (δ = 0.005). All the simulations are
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initially performed for 100 time units (D/U) until the solution is statistically stable and then the simulation

is restarted for another 300 time units to gather the time averaged data.

The evolution of the recirculation length as a function of the Reynolds numbers is shown in Fig. 24.

From the time averaged statistics, it can be seen that the length of the recirculation area moves towards

the cylinder body as the Reynolds number increases. Note that the recirculation-area length is close to the

experimental measurements of Nishioka and Sato [42] and the computational results of Park et al.[43]. Last

one considers a fine grid resolution of 641×241 points. A fair agreement is found between the current result

and the reference data.

Results on drag and lift coefficients are shown in Table 8. The values Cd andCl are the drag and lift

coefficients, respectively. It is composed for the mean value and maximum deviation from averaging in time.

Note that the mean drag coefficients decrease as Reynolds number increases, meanwhile the oscillation

amplitude increases continuously. Quantitatively, the proposed method tends to over-predict the values as

compared with other numerical results, especially from Qu et al.[41] data for low Reynolds numbers. This

deviation can be explained due to the difference in the size of computational domain, spatial or temporal

resolution, and boundary conditions.

Table 8: Drag and lift coefficients for unsteady flow past a cylinder at various Reynolds number.
Current results Park et al. [43] Mittal et al. [44] Qu et al. [41]

ReD Cd Cl Cd Cl Cd Cd

50 1.476±0.005 ±0.062 — — 1.416 1.397
60 1.432±0.006 ±0.146 1.39 ±0.1344 — 1.377
80 1.389±0.007 ±0.340 1.35 ±0.2452 — 1.336
100 1.374±0.044 ±0.341 1.33 ±0.3321 1.322 1.317
120 1.361±0.018 ±0.420 1.32 ±0.4103 — 1.306
150 1.357±0.028 ±0.526 — — — 1.305
200 1.347±0.045 ±0.673 — — 1.327 1.316

6.4.2. Moderate Reynolds number

As a demonstration of the capacity of the numerical model, we simulate turbulent flows around a cylinder.

It represents a complex phenomenon in computational fluid dynamics and a challenging test case for all 3D

Navier-Stokes solvers. The phenomenon of horseshoe vortex (HV ) oscillation has been intensively studied

by many researchers both experimentally and computationally, and can serve as a reference for the current

test case.

In this section, large eddy simulation is performed using ReD = 4460 for a systematic study of the 3D

horseshoe vortex and the wake behind the cylinder. The inflow velocity is given by a Poiseuille profile with

the mean value as unit velocity; and the inflow boundary layer thickness is δ/D = 0.59D. In the vertical

boundaries, the bottom is set a no-slip wall and the top is set as a free slip wall. A fine grid resolution in

both horizontal and vertical directions is employed. The number of cells in the horizontal domain is about

41, 202 with 424 points along the cylinder surface. The first row of cells is situated at 0.003D away from the
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cylinder surface, corresponding to 0.75 wall units. In this simulation, 128 vertical layers with finer resolution

close to the bottom are employed to capture the oblique pattern of vortex shedding.

The adverse pressure gradients induced by the cylinder obstruction create downflows in front of the

cylinder, and generate horseshoes system near the bottom and a wake region behind the cylinder. Fig. 25

(a) shows the main coherent structures in an instantaneous flow associated to a HV system on a rigid bed

using the Q criterion. Three non-dimensional vortices (Developing Vortex - DV1, Primary Vortex - PV1,

Corner Vortex - CV1) and two counter-rotating Bottom-Attached Vortices (BAV1 and BAV2) are clearly

observed. As Kirkil et al. [45], this figure illustrates the development of smaller-scale instabilities along

the legs of BAV2. Fig. 25(b) presents 3D streamlines, which clearly illustrates the HV system around the

cylinder. Thanks to the use of a fine-mesh resolution, numerical results can show rotational movements of

HV around themselves.

To demonstrate the behavior of the numerical method during the time evolution, we plot the streamlines

of the flow in front of the cylinder on a vertical plane (at the central axis). Fig. 26 (a) shows 14 time

stages during an oscillating cycle of the HV system. There are three primary clockwise vortices (PV)

close to the bottom, forming a necklace vortex system. As reported by Kirkil and Constantinescu [46], a

typical horseshoe vortex system can consist of six individual vortices and its dynamic depends largely on

the Reynolds number and on the characteristics of the incoming boundary layer. According to the smoke

tunnel study by Baker [47], it is expected that counter-clockwise vortex should exist in the adjoining region

between the cylinder and the bottom to each of the main vortex.

The structure of the computed HV system is also compared with one observed in an experiment conducted

at ReD = 2250 by Lin et al. [48], as illustrated in Fig. 26(b). The HV system is in the breakaway sub-regime.

Note that a nearly perfect agreement on HV system pattern has been obtained. Three main vortexes are

correspondingly: DV1 located at the upstream side from the cylinder, PV1 at the middle, and CV1 at the

closest position to the cylinder. The overall process behaves as follows. First, DV1 is formed upstream

among these three vortices, it originates from the position where the separated boundary layer starts to

evolve, and moves downstream to become a new Primary Vortex (PV2). Subsequently, as the PV1 moves

closer to the juncture of the cylinder, it becomes a new Corner Vortex (CV2). The similar expression of HV

system is due to the similar relative thickness of the incoming boundary layer and similar Reynolds number.

7. Code performance

An efficient solution of the N-S equation is fundamental to the successful development of the proposed

three-dimensional nonhydrostatic model for the turbulent flows. In this paper, we employ an explicit formu-

lation based on the Adams-Bashforth scheme. In terms of performance, an implicit time-stepping approach
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may reduce the simulation time by taking larger values of the time step; however, additional linear system

needs to be solved. In a recent publication [26], the authors have proposed a second-order time implicit

formulation for a free-surface code allowing us to obtain more stable and accurate solutions for large time

step ∆t. However, the most time-consuming part of the code is still the solution of the pressure Poisson

equation (28).

In this section, the convergence of the BICGSTAB method is analyzed. First, the performance of the

Poison problem is tested over a rectangular domain with structured right-angled grids. Next, we investigate

the number of iteration and CPU time of simulations using the test case of lid-driven cavity flow. We report

the results of this section on a standard twenty-core 3.0 GHz Intel Xeon. All of our codes are implemented

in FORTRAN language.

The number of iterations of the BICGSTAB solver as a function of the tolerance value is studied in

Fig. 27 . Structured equilateral and unstructured grids are used with resolutions N = 16, 32 and 64 in all

directions. In the same figure, we plot the L∞-norm error between the numerical and the analytical solution

of the finite volume discretization. Note that the residual of the BICGSTAB solver reaches its minimum

discretization error for a tolerance value close to ε = 0.5∆x2. It means that there in not improvement using

a lower tolerance value. The same behavior is obtained using the L2-norm (results are not shown here).

Thus, the solver takes only few number of iterations to converge to the solution: 19, 48 and 107 iterations

for N = 16, 32 and 64, respectively. These numbers can be lower by taking the solution of the previous

time step in the N-S simulations, as we described in the following section. The corresponding CPU time

is displayed in Table 9. We remark that the unstructured grid converges similar as the structured one for

this test case. This can be explained because both connectivity matrices for the full 3D discretization are

similar. The vertical layers indexation employed for both cases is the same.

Table 9: Performance of the BICGSTAB method for the 3D Poisson problem using different grid resolutions.
Structured Unstructured

N ∆t = 0.5∆x2 Elements Iterations CPU time Elements Iterations CPU time
16 8.8× 10−3 6750 19 0.04 sec 6750 22 0.05 sec
32 2.0× 10−3 59582 48 0.94 sec 69254 49 1.03 sec
64 5.0× 10−4 500094 107 15.49 sec 581112 98 14.99 sec

Now, we investigate the performance of BICGSTAB solver during the time simulation. The simulation

from t = 0 to t = 20 for the lid-driven cavity flow problem with Re = 100 was selected for this test. The

domain is discretized using a structured right-angled grid resolution of Nx = 32 and Nz = 20 uniform

vertical layers. The time step was set as ∆t = 2× 10−3. Fig. 28 shows the number of iterations, CPU time

and final residual to satisfied a tolerance value of ε = 10−7. Few iterations are required for this problem even

a small tolerance value was selected. Note that the number of iterations reduces until only one iteration

is required when the problem already reached its steady state. Each iteration takes around 0.018 seconds.
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The total CPU time required for this sequential simulation was around 30 minutes. For fine resolution test

cases, a parallel code is necessary due to the large amount of data that the 3D problem produces. We must

be careful to consider proper parallel techniques in order to achieve a good performance. An analysis in this

direction will be studied in a future work.

8. Conclusions

In this paper, a novel numerical solver has been developed for modeling nonhydrostatic turbulent flows

using an unstructured finite-volume method with large eddy simulation. The approximation of values and

outward-normal derivative at the cell face in the discretization equation is presented. This approximation

will have a direct impact on the accuracy in space of the proposed numerical model. A filtering technique

used in the Momentum Interpolation Method avoids the triangular C-grid divergence noise problem for

both structured and unstructured grids. An increase of accuracy is observed with the cross diffusion in the

outward-normal face derivatives terms in the 3D pressure Poisson equation. In this case, we also notice that

the horizontal approximations dominates the global accuracy for grid aspect ratio R ≈ 1 and the numerical

solution is still accurate for grid aspect ratio R � 1. The advection problem verified the proposed central

scheme and the 2D decaying vortex test demonstrates that the proposed method is second-order accuracy

in space and time, which allows simulations of nonhydrostatic flows at the moderate Reynolds numbers.

Several test cases have been used to check the ability of the proposed model to accurately simulate laminar

and turbulent flows. Fair agreements with previous studies have been obtained by backward-facing step flow,

the lid-driven cavity flow and the turbulent channel flows simulated by DNS and LES. In the test case of

flows around a vertical cylinder, the time averaged pressure coefficient for 2D problem and horseshoe vortex

oscillation for 3D problem at moderate Reynolds number have been compared with previous experimental

and numerical studies. Coherent structure of flows has been shown. Furthermore, performance analysis of

the code has been included in the paper. Clearly, the proposed projection method with a combination of

Momentum Interpolation Method and a central scheme has been proved to be robust, accurate and reliable

for further researches.
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Figure 1: (a) 3D schematic variables stored in the cell-centers for the non-staggered grid. Sketch of geometry entities of the

(b) horizontal and (c) vertical neighbor elements.
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Figure 2: Interpolation of flow variables at the mid-point on the cell face for the (a) convective and (b)-(c) diffusive terms.
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Figure 3: Types of triangular grids: (a) structured equilateral grid, (b) structured right-angled grid, and (b) unstructured grid.Jo
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(d) Error with filter
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Figure 4: Numerical solution and error of the divergence of the velocity field calculated using an equilateral triangular grid with

∆x = 0.2 resolution. The solution is calculated without and with the filter technique.
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Figure 5: Error of the divergence of the velocity field using an unstructured grid without and with the filter technique.

(a) Divergence

x
-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x
-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x
-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Velocity(b) Pressure

x
-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.01

-0.005

0

0.005

0.01

x
-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x
-1 -0.5 0 0.5 1

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Divergence with filter (f) Velocity with filter(e) Pressure with filter

Figure 6: Numerical solution of the divergence of the intermediate velocity field, pressure and velocity magnitude for the 2D Taylor

Vortex problem. The solution is calculated using a right-angled triangular grid without and with the filter technique.

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Numerical 

solution

Absolute errrors at z=0.5 (structured) Absolute errrors at z=0.5 (unstructured)

Figure 7: Numerical solution and absolute errors for the 3D Poisson equation at z = 1/2 using N = 32 for structured and

unstructured grids.
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Figure 8: Norm errors for the 3D Poisson equation using different number of layers in the vertical direction.
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Figure 9: Numerical solution for the 3D Poisson equation at y = 0.25 varying the number of vertical layers.
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Figure 10: Numerical solution of the 3D cosine bell example at different time stages (left), and absolute errors at z = −1/(2
√
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Figure 11: Numerical solution of the 2D cosine bell example using different unstructured grids.
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Figure 12: Peak values of the 2D advection equation using unstructured grids.
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Figure 13: Convergence analysis of the (a) spatial and (b) temporal discretization. The slopes show the positions of first and

second order of accuracy.

t=0 t=5 t=10

Figure 14: Iso-surfaces of the z-component of vorticity at different time stages for the decaying vortex problem using Re = 1600.
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Figure 15: 2D simulation of reattachment length as a function of the Reynolds number.

Figure 16: Visualization of the steady 2D base flows at different Reynolds number.Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



z+
10

0
10

1
10

2

u
+

0

2

4

6

8

10

12

14

16

18

20

u
+
 = z

+

u
+
 = 2.5*log(z+)+5.6

Kim et al. (1987)
This work

(a) (b)

Figure 17: (a) Iso-surface of Q-criterion field showing direct simulation of turbulent structure in the open channel flows. (b)

Mean streamwise velocity distribution in wall units by direct numerical simulation.
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Figure 18: Large eddy simulation of mean streamwise velocity distribution in wall units.

(a) (b) (c)

z z z

Figure 19: Large eddy simulation of the turbulent channel flow: (a) Streamwise turbulence intensity using coarse mesh (b)

Streamwise turbulence intensity using coarse mesh and (c) Reynolds stress.

(a) (b)

Figure 20: Large eddy simulation of of the turbulent channel flow: (a) Iso-surface of Q-criterion field showing turbulent structure

and (b) Instantaneous velocity profile.
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Figure 21: Profile of horizontal midsection velocity (u) and vertical midsection velocity (w) at Re = 100.
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Figure 22: Profile of horizontal midsection velocity (u) and vertical midsection velocity (w) at Re = 400.
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Figure 23: Contour plots of 3D cavity driven flow at Re = 1000. (a) Streamwise velocity; (b) Vertical velocity; (c) Profile of

midsection velocity; (d) Streamlines.
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Figure 24: Evolution of the recirculation length as function of the Reynolds number.

Figure 25: (a) Detailed view of the HV coherent structure; (b) and 3D streamlines.
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(a) (b)

Figure 26: Streamline patterns in the upstream comparing the LES numerical results with the experiment of Lin et al. [48] at

a time interval of 0.0769T . T is the period of the breakaway cycle.Jo
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Figure 27: Convergence analysis of the BICGSTAB method for the solution of the Poisson equation using (a) structured

equilateral and (b) unstructured grids. Number of iterations as function of the tolerance value and error of the finite-volume

method for different grid resolutions.
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Figure 28: Convergence analysis of the BICGSTAB method for the solution of the lid-driven cavity flow test case.Jo
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