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Abstract  21 

Change point detection methods have an important role in many hydrological and 22 

hydraulic studies of river basins. These methods are very useful to characterize changes 23 

in hydrological regimes and can, therefore, lead to better understanding changes in 24 

extreme flows behavior. Flood events are generally characterized by a finite number of 25 

characteristics that may not include the entire information available in a discharge time 26 

series. The aim of the current work is to present a new approach to detect changes in 27 

flood events based on a functional data analysis framework. The use of the functional 28 

approach allows taking into account the whole information contained in the discharge 29 

time series of flood events. The presented methodology is illustrated on a flood analysis 30 

case study, from the province of Quebec, Canada. Obtained results using the proposed 31 

approach are consistent with those obtained using a traditional change point method, and 32 

demonstrate the capability of the functional framework to simultaneously consider 33 

several flood features and, therefore, presenting a comprehensive way for a better 34 

exploitation of the information contained in a discharge time series.   35 

Keywords: Functional data analysis, Change point detection, Hydrology, Flood. 36 

37 
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Introduction 38 

Detection of changes in hydrological data is of interest to better understand 39 

hydrological regimes, and separate events. Changes in a series can occur in numerous 40 

ways, gradually or abruptly, and can affect the mean, median, variance, autocorrelation, 41 

or any other aspect of the data. In the future, regions that are relatively sheltered from 42 

wind storms, heat waves, droughts and floods, may no longer be in a warmer climate 43 

(Goudie 2006). Detection of changes in long time series of hydrological data is an 44 

important and difficult issue, of increasing interest. Change point detection in hydrology 45 

are essential to characterize the impacts of the climate disturbances on hydrological 46 

regimes (Kingston et al. 2011). It is then very important, particularly where we observe 47 

changes in the frequency and/or in the intensity of various forms of extreme weather 48 

events. Detection of eventual changes in collected data of hydrologic time series sets is 49 

thus obviously an important step before performing any descriptive or predictive analysis.  50 

 Literature abounds with studies on change point testing in scalar or vector time 51 

series. For example, Kundzewicz and Robson (2004) gave a general guidance on the 52 

methodology for change detection in hydrological records. Wong et al. (2006) proposed a 53 

relational method for discrete data. Change point analysis is addressed in both classical 54 

and Bayesian statistics. Methods in classical statistics usually consist of performing 55 

several kinds of tests to either confirm or reject the hypothesis of change. Most of them 56 

address slope or intercept change in linear regression models (Solow 1987, Easterling and 57 

Peterson 1995, Vincent 1998). Bayesian statistics methods are performed to obtain a 58 

statistical distribution for the change point and eventually a distribution for the other 59 

model parameters. The inference on parameters was performed using Monte-Carlo 60 
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Markov Chain algorithms (MCMC). Seidou and Ouarda (2007) proposed a Bayesian 61 

method of multiple change point detection in multiple linear regression. This method is 62 

numerically efficient and does not involve the time-consuming Monte-Carlo Markov 63 

Chain simulations as opposed to other Bayesian change point methods. The procedure 64 

was initially designed to detect a change in the relationship between a set of explanatory 65 

variables and the dependent variables. Using the time variable as an explanatory variable, 66 

this approach can detect the change point in a given time series. 67 

The flood event is an integration of spatial and temporal variations in water input, 68 

storage and transfer processes within a catchment (Hannah et al. 2000). Particularly, 69 

discharge (rate of flow) time series is the main source of information for studying flood 70 

events. Arguably, the hydrograph of a flood event as a graph showing the discharge 71 

versus time has been the cornerstone of statistical hydrology, as it is directly related to the 72 

design of hydraulic infrastructures. In spite of considerable progress in the development 73 

of new statistical tools for change point analysis, researchers’ previous efforts have been 74 

mainly focused on a single or few characteristics of the flood hydrograph ignoring the 75 

continuous behaviour of the flood event in time. Classical change point detection 76 

approaches involve a substantial simplification of the overall extreme hydrological event, 77 

through focusing on a single or few characteristics of the flood event such as the peak or 78 

the volume, and, therefore, fail to account for the whole information stored in flood 79 

hydrographs presented as continuous curves. Despite the extensive literature on change 80 

point methods, little recognition appears to have been given to a more general approach 81 

considering the entire information contained in the discharge time series. The overall 82 

objective of this paper is to present a new approach that attempts to handle this concern 83 
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by considering the discharge time series of the flood event as a continuous curve using a 84 

functional data analysis (FDA) framework. 85 

The first application of FDA to the hydrological context refers to Chebana et al. 86 

(2012) introducing an exploratory analysis and outlier detection of hydrographs. Chebana 87 

et al. (2012) showed that FDA is more general, flexible and representative of the real 88 

hydrological phenomena. For classification of flood events, Ternynck et al. (2016) 89 

showed that obtained classes using functional approaches are more representative than 90 

those obtained using a traditional multivariate hierarchical classification method. 91 

Masselot et al. (2016) adapted a functional regression model for streamflow forecasting. 92 

Suhaila and Yusop (2017) employed the functional framework to study the spatial and 93 

temporal variability of precipitation in Peninsular Malaysia. More recently, Requena et 94 

al. (2018) proposed a functional multiple regression for flow duration curves estimation 95 

while Larabi et al. (2018) developed a stepwise multicriteria for rainfall-runoff model 96 

calibration defined on the basis of FDA. 97 

 A growing research area is being advanced focusing on the development of new 98 

statistical tools to analyze functional data. For instance, many existing tools in the 99 

univariate and multivariate statistical literature have been adapted to the functional 100 

context (Dabo-Niang et al. 2010, Fischer 2010, Chebana et al. 2012). Some authors 101 

investigated the change point detection method in the FDA context for testing the 102 

assumption of a common functional mean for independent functional data (Aue et al. 103 

2009, Berkes et al. 2009). Thereafter, Zhang et al. (2011) adapted this work to the case of 104 

functional dependent data.  105 
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The aim of the present paper is to introduce and adapt the FDA framework to change 106 

point detection of flood events. The present paper is structured as follows: a brief 107 

presentation of the data set and the study area is provided in section 1, the proposed 108 

functional change point detection approach is presented in section 2. Results of the 109 

application of the proposed method to the case of flood events in two stations from the 110 

province of Quebec, Canada, are illustrated in section 3. Discussion and conclusion of the 111 

main findings are given in sections 4 and 5, respectively. 112 

1. Data Description 113 

Daily flow data recorded at two hydrological stations in the province of Quebec, 114 

the Romaine River and the Moisie River stations, are considered (Figure 1). The 115 

available data series for the Romaine river station covers the period from 1961 to 2000 116 

recorded over a drainage area of 
213000 Km . For the Moisie river station, with a 117 

drainage area of 
219000 Km , daily flow records between 1968 and 1991 are used. Given 118 

the nature of most of the flooding events that characterize the area, mainly caused by 119 

snow melting in spring and summer, only flood events occurring between March 1st and 120 

August 31st are considered in the current analysis. 121 

The selection of these two stations  is mainly based on previous finding about the 122 

inhomogeneity of their flood regimes (Ternynck et al. 2016). Furthermore, previous 123 

results on flood event behaviour for both Romaine river and Moisie river stations 124 

demonstrate an apparent change in annual maxima discharges time series (Seidou and 125 

Ouarda 2007). Thus, it is expected that these two case studies may represent 126 

comprehensive examples to test and validate the proposed approach. 127 
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While the proposed approach is general and can be applied to entire annual 128 

discharge series, a prior knowledge about the season on which major flood events occur 129 

can be helpful to primarily focus on possible changes in the flood event of interest. This 130 

allows avoiding misleading conclusion in change point results that are due to changes 131 

affecting streamflow not related to the major flood event. Although climate change might 132 

shift the timing of flood events (Blöschl et al. 2017), this should not be a concern since 133 

our choice of the spring-summer period is long enough to account for this fact. 134 

2. Functional change point detection method 135 

Consider n  years of daily flow series recorded from March 1st to August 31st at a 136 

given station corresponding to flood events occurring in the spring-summer period. Let 137 

 1( ), , ( ), , ( ) , 1, ,i i i j i Tx x t x t x t i n    be the set of n  discrete observations where 138 

each jt    and 1, ,j T is the 
thj record time point corresponding to the day j 139 

from time subset corresponding to the from March 1st to August 31st which include the 140 

set{1, , }T . For instance, discrete observations ix   are daily flow within a given ith year 141 

for the spring-summer period with 181T  . For a given year i , each set of measurements 142 

 1( ), , ( )i i Tx t x t will be converted to a functional data denoted ( ),iX t t    using 143 

a smoothing technique. 144 

In order to build functions, Ramsay and Silverman (2007) presented two main 145 

basis systems namely: the Fourier system and the B-spline system. Those systems are 146 

now well-established in the statistical literature of FDA. Actually, most of theoretical 147 

developments have been made based on them. As suggested by Ternynck et al. (2016), 148 
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we use the B-spline basis system for smoothing spring and summer daily discharge data. 149 

The Fourier system is commonly used for periodic data, while the B-spline system is 150 

rather used for non-periodic data. Fourier basis functions have been used by Chebana et 151 

al. (2012) for smoothing daily streamflow that cover the entire year to obtain annual 152 

streamflow curves. Since the present application considers only the spring and summer 153 

period, the Fourier basis appears, however, to be less suited. 154 

The main idea of the change point detection, here, is to test whether the mean of 155 

the functional observations 1, , nX X  remains constant over time. We assume that 156 

( ) ( ) ( ), 1, ,i i iX t t t i n     where ( )i t denotes the functional mean and ( )i t  is a 157 

zero-mean functional sequence. We wish to test the null hypothesis 158 

0 1 2: ( ) ( ) ( )nH t t t      against the alternative aH that there is an unknown change 159 

point *k  in the mean, i.e. * *1 2 1
: ( ) ( ) ( ) ( ) ( )a nk k

H t t t t t    


      . The 160 

change can occur at any point i and we want to test whether it occurs or not. The 161 

existence of change points means that the data can be divided into several consecutive 162 

segments, with a constant mean within each segment. Berkes et al. (2009) proposed an 163 

approach to test the assumption of a common functional mean for independent data. This 164 

approach is based on the following quantity (which measures a deviation between the 165 

mean of the functional observations 1, , kX X  and that of 1,k nX X ): 166 

 
( )

ˆ( ) ( ) ( ) , 1, ,k k k

k n k
P t t t k n

n
 


      (1) 167 
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where 
1

1
ˆ ( ) ( )k ii k

t X t
k


 

  and 
1

1
( ) ( )k ik i n
t X t

n k


  



 . If the mean changes, the 168 

difference ( )kP t  is large for some values of k  and t . To deal with the infinite dimension 169 

of the observations (curves), we consider the projections of the functions ( )kP  on the 170 

principal components of the data. In fact, principal component analysis represents 171 

functional data as 
,1

( ) ( ) ( )i i l ll
X t t t  

 
  , where ( )t  is the functional mean, ,i l172 

are the scores and ( )l t  are the eigen-functions of the covariance operator (Hall and 173 

Hosseini‐Nasab 2006). These projections can be expressed in terms of functional scores, 174 

which can be easily computed using the R package “fda”. We consider the estimated 175 

scores ,î l corresponding to the largest L  eigenvalues given by: 176 

 ,
ˆ ˆ( ) ( ) ( ) , 1,2, , 1,2, ,i l i n lX t X t t dt i n j L        (2) 177 

with ( )nX t  is the sample mean function and ˆ ( ), 1, ,l t l L   are the estimated eigen-178 

functions of the covariance operator. It is supposed that  k n  where  0,1   and 179 

  denotes the integer part. Note that ( )kP t does not change if the ( )iX t are replaced by 180 

( ) ( )i nX t X t . Hence, ( )kP t can be written as: 181 

   
1 1

( ) ( ) ( ) ( ) ( )k i n i n

i k i n

k
P t X t X t X t X t

n   

       (3) 182 

Consequently, the projections are defined by
 

, ,

1 1

ˆ ˆ ˆ( ) ( )k l i l i l

i n i n

n
P t t dt

n


  

   

    and 183 

are used for testing whether the mean function remains constant. For this purpose, the 184 

following statistic is considered:  185 
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2

1

, , ,2
1 1 1

1
ˆ ˆ

L

n L l i l i l

l i nz i n

k
S

n n
  

    

 
  

 
      (4) 186 

where 
1 2
ˆ ˆ ˆ, , , L    denote the L -estimated eigenvalues. The test rejects the hypothesis 187 

0H  if ,n LS is greater than the corresponding critical value, tabulated in Berkes et al. 188 

(2009). 189 

While this test does not take into account the temporal dependence it will be 190 

considered here as a first simple step to introduce the functional change point detection 191 

framework in hydrology. Few other researchers recognize this limitation and propose 192 

some improvements. For instance, a more complex approach has been proposed by 193 

Zhang et al. (2011) in order to take into account the temporal dependence. For sake of 194 

simplicity, this latter will not be considered in the current analysis. In the interim, the 195 

functional approach being used here may, nevertheless, serves as a stepping-stone 196 

towards this more complex approach. 197 

3. Results 198 

Results of application of the proposed method to the above-mentioned data set are 199 

compared with those obtained in Seidou and Ouarda (2007). In the latter, the change 200 

point detection method has been applied separately to the peak, the duration and the 201 

volume of flood events occurring in spring and summer. The first step to apply the 202 

functional method consists on performing a functional principal component analysis 203 

where the first principal components explaining large part of the data variance are, 204 

therefore, to be retained. For the Romaine river station, we retained the first four 205 

principal components as they represent 83% of the explained variance. In the hypothesis 206 
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testing, we set the first type error at 5%. By applying the functional method for the 207 

Romaine river station, we obtain a change point at the year 1984. This suggests that we 208 

can split the set of curves into the following two segments
a

1TD : 1961-1984 and
a

2TD : 209 

1985-2000, of size 24 and 16, respectively as shown in Figure 2.a. We can see from 210 

Figure 3 that based on the mean, the median and the modal curves, the two obtained 211 

segments have two different peaks. The peak of the first segment is significantly higher 212 

than that of the second. One can also note that changes affect not only the peak, but also 213 

the duration, the volume and the peak date of the flood event as well. Indeed, in both 214 

classes, flood events began at the same time, but last longer in
a

1TD . 215 

In a second step, we reiterate the procedure on the obtained two segments. We 216 

therefore only find a change point on the segment 
a

1TD  at the year 1968. Consequently, 217 

we obtain the three following periods
b

1TD : 1961-1968,
b

2TD : 1969-1984 and 
b

3TD : 218 

1985-2000 of respective size 8, 16 and 16. According to the Figure 4, we can see that 219 

based on the mean curve, flood events of the segment 
b

2TD  begin before those of the220 

b

1TD , however floods in both segments end at the same time. Accordingly, the flood 221 

durations for the segment 
b

2TD   are larger than those of the segment
b

1TD . While flood 222 

events in both 
b

2TD  and 
b

1TD  have almost the same peak, the functional approach seems 223 

to be able to detect the difference in the duration of the flood events. Flood events of the 224 

segment 
b

2TD  begin at the same time with the flood events of the segment
b

3TD , and then 225 

they take end at the same time with the segment
b

1TD . Moreover, the two segments 
b

1TD   226 

and 
b

2TD  have almost the same peak. Consequently, the segment 
b

2TD can be considered 227 
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as an intermediate period that enables the transition from the flood regime of the segment 228 

b

1TD to the flood regime of the segment
b

3TD . 229 

In conclusion, for the Romaine river station, functional change point method, has 230 

detected two change points, the first at year 1984 and the second at years 1968 as shown 231 

in Figure 2.a. This result has divided flood events for the Romaine river station into three 232 

periods: the first with very large floods, which begins later, a second intermediate period, 233 

and a third period characterized by less important floods which starts early. For the 234 

comparison of the functional change point results with a traditional method approach we 235 

applied the Bayesian approach of  Seidou and Ouarda (2007) to the peak, the volume and 236 

the duration of flood events separately. The method of  Seidou and Ouarda (2007) based 237 

on the duration detects a change point at the year 1987. The same method, however, 238 

based on the volume and the peak detects a change point at the year 1985, which is closer 239 

to the first change point detected by the proposed functional approach (at year 1984). The 240 

Bayesian approach based on the volume and the peak separately was not able to detect 241 

the second change point in the segment
a

1TD . This is due to the fact that this change does 242 

not affect the peak or the volume, but mainly affects the occurrence time of flood events. 243 

The functional approach allows detecting this change in the occurring time of flood 244 

events because it directly considers a large part of the information contained on the entire 245 

discharge series, including information on shape, peak time, duration, etc... 246 

For the Moisie river station, using the functional approach, we choose the first 247 

four principal components since they represent 85% of the explained variance. In the 248 

hypothesis testing, we set the first type error at 5%. We obtain a change point at the year 249 
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1981 which suggests splitting the set of curves into two segments as follows,
c

1TD : 1968-250 

1981 and 
c

2TD : 1982-1991, of size 14 and 10, respectively. We, then, reiterate the 251 

procedure on the obtained two segments, but no change point was detected. Therefore, 252 

we can conclude that this method allows detecting just one change point at year 1981 as 253 

shown in Figure 2.b. Figure 5 shows the mean curve, the median curve and the modal 254 

curve of flood hydrograph corresponding to the two obtained segments. This figure 255 

shows that flood events in the two segments 
c

1TD  and 
c

2TD  occur at the same date, but 256 

those of the segment
c

1TD , last longer and have a larger peak. For the Moisie river station 257 

we test the existence of a change point on the peak, the volume and the duration 258 

separately using the method of Seidou and Ouarda (2007). Only, the method based on the 259 

peaks detects a change point at the year 1978.  260 

4. Discussions 261 

It is worth noting that the purpose of the comparison with the conventional 262 

approach is not to show that the functional approach performs better, but rather to check 263 

whether this approach gives results consistent with those obtained using a traditional 264 

approach. Note that, when the focus is only on one characteristic of the flood event, such 265 

as the peak, the volume or the duration, traditional univariate approach preferred. 266 

However, the functional approach takes into account all the characteristics of the flood 267 

event simultaneously, hence, if no preferences on the flood event characteristic, the 268 

functional approach is recommended. Then, the graphical representation of the median 269 

curve, the mode curve and the mean curve is helpful to summarize the differences 270 

between the different flood periods after the detection of the change point. 271 
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It should be borne in mind that numerous caveats apply to our findings. First, the 272 

proposed functional framework suffers from an edge effects issue and therefore is unable 273 

to identify possible changes near the beginning and the end of the data record. 274 

Nevertheless, this is a common issue for the traditional change point approaches. Further 275 

theoretical studies using generated (known) functional data sets may help to quantify this 276 

issue, as well to answer many other questions such as the determination of the minimum 277 

record length in order to detect a change. Secondly, the proposed approach does not allow 278 

detecting multiple change points simultaneously, and thus need to be iterated for each 279 

segment until no further change point is detected. Finally, as problems in hydrology often 280 

involve missing data, the proposed functional approach lacks the ability of handling 281 

missing data, and thus unable to take full advantage of the whole data record that may be 282 

available. For instance, a complete data records are available for Romaine river station 283 

from 1957 to 2012 as well for Moisie river station from 1966 to 2012, while, in contrast, 284 

our analysis was mainly limited to data records from 1961 to 2000 for Romaine river 285 

station and from 1968 to 1991 which are the longest periods for which there is no missing 286 

data. 287 

In change point analysis, if a significant change is detected in hydrological 288 

characteristics, then it is important to try to understand the physical reason behind. 289 

Change in hydrological characteristics may be caused by climatic factor such as climate 290 

variability or climate change, but there may be many other possible explanations, such as 291 

anthropogenic change (urbanization, water abstraction etc.), natural catchment changes, 292 

and problem linked to data. The best way to improve understanding of change is rather to 293 

gather as much information as possible, using, e.g., information about change in the 294 



15 
 

catchment. In addition, related variables, like temperature and precipitation can help to 295 

determine whether changes in flow can be explained by climatic factors. Indeed, 296 

streamflow depends strongly on the spatial distribution of precipitation in a watershed, 297 

and on the interactions between temperature and precipitation which determines whether 298 

precipitation falls as rain or snow (Ben Alaya et al. 2014). 299 

In a warming climate it is expected that the atmosphere's water holding capacity 300 

will increase with warming according to the Clausius-Clapeyron (C-C) equation (Collins 301 

et al. 2013), which may lead to more intense precipitation events that may directly affect 302 

streamflow and flood events behaviours. In addition, climate variability through oceanic 303 

and atmospheric oscillations on a large scale known as teleconnections, such as the North 304 

Atlantic Oscillation (NAO), El Nino-Southern Oscillation (ENSO) and Pacific Decadal 305 

Oscillation (PDO), influences the variability and trends in the climate system (Hurrell 306 

and Van Loon 1997, Rogers 1997) and thus may in turn affect characteristics of flood 307 

events. 308 

Based on the obtained results, the frequency of flood events which occur later has 309 

decreased at both Romaine river and Moisie river stations while earlier floods 310 

characterized by low peaks and volumes became more frequent. Given the short record 311 

length of the data series used, attributing this change to corresponding underlying 312 

processes is challenging. Another challenge is that signals such as trends and shifts are 313 

superposed on variability arising from the memory within the hydrological system. 314 

While the proposed approach is not able to distinguish between shifts and trends 315 

that may be present in the data, the results for the Romaine river station reflect hints 316 
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about the presence of a trend in functional data. Note, however, that the “trend” 317 

terminology in case of the sequence of functional curves is not the same used as in case 318 

of random variables where sample elements are points. The definition of a trend in case 319 

of the sequence of functional curves requires, first, to define an extended notion of order 320 

that tell us in which case a curve can be considered to be higher than another. Such a 321 

definition may not be, however, uniquely determined. To the best of our knowledge, a 322 

first attempt for functional trend analysis has been proposed by Fraiman et al. (2014). 323 

Nevertheless, we think that a more comprehensive way to handle this concern is to 324 

account for the notion of autocorrelation in the sequence of functional curves that has 325 

been proposed by  Zhang et al. (2011). 326 

Note that change point analyses are only descriptive. Hence, they cannot answer 327 

questions about how the hydrological system works in a non-stationary climate, and, 328 

therefore, cannot be used to predict future conditions. Indeed, seeking answers to those 329 

questions requires a hydrological modelling. Nevertheless, the proposed functional 330 

change point framework, as a mathematical descriptive tool, can play a very important 331 

role for scientific investigations. It can help to get first quantitative clues about what 332 

happened in the past. Unlike traditional change point approaches, the conclusions reached 333 

from the proposed framework are enhanced by providing reach mathematical pictures 334 

summarizing the mean, mode and median curves describing flood regimes. Those 335 

pictures are obtained within a mathematical framework that rigorously explains how they 336 

were obtained and how the conclusions were reached. Those steps can be easily applied 337 

to outputs of hydrological models, whether deterministic or stochastic, to rigorously 338 

check and test whether they reproduce similar pictures and same conclusions that have 339 
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been drawn from original data. As suggested in previous works, the interpretation of 340 

hydrological models, particularly in a non-stationary climate is always challenging 341 

(Montanari and Koutsoyiannis 2014, Serinaldi and Kilsby 2015, Serinaldi and Kilsby 342 

2018). On the other hand, by following the first clues given by a reach descriptive 343 

analysis, we may achieve a deep understanding about the complexity of the real 344 

mechanism. Our finding can serve as a starting point toward an effective calibration of 345 

hydrological models, or can merely be used for model testing. 346 

As recommended by Koutsoyiannis and Montanari (2015), including additional 347 

information from prior physical knowledge about the physical process involved is 348 

essential to build a successful hydrological model that can be used to predict the future. 349 

In this respect, our approach opens the door to think on how to take full advantage of the 350 

functional framework from a modelling perspective. This can be achieved by casting the 351 

hydrological modelling in a functional regression framework by including major factors 352 

that influence flood events as covariates. The implementation of such approach, however, 353 

is not straightforward and is outside the scope of the current paper. Nevertheless, we 354 

think that, slowly, over the course of several steps, starting from functional descriptive 355 

tools, a pathway can be paved for development of sound functional regression models 356 

and perhaps eventual inclusion of additional knowledge from key factors involved in 357 

generating flood events. 358 

 359 

 360 

 361 
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5. Conclusions  362 

The purpose of the present paper is to propose a new context of the change point 363 

detection of flood hydrographs using functional data framework. A functional change 364 

point approach is presented and adapted to flood events. An application is performed for 365 

two hydrological stations in the province of Quebec, Canada. The presented functional 366 

approach is compared to a classical Bayesian univariate approach applied to the peak, the 367 

volume and the duration of flood events separately. Based on this comparison, it has been 368 

shown that the functional approach gives results that are consistent with the traditional 369 

univariate approach. The functional approach has the benefit that it provides a 370 

comprehensive way to handle the flood event as a curve within a defined statistical 371 

framework and thus an opportunity for a better exploitation of the information contained 372 

in a discharge time series. 373 

 374 

375 
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Figure 2. Functional change point results, for romaine river station in (a) and Moisie river 509 

station in (b). 510 
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 513 

Figure 3. Functional curves of flood events for the two segments obtained using the 514 

functional change point detection method for the Romaine river station after the detection 515 

of the first change point. All functional curves over the period 1961-2000 are presented in 516 

(a). The mean, median and modal curves for each segment are presented respectively in 517 

(b), (c) and (d).  518 
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 520 

Figure 4. Similar to Figure 3 but for the three segments obtained using the functional 521 

change point detection method for the Romaine river station after the detection of the 522 

second change point. 523 
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 525 

Figure 5. Functional curves of flood events for the two segments obtained using the 526 

functional change point detection method for the Moisie river station after the detection 527 

of the single change point. All functional curves over the period 1968-1991 are presented 528 

in (a). The mean, median and modal curves for each segment are presented respectively 529 

in (b), (c) and (d).  530 

 531 

 532 

(a) (b) 

(c) (d) 



28 
 

 533 


