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a b s t r a c t 

Effort s to use satellites to monitor the condition and productivity of crops, although extensive, can be challenging 

to operationalize at field scales in part due to low frequency revisit of higher resolution space-based sensors, in 

the context of an actively growing crop canopy. The presence of clouds and cloud shadows further impedes the 

exploitation of high resolution optical sensors for operational monitoring of crop development. The objective 

of this research was to present an option to facilitate greater temporal observing opportunities to monitor the 

accumulation of corn biomass, by integrating biomass products from Synthetic Aperture Radar (SAR) and optical 

satellite sensors. To accomplish this integration, a transfer function was developed using a Neural Network 

algorithm to relate estimated corn biomass from SAR to that estimated from optical data. With this approach, 

end users can exploit biomass products to monitor corn development, regardless of the source of satellite data. 

• The Water Cloud Model (WCM) was calibrated or parametrized for horizontal transmit and horizontal received 

(HH) and horizontal transmit and vertical received (HV) C-band SAR backscatter using a least square algorithm. 
• Biomass and volumetric soil moisture were estimated from dual-polarized RADARSAT-2 images without any 

ancillary input data. 
• A feed forward backpropagation Neural Network algorithm was trained as a transfer function between the 

biomass estimates from RADARSAT-2 and the biomass estimates from RapidEye. 
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Specification table 

Subject Area Agricultural and Biological Sciences 

More specific subject area: C rop biophysical parameters modeling 

Method name: Empirical model, semi-empirical model, machine learning model 

Name and reference of original method Water Cloud Model 

[1] . Vegetation modelled as a water cloud. Radio Science, Vol. 13, pp. 357–364. 

Resource availability https://smapvex12.espaceweb.usherbrooke.ca/intranet.php 

Method details 

The Water Cloud Model (WCM) is a semi-empirical model that has been frequently used by

researchers to estimate crop biophysical parameters from SAR data [ 2 , 5 , 8 ]. The compact form of the

model is introduced in Eq. (1) [4] . 

σ 0 = A L E 1 cos θ

(
1 − exp 

(
− 2 B L E 2 

cos θ

))
+ ( C M v + D ) × exp 

(
−2 B L E 2 / cos θ

)
(1) 

where σ 0 is total backscatter in power unit, L is biomass, M v is volumetric soil moisture, θ is the

incidence angle, and A, B, C, D, E 1 and E 2 are the coefficients. 

The WCM model has six coefficients ( A, B, C, D, E 1 and E 2 ) and two unknown variables (i.e.

biomass and volumetric soil moisture). The model calibration to parameterize the six coefficients and 

its inversion to estimate the biomass and soil moisture are explained in the following sections. 

WCM model calibration 

The WCM model has six coefficients and therefore, calibration of the model requires at least

six calibration points with their ground measurements (i.e. biomass and soil moisture) and satellite 

observations (i.e. backscatter and incidence angle). However, to develop a robust model more data are

needed over a wide range of biomass and soil moisture conditions. In this research, 23 calibration

points were used with soil moisture ranging from 0.039 m 

3 m 

−3 to 0.379 m 

3 m 

−3 , dry biomass from

0.003 kg m 

−2 to 1.16 kg m 

−2 , wet biomass from 0.04 kg m 

−2 to 7.1 kg m 

−2 and SAR incidence angles

from 21.025 ° to 31.9592 °. A least square method [7] was used to calibrate the WCM model. To run

the least square method, the nlinfit function in MATLAB (version R2018b) was used to estimate the

six coefficients. 

[ Beta , R ] = nlinfit ( X , Y , @ModelFun , Beta0 ) 

In the above code, nlinfit is a function that applies the least square method to a non-linear

regression function and estimates its coefficients. Beta is the vector of estimated coefficients and its

size is 6 × 1 in this study. R is the vector of residuals (6 × 1) for the estimated coefficients. X is the

matrix of independent variables including biomass, soil moisture and incidence angle. The size of this

matrix is 23 × 3. Y is a vector (23 × 1) of the dependent variable, in this study, total backscatter.

ModelFun is the function for the WCM model. Beta0 is the vector (6 × 1) of initial values for the

six coefficients. In this study, the initial values of the coefficients were random numbers between 0

and 1. The nlinfit function works based on an iterative approach, improving the initial coefficients (i.e.

Beta0) in every iteration. The iteration terminates when the sum of squares of the residuals reaches

its default tolerance value of 10 −8 , or the number of iterations reaches 100. 

WCM model inversion 

A goal of this research was to estimate biomass and soil moisture by inverting the WCM model

without the requirement of any additional input data. Because the WCM model has two unknown

variables (i.e. biomass and soil moisture), the model was calibrated or parameterized for two 

polarizations - HH and HV. With these two equations (i.e. one for each of the polarizations), both

biomass and soil moisture can be simultaneously derived using the Levenberg-Marquardt algorithm 
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Table 1 

Biomass models based on optical vegetation indices. a 1 , a 2 , a 3 , a 4 , b 1 , b 2 , b 3 and b 4 
are empirically derived coefficients. Separate sets of coefficients were estimated for 

wet and dry biomass. 

Optical Models 

Normalized Difference Vegetation Index (NDVI) Biomass = a 1 × exp ( NDV I ) + b 1 
Red-Edge Triangular Vegetation Index (RTVI) Biomass = a 2 × RT V I + b 2 
Simple Ratio (SR) Biomass = a 3 × ln SR + b 3 
Red-edge simple ratio Biomass = a 4 × SRre + b 4 
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6] . Using the fsolve function in MATLAB, this algorithm was implemented for all calibration and

alidation points. 

V = fsolve ( @Fun , V0 ) 

V is the estimated variables (i.e. biomass and soil moisture) and is a vector of 2 × 1. V0 is the

nitial values for the estimated variables and has the same dimensions as V. In this study, the initial

alues for biomass and soil moisture were 1 kg m 

−2 and 0.2 m 

3 m 

−3 , respectively. Fun is a system of

wo WCM equations (one for each polarization). The fsolve function, like the nlinfit function, needs

nitial values for the variables, improving these initial values with every iteration. The iterations

topped when the difference between the derived variables of the two iterations is less than 10 −6 ,

r the number of iterations reached 400. 

alibration of optical models 

The optical models ( Table 1 ) were based on four vegetation indices - Normalized Difference

egetation Index (NDVI), Red-Edge Triangular Vegetation Index (RTVI), Simple Ratio (SR) and Red-

dge Simple Ratio (SRre). These indices were applied to reflectance data from RapidEye imagery. As

ith the calibration of the WCM model, the nlinfit function in MATLAB was used to calibrate the

ptical models. In this function, X is a 23 × 1 vector of the vegetation index and Y is a 23 × 1

ector of biomass measurements. ModelFun is the optical model ( Table 1 ). Beta0 is the vector of initial

alues for the two coefficients and its size is 2 × 1. The initial values of the coefficients were random

umbers between 0 and 1. As before, estimation of the coefficients was done iteratively. The iteration

topped when the sum of squares of the residuals reached to the tolerance value of 10 −8 , or the

umber of iterations reached 100. 

ransfer function 

A transfer function between the biomass estimates from RADARSAT-2 and the biomass estimates

rom RapidEye was developed. The purpose of this function is to allow users to derive biomass

rom satellite data regardless of the source. The transfer function was a two-layer feed-forward

ackpropagation Neural Network model with 10 hidden neurons [3] . To train the model, the biomass

stimates from RADARSAT-2 (from the calibration points) were used as input with the corresponding

stimates from RapidEye as output. The model was trained with Levenberg-Marquardt algorithm using

he MATLAB Neural Net Fitting tool. 70% of the calibration points (i.e. 17 points) was used to develop

he Neural Network, with the remainder (6 points) reserved to validate the trained model. After the

etwork was developed, it was used to adjust the SAR-based biomass estimates for the 43 validation

oints, using the following MATLAB code: 

K = abs ( NNModel ( L ) ) 

K is the biomass estimates from the Neural Network model (a vector of 43 × 1). NNModel is the

rained Neural Network function. L is the input to the Neural Network which contains the biomass

stimates from the WCM model. The abs function delivers the absolute value of the estimate. 
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Supplementary material 

The measured dry and wet biomass, measured soil moisture, satellite observations including HH 

and HV backscatters and incidence angles and NDVI are reported for all the 66 points (including

calibration and validation points) in Table 2 . This table was sorted such that the first 23 points are

the calibration points and the rest of the points were used as the validation points. 
Table 2 

Ground measurements and satellite observations for all the calibration and validation points. 

Point No. Dry biomass 

( kg m 

−2 ) 

Wet biomass 

( kg m 

−2 ) 

Soil moisture 

( m 

3 m 

−3 ) 

HH 

backscatters 

HV 

backscatters 

Incidence angles 

(degree) 

NDVI 

1 0.00799 0.08754 0.127239 0.620443 0.008223 27.1885 0.309056 

2 0.00393 0.04304 0.267865 0.316343 0.028498 27.1032 0.276754 

3 0.0149 0.16314 0.242614 0.144861 0.014744 27.0845 0.3364 4 4 

4 0.00515 0.05644 0.139916 0.183946 0.006655 27.02 0.304782 

5 0.00434 0.04754 0.171731 0.229378 0.006805 27.0479 0.194855 

6 0.01732 0.18974 0.274307 0.407447 0.021909 27.0271 0.413577 

7 0.0111 0.12154 0.170147 0.383534 0.008734 27.0894 0.334782 

8 0.03721 0.40754 0.343364 0.320011 0.020286 26.8304 0.474459 

9 0.06584 0.7211 0.107088 0.110205 0.008403 21.1371 0.222073 

10 0.09773 0.6371 0.07947 0.086696 0.006914 21.0813 0.254141 

11 0.12586 0.9439 0.039161 0.177344 0.007373 21.1235 0.516357 

12 0.22256 1.6691 0.111372 0.085646 0.004978 21.2044 0.521337 

13 0.24906 1.8679 0.224185 0.091497 0.006946 21.1843 0.642726 

14 0.23056 1.7291 0.075383 0.148071 0.01253 21.1276 0.720683 

15 0.19909 1.4931 0.110798 0.153117 0.009832 21.025 0.656 

16 0.16399 1.2299 0.113555 0.082712 0.009516 21.0829 0.591136 

17 0.41859 2.7287 0.075 0.144633 0.013843 31.9592 0.855379 

18 0.60758 3.9607 0.119 0.159121 0.013454 31.8798 0.865662 

19 0.84229 5.4907 0.076 0.160248 0.011591 31.8639 0.94174 

20 0.71079 4.2917 0.107 0.208396 0.017317 31.8703 0.958239 

21 1.0908 7.1107 0.082 0.15254 0.008089 31.6379 0.97088 

22 0.53886 3.5127 0.1433 0.142494 0.014639 31.6591 0.978951 

23 1.15769 6.1246 0.379 0.132422 0.01522 31.8169 0.984188 

24 0.01205 0.13194 0.753 0.598379 0.014348 27.1802 0.327934 

25 0.00718 0.07864 0.858 0.56054 0.010941 27.1769 0.32417 

26 0.01246 0.13644 0.4208 0.184188 0.014659 27.0878 0.339747 

27 0.00839 0.09194 0.1828 0.2243 0.016958 27.0764 0.250504 

28 0.00962 0.10534 0.1617 0.230843 0.01999 27.0732 0.288926 

29 0.00394 0.04314 0.1166 0.154635 0.004993 27.0291 0.276767 

30 0.0019 0.02084 0.1401 0.131433 0.004617 27.0312 0.266659 

31 0.00678 0.07424 0.1701 0.170975 0.006162 27.03 0.22734 

32 0.00394 0.04314 0.1689 0.184585 0.006525 27.0336 0.152364 

33 0.00555 0.06084 0.4197 0.32861 0.026821 27.0371 0.477624 

34 0.01286 0.14084 0.1934 0.453664 0.013668 27.0399 0.374354 

35 0.02224 0.24354 0.3655 0.370459 0.014349 26.8139 0.467909 

36 0.01584 0.17354 0.2982 0.289838 0.01087 26.8169 0.381634 

37 0.01968 0.21554 0.2814 0.141431 0.015722 26.8713 0.395569 

38 0.02443 0.26754 0.3684 0.149793 0.020624 26.8563 0.429161 

39 0.087419 0.9575 0.638 0.104647 0.006665 21.1178 0.376021 

40 0.0962 0.7215 0.1007 0.105227 0.0054 4 4 21.1225 0.436973 

41 0.14903 0.9715 0.0606 0.120936 0.007743 21.0913 0.084151 

42 0.121004 0.9075 0.0846 0.108791 0.007812 21.0942 0.115846 

43 0.19327 1.4495 0.0585 0.167893 0.011137 21.1418 0.637158 

44 0.23114 1.7335 0.0419 0.152627 0.01108 21.1376 0.544374 

45 0.251408 1.8855 0.1633 0.072711 0.004638 21.2143 0.493171 

46 0.136738 1.0255 0.202 0.105992 0.008347 21.2181 0.58312 

47 0.190606 1.4295 0.0815 0.07359 0.00436 21.203 0.453194 

48 0.139138 1.0435 0.0738 0.081103 0.005024 21.1989 0.514886 

49 0.109537 0.8215 0.1927 0.107881 0.008487 21.0044 0.770156 

( continued on next page ) 
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Table 2 ( continued ) 

Point No. Dry biomass 

( kg m 

−2 ) 

Wet biomass 

( kg m 

−2 ) 

Soil moisture 

( m 

3 m 

−3 ) 

HH 

backscatters 

HV 

backscatters 

Incidence angles 

(degree) 

NDVI 

50 0.22847 1.7135 0.042 0.143742 0.008616 21.0082 0.576924 

51 0.49835 3.7375 0.0559 0.144683 0.016928 21.1112 0.805761 

52 0.18927 1.4195 0.0382 0.13543 0.01355 21.115 0.698382 

53 0.34341 2.5755 0.0833 0.096725 0.011773 21.0582 0.699992 

54 0.31461 2.3595 0.0581 0.105631 0.013265 21.0743 0.719998 

55 0.70627 4.604 0.0814 0.192856 0.01323 31.9515 0.95791 

56 0.67497 4.4 0.1109 0.198 0.013736 31.9487 0.925892 

57 0.526479 3.432 0.0985 0.121614 0.011253 31.8637 0.905323 

58 0.75658 4.932 0.0514 0.162414 0.01141 31.8661 0.911178 

59 0.60195 3.924 0.0707 0.127441 0.009791 31.8563 0.87577 

60 0.69123 4.506 0.0661 0.120812 0.01094 31.8536 0.900459 

61 0.95631 6.234 0.0589 0.146173 0.012034 31.6233 0.980786 

62 0.48352 3.152 0.1074 0.164818 0.012403 31.626 0.959513 

63 0.589067 3.84 0.1173 0.151315 0.011064 31.6761 0.972097 

64 0.534456 3.484 0.1144 0.161151 0.017059 31.6627 0.974763 

65 0.6214 3.752 0.4348 0.165078 0.014831 31.826 0.963522 

66 1.166288 7.042 0.4163 0.152524 0.013868 31.8287 0.972115 
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