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Abstract20

Modeling the spatial distribution of mobile organisms under rapidly21

changing environmental conditions is a challenging endeavor that has to be22

undertaken whenever the impacts of alterations have to be assessed in23

dynamic scenarios. We modeled habitat suitability for Lake sturgeon24

(Acipenser fulvescens) and White perch (Morone americana, both had have25

been followed by hydro-acoustic telemetry) in an estuarine river section with26

rapidly changing tidal and hydrodynamic conditions using deep feed-forward27

Artificial Neural Networks ANN). Descriptors used were of many types:28

intrinsic features (species, sexual maturity and gender, and individual29

character), terrain features, hydraulic and tidal conditions, and time. A set of30

ANN models with varying degree of complexity, in terms of their number of31

hidden layers, number of nodes per layers, and regularization parameters, were32

tried and evaluated using cross-validation. The best model has three layers33

with 100, 50, and 20 nodes and classified 94.0% of observations as presence34

(and 60.6% of pseudo absences as absences, overall correct classification:35

77.3%) during the trials. The study highlights that tidal and hydraulic36

models, coupled with acoustic telemetry and machine learning, can be used to37

predict the spatial distribution of mobile organisms even in extremely variable38

ecosystems such as estuaries.39

Introduction40

As with most rapidly changing system (e.g., hydropeaking, large alluvial floodplain,41

intermittent rivers), estuaries are significant challenges to habitat modeling. The42

tidal conditions prevailing in temperate estuaries involve marked fluctuations of43

water level and current velocity, accompanied by changes in wet/dry areas and44

current reversals, substantially increasing the complexity of obtaining dependable45
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estimates of the physical conditions (e.g. Skov et al., 2008; Spruzen et al., 2008;46

Sagarese et al., 2014). In the present paper, the word “estuaries” will refer47

specifically to temperate estuaries or to tropical estuaries having no barrier reef, and48

which experience tidal conditions that are typical of temperate ones. These49

fluctuating conditions force mobile animals to travel more often about habitats,50

which are successively made suitable and unsuitable to them to a greater extent51

than they typically would in a non-tidal system (estuarine species are especially52

well-adapted to these conditions, see Gibson, 1993). Estuaries often harbor rich and53

diversified ecosystems that are oftentimes harshly impacted by human activities54

(Roessig et al., 2004; Lotze et al., 2006). There is thus a clear incentive in unfolding55

the best of today’s scientific and technical knowledge to take up the challenge of56

numerical habitat modeling in estuarine conditions.57

Two-dimensional (2D) hydraulic models (2DHM) have proven their worth for58

habitat modeling in rivers (e.g., Guay et al., 2000; Mingelbier et al., 2008; Morin59

et al., 2016; Capra et al., 2017; Foubert et al., 2019). In a nutshell, these models60

estimate 2D (scalar) fields of water level, vector fields of current velocity, and other61

related physical quantities (e.g., water depth, shear velocity, Froude number). To62

achieve that goal, 2DHM require maps of riverbed elevation and roughness, and63

user-specified boundary conditions (i.e., flow and/or water level), while making a set64

of assumptions about fluid mechanics (Heniche et al., 2006). 2DHM most commonly65

implement the 2D depth-integrated Navier-Stokes equations on a 2D grid domain.66

The estimated water level, current velocity, direction, and other physical variables67

output by the 2DHM, combined with other terrain features (e.g., substrate68

composition, bottom slope), can be used as descriptors of the river habitat. In69

addition to 2DHM, three-dimensional hydraulic models also exist (e.g., the70

MARS3D model: Dumas and Langlois, 2009;71

https://wwz.ifremer.fr/mars3d/Presentation) but have not yet been72

implemented in the St. Lawrence fluvial estuary (SLFE).73

In rivers and estuaries, tides are externally forced by multi-scale and non-stationary74

signals interacting in a nonlinear manner with bottom friction and basin75
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topography. They are influenced, on the one hand, by river flow that varies over76

meteorological, seasonal, and longer-term time scales. On the other hand, they are77

driven by the astronomical tides propagating from the sea along with other78

meteorological and oceanographic signals, such as storm surges and sea-level rise.79

The analysis of non-stationary tides and currents requires well-adapted analytical80

tools relying on detailed in situ data. For example, Matte et al. (2014c) have81

developed an improved harmonic regression method predicting tidal waves as they82

interact with river discharge, and applied it to the SLFE. Furthermore, studies83

conducted by Matte et al. (2017a) and Matte et al. (2017b) in the SLFE, supported84

by extensive field campaigns (Matte et al., 2014b,a), showed that information about85

the tide, in situ water currents, and depths is instrumental in implementing86

hydraulic models in estuaries.87

A numerical habitat model (NHM) uses descriptors of environmental conditions to88

assess whether and to what extent an area is suitable for a species (Guay et al.,89

2000; Boisclair, 2001). Because the life history of an organism is composed of many90

steps (e.g., larval, juvenile, reproduction, wintering), involving their particular91

needs, NHM are, in common practice, targeted at a particular age class and time of92

the year. NHM are often implemented as regression models representing mean93

density or probability of occurrence. Recent advances in numerical modeling94

methods (e.g., machine learning) now provide us with efficient new means for95

representing non-linear relationships and intricate interactions among variables (Lek96

et al., 1996; Brosse et al., 1999; Olden and Jackson, 2001; Quetglas et al., 2011).97

Among these modeling methods, artificial neural network (ANN) allows one to98

model such complexity. More importantly, ANN achieves that goal without the99

requirement of explicitly defining a suite of non-linear (e.g., polynomials) and100

interaction terms. Better still, that adaptability of ANN enables a single NHM to101

implicitly represent the different life history steps of an organism using information102

on the latter’s traits and status (e.g., age, size, sex), and time (e.g., season, time of103

day) and this without having to make assumptions about its specific behavior and104

traits. In fact, ANN have enough flexibility to incorporate multiple species, together105
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with their various life history steps, in a single NHM, provided they are given106

suitable descriptors; (e.g. Guénard et al., 2017) and sufficient data be available.107

Hence, functional traits may be shared among species and relationships between108

these traits and the responses of organisms to the environment may be partially109

redundant. Having a single model NHM spanning many species and their different110

life stages thus offers the advantage of maximizing information use while requiring111

less development efforts in comparison with that of developing suites of individual112

models.113

The objective of the present study is to develop, test and show benefits of ANN114

using dynamic variables from 2DHM to model probability of presence for fish in a115

highly varying environmental setting associated with non-stationary estuarine tide.116

The first steps of this modeling exercise have already been achieved by Matte et117

al. (2014b; 2014a; 2014c; 2017a; 2017b), who modeled tidal waves that are used as118

boundary conditions for the modeled area (see subsection Time steps and boundary119

conditions below for details), performed real-time field measurement of water levels120

and current velocities, and applied 2DHM in and around the study area. The main121

goal of the present study will focus on using the information about the physical122

conditions collected in these prior studies to implement a single temporally-explicit,123

spatially-explicit, and individually-based probabilistic NHM. This model, which is124

based on multiple-layer (deep) ANN, will handle any variation potentially associated125

with the different life-history steps of the two fish species in an implicit manner.126

Material and Methods127

Case study areas128

Hydraulic simulations129

The hydraulic simulation area was a 140 km long section of the St-Lawrence river130

starting from an imaginary line drawn from Neuville (Quebec, Canada; WGS84:131

+46.6960, −71.5727) on the north-western shore to Saint-Antoine-de-Tilly (Quebec,132
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Canada; WGS84: +46.6681, −71.5546) on the south-eastern shore and ending in the133

SLFE on a line stretching from Les Éboulements (Quebec, Canada; WGS84:134

+47.48, −70.2579) on the north-western coast to Rivière-Ouelle (Quebec, Canada;135

WGS84: +47.4625, −70.0278) on the south-eastern coast (Fig. 1). The information136

on terrain elevation needed to implement a digital elevation model (DEM) of the137

area was available from earlier bathymetric and topographic surveys (Matte et al.,138

2017a,b). Similarly, substrate data were used to define regions of homogeneous139

substrate composition, converted into Manning’s coefficients using the grain size140

classification and formulation developed by Morin et al. (2000). The surface of the141

modeled area was approximately 1 800 km2.142

Fish tracking survey143

The fish tracking area is a river section within the hydraulic simulation area, which144

is confined approximately 2 km upstream and 2 km downstream of the road bridge145

connecting Île d’Orléans to the continent (French: pont de l’Île d’Orléans, hereafter146

abbreviated PIO; Fig. 1). It is strictly freshwater, located downstream of Quebec147

City’s harbor, between Île d’Orléans and Beauport borough (Quebec city) on the148

north shore, and is among the most energetic regions of the St. Lawrence, with tidal149

a range exceeding 6m under large spring tide conditions, leading to peaks in tidal150

discharges of up to five times the daily average discharge of the river151

(≈ 12 200m3 s−1 at Quebec City) in both the upstream and downstream directions152

(Matte et al., 2017a).153

The field telemetry surveys were performed in years 2012 and 2013 for developing154

tools to assess changes in habitat quality related to the anticipated changes in155

physical conditions associated with planed road bridge construction works. The156

complete procedure is detailed in Valiquette et al. (2016). Briefly, 33 Lake sturgeon157

(Acipenser fulvescens) and 15 White perch (Morone americana) were implanted158

with Vemco® hydro-acoustic transmitters model V16 and V9, respectively. Fish159

length, weight, and sex were taken during captivity. Tracking of the marked160

individuals was achieved in 2013 using a Vemco Positioning System (VPS) array of161
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Table 1: Species features

Characteristic (typical) Lake sturgeon White perch
Adult total length 92 – 123 cm 20 – 25 cm
Adult weight 4.5 – 36 kg 250 – 500 g
Age at sexual maturity 12 – 23 y 3 – 7 y
Egg per female 100 000 – 900 000 20 000 – 300 000

Spawning
Time early May – late June early May – late June
Temperature 13 – 18°C 10 – 20°C
Depth 0.6 – 4.6m 0 – 3.7m

Cause of threat Overfishing, pollution Spawning ground perturbation

24 Vemco® VR2W hydro-acoustic receivers providing fish positioning. We deemed162

observations with Hyperbolic Positioning Error (HPE) > 100m as well as that163

under a shallow water threshold of 30 cm too inaccurate and discarded them from164

further analyses. Lake sturgeon is listed as a vulnerable species in Canada165

(COSEWIC, 2017). White perch is an abundant fish in the study area (Valiquette166

et al., 2016; Table 1).167

The area used for the fish tracking survey was considerably smaller than that for168

hydraulic simulations (5.36 km2 vs. 1 800 km2; see Fig. 1). The following reasons169

underpin that choice of a larger area. Firstly, only a small portion (≤ 10%) of the170

total St. Lawrence River flow is channeled through the study area (in “Chenal de171

l’Île d’Orléans”; CIO); the remaining flows in the channel south of Île d’Orléans (in172

“Chenal des Grands Bateaux”; CGB). Flow and tidal conditions affecting hydraulics173

in CGB have substantial effects on CIO; the former thus needed to be part of174

hydraulic simulations. Secondly, uncertainty may appear in the boundary175

conditions, whose values are assumed to be invariant along boundaries. Estimated176

hydraulics near the model boundaries are thus less accurate than farther away,177

inaccuracies averaging out as we move away from them. Given the complexity of the178

topography in the vicinity of Île d’Orléans and of the tidal conditions prevailing in179

the SLFE, the area for hydraulic simulations had to be much larger than that where180

the NHM was to be developed.181
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Modeling physical conditions182

Hydraulic modeling183

The hydraulic simulation area was discretized into a 2D finite-element mesh made of184

106 520 finite elements involving a total of 216 913 nodes. The finite element used is185

called P1–P1isoP2 consists of a triangle made of six nodes: three nodes at the186

triangle’s vertices and three nodes located at mid-distance along each of its three187

edges (see Heniche et al., 2006, for details). The elemental surface areas ranged from188

595 cm2 to 103 994m2, with a median size of 985m2. Elements size is chosen to189

match local complexity in both topography and hydraulic conditions, with190

increasingly small elements used when conditions are known or expected to be191

locally variable in space and a few larger elements for areas with uniform properties.192

Time steps and boundary conditions193

The dynamic nature of the physical conditions prevailing in the study area required194

performing non-stationary hydraulic simulations using short (3min) time steps, in195

order to capture the system variability and ensure fast convergence. For the period196

of interest (i.e., 2013-04-30 23:36:00 through 2013-11-21 05:09:00), this represents a197

total of 98 051 time steps. Combined with the large size of the modeled area and the198

high mesh resolution, the computation time required for such a large number of199

time steps would have been impractical.200

To circumvent that computational issue, we defined a set of synthetic hydraulic201

conditions meant to be representative of the river flows and estuarine tides202

encountered in the system. These synthetic conditions were substituted to those203

observed. To achieve such a synthesis, we first built two eight-day tidal height time204

series with 3min time steps. Each series was meant to encompass a large range of205

tidal conditions, from neap to spring tides, observed in the SLFE for one of two206

scenarios of river flow. These two scenarios corresponded to river flows of207

10 477m3s−1 (mean annual discharge) and 17 609m3s−1(mean high discharge), with208

a total of 3 840 consecutive time steps per scenario, thus considerably reducing the209
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computational burden. With these scenarios, a sufficient range of tidal and flow210

conditions encountered during the period of study were covered. Hydraulic211

modeling was performed separately on these two synthetic time series. Hydraulic212

conditions at any given time during the study period were taken as those estimated213

for the synthetic condition that most closely matched that in the field. Matching214

was done with respect to similarity between measured and synthetic tidal height215

time series for a reference location, in terms of mean water level and tidal range.216

Once the best synthetic tidal cycle and time step was identified, the corresponding217

simulated 2D fields were attributed to that given time. This process was repeated218

separately for each tidal cycle within the period of study, allowing us to reconstruct219

the 2D hydraulic conditions for the entire period.220

Tidal modeling221

Values of tidal heights prescribed at the upstream and downstream boundaries of222

the 2DHM were obtained from the NS_TIDE model and software developed by223

Matte et al. (2013; see supplementary material for a description). We used the224

NS_TIDE spatial model of the SLFE to generate the aforementioned synthetic tidal225

height time series. Conditions of tidal range were specified at the same oceanic226

reference station (Sept-Îles, Quebec, Canada) following Matte et al., 2014c. We took227

tidal ranges increasing steadily from 1.3m (first percentile) to 3.4m (99th percentile)228

over the eight-day synthetic period, thereby simulating a transition from a neap tide229

to a spring tide. Tidal heights at the upstream and downstream limits of the 2DHM230

area were reconstructed for each time step of the synthetic time series and for each231

of the two scenarios of river flow. Tidal heights were also calculated for the232

Vieux-Québec tide gauge (Department of Fisheries and Oceans Canada, Gauge233

number 3248; WGS84: +46.811 111, −71.201 944), the closest permanent gauge234

located within the hydraulic model area and a few kilometers upstream of our study235

area. This station is the local reference location that we used in selecting synthetic236

simulation results that most closely matched hydraulic conditions in the field.237
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Regular grid238

While an unstructured finite-element mesh was necessary for efficient computation239

of the 2DHM, its elements have heterogeneous sizes that make them less suitable for240

NHM, for which a regular grid is preferred in practice (e.g. Morin et al., 2016).241

Therefore, we discretized the study area once more, but this time into a regular242

square grid composed of a total of 214 339 tiles with 25m2 surface area, in order to243

facilitate subsequent computations. We linearly interpolated information on244

hydraulics, which is available at the vertices of each triangular element of the mesh,245

onto the regular square grid from a plane defined by the three nearest nodes of the246

finite-element mesh. Fish tracking events, which are continuous in space and time,247

were pinned down to the regular grid (in space) and sampling times of the tidal248

time series from the Vieux-Québec tide gauge.249

Fish tracking250

In the present study we used the information associated with fish location at a251

particular time. The other type of information entailed by tracking –the information252

related to the direction and distance traveled by the fish during a given time253

period– will not be used here. While fish positioning brings information about the254

conditions sought after by the fish, it does not explicitly provide us with information255

about the conditions avoided by them. Nevertheless, the latter is required by256

common NHM approaches yielding probabilities of presence on site and the257

requiring information on conditions for both presence and absence.258

Pseudo absence259

A workaround in such circumstances is to supply the lack of absence data by taking260

a set of locations, called pseudo absences (PA), that are to be considered as absence261

data (VanDerWal et al., 2009; Barbet-Massin et al., 2012). To avoid confounding262

unsuitable habitats with that which cannot be sampled, PA must only be placed on263

locations where fish could have been tracked at sampling time. For our case study,264
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it means inside the area where transmitters could effectively be tracked by the VPS265

array at a given time. We thus chose PA in conjunction with individual fish266

detection events and selected them from pools of locations featuring conditions that267

were dissimilar to that of observation sites. Dissimilarity was measured using the268

Mahalanobis distance (Mahalanobis, 1936), calculated on the basis of the269

descriptors defined below. For any given fish tracking event, only grid points with a270

depth > 30 cm (the swallow water threshold) and a Mahalanobis distance > 1.96271

from the conditions observed on the observation site (i.e., having a probability272

< 0.05 of belonging to the presence group under the multi-normality assumption)273

were in the PA pool, from which a single PA was drawn. For model testing274

purposes, we set aside six fish (three Lake sturgeons and three White perches) as275

the model’s testing set and used the remaining data (30 Lake sturgeons and 12276

White perches) as the model’s training set.277

Descriptors278

There are several types of descriptors that can be derived from the data available279

for the present study, namely individual, temporal, tidal, terrain, and hydraulic280

descriptors. A total of 64 descriptors was defined; they are detailed below.281

Individual descriptors282

In most tracking data, many individuals are being followed and some individuals are283

being observed more often than others. Any individual organism has its own284

character, which may deviate from the mean behavior of the population. As a285

consequence, the most frequently observed individuals would make their particular286

behavioral traits appear more widespread than their actual importance in the287

population. To prevent such bias, we supplied the NHM with information on fish288

identity, which consisted in representing it as a fixed effect using contrast variables.289

Each contrast took the value +1 for the Ni data related to individual i and the290

value −Ni/(N −Ni), where N is the total number of observations, for data related291
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to the other individuals in the sample. Contrasts defined in that manner are, by292

definition, centered on the value 0; providing the NHM with 0 for all contrasts thus293

allowed it to perform out-of-the-sample predictions.294

Besides individual contrasts, descriptors were also used for representing the species295

(one binary descriptor taking the value 1 for Lake sturgeon and 0 for White perch)296

and reproductive status of the fish. The latter consisted of a pair of binary variables297

with {1, 0} representing females, {0, 1} males, and {0, 0} for sexually indeterminate298

individuals.299

Terrain and hydraulic descriptors300

Terrain descriptors were the bottom slope, bottom curvature, substrate composition301

(i.e., percentages of each substrate class), and vegetation coverage (Morin et al.,302

2003), whereas hydraulic descriptors were the water depth, the mean current303

velocity (norm of the depth-averaged velocity vector), and the bottom slope in the304

flow direction (BSFD; for details on terrain and hydraulic descriptors calculation,305

see Supplementary material).306

Tidal descriptors307

We considered the possibility that fish have an anticipatory sense of the changing308

tide. Such a skill, whether it stems from a sense of timing, sensory cues, or other309

means, is potentially adaptive as it may enable fish to modulate their behavior and310

help them thrive. It is therefore expected to have evolved in estuarine species311

(Gibson, 1993). The function of the tidal height with time has a periodic character:312

individual tidal height values are thus not informative of local rates and directions313

(rising or falling) of change in the time series. To obtain a thorough representation314

of the status of the tide at any given moment, we paired the tidal height time series315

with a second time series of its first derivative with respect to time: the tidal rate316

(the instantaneous rate of change on tidal height, in mh−1, see Supplementary317

material for properties and computation details; Fig. 2).318
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Temporal descriptors319

As mentioned earlier, fish positioning was performed automatically using acoustic320

telemetry, with observations occurring throughout different seasons and at different321

time of the day. We expected fish to behave differently at different times and thus322

provided the NHM with descriptors about the course of time, which we also expect323

to relate with other unmeasured variables such as daylight intensity and duration,324

and water temperature. We thus needed variables representing the passage of325

seasons and days unequivocally, with pairs of values that are never identical for326

different times of the same year. To achieve that goal, we used two pairs of327

quadrature descriptors: SeasonA and SeasonB to represent the passage of seasons (a328

proxy to light period, water temperature, and so on; Fig. 3), and CircadianA and329

CircadianB to represent that of daytime (Fig. 4; see supplementary material for330

properties and computation details).331

Modeling332

Modeling the probability of presence333

As it is the case for most machine learning approaches, ANN is suitable in334

situations where copious amounts of data are available and the effects of the335

descriptors on the response are expected to be complex and tedious to define336

analytically. This is what we expect in the present case as habitat selection hinges337

on a suite of behavioral norms that are expected to vary among individuals of338

different species, sex, and reproductive status; and at different times, whereas339

acoustic telemetry allowed generous amounts of positioning information to be340

collected. We used a deep ANN to represent fish probability of presence on the grid341

points from the descriptors. Since ANN is becoming increasingly widespread and its342

thorough description would unacceptably lengthen the present paper, one is343

provided as Supplementary material.344
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Estimation and comparison345

In machine learning, parameters such as those defining ANN structure and how346

weights are estimated are called “hyper parameters” (HP). Hence, the number of347

hidden layers and their numbers of node are HP, as well as the weight regularization348

norms and dropout rates (see supplementary material for details). We performed a349

grid search to estimate the best HP set. It consists in defining discrete sets of values350

deemed reasonable and perform cross-validation trials over these sets to find that351

yielding the NHM with the best predictive performance. Cross-validation folds were352

the individual fish: any given individual’s probability of presence was thus predicted353

from data on the remaining samples. We performed the search over eight hidden354

layer configurations: {10}, {20}, {30}, {10, 5}, {25, 10}, {25, 10, 5}, {50, 25, 10}, or355

{100, 50, 25}; where {n1, n2, n..., nm} represents a configuration with m hidden layers356

whose first layer has n1 node, second layer n2 nodes, etc., representing networks with357

650, 1300, 1950, 705, 1885, 1940, 4785, or 12825 weights, respectively, five values for358

the L1 norm: 1e-07, 1e-06, 1e-05, 1e-04, or 1e-03, and the same five values for the L2359

norm (total: 200 HP sets). For the sake of simplicity, we used constant dropout360

ratios of 20% for the input layer and 50% for the hidden layers, a single L1, L2 pair361

was used over all layers, and used the rectifier activation function for all hidden362

layers (see Supplementary material for details). We finally used the sigmoid (inverse363

logit) function for the model output as it is the canonical link function (sensu Hastie364

and Pregibon, 1991) for Bernoulli-distributed, absence / presence, response data.365

The resulting NHM therefore outputs (fitted or predicted) probabilities of presence.366

We compared the deep ANN model developed in the present study with a more367

classical binary classification approach: logistic regression. To build that model, and368

for the sake of easing model comparison, we used the same cross-validation approach369

as for the deep ANN model to estimate the (L1 and L2) regularization parameters.370

For both the ANN and the logistic regression models, the decision threshold to371

predict fish presence was that maximizing the F1 score (Lipton et al., 2014).372
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Variable profiling373

ANN models allows any given environmental variable to influence its response in374

different ways under different sets of conditions (i.e., values of the other variables).375

It is straightforward to display the NHM’s response to the fluctuation of a given376

variable, by sweeping it over its entire range while keeping all other variables377

constant as a reference condition. Then, by carefully picking suitable reference378

conditions, one can obtain a variety of profiles showing a broad range of different379

model outputs. The set of all possible reference conditions can be regarded as a380

continuous space under which any given variable can be profiled. Here we used381

kmeans clustering to select a representative subset from that space. The number of382

reference conditions in that subset was estimated using Calinski’s criterion (see383

Legendre and Legendre, 2012, for a desccription). To calculate the kmeans384

clustering, we selected all the descriptors besides the dummy variables representing385

the species and genders, and the individual contrasts. Variable profile were386

calculated separately for each species and gender (female, male, and indeterminate),387

over the entire range of each descriptor, and for the whole subset of reference388

conditions.389

Habitat mapping390

A widespread goal of NHM is to provide decision-makers with habitat quality maps391

allowing them to plan construction work while abiding to laws and regulations392

about imperiled species and meet sustainable development objectives. ANN models393

can generate a staggering variety of predictions that is challenging for the human394

mind to integrate (see the 288 habitat quality maps in Supplementary material as395

an example). To help us synthesize that information, we proposed to use presence396

proportions maps. A presence proportion map gives, for every grid location, the397

proportion of the time a presence is predicted (i.e., exceeds the model’s threshold398

for presence) during a given time period. Proportions vary between 0 (for399

systematic unsuitability) and 1 (for systematic suitability). We calculated the400
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proportions on the basis of the number of times predictions could be made. Indeed,401

proportion could not be calculated where depth was systematically outside the402

range of the model (z < 30 cm or z > 30m). Presence proportion maps were403

calculated for female and male of either species for two periods: during both species404

spawning period (May 01 to June 30) and after spawning (July 01 to Nov. 21).405

Software406

Hydraulic modeling was performed using H2D2 (Heniche et al., 2006; Matte et al.,407

2017a; http://www.gre-ehn.ete.inrs.ca/H2D2), a software solving the 2D408

Navier-Stokes equations over a finite-element discretized domain, and which include409

a drying-wetting model for the treatment of areas becoming wet or dry as water410

level rises and falls. All data manipulations were made using the R language and411

environment (R Core Team, 2017) and contributed package available from the412

Comprehensive R Archive Network (CRAN; https://cran.r-project.org).413

Packages DBI (R Special Interest Group on Databases (R-SIG-DB) et al., 2016),414

ROracle (Mukhin et al., 2016), and RSQLite (Wickham et al., 2014) were used for415

database transactions. Packages raster (Hijmans, 2016), rgdal (Bivand et al., 2017),416

and sp (Pebesma and Bivand, 2005) were used to manipulate geographic417

information, with the QGIS software (v2.18, https://www.qgis.org) used for418

geographic data visualization. Package h2o (The H2O.ai team, 2017) was used for419

communication with the h2o software (https://www.h2o.ai), whose module420

h2o.deeplearning (Candel et al., 2018) was used to estimate ANN.421

Results422

Telemetry study423

In 2013, a total of 36158 detection events were recorded by the VPS array, with424

numbers of detection events per fish varying between 2 and 4861. The data set with425

generated PA set had a sample size of 72316. The three Lake sturgeons and three426
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Table 2: Ranges of the continuous descriptors that were experienced by the fish of
either species (Presence) or drawn as pseudo absences (Absence), and available
somewhere on the sampling grid (Available).

Descriptor Units Lake Sturgeon White perch AvailablePresence Absence Presence Absence
Slope [0.00, 0.23] [0.00, 0.46] [0.00, 0.22] [0.00, 0.46] [0.00, 0.58]
Curvature [0.00, 0.08] [0.00, 0.07] [0.00, 0.08] [0.00, 0.07] [0.00, 0.08]
Clay/silt % [00.0, 94.6] [00.0, 94.6] [00.0, 94.6] [00.0, 94.6] [00.0, 94.6]
Sand % [03.8, 70.0] [03.8, 70.0] [03.8, 70.0] [03.8, 70.0] [03.8, 70.0]
Gravel % [01.5, 60.0] [01.5, 60.0] [01.5, 60.0] [01.5, 60.0] [01.5, 60.0]
Pebble % [00.0, 43.2] [00.0, 43.2] [00.0, 43.2] [00.0, 43.2] [00.0, 43.2]
Cobble % [00.0, 06.8] [00.0, 06.8] [00.0, 06.8] [00.0, 06.8] [00.0, 06.8]
Boulder % [00.0, 05.8] [00.0, 10.0] [00.0, 00.0] [00.0, 05.8] [00.0, 10.0]
Velocity ms−1 [0.0, 0.9] [0.0, 1.0] [0.0, 0.9] [0.0, 1.0] [0.0, 1.2]
Depth* m [0.8, 23.9] [0.3, 24.4] [0.3, 22.9] [0.3, 23.9] [0.3, 25.1]
Sheer Vel. ms−1 [0.0, 0.0] [0.0, 0.2] [0.0, 0.1] [0.0, 0.2] [0.0, 0.3]
BSFD** [−0.2, 0.2] [−0.2, 0.2] [−0.1, 0.1] [−0.1, 0.1] [−0.5, 0.3]
Tide height m [−2.0, 4.8] [−2.0, 4.8] [−1.9, 4.0] [−1.9, 4.0] [−2.0, 4.8]
Tide rate mh−1 [−1.5, 2.6] [−1.5, 2.6] [−1.4, 2.5] [−1.4, 2.5] [−1.5, 2.6]

* Locations with depths < 30 cm were excluded (see text for rationales).
** Bottom slope in the flow direction

White perches set aside for model testing purposes made up a total of 3178427

observations. The number of observations available for model training (estimate428

weights and HP) was thus 69138.429

Fish were tracked during a period of 204 days spanning from 2013-04-30 23:36:00 to430

2013-11-21 05:09:00. They were observed on sites covering a large portion of the431

range of environmental conditions found on the sampling grid and at all tidal432

heights and rates that were recorded in the study area (Table 2). The ranges for PA433

were typically wider than that of observations, albeit the rarest conditions were not434

necessarily represented as the PA were randomly drawn.435

Fish distribution model436

The best HP set found has three hidden layers having 100, 50, and 25 nodes each,437

whereas the L1 and L2 regularization parameters were 1e-03 and 1e-04, respectively.438

That HP combination was associated with a correct classification rate of 78.4%439
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(89.8% for presences and 67.0% for absences) during cross-validation (decision440

threshold: 0.4143; Fig. 5). The NHM estimated with the whole training data set had441

a correct classification rate of 77.3% (94.0% for presences and 60.6% for absences),442

whereas the same metrics calculated on the testing data set were 69.7% (86.7% for443

presences and 52.7% for absences). The median NHM response for sites where fish444

were observed was 0.70 (with the 5th and 95th percentiles being 0.26 and 0.86,445

respectively) whereas that for sites where fish were not observed was 0.17 (with the446

5th and 95th percentiles being 0.00 and 0.71, respectively). By comparison, we found447

the best L1 and L2 for the same two-species logistic regression model to be both448

1e-01, yielding a correct classification rate of 72.5% (90.1% for presences and 54.8%449

for absences) during cross-validation, 70.8% (84.6% for presences and 56.9% for450

absences) when applied to its training data, and 64.8% (74.0% for presences and451

55.5% for absences) when applied to the testing data. The neural network-based452

NHM thus outperformed the logistic NHM.453

Variable profiling454

During kmeans clustering, the optimal number of reference condition clusters455

estimated from the Calinski criterion was 12. Among-cluster variation was mainly456

associated with substrate composition (see Supplementary material, Fig. 2 for457

details). The resulting 17 figures (Supplementary material, Figs. 3-19), each458

comprising six panes (two species times the three gender status) that themselves459

contained a curve for each cluster (a total of 1224 profiles were thus calculated),460

showing a broad array of different scenarios. Indeed, they were too numerous to be461

part of the present paper’s main text (readers are referred to the Supplementary462

material for the details). For instances, a variable may appear to have an effect on463

the probability of presence only for a part of its range; this effect may only be464

apparent for specific reference conditions, with direction changing among the465

reference conditions. Also some variables may have similar profiles among species466

and genders (e.g., bottom slope; Supplementary material, Fig. 3) whereas some467

others may display more contrasting profiles among them (e.g., the percentage of468
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clay or silt in the sediment; Supplementary material, Fig. 6).469

Habitat mapping470

An apparent feature of the presence proportion maps is the general preference of471

both fishes for the area surrounding the actual bridge (Figs. 6 and 7). Lake sturgeon472

of either gender have very similar distributions, and this both during and after473

spawning. During spawning, both female and male Lake sturgeon appear to have a474

greater fondness toward the area located at the mouth of Montmorency river than475

after spawning. That area often is under waters that are too shallow for fish to be476

reliably detected by telemetry and predicted by the model, yet it appears to be477

preferred whenever such preference can be evidenced. That preference subsides after478

spawning, Lake sturgeon of either genders then appear to shift their distribution479

towards the middle of CIO, somewhat northerly to the actual road bridge.480

In sharp opposition to Lake sturgeon, White perch do not appear to display any481

particular preference for the Montmorency river mouth area, be it during or after482

spawning. On the other hand, spawning female and, but to a lesser extent, male483

White perch tend to venture along the southwestern shore of Île d’Orléans; that484

behavior is no longer apparent after spawning. Female White perch have a broader485

distribution after spawning than did male White perch. With the notable exception486

of female White perch, the model predicted a broader distribution of fish inside and487

outside the study area during than after spawning. Hence, female White perch488

appear prevalent in the middle of CIO south and north of the road bridge after489

spawning. Male White perch do not seem to modulate their distribution, with490

respect to spawning timing, as deeply as did female White perch.491

Discussion492

In the present study, we described the construction of an ANN-based NHM in493

estuarine conditions and applied it to predict fish probability of presence in a494

planned road bridge construction area. The NHM we obtained has a broad scope,495
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encompassing different sex, species, and time of the year. We found that ANN496

model to have good performance and we expect it to be useful for assessing the497

impact of potential alterations of Lake sturgeon and White perch habitat during498

and after construction works. These works will both temporarily and permanently499

alter substrate composition, depths, and local hydraulics in various ways. To assess500

the effect of a given construction scenario, one would input its associated transient501

hydrological alterations, combined them with tidal predictions for the scheduled502

construction period, simulate hydraulics, and finally assess changes in fish503

distribution using the NHM. Assessing permanent alterations would involve a504

similar procedure while using average yearly tidal predictions instead of505

time-specific ones.506

In cross-validation trials, ANN-based NHM surpassed a logistic regression-based507

NHM built in a similar fashion by a correct classification margin of 6.0%; a margin508

that may seem small but becomes increasingly difficult to improve as it approaches509

perfection (i.e., 100% correct classification). A 6.0% improvement over a model510

having an out-of-the-sample performance of 72.5% thus represents a relative511

improvement of 6.0
100−72.5

≈ 21.6% over the remaining margin for improvement. That512

relative improvement appears slightly greater ( 6.5
100−70.8

≈ 22.3%) when assessed over513

the training data, but shrinks somehow ( 4.9
100−64.8

≈ 14.0%) when assessed on the514

testing data. An other highlight of the present study is ANN’s ability for implicitly515

representing relationships with a vast array of different shapes, and involved in an516

equally vast array of possible interaction patterns, without them having to be517

explicitly enumerated by the model builder. Individuals distribute differently in the518

study area as a function of their species and genders.519

The actual road bridge is located well into the habitat used by both species during520

(and, for Lake sturgeon, also after) their reproductive period. We therefore expect521

that any construction work undertaken in the bridge area could add an impact over522

that already present from other past and present human activities. However, that523

impact need not be negative. On the habitat quality maps (Fig. 6, 7; Supplementary524

material, figs. 20-91), the areas in the direct vicinity of the actual road bridge525

20



(< 100m) generally appear to have a higher quality than their surroundings located526

farther away (> 100m). That difference is readily visible for both species during the527

spawning period (Fig. 6; even more apparent at high tide, see Supplementary528

material, Figs. 43-45). Since the actual road bridge now has and apparently positive529

local effect on habitat quality, its possible destruction following the construction of530

a replacement structure might have a detrimental effect. We are hopeful that the531

ANN model we developed in the present study will be helpful in planning future532

development work in that area, from the construction of new infrastructures (e.g.,533

bridge, split road), the reuse or disposal of existing ones, to the planning of any534

compensatory measures that may be needed.535

Fish tracking information was obtained for only a part of the year, from late April536

to mid-November. In addition to the increasing costs and logistic complexity,537

year-round fish tracking would also have carried its share of uncertainties as the538

harsh conditions found in the area involve shifting winter ices and spring flooding539

that can displace the VR2W hydro-acoustic receivers off their operational location540

or wash them away from the surveying area. However, hydro acoustic hyperbolic541

ranging operates well under winter conditions, provided that receivers can remain at542

a steady location. One way to achieve overwinter surveying may involve, for543

instance, technologies for stowing receivers near the bottom or within the sediments544

whenever water becomes too shallow and ices or floodwaters threaten receivers.545

Although it is computationally possible to extrapolate the model beyond the period546

of time for which data is available, that practice would yield questionable results547

about the distribution of the species. Extrapolating any of the descriptors beyond548

the range that has been observed during the study period would pose a similar issue:549

there would be no way to ascertain that the shape of the relationships described by550

the model would still follow the trends occurring in the field. Hence, the ability of551

ANN models to represent complex, non-linear, patterns also make them potentially552

more vulnerable to extrapolation then the more classical regression models, as the553

former’s response may experience steeper gradients on descriptors extremes (or for554

oddly-observed combinations thereof). The construction of a large infrastructure555
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such as a road bridge spans many years and the effect of the structure will last,556

year-round, for decades to follow. Therefore, it may ultimately be worthwhile to557

address the question of year-round fish distribution, in future studies, by extending558

fish sampling effort to parts of the year that have not yet been sampled.559

Pseudo absence560

A noteworthy issue with telemetry studies, which we mentioned earlier, is that it561

does not readily identify the conditions that are not sought after (or avoided) by the562

tracked organisms. Absence data have to be drawn in some way. Here we performed563

that drawings on pools of locations chosen to feature conditions that were not too564

similar to those prevailing on observation sites. From a statistical perspective, such565

a decision with regard to potential PA pooling assumes that the null hypothesis,566

whereby fish move about the experimental area irrespective of the conditions found567

therein, is rejected first hand. Putting all sites in the pool, irrespective of conditions568

found in them, would have come with the initial assumption that the null569

hypothesis is true. Hence, PA drawing, although arguably a widespread practice, is570

somewhat remote from the ideal as there is no way to correctly draw absence data571

without making an a priori statement about whether or not the environment572

influences distribution. Drawing locations randomly assumes a null distribution of573

the organisms (i.e., one that is purely random, unrelated to environmental574

conditions) for the locations marked as absences. However, locations marked as575

presence will not conform with a null distribution under scenarios where576

distribution can be modeled. Assuming that the distribution is indeed influenced by577

the environment (i.e., isn’t null), a model that is consequent with the alternate578

hypothesis (i.e., that distribution is related with the environment) will be obtained579

by discarding locations that are similar to those where organisms were observed. In580

that scenario, observing an organism at some places can be regarded as an evidence581

that conditions found therein are prized by the organism being tracked.582

As it turns out, it is impossible to generate PA data that are both statistically583

unbiased in terms of α (i.e., the probability to reject the hypothesis of a null584
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distribution when distribution is actually unrelated to the environment) and β (i.e.,585

the probability to accept the hypothesis of a null distribution when distribution is586

actually related to the environment) error rates without knowing the outcome of the587

underlying hypothesis test of the effect of the environment on distribution first hand,588

thereby making that whole decision process circular by nature. Here, we weren’t589

primarily concerned with hypothesis testing; by drawing PA in a stratified fashion590

(i.e., by removing locations with conditions similar to those of observation sites from591

the pool), we thus assumed fish distribution to be related to the environment. It is592

worthwhile to remain mindful of the fact that our apparent success at correctly593

predicting PA to a greater extent than expected by chance alone (e.g., the correct594

classification rate of 60.6% obtained for the deep ANN NHM for cross-validation595

trials whereas 50% would be expected) was likely a consequence of beginning from596

that assumption. Another trade-off to obtain the most reliable distribution model in597

such an arguably imperfect framework could have been to draw PA in an entirely598

random fashion and select hyper-parameters to obtain a model maximizing the599

correct classification of presence data while keeping the correct classification rate for600

PA as close as possible to their expected null value (50%).601

Beyond a binary distribution model602

For the future, we envision another modeling framework, besides the binary603

classification framework used in the present study, that does away with the need to604

draw PA and associated shortcomings (i.e., a so-called “presence-only” model). Also,605

that framework would make use of the information related to the movements of606

organisms in time, which is currently being overlooked by binary classification607

models. ANN being so versatile and adaptable, they can be used to predict608

transition among discrete states within a set of possible states; not unlike a609

ANN-based equivalent of a multi-state (linear) Markov model. Such a model would610

operate on a discretized map of homogeneous habitat polygons and predict the611

conditional probability, given the prevailing environmental conditions, for staying in612

or moving about polygons after a given amount of time. These polygons of613
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homogeneous environmental conditions can be readily obtained using a614

spatially-constrained cluster analysis (Legendre and Legendre, 2012).615

There may be several ways by which such an habitat transition model could be616

implemented. Here, we propose the following workflow. Firstly, one defines a naive617

transition classifier ANN representing the organism’s marginal probability of618

distribution among the different habitat states (presence in a polygon). That model619

thus takes organisms previous locations (i.e., a set binary descriptors), together with620

the amount of time elapsed since that previous observation (i.e., a single continuous621

descriptor) as its input layer, process it through a few hidden layers, and ends into a622

softmax (i.e., multiple outcomes) output layer predicting the probability of presence623

of the fish in the different habitat polygons. Trained strictly on the output data,624

that classifier plays a role similar to that of the exponential of the time-multiplied625

transition intensity matrix in a multistate Markov (chain) model. Secondly, a626

variational auto-encoder VAE is built on the environmental conditions data. A VAE627

is a non-supervised ANN that re-generate its own set of input data while forcing628

information through a purposely-made information bottleneck in the form of a629

latent vector space constrained to have a user-defined statistical distribution. It630

does so by first encoding the information content of the variables into a compressed631

representation, with specified statistical properties, using a convergent network632

called the encoder and then turning this representation back into the original633

representation using a divergent network called the decoder. The encoder network634

thus obtained can be recycled into another model and provide it with a simplified635

representation of the input variables. Although that step is optional, we anticipate636

that a preliminary processing of the environmental variable space into a latent637

vector space would later simplify the injection of environmental information into the638

classifier. Thirdly, encoding section of the VAE developed in the second step is639

connected to the classifier. That connection would operates through sets of weights640

injecting the latent vector representation of the environment into some of the641

classifier’s hidden layers, thereby turning the whole network into a conditional642

(non-naive) transition classifier. The latter connecting weights would be estimated643
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while keeping that pertaining strictly to the naive transition classifier and644

environmental VAE sections constant during the back-propagation estimation645

process. Optionally, the resulting compound model might be trained for some more646

epochs while allowing all weights to be updated for refinement purposes. Also, we647

may use two copies of the same VAE (i.e., sharing weights and providing the same648

latent vector representation), one for describing conditions at previous time step,649

and the other describing the actual conditions experienced by the organism.650

Conclusion651

In spite of a few limitations related to sampling, we have shown here that the most652

recent tools in acoustic positioning, remote sensing, tidal and hydraulics modeling,653

and machine learning can be combined to build habitat probabilistic models for654

estuarine environments. The resulting model has been found to be powerful within655

its seasonal scope. It is our dearest hope that the results featured in the present656

study inspire other multi-disciplinary teams to contribute further advancements in657

compounding the use of advanced remote sensing, 2D (or 3D) physical environment658

modeling, large-scale field tracking, and deep learning analysis methods for habitat659

modeling. Indeed, there are growing needs for characterizing the habitat660

requirements for the ever-growing list of organisms that are affected by human661

activity. Safeguarding these organisms and the various ecosystems that they inhabit662

gives us many reasons to look forward to the deployment of integrative habitat663

modeling efforts.664
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Figure legend673

Figure 1: Map of section of the St. Lawrence Fluvial Estuary (SLFE) where
hydraulic modeling was performed (i.e., modeled area), which includes the fish
habitat study area (shown in the upper left hand inset). The legend in the upper
portion of the figure contains the colors used to identify the different terrain
features, whereas that in the lower right end references the place names mentioned
in the text with numbers. The fine dotted curves indicate reference latitudes (Lat)
and longitudes (Lon).

Figure 2: Estimation of the first derivative of a tidal height time series with respect
to time. The time series is sampled at a suite of times (dots) located before and
after the reference time t = 0 (here, 13:30:00). From these sampling points, a
locally-defined third order polynomial curve is fitted and its tangent at the reference
time (obtained from the derivative of the polynomial) is taken as the estimate of the
time derivative of the time series at that particular moment. The procedure is
repeated for every sampling times, yielding a time series that is the numerical first
derivative of the original time series (tidal rate).

Figure 3: Example of the temporal variable pair used to represent the seasons in the
numerical habitat model (Spr: spring, Sum: summer, Aut: autumn, Win: winter) in
the model.

Figure 4: Example of the temporal variable pair used to represent the time of day in
the numerical habitat model.

Figure 5: Probability distribution of the fish presence model response when fish
were present (solid, tracked using acoustic telemetry) and for pseudo absence
(dashed) drawn in the study area, with the model’s decision threshold for absence
(Pr < 0.4143) and presence (Pr > 0.4143). The model is a three-layer ANN.
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Figure 6: Map of the fish habitat during the spawning period (May 01 to June 30)
obtained for female and male Lake sturgeon (A. fulvescens) and White perch (M.
americana) from the deep ANN fish habitat model developed in the present study.
Shades of gray represent the proportion of the time the model predicted fish to be
present on locations that were was within the depth range of the model
([0.3− 30m]) (see the legend in the upper part of Fig. 1 for the meaning of the other
colors on the map).

Figure 7: Map of the fish habitat after the spawning period ended (July 01 to Nov.
21) obtained for female and male Lake sturgeon (A. fulvescens) and White perch
(M. americana) from the deep ANN fish habitat model developed in the present
study. Shades of gray represent the proportion of the time the model predicted fish
to be present on locations that were was within the depth range of the model
([0.3− 30m]) (see the legend in the upper part of Fig. 1 for the meaning of the other
colors on the map).
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Highlights for paper “Deep learning habitat modeling
for moving organisms in rapidly changing environments:

an example of two fishes in a tidal estuary”
Guillaume Guénard, Jean Morin, Pascal Matte, Yves Secretan, Sylvain Martin, Eliane

Valiquette, and Marc Mingelbier
6 Feb. 2020

Highlights

• We modeled the habitat of two fishes: Lake sturgeon and White perch
• Habitat is located in the St. Lawrence River estuary, near Île d’Orléans
• We used a deep Artificial Neural Network model with many types of descriptors
• The model classified 94.0% of observations as presence during cross-validation
• Descriptors often displayed non-linearity and varied among the environment
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