THE PEP STANDARD COMPUTABLE GENERAL EQUILIBRIUM MODEL SINGLE-COUNTRY, STATIC VERSION PEP-1-1

SECOND REVISED EDITION OCTOBER 2009
(MINOR CORRECTIONS, JANUARY 2010)

Bernard Decaluwé ${ }^{1}$
André Lemelin ${ }^{2}$
Hélène Maisonnave ${ }^{3}$
Véronique Robichaud ${ }^{4}$

Poverty and Economic Policy (PEP)
 Research Network

[^0]
CONTENTS

Contents 3
Preface 7
Introduction 8

1. Production 9
2. Income and savings 13
2.1 Households 13
2.2 Businesses 15
2.3 Government 16
2.4 Rest of the world 20
2.5 Transfers 20
3. Demand 22
4. Producer supplies of products and international trade 24
5. Prices 29
5.1 Production 29
5.2 International trade 31
5.3 Price indexes 32
6. Equilibrium 33
7. Gross domestic product 34
References 35
Appendix A: Equations, sets, variables and parameters 36
A1. Equations 36
A1.1 Production 36
A1.2 Income and savings 37
A1.3 Demand 39
A1.4 Producer supplies of products and international trade 40
A1.5 Prices 40
A1.6 Equilibrium 42
A1.7 Gross domestic product 43
A2. Sets 43
A2.1 Industries and commodities 43
A2.2 Production factors 43
A2.3 Agents 43
A3. Variables 44
A3.1 Volume variables 44
A3.2 Price variables 45
A3.3 Nominal (value) variables 46
A4. Parameters 48
Appendix B: Model variables and concepts of the 1993 system of national accounts (SNA93) 51
B1. « Indirect » taxes 51
B1.1 Other taxes on production 52
B1.2 Taxes on products 53
B1.3 Corresponding variables in PEP-1-1 53
B2. Price concepts 54
B2.1 Producers' prices and basic prices 54
B2.2 Purchasers' prices 58
B2.3 Corresponding variables in PEP-1-1 59
B3. Trade and transport margins 59
B4. GDP concepts 61
B4.1 GDP at basic prices and at producers’ prices 61
B4.2 GDP at purchasers' prices from the perspective of final demand 62
B4.3 GDP from the income perspective 62
B4.4 What about GDP at factor cost? 64
Appendix C: Mathematical derivations 66
C1. Relative demand of capital and labor 66
C1.1 Cost-minimizing problem 66
C1.2 Relative demand 67
C1.3 Elasticity of substitution 68
C2. Labor demand by category 70
C2.1 Wage bill minimizing problem 70
C2.2 Relative labor demand 71
C2.3 Unit cost of composite labor 72
C2.4 Labor demand for a single category in terms of relative wage rates 75
C2.6 Elasticity of substitution 75
C3. Demand for capital by category 77
C4. Stone-Geary utility and the demand for consumer goods 77
C5. Allocation of aggregate output to product supplies 78
C5.1 Sales revenue maximizing problem 78
C5.2 Relative supply of products 80
C5.3 Price of aggregate output 81
C5.4 Supply of individual products 83
C5.5 Elasticity of transformation 84
C6. Supply on domestic and export markets 86
C6.1 Sales revenue maximizing problem 86
C6.2 Relative supply on the domestic and export markets 87
C6.3 Elasticity of transformation 88
C7. Demand for local products and imports 91
C7.1 Expenditure minimizing problem 91
C7.2 Relative demand for local products and imports 92
C7.3 Elasticity of substitution 93
C8. Exact price indexes PIXINV and PIXGVT 95
Appendix D: Note on the rental rate and the rate of return on capital 97
Appendix E: Walras’ law, redundant equations, and slack variables (Leon) 99
E1. Walras' Law and the LEON slack variable 99
E2. Demand for labor by category and the price of composite labor 99
E2.1 Equation 140 implies equations 135 and 5 100
E2.2 Equation 72 redundant given equations 5 and 6 101
E2.3 Summary of the logical structure 104
E3. Other slack variables 107
Appendix F: Model parametrization 109
F1. What is model parametrization? 109
F2. Assignments from SAM data 110
F2.1 Notation 110
F2.2 Assignment of temporary base values to volume variables 110
F2.3 Assignment of base values to nominal variables 111
F2.4 Assignment of temporary values to parameters 112
F3. Free parameters 112
F3.1 Price elasticity of indexed values 112
F3.2 CES and CET elasticities 112
F3.3 Elasticity of international demand for exported commodity x 112
F3.4 LES parameters 113
F3.4 Intercepts of transfers, direct taxes and savings 113
F3.5 Exogenous prices 113
F4. Calibration 114
F4.1 Nominal variables 114
F4.2 Revised parameter assignments 116
F4.3 Parameters 116
F4.4 Indexed transfers and intercepts 123
F4.5 Leontief input coefficients 124
F4.6 CET parameters 124
F4.7 CES parameters 127
F4.8 LES parameters 132
F5. Calibration of gross domestic products 133
References for Appendix F 133

PEP-1-1
 STANDARD PEP MODEL SINGLE-COUNTRY, STATIC VERSION
 PREFACE

This paper documents the PEP-1-1 model developed by four members of the PEP research network. The PEP-1-1 model is the first major output of a project that emerged spontaneously from the long-standing association between the co-authors. Our ambition is to crystallize years, even decades for some of us, of CGE modeling experience, and to share the result with the PEP MPIA Network, and with the modeling community at large. In addition, PEP-1-1 is to be our basis, from which to further deepen our understanding of CGE analysis and develop modeling techniques that will tackle new problems. But, both in sharing our experience and exploring new paths, we want to remain in the realm of operational model building. So our intentions are all at once pedagogical, experimental, and practical. And, besides, we enjoy working together: it’s just plain fun !

A first, provisional edition of the PEP-1-1 documentation was issued in July 2009, in response to the interest shown by participants of the June 2009 PEP Network meeting in Santiago, Chile. So the authors have responded by hastening to make this paper available as soon as possible.

The model presented in this edition contains a few improvements relative to the provisional version. The principal changes are:

- The value added production function is now CES, rather than Cobb-Douglas.
- Investment demand distinguishes between gross fixed capital formation (GFCF) and changes in inventories.
- The aggregate output of each industry consists of several products, consistent with rectangular input-output tables which are now the standard.
- Several intermediate variables have been added to make the theoretical underpinnings of the model more explicit, and to link model variables to national accounting concepts more closely.

In addition, a new appendix contains the detailed mathematical derivations of model equations.
Of course, we have tried to eliminate as many errors and «misprints » as possible. Needless to say, we welcome comments that will help us improve either the model or its presentation. Readers are invited to send their comments to André Lemelin at the following address: andre_lemelin@ucs.inrs.ca

Bernard Decaluwé, André Lemelin, Hélène Maisonnave, and Véronique Robichaud

INTRODUCTION

This paper proposes a static computable general equilibrium (CGE) model designed for the study of a national economy. This CGE model is intended to be an operational tool for PEP Network researchers and other users, so we hope. With it, they will be able to develop a relatively standard model, and easily apply it to their country, whatever the particular structure of their social accounting matrix (SAM). The present model differs significantly from Decaluwé, Martens and Savard's (2001) EXTER model, which has been used extensively in the past by network researchers who had been trained in one of the many modeling «Schools» held over the years in many parts of the world. In many respects, the PEP-1-1 model is richer than the more pedagogical EXTER. First, the PEP-1-1 model distinguishes several categories of workers and of capital. Also, PEP-1-1 is capable of taking into account a broader set of tax instruments, and it models all possible transfers between institutions (agents). Finally, the GAMS code, presented in a separate document, has been written in a general form, thanks to the use of sets. This will facilitate the application of PEP-1-1 to variously aggregated SAMs, by means of a few simple steps to make the SAM directly readable into the GAMS program. We are currently working on extensions of the PEP-1-1 model, to guide researchers in building dynamic or multi-country world models ${ }^{5}$.

In what follows, we present the model equations and state their underlying hypotheses. Appendices contain the complete list of equations, sets, variables and parameters. Our presentation begins with the production equations, from which are derived factor-demand equations and price equations. This follows the method of exposition suggested in Decaluwé, Martens and Savard (2001).

[^1]
1. PRODUCTION

The set of productive activities is represented by indices $j, j j \in J=\left\{J_{1}, \ldots, J_{j}, \ldots\right\}$.
Firms are assumed to operate in a perfectly competitive environment. So each industry's representative firm maximizes profits subject to its production technology, while it considers the prices of goods and services and factors as given (price-taking behavior). Chart 1 describes the nested structure of production.

Such nested structures are common in CGE models. It is usually expected that the elasticity of substitution is greater at lower levels of the hierarchy. There are other possible specifications, and, in the end, it is up to the modeler to decide which combination of specifications best fits the situation.

At the top level (equations 1 and 2), the sectoral output of each productive activity j combines value added and total intermediate consumption in fixed shares. In other words, the two aggregate inputs are considered to be strictly complementary, without any possibility of substitution, following a Leontief production function.

1. $V A_{j}=v_{j} X S T_{j}$
2. $C I_{j}=i o_{j} X S T_{j}$
where

$$
\begin{array}{ll}
C I_{j}: & \text { Total intermediate consumption of industry } j \\
V A_{j}: & \text { Value added of industry } j \\
X S T_{j}: & \text { Total aggregate output of industry } j \\
i o_{j}: & \text { Coefficient (Leontief - intermediate consumption) } \\
v_{j}: & \text { Coefficient (Leontief }- \text { value added) }
\end{array}
$$

At the second level, each industry's value added consists of composite labor and composite capital, following a constant elasticity of substitution (CES) specification.

$$
\text { 3. } \quad V A_{j}=B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{-\frac{1}{\rho_{j}^{V A}}}
$$

where
$K D C_{j}$: Industry j demand for composite capital
$L D C_{j}$: Industry j demand for composite labor
$B_{j}^{V A}: \quad$ Scale parameter (CES - value added)
$\beta_{j}^{V A}: \quad$ Share parameter (CES - value added)
$\rho_{j}^{V A}: \quad$ Elasticity parameter (CES - value added) $;-1<\rho_{j}^{V A}<\infty$
Profit maximization (or cost minimization) by the firms leads them to employ labor and capital to the point where the value marginal product of each is equal to its price (the wage rate and the rental rate of capital respectively). With a CES production function, such behavior is described by the demand for labor relative to capital of equation 4 (Appendix C1).
4. $L D C_{j}=\left[\frac{\beta_{j}^{V A}}{1-\beta_{j}^{V A}} \frac{R C_{j}}{W C_{j}}\right]^{\sigma_{j}^{V A}} K D C_{j}$
where
$R C_{j}: \quad$ Rental rate of industry j composite capital
$W C_{j}: \quad$ Wage rate of industry j composite labor

$$
\sigma_{j}^{V A}: \quad \text { Elasticity of transformation }(\mathrm{CES}-\text { value added }) ; 0<\sigma_{j}^{V A}<\infty
$$

In accordance with the algebra of CES aggregator functions, $\rho_{j}^{V A}=\frac{1-\sigma_{j}^{V A}}{\sigma_{j}^{V A}}$ (Appendix C1).

At the bottom level on the value added side, the various categories of labor, indexed as $l \in L=\left\{L_{1}, \ldots, L_{l}, \ldots\right\}$, are combined following a constant elasticity of substitution (CES) technology (equation 5), which reflects the imperfect substitutability between different types of labor. The firm chooses its labor composition so as to minimize its labor cost given the relative wage rates. Labor demand of each type derives from the first-order conditions of cost minimization by the representative firm, subject to the CES technology (equation 6) (Appendix C2). Likewise, composite capital is a CES combination of the different categories of capital, indexed as $k \in K=\left\{K_{1}, \ldots, K_{k}, \ldots\right\}$. As in the case of labor, it is assumed that different categories of capital (land, buildings, machinery and equipment, etc.) are imperfect substitutes (equation 7). The demand for each type of capital results from cost minimization (equation 8).
$-\frac{1}{\rho_{j}^{L D}}$
5. $L D C_{j}=B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]$
6. $L D_{l, j}=\left[\frac{\beta_{l, j}^{L D} W C_{j}}{W T I_{l, j}}\right]^{\sigma_{j}^{L D}}\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}-1} L D C_{j}$
$-\frac{1}{\rho_{j}^{K D}}$
7. $K D C_{j}=B_{j}^{K D}\left[\sum_{k} \beta_{k, j}^{K D} K D_{k, j}^{-\rho_{j}^{K D}}\right]$
8. $K D_{k, j}=\left[\frac{\beta_{k, j}^{K D} R C_{j}}{R T I_{k, j}}\right]^{\sigma K D}\left(B_{j}^{K D}\right)^{\sigma_{j}^{K D}-1} K D C_{j}$
where
$K D_{k, j}: \quad$ Demand for type k capital by industry j
$L D_{l, j}: \quad$ Demand for type $/$ labor by industry j
$W T I_{l, j}: \quad$ Wage rate paid by industry j for type l labor, including payroll taxes
$R T I_{k, j}$: Rental rate paid by industry j for type k capital, including capital taxes $B_{j}^{K D}$: \quad Scale parameter (CES - composite capital)
$B_{j}^{L D}: \quad$ Scale parameter (CES - composite labor)
$\beta_{k, j}^{K D}: \quad$ Share parameter (CES - composite capital)
$\beta_{l, j}^{L D}: \quad$ Share parameter (CES - composite labor)
$\rho_{j}^{K D}: \quad$ Elasticity parameter (CES - composite capital); $-1<\rho_{j}^{K D}<\infty$
$\rho_{j}^{L D}: \quad$ Elasticity parameter (CES - composite labor); $-1<\rho_{j}^{L D}<\infty$
$\sigma_{j}^{K D}: \quad$ Elasticity of substitution (CES - composite capital); $0<\sigma_{j}^{K D}<\infty$
$\sigma_{j}^{L D}: \quad$ Elasticity of substitution (CES - composite labor); $0<\sigma_{j}^{L D}<\infty$
In accordance with the algebra of the CES production function, $\rho_{j}^{K D}=\frac{1-\sigma_{j}^{K D}}{\sigma_{j}^{K D}}$ and $\rho_{j}^{L D}=\frac{1-\sigma_{j}^{L D}}{\sigma_{j}^{L D}}$

(Appendix C2).

Finally, returning to the second level, but on the intermediate consumption side, aggregate intermediate consumption is made up of various goods and services. Here it is assumed that intermediate inputs are perfectly complementary, and are combined following a Leontief production function. No substitutions are possible.
9. $D I_{i, j}=a i j_{i, j} C I_{j}$
where
$D I_{i, j}$: \quad Intermediate consumption of commodity i by industry j
$a i j_{i, j}: \quad$ Input-output coefficient

2. INCOME AND SAVINGS

The PEP-1-1 model offers the possibility of several categories of households and businesses, respectively indexed as $h, h j \in H \subset A G=\left\{H_{1}, \ldots, H_{h}, \ldots\right\}$, and $f, f j \in F \subset A G=\left\{F_{1}, \ldots, F_{f}, \ldots\right\}$, together with government, designated as $G V T$, and the rest of the world, $R O W$. Elements of the set $A G$ of all agents are designated as:

$$
a g, a g j \in A G=H \cup F \cup\{G V T, R O W\}=\left\{H_{1}, \ldots, H_{h}, \ldots, F_{1}, \ldots, F_{f}, \ldots G V T, R O W\right\} .
$$

2.1 Households

Household incomes come from three sources: labor income, capital income, and transfers received from other agents.
10. $Y H_{h}=Y H L_{h}+Y H K_{h}+Y H T R_{h}$
where
$Y H_{h}: \quad$ Total income of type h households
YHK h_{h} : Capital income of type h households
$Y H L_{h}$: Labor income of type h households
$Y_{H T R}{ }_{h}$: Transfer income of type h households

Each household type receives a fixed share of the earnings of each type of labor (equation 11). Likewise, total capital income is distributed between agents, including households, in fixed proportions (equation 12). Finally, transfer income is simply the sum of all transfers received by type h households (equation 13).
11. $Y H L_{h}=\sum_{l} \lambda_{h, l}^{W L}\left(W_{l} \sum_{j} L D_{l, j}\right)$
12. $Y H K_{h}=\sum_{k} \lambda_{h, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
13. $\quad Y H T R_{h}=\sum_{a g} T R_{h, a g}$
where
$R_{k, j}: \quad$ Rental rate of type k capital in industry j

$$
\begin{array}{ll}
T R_{h, a g}: & \text { Transfers from agent } a g \text { to type } h \text { households } \\
W_{l}: & \text { Wage rate of type } l \text { labor } \\
\lambda_{a g, k}^{R K}: & \text { Share of type } k \text { capital income received by agent } a g \\
\lambda_{h, l}^{W L}: & \text { Share of type } l \text { labor income received by type } h \text { households }
\end{array}
$$

Subtracting direct taxes and household transfers to government yields type household disposable income (equation 14). Indeed, since household transfers to government are mostly contributions to various social programs, our calculation of disposable income is consistent with national accounts. Whatever disposable income is left after savings and transfers to other agents is entirely dedicated to consumption (equation 15).

Finally, household savings are a linear function of disposable income. This differs from the frequently used specification where savings are a fixed proportion of income. Equation 16, by contrast, allows for the marginal propensity to save to be different from the average propensity. This choice is motivated by the fact that it is common for certain household categories to have negative savings. Now, if it is assumed that the marginal propensity to save is equal to the average propensity, and if that parameter is calibrated on negative observed savings, then there results an undesirable consequence: a fall in the income of these households increases their savings, or a rise in income leads to more endebtedness. Our formulation avoids this pitfall, but introduces an extra free parameter: instead of just having to calibrate the average propensity to save, the modeler must also determine the marginal propensity. Usually, it is the latter that is handled as a free parameter, and its value is determined from the literature or by econometric estimation. Once the marginal propensity has been determined, the savings function intercept is calibrated from the SAM. For household categories with negative savings, the intercept will be negative, while the slope (the marginal propensity) is positive. In addition, equation 16 makes it possible to fully of partially index the intercept to changes in the consumer price index. This is especially useful for testing the model's homogeneity, in which case price elasticity η is set to 1 .
14. $Y D H_{h}=Y H_{h}-T D H_{h}-T R_{g v t, h}$
15. $C T H_{h}=Y D H_{h}-S H_{h}-\sum_{\text {agng }} T R_{\text {agng, } h}$
16. $S H_{h}=$ PIXCON $^{\eta}$ sh $_{h}+\operatorname{sh1}_{h} Y D H_{h}$
where

$$
C T H_{h}: \quad \text { Consumption budget of type } h \text { households }
$$

PIXCON : Consumer price index
$S H_{h}$: Savings of type h households
$T D H_{h}$: Income taxes of type h households
$Y D H_{h}$: Disposable income of type h households
η : Price elasticity of indexed transfers and parameters
$s h 0_{h}$: Intercept (type h household savings)
$s h 1_{h}: \quad$ Slope (type h household savings)
agng: Index of non-government agents;

$$
\text { agng } \in A G N G \subset A G=H \cup F \cup\{R O W\}=\left\{H_{1}, \ldots, H_{h}, \ldots, F_{1}, \ldots, F_{f}, \ldots, R O W\right\}
$$

2.2 Businesses

Business income consists, on one hand, of its share of capital income, and, on the other hand, of transfers received from other agents (including the transfer part of interest on consumer debt).
17. $\quad Y F_{f}=Y F K_{f}+$ YFTR $_{f}$
18. $\quad Y F K_{f}=\sum_{k} \lambda_{f, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
19. $\quad Y F T R_{f}=\sum_{a g} T R_{f, a g}$
where
$Y F_{f}: \quad$ Total income of type f businesses
$Y^{\prime} K_{f}$: Capital income of type f businesses
YFTR $_{f}$: Transfer income of type f businesses

Deducting business income taxes from total income yields the disposable income of each type of business (equation 20). Likewise, business savings are the residual that remains after subtracting transfers to other agents from disposable income (equation 21).
20. $Y D F_{f}=Y F_{f}-T D F_{f}$
21. $S F_{f}=Y D F_{f}-\sum_{a g} T R_{a g, f}$
where
$S F_{f}: \quad$ Savings of type f businesses
$T D F_{f}$: Income taxes of type f businesses
$Y D F_{f}$: Disposable income of type f businesses

2.3 Government

In the PEP-1-1 model, it is possible to take into account a large variety of tax instruments. Indeed, equation 22 says that the government draws its income from household and business income taxes, taxes on products and on imports (TPRCTS), and other taxes on production (TPRODN). According to the 1993 System of National Accounts (SNA93), taxes on products (not « production ») and imports consist of indirect taxes on consumption, taxes and duties on imports, and export taxes, while other taxes on production consist of payroll taxes, taxes on capital, and taxes on production (see Appendix B1). In addition to these various forms of fiscal revenue, government receives part of the remuneration of capital and transfers from other agents. Equations 22 to 34 describe the different government revenue sources.
22. $Y G=Y G K+T D H T+T D F T+T P R O D N+T P R C T S+Y G T R$
23. $Y G K=\sum_{k} \lambda_{g v t, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
24. $T D H T=\sum_{h} T D H_{h}$
25. $T D F T=\sum_{f} T D F_{f}$
26. $T P R O D N=T I W T+$ TIKT + TIPT
27. $T I W T=\sum_{l, j} T I W_{l, j}$
28. TIKT $=\sum_{k, j} T I K_{k, j}$
29. $T I P T=\sum_{j} T I P_{j}$
30. TPRCTS $=$ TICT + TIMT + TIXT
31. $T I C T=\sum_{i} T I C_{i}$
32. \quad TIMT $=\sum_{m}$ TIM $_{m}$
33. $T I X T=\sum_{x} T I X_{x}$
34. $Y G T R=\sum_{a g n g} T R_{g v t, a g n g}$
where
TDFT : Total government revenue from business income taxes

TDHT : Total government revenue from household income taxes

TIC i : Government revenue from indirect taxes on product i
TICT : Total government receipts of indirect taxes on commodities
$T I K_{k, j}: \quad$ Government revenue from taxes on type k capital used by industry j
TIKT : Total government revenue from from taxes on capital
$T I M_{m}$: Government revenue from import duties on product m
TIMT : Total government revenue from import duties
$T I P_{j}: \quad$ Government revenue from taxes on industry j production (excluding taxes directly related to the use of capital and labor)

TIPT : Total government revenue from production taxes (excluding taxes directly related to the use of capital and labor)
$T I W_{l, j}: \quad$ Government revenue from payroll taxes on type l labor in industry j
TIWT : Total government revenue from payroll taxes
$T I X_{x}$: Government revenue from export taxes on product x
TIXT : Total government revenue from export taxes

TPRCTS : Total government revenue from taxes on products and imports
TPRODN : Total government revenue from other taxes on production ${ }^{6}$
YG: Total government income
YGK : Government capital income
YGTR: Government transfer income

Similarly to what has been done with household savings, income taxes are described as a linear function of total income, whether it be for households (equation 35) or for businesses (equation 36). That way,

[^2]when a non-zero intercept is applied, the marginal rate of taxation is different from the average rate. Such an arrangement can be useful for simulating fiscal changes: for instance, marginal rates of taxation can be computed from fiscal parameters ${ }^{7}$; given these marginal rates, the intercept is then calibrated from SAM values. Moreover, the intercept may be partially of fully indexed to changes in the consumer price index.
35. $\quad T D H_{h}=$ PIXCON $^{\eta} t t d h 0_{h}+t t d h 1_{h} Y H_{h}$
36. $\quad T D F_{f}=$ PIXCON $^{\eta} t t d f 0_{f}+t t d f 1_{f} Y F K_{f}$
where
\[

$$
\begin{array}{ll}
t t d f 0_{f}: & \text { Intercept (income taxes of type } f \text { businesses) } \\
t t d f 1_{f}: & \text { Marginal income tax rate of type } f \text { businesses } \\
t t d h 0_{h}: & \text { Intercept (income taxes of type } h \text { households) } \\
t t d h 1_{h}: & \text { Marginal income tax rate of type } h \text { households }
\end{array}
$$
\]

As mentioned earlier, the model allows for taxes on production factors (payroll taxes and capital taxes), as well as for taxes on production itself (together, these three forms of taxation constitute «other taxes on production » in the SNA93 - see Appendix B1). First, as regards taxes on factors of production, the model notation distinguishes tax rates by industry, and also by type of labor or capital. Each rate then applies to the corresponding transactions (equations 37 and 38). Next, a tax may be applied to the total value of production (equation 39).
37. $T I W_{l, j}=t t i w_{l, j} W_{l} L D_{l, j}$
38. $T I K_{k, j}=t t i k_{k, j} R_{k, j} K D_{k, j}$
39. $\quad T I P_{j}=t t i p_{j} P P_{j} X S T_{j}$
where
$P P_{j}$: Industry j unit cost, including taxes directly related to the use of capital and labor, but excluding other taxes on production
$t t i k_{k, j}: \quad$ Tax rate on type k capital used in industry j
ttip j_{j} : Tax rate on the production of industry j
$t_{t i w}^{l, j}$: Tax rate on type l worker compensation in industry j

[^3]Finally, the government can implement three types of taxes on products (for the definition of « taxes on products », see Appendix B1). Equations 40 and 41 describe how these taxes are levied in the cases of non-imported and imported products. It should be noted that these taxes apply on the sales value including margins (trade and transport margins are discussed in Appendix B3) and custom duties whenever the latter exist. Other taxes collected are taxes and duties on imported products (equation 42), and export taxes (equation 43).
40. $\quad T I C_{n m}=t t i c_{n m}\left(P L_{n m}+\sum_{i} P C_{i} t m r g_{i, n m}\right) D D_{n m}$
41. $\quad T I C_{m}=t t i c_{m}\left[\left(P L_{m}+\sum_{i} P C_{i} t m r g_{i, m}\right) D D_{m}+\left(\left(1+t t i m_{m}\right) P W M_{m} e+\sum_{i} P C_{i} \operatorname{tmrg}_{i, m}\right) I M_{m}\right]$
42. $\quad T I M_{m}=t t i m_{m} P W M_{m}$ e $I M_{m}$
43. $T I X_{x}=t t i x_{x}\left(P E_{x}+\sum_{i} P C_{i} \operatorname{tmrg}_{i, x}^{X}\right) E X D_{x}$
where
$D D_{i}$: \quad Domestic demand for commodity i produced locally
$e: \quad$ Exchange rate ${ }^{8}$; price of foreign currency in terms of local currency
$E X_{x}$: Quantity of product x exported
$I M_{m}$: Quantity of product m imported
$P E_{x}$: Price received for exported commodity x (excluding export taxes)
$P L_{i}: \quad$ Price of local product i (excluding all taxes on products)
$P W M_{m}$: World price of imported product m (expressed in foreign currency)
ttic ${ }_{i}$: \quad Tax rate on commodity i
ttim m_{m} : Rate of taxes and duties on imports of commodity m
ttix ${ }_{x}$: Export tax rate on exported commodity x
$\operatorname{tmrg}_{i, i j}$: Rate of margin i applied to commodity $i j$
$\operatorname{tmrg}_{i, x}^{X}$: Rate of margin i applied to export x

The current government budget surplus or deficit (positive or negative savings) is the difference between its revenue and its expenditures. The latter consist of transfers to agents and current expenditures on goods and services.
44. $S G=Y G-\sum_{a g n g} T R_{a g n g, g v t}-G$
where
SG: Government savings
$G: \quad$ Current government expenditures on goods and services

2.4 Rest of the world

The rest of the world receives payments for the value of imports, part of the income of capital, and transfers from domestic agents (equation 45). Foreign spending in the domestic economy consists of the value of exports, and transfers to domestic agents. The difference between foreign receipts and spending is the amount of rest-of-the-world savings (equation 46), which are equal in absolute value to the current accoung balance, but of opposite sign (equation 47).
45. $\quad Y R O W=e \sum_{m} P W M_{m} I M_{m}+\sum_{k} \lambda_{r o w, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)+\sum_{\text {agd }} T R_{\text {row,agd }}$
46. $S R O W=Y R O W-\sum_{x} P E_{x}^{F O B} E X D_{x}-\sum_{\text {agd }} T R_{\text {agd, row }}$
47. $S R O W=-C A B$
where
$C A B$: Current account balance
$P E_{x}^{F O B}$: FOB price of exported product x (in the national currency)
SROW: Rest-of-the-world savings
YROW: Rest-of-the-world income

2.5 Transfers

The way to treat transfers in a CGE model is not obvious. In most cases, indeed, these are payments without any real counterpart, and they are not explicitly related to a specific form of economic behavior. For lack of information on the precise nature of each type of transfer, they should be treated in the most neutral way possible, to prevent them from becoming a factor modifying economic agents’ behavior. So
household transfers to non-government agents and business transfers are simply proportional to disposable income. As for household transfers to government, they are akin to social program contributions: as such, they are treated in the same way as household income taxes. All other transfers are initially set equal to their SAM values, and indexed, fully or partially, to the consumer price index.
48. $\quad T R_{\text {agng }, h}=\lambda_{\text {agng,h }}^{T R} Y D H_{h}$
49. $\quad T R_{g v t, h}=P I X C O N^{\eta} \operatorname{trO}_{h}+\operatorname{tr}_{h} Y H_{h}$
50. $\quad T R_{a g, f}=\lambda_{a g, f}^{T R} Y D F_{f}$
51. $\quad T R_{a g n g, g v t}=P I X C O N^{\eta} T R_{a g n g, g v t}^{0}$
52. $T R_{\text {agd, row }}=\operatorname{PIXCON}{ }^{\eta} T R_{\text {agd,row }}^{0}$
where
$\lambda_{a g, a g j}^{T R}$: Share parameter (transfer functions)
$\operatorname{trO}_{g v t, h}$: Intercept (transfers by type h households to government)
$\operatorname{tr} 1_{g v t, h}$: Marginal rate of transfers by type h households to government

3. DEMAND

The demand for goods and services, whether domestically produced or imported, consists of household consumption demand, investment demand, demand by public administrations, and demand as transport or trade margins (for the treatment of margins in the SNA93, see Appendix B3).

It is assumed that households have Stone-Geary utility functions (from which derives the Linear Expenditure System). A characteristic of these utility functions is that there is a minimum level of consumption of each commodity (which may be zero for some commodities). Contrary to Cobb-Douglas utility functions, often used in the literature, this specification imposes neither zero cross-price elasticities between all pairs of goods, nor unit income-elasticities for all goods. Thus, it offers a degree of flexibility with respect to substitution possibilities in response to relative price changes. Type h household demand for each good (equation 53) is determined by utility maximization subject to the budget constraint (Appendix C4).
53. $C_{i, h} P C_{i}=C_{i, h}^{M I N} P C_{i}+\gamma_{i, h}^{L E S}\left(C T H_{h}-\sum_{i j} C_{i j, h}^{M I N} P C_{i j}\right)$
where
$C_{i, h}$: Consumption of commodity i by type h households
$C_{i, h}^{\text {MIN }}$: Minimum consumption of commodity i by type h households
$P C_{i}: \quad$ Purchaser price of composite comodity i (including all taxes and margins)
$\gamma_{i, h}^{L E S}: \quad$ Marginal share of commodity i in type h household consumption budget
Investment demand includes both gross fixed capital formation (GFCF) and changes in inventories. The two components of investment demand are quite different. In particular, GFCF cannot be negative (even though net investment, that is, gross investment minus depreciation, may be), whereas changes in inventories in the SAM may be positive or negative: roughly speaking, GFCF can be thought of as irreversible, while inventory accumulation is almost fully reversible. Endogenizing negative inventory changes is difficult to achieve satisfactorily in a CGE model. To avoid these complications, inventory changes are exogenous in PEP-1-1, fixed in volume. GFCF, on the contrary, is endogenous in the default closure of PEP-1-1, where total investment expenditure is determined by the savings-investment equilibrium constraint (equation 92), with savings endogenous. GFCF expenditure, obtained by subtracting the cost of changes in inventories from total investment expenditure (equation 54), is distributed among commodities in fixed shares (equation 55); implicitly, the production function of new
capital is Cobb-Douglas. So, for a given amount of investment expenditures, the quantity demanded of each commodity i for investment purposes is inversely related to its purchaser price. The same hypothesis is made regarding government current expenditures on goods and services (equation 56). With a given current expenditure budget, the quantity demanded of each commodity varies inversely with its price.
54. $G F C F=I T-\sum_{i} P C_{i} V S T K_{i}$
55. $\quad P C_{i} I N V_{i}=\gamma_{i}^{I N V} G F C F$
56. $\quad P C_{i} C G_{i}=\gamma_{i}^{G V T} G$
where
GFCF : Gross fixed capital formation
$I N V_{i}: \quad$ Final demand of commodity i for investment purposes
IT : Total investment expenditures
VSTK_{i} : Inventory change of commodity i
$\gamma_{i}^{I N V}: \quad$ Share of commodity i in total investment expenditures
$C G_{i}$: Public consumption of commodity i (volume)
$\gamma_{i}^{G V T}: \quad$ Share of commodity i in total current public expenditures on goods and services

In addition to being required for final demand, goods and services are used as inputs in the production process. Intermediate demand for each commodity is the sum of industry demands.

$$
\text { 57. } \quad D I T_{i}=\sum_{j} D I_{i, j}
$$

where
$D I T_{i}: \quad$ Total intermediate demand for commodity i

Finally, some services, such as transport and retail and wholesale trade, are used to move commodities and make them available to the market. So margin rates are applied to the volume of domestic production and imports to determine the quantities of these margin services required to distribute commodities to buyers (trade and transport margins are discussed in Appendix B3).

$$
\text { 58. } \quad M R G N_{i}=\sum_{i j} t m r g_{i, i j} D D_{i j}+\sum_{m} t m r g_{i, m} I M_{m}+\sum_{x} t m r g_{i, x}^{X} E X D_{x}
$$

where
$M R G N_{i}:$ Demand for commodity i as a trade or transport margin

4. PRODUCER SUPPLIES OF PRODUCTS AND INTERNATIONAL TRADE

In this section, we define the trade relations with the rest of the world, that is, the supply of exports and the demand for imports. This is achieved through specifying domestic buyers' behavior with respect to the different supply sources, and domestic producers’ supply behavior. The latter comprises two aspects: first, how composite output translates into the supply of products, and, second, how the supply of each product is directed to destination markets. The small-country hypothesis is adopted, in the sense that the world price of traded goods (imports and exports) is exogenous.

The section on production describes how industries combine inputs to produce total aggregate output $X S T_{j}$. Industries usually produce more than one product. The Leontief-style one-to-one correspondence between products and industries is a special case, and the 1993 System of National Accounts recommends constructing input-output tables in the rectangular format, where there are generally more goods than industries. If an industry's aggregate output were simply the sum of its products, the profit-maximizing firm would concentrate all of its output on the product with the highest price. Here, however, it is assumed that, although an industry can reorganize its production to change the proportions of goods produced, the different products are not perfectly « transformable » into one another. This is represented by means of a constant elasticity of transformation (CET) function that describes how easily the productmix can be adjusted in response to price changes (equation 59):
59. $\quad X S T_{j}=B_{j}^{X T}\left[\sum_{i} \beta_{j, i}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j T}^{X T}}}$
where
$X S_{j, i}: \quad$ Industry j production of commodity i
$B_{j}^{X T}: \quad$ Scale parameter (CET - total output)
$\beta_{j, i}^{X T}: \quad$ Share parameter (CET - total output)
$\rho_{j}^{X T}: \quad$ Elasticity parameter (CET - total output) ; $1<\rho_{j}^{X T}<\infty$
Producers allocate output among products so as to maximize sales revenue, given product prices, subject to equation 59. Individual product supply functions (equation 60) are derived from the first-order conditions of revenue maximizing (Appendix C5).
60. $X S_{j, i}=\frac{X S T_{j}}{\left(B_{j}^{X T}\right)^{1+\sigma_{j}^{X T}}}\left[\frac{P_{j, i}}{\beta_{j, i}^{X T} P T_{j}}\right]^{\sigma_{j}^{X T}}$
where
$P_{j, i}: \quad$ Basic price of industry j 's production of commodity i
$\sigma_{j}^{X T}: \quad$ Elasticity of transformation (CET - total output) $; 0<\sigma_{j}^{X T}<\infty$

In accordance with the algebra of the CET transformation function, $\rho_{j}^{X T}=\frac{1+\sigma_{j}^{X T}}{\sigma_{j}^{X T}}$ (Appendix C5).

Next, the output of every product of an industry is shared out among markets (domestic or export), again with the goal of maximizing the firm's total revenue, given the demand in each market and the various taxes that apply. It is assumed that production directed to one market is somewhat different from production directed to another market. This imperfect substitutability is represented in PEP-1-1 by means of a constant elasticity of transformation (CET) aggregator function that describes how readily production can be redirected from one market to another. ${ }^{9}$
61. $X S_{j, x}=B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D S_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}}$
where

$$
\begin{array}{ll}
D S_{j, i}: & \text { Supply of commodity } i \text { by sector } j \text { to the domestic market } \\
B_{j, x}^{X}: & \text { Scale parameter (CET - exports and local sales) } \\
\beta_{j, x}^{X}: & \text { Share parameter (CET - exports and local sales) } \\
\rho_{j, x}^{X}: & \text { Elasticity parameter (CET - exports and local sales) ; } 1<\rho_{j, x}^{X}<\infty
\end{array}
$$

Obviously, for products that are not exported to the world market, total output is simply equal to supply on the domestic market.
62. $X S_{j, n x}=D S_{j, n x}$

[^4]Relative supply functions are derived from the first-order conditions of revenue maximizing subject to the CET aggregator function (equation 61) (Appendix C6).
63. $E X_{j, x}=\left[\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}} \frac{P E_{\chi}}{P L_{x}}\right]^{\sigma_{j, x}^{X}} D S_{j, x}$
where

$$
\sigma_{j, x}^{X}: \quad \text { Elasticity of transformation (CET - exports and local sales) } ; 0<\sigma_{j, x}^{X}<\infty
$$

In accordance with the algebra of the CET transformation function, $\rho_{j, x}^{X}=\frac{1+\sigma_{j, x}^{X}}{\sigma_{j, x}^{X}}$ (Appendix C6).
To summarize, producers' supply behavior is represented by nested CET functions: on the upper level, aggregate output is allocated to individual products; on the lower level, the supply of each product is distributed between the domestic market and exports.

Many CGE models presume that producers can always sell as much as they wish on the world market at the (exogenous) current price; we take a different view (and, in so doing, we depart from the « pure» form of the small-country hypothesis): equation 64 says that a local producer can increase his share of the world market only by offering a price $P E_{x}^{F O B}$ that is advantageous relative to the (exogenous) world price $P W X_{X}$. The ease with which his share can be increased depends on the degree of substitutability of the proposed product to competing products; in other words, it depends on the price-elasticity of export demand. Equation 64 also makes it possible to simulate an exogenous variation in world demand for the product, through a change in the variable $E X D_{x}^{O}$.
64. $E X D_{x}=E X D_{x}^{O}\left(\frac{e P W X_{x}}{P E_{x}^{F O B}}\right)^{\sigma_{x}^{X D}}$
where

$$
\begin{array}{ll}
E X D_{x}: & \text { World demand for exports of product } x \\
P E_{x}^{F O B}: & \text { FOB price of exported commodity } x \text { (in local currency) } \\
P W X_{x}: & \text { World price of exported product } x \text { (expressed in foreign currency) } \\
\sigma_{x}^{X D}: & \text { Price-elasticity of the world demand for exports of product } x
\end{array}
$$

Buyer behavior is symmetrical to producer behavior, in that it is assumed that local products are imperfect substitutes for imports, or, in other words, that goods are heterogenous with respect to their origin. So commodities demanded on the domestic market are composite goods, combinations of locally produced goods and imports. The imperfect substitutability between the two is represented by a constant elasticity of substitution (CES) aggregator function (equation 65).
65. $\quad Q_{m}=B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D D_{m}^{-\rho_{m}^{M}}\right]^{\frac{-1}{\rho_{m}^{M}}}$
where
$Q_{m}: \quad$ Quantity demanded of importable composite commodity m
$B_{m}^{M}: \quad$ Scale parameter (CES - composite commodity)
$\beta_{m}^{M}: \quad$ Share parameter (CES - composite commodity)
$\rho_{m}^{M}: \quad$ Elasticity parameter (CES - composite commodity); $-1<\rho_{m}^{M}<\infty$

Naturally, for goods with no competition from imports, the demand for the composite commodity is the demand for the domestically produced good.

$$
\text { 66. } \quad Q_{n m}=D D_{n m}
$$

Just as sellers seek to maximize revenue, buyers minimize expenses, subject to the CES aggregation function (equation 65). Relative demand functions derive from the first-order optimum conditions (Appendix C7).
67. $I M_{m}=\left[\frac{\beta_{m}^{M}}{1-\beta_{m}^{M}} \frac{P D_{m}}{P M_{m}}\right]^{\sigma_{m}^{M}} D D_{m}$
where
$P D_{m}$: \quad Price of local product m sold on the domestic market (including all taxes and margins)
$P M_{m}$: \quad Price of imported product m (including all taxes and margins)
$\sigma_{m}^{M}: \quad$ Elasticity of substitution (CES - composite commodity); $0<\sigma_{m}^{M}<\infty$

In accordance with the algebra of CES aggregator functions, $\rho_{m}^{M}=\frac{1-\sigma_{m}^{M}}{\sigma_{m}^{M}}$ (Appendix C7).

While equation 67 specifies the (relative) demand for imports, the supply function of imports in PEP-1-1 is implicit. According to the small-country hypothesis, the price-elasticity of import supply is assumed to be infinite at the going world price: this is what is implied by fixing the world price of imports as exogenous in equation 82 below.

5. PRICES

5.1 Production

The different prices and price indexes naturally depend on the hypotheses and functional forms already stated. In aggregations, the price of an aggregate is a weighted sum of the prices of its components. The weights are determined by equating the value of the aggregate to the sum of the values of its components, given the quantity of the aggregate (which is determined from the aggregator function). The weight assigned the price of each component is therefore the ratio of its volume (or quantity) to the volume (or quantity) of the aggregate ${ }^{10}$. Only in Leontief fixed-proportions aggregations are the weights invariant to relative price changes; in other cases, component proportions, and, consequently, component price weights, change in response to relative price changes, and they change more or less sharply, depending on the elasticity of substitution or transformation. For instance, the unit cost of an industry's output (including taxes directly related to the use of capital and labor, but excluding other taxes on production) is a weighted sum of the prices of value added and aggregate intermediate consumption (equation 68).
68. $\quad P P_{j}=\frac{P V A_{j} V A_{j}+P C I_{j} C I_{j}}{X S T_{j}}$

Here, the weights are $V A_{j} / X S T_{j}$ and $C I_{j} / X S T_{j}$. Multiplying both sides of equation 68 by $X S T_{j}$ yields the value accounting identity $P P_{j} X S T_{j}=P V A_{j} V A_{j}+P C I{ }_{j} C I{ }_{j}$. The same principle applies to the prices of other aggregates. The price of aggregate intermediate consumption is a combination of the commodity prices of the industry's intermediate inputs (equation 70), just as the price of value added is a combination of the prices of composite labor and composite capital (equation 71). So is it with the prices of composite factors. The price of an industry's composite labor is a weighted sum of the wage rates (including payroll taxes) of the different categories of labor used by that industry (equation 72). In the same way, the price of an industry's composite capital is a weighted sum of the rental rates of the different types of capital used by that industry (equation 74).

Since various forms of taxation appear in the model, it is necessary to define the relationship between prices before taxes, and prices including taxes. The basic price of production (for a definition of « basic

[^5]price », see Appendix B2) is obtained from the unit cost by adding taxes on production (other than taxes on labor or capital, already included in the unit cost) (equation 69). Likewise, wages paid by industry differ from wages received by workers by the amount of payroll taxes (equation 73). The same applies to the rental rate of capital (equation 75). The principles of price aggregation and tax accounting yield the following price equations, in addition to equation 68 , stated earlier.
69. $P T_{j}=\left(1+t t i p_{j}\right) P P_{j}$
70. $\quad P C I_{j}=\frac{\sum_{i} P C_{i} D I_{i, j}}{C I_{j}}$
71. $P V A_{j}=\frac{W C_{j} L D C_{j}+R C_{j} K D C_{j}}{V A_{j}}$
72. $W C_{j}=\frac{\sum_{l} W T I_{l, j} L D_{l, j}}{L D C_{j}}$
73. $\quad W T I_{l, j}=W_{l}\left(1+t t i w_{l, j}\right)$
74. $R C_{j}=\frac{\sum_{k} R T I_{k, j} K D_{k, j}}{K D C_{j}}$
75. $R T I_{k, j}=R_{k, j}\left(1+t t i k_{k, j}\right)$
where
$P T_{j}$: Basic price of industry j 's output
$P C I_{j}$: \quad Intermediate consumption price index of industry j
Finally, the rental rate received by the owners of capital, $R_{k, j}$, is determined in one of two manners, depending on the option selected by the user regarding the mobility of capital. In PEP-1-1, parameter $k m o b$ acts as a switch. If $k m o b=1$, capital is assumed to be perfectly mobile, and the aggregate supply of type k capital $K S_{k}$ is exogenous, fixed at its initial SAM value, so the use of capital by the industries is constrained by the supply-demand equilibrium condition (equation 91). In that case, the allocation of capital between industries is the result of the arbitrage process that makes the rental rate received by owners equal across industries (equation 76). If $k m o b=0$, capital is assumed to be industry-specific, equation 76 is not in effect, the $K D_{k, j}$ are exogenous, fixed at their initial SAM values, and rents paid on the use of capital are Ricardian rents.
76. $\quad R_{k, j}=R K_{k}$, if capital is mobile
where
$R K_{k}: \quad$ Rental rate of type k capital (if capital is mobile)

5.2 International trade

Exporting industries have the possibility of selling their output on the international market or the domestic market. So the price of their aggregate production is a weighted sum of the price obtained on each market, following the price aggregation principle. The weight assigned to each market is proportional to the quantity sold on that market (equation 77); these weights vary in response to relative price changes, more or less sharply, depending on the elasticity of transformation in the CET. The basic price (for a definition, see Appendix B2) obtained by industry j for exportable product x is a weighted sum of its basic price on the domestic market and its basic price on the export market (equation 78). The FOB price paid by purchasers on the export market is different from the one received by the producer, since margins and export taxes must be added on (equation 80). And of course, for products not exported by an industry, the price obtained is the domestic market price (equation 79).
77. $P T_{j}=\frac{\sum_{i} P_{j, i} X S_{j, i}}{X S T_{j}}$
78. $P_{j, x}=\frac{P E_{x} E X_{j, x}+P L_{x} D S_{j, x}}{X S_{j, x}}$
79. $\quad P_{j, n x}=P L_{n x}$
80. $\left(P E_{x}+\sum_{i} P C_{i} \operatorname{tmrg}_{i, x}^{X}\right)\left(1+t t i x_{X}\right)=P E_{x}^{F O B}$

As was previously explained, commodities purchased on the domestic market are composites. For goods facing import competition, the price of the composite is a weighted sum of the price paid for domestically produced, and imported goods (equation 83). The price paid for the local product is the sum of the price received by the producer, margins, and indirect taxes (equation 81). Similarly, the price paid for the imported product is the world price, translated into the local currency, plus taxes and duties on imports, margins, and domestic indirect taxes (equation 82). The price of commodities for which there is no competing import is simply the price paid for the local product (equation 84).
81. $P D_{i}=\left(1+t t i c_{i}\right)\left(P L_{i}+\sum_{i j} P C_{i} t m r g_{i j, i}\right)$
82. $P M_{m}=\left(1+t t i C_{m}\right)\left(\left(1+t t i m_{m}\right) e P W M_{m}+\sum_{i} P C_{i} t m r g_{i, m}\right)$
83. $P C_{m}=\frac{P M_{m} I M_{m}+P D_{m} D D_{m}}{Q_{m}}$
84. $\quad P C_{n m}=P D_{n m}$

5.3 Price indexes

Finally, four price indexes have been defined: the GDP deflator (equation 85), the consumer price index (equation 86), the investment price index (equation 87), and the public expenditures price index (equation 88). The first is a Fisher index, the second is a Laspeyres index, and the third and fourth are exact price indexes, dual to the Cobb-Douglas functions which describe commodity demand for investment purposes and for public consumption (Appendix C8).
85. PIXGDP $=\sqrt{\frac{\sum_{j} P V A_{j} V A O_{j}}{\sum_{j} P V A O_{j} V A O_{j}} \frac{\sum_{j} P V A_{j} V A_{j}}{\sum_{j} P V A O_{j} V A_{j}}}$
86. $\quad P I X C O N=\frac{\sum_{i} P C_{i} \sum_{h} C_{i, h}^{0}}{\sum_{i j} P C_{i j}^{0} \sum_{h} C_{i j, h}^{0}}$
87. PIXINV $=\prod_{i}\left(\frac{P C_{i}}{P C_{i}^{0}}\right)^{\gamma_{i}^{I N V}}$
88. $P I X G V T=\prod_{i}\left(\frac{P C_{i}}{P C_{i}^{0}}\right)^{\gamma_{i}^{G V T}}$
where
PIXGDP: GDP deflator
PIXGVT : Public expenditures price index
PIXINV: Investment price index

6. EQUILIBRIUM

Whether it be for the goods and services market or the factor market, supply and demand equilibrium must be verified. Thus, equation 89 defines the equilibrium between the supply and demand of each commodity on the domestic market. Equations 90 and 91 ensure the equilibrium between total demand for each factor and available supply. Likewise, total investment expenditure must be equal to the sum of agents’ savings (equation 92). The sum of supplies of every commodity by local producers must be equal to domestic demand for that commodity produced locally (equation 93). And finally, supply to the export market of each good must be matched by demand (equation 94).
89. $Q_{i}=\sum_{h} C_{i, h}+C G_{i}+I N V_{i}+V S T K_{i}+D I T_{i}+$ MRGN $_{i}$
90. $\quad \sum_{j} L D_{l, j}=L S_{l}$
91. $\sum_{j} K D_{k, j}=K S_{k}$
92. $\quad I T=\sum_{h} S H_{h}+\sum_{f} S F_{f}+S G+S R O W$
93. $\sum_{j} D S_{j, i}=D D_{i}$
94. $\sum_{j} E X_{j, x}=E X D_{x}$
where
$L S_{l}$: \quad Supply of type l labor
$K S_{k}$: Supply of type k capital

7. GROSS DOMESTIC PRODUCT

GDP at basic prices is equal to payments made to factors, plus taxes on production other than taxes on labor or capital already included in factor costs (equation 95). On the other hand, GDP at market prices from the final demand perspective is the sum of net final expenditures: household consumption, current public expenditures on goods and services, investment expenditures, plus the value of exports, minus the value of imports (equation 98). As for GDP at market prices from the income perspective (equation 97), it is equal to the sum total of income paid to labor and to capital, plus taxes on products and imports (TPRCTS - equation 30), plus other taxes on production (TPRODN - equation 26). GDP at market prices exceeds GDP at basic prices by exactly the amount of taxes on products and imports (TPRCTS). For a discussion of GDP concepts according to the SNA93, see Appendix B4.
95. $G D P^{B P}=\sum_{j} P V A_{j} V A_{j}+T I P T$
96. $G D P^{M P}=G D P^{B P}+$ TPRCTS
97. $\quad G D P^{I B}=\sum_{l, j} W_{l} L D_{l, j}+\sum_{k, j} R_{k, j} K D_{k, j}+T P R O D N+T P R C T S$
98. $\quad G D P^{F D}=\sum_{i} P C_{i}\left[\sum_{h} C_{i, h}+C G_{i}+I N V_{i}+V S T K_{i}\right]+\sum_{x} P E_{x}^{F O B} E X D_{x}-e \sum_{m} P W M_{m} I M_{m}$ where
$G D P^{B P}: G D P$ at basic prices
$G D P^{F D}: G D P$ at purchasers' prices from the perspective of final demand
$G D P^{I B}$: GDP at market prices (income-based)
$G D P^{M P}$: GDP at market prices

REFERENCES

DECALUWÉ, Bernard, André LEMELIN, David BAHAN (2006) « Oferta endógena de trabajo y capital parcialmente móvil en un MEGC birregional: Versión estática del modelo de equilibrio general computable del Ministerio de Hacienda de Québec», Investigación Económica, 258, octubrediciembre.
DECALUWÉ, Bernard, André LEMELIN, David BAHAN et Nabil ANNABI (2005) «Offre de travail endogène et mobilité du capital dans un MEGC bi-régional: la version statique du modèle d'équilibre général calculable du Ministère des Finances du Québec », texte d'une conférence donnée à Séville, lors de l'atelier international The State-of-the-Art in Regional Modeling, 21-23 octobre 2004, coorganisé par le Global Economic Modeling Network (ECOMOD) et la Fundación Centro de Estudio Andaluces (centrA), Ministère des Finances du Québec, collection Feuille d'argent, Travaux de recherche 2005-001, 62 pages. http://www.finances.gouv.qc.ca/documents/feuille/fr/2005_001.pdf
DECALUWÉ, Bernard, André LEMELIN, Véronique ROBICHAUD, David BAHAN, et Daniel FLOREA (2004). «Le modèle d'équilibre général calculable du ministère des Finances, de l'Économie et de la recherche du Québec: un modèle bi-régional du Québec et du Reste-du-Canada », chapitre 14, p. 285-297 dans CLOUTIER, L. Martin et Christian DEBRESSON, avec la collaboration d'Érik DIETZENBACHER, Changement climatique, flux technologiques, financiers et commerciaux nouvelles directions d'analyse entrée-sortie, Actes de la Quatorzième Conférence internationale de techniques d'analyse entrée-sortie, tenue à Montréal, 10-15 octobre 2002, Presses de l'Université du Québec.
DECALUWÉ, Bernard, André LEMELIN, Véronique ROBICHAUD et David BAHAN (2003). Modèle d'équilibre général du ministère des Finances du Québec (MEGFQ): caractéristiques et structure du modèle, ministère des Finances du Québec, Collection Feuille d'argent, Travaux de recherche 2003002 http://www.finances.gouv.qc.ca/documents/feuille/fr/2003_002.pdf
Disponible en version anglaise sous le titre: General equilibrium model of the ministère des Finances du Québec (GEMFQ): Characteristics and structure of the model http://www.finances.gouv.qc.ca/documents/Feuille/en/2003_002_eng.pdf
DECALUWÉ, B., A. MARTENS et L. SAVARD (2001). La politique économique du développement et les modèles d'équilibre général calculable, Les Presses de l'Université de Montréal, Montréal.
Inter-Secretariat Working Group on National Accounts (1993). « System of National Accounts 1993 (SNA93)», Eurostat, International Monetary Fund, OECD, United Nations, World Bank; Bruxelles-Luxembourg, New York, Paris, Washington (D.C.), 711 p. unstats.un.org/unsd/sna1993/toctop.asp

APPENDIX A: EQUATIONS, SETS, VARIABLES AND PARAMETERS

A1. Equations

A1.1 Production

1. $V A_{j}=v_{j} X S T_{j}$
2. $C I_{j}=$ io $_{j} X S T_{j}$
3. $V A_{j}=B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]$
4. $L D C_{j}=\left[\frac{\beta_{j}^{V A}}{1-\beta_{j}^{V A}} \frac{R C_{j}}{W C_{j}}\right]^{\sigma_{j}^{V A}} K D C_{j}$
$-\frac{1}{-\frac{1}{\rho_{j}^{L D}}}$
5. $L D C_{j}=B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]$
6. $L D_{l, j}=\left[\frac{\beta_{l, j}^{L D} W C_{j}}{W T I_{l, j}}\right]^{\sigma_{j}^{L D}}\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}-1} L D C_{j}$
7. $K D C_{j}=B_{j}^{K D}\left[\sum_{k} \beta_{k, j}^{K D} K D_{k, j}^{-\rho_{j}^{K D}}\right]$
8. $K D_{k, j}=\left[\frac{\beta_{k, j}^{K D} R C_{j}}{R T I_{k, j}}\right]^{\sigma_{j}^{K D}}\left(B_{j}^{K D}\right)^{\sigma_{j}^{K D}-1} K D C_{j}$
9. $D I_{i, j}=a i j_{i, j} C I_{j}$

A1.2 INCOME AND SAVINGS

A1.2.1 Households

10. $Y H_{h}=Y H L_{h}+Y H K_{h}+Y H T R_{h}$
11. $Y H L_{h}=\sum_{l} \lambda_{h, l}^{W L}\left(W_{l} \sum_{j} L D_{l, j}\right)$
12. $Y H K_{h}=\sum_{k} \lambda_{h, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
13. $\quad Y H T R_{h}=\sum_{a g} T R_{h, a g}$
14. $Y D H_{h}=Y H_{h}-T D H_{h}-T R_{g v t, h}$
15. $\mathrm{CTH}_{h}=\mathrm{YDH}_{h}-\mathrm{SH}_{h}-\sum_{\text {agng }} T R_{\text {agng, } h}$
16. $S H_{h}=$ PIXCON $^{\eta}$ sh $_{h}+\operatorname{sh1}_{h} Y D H_{h}$

A1.2.2 Firms

17. $Y F_{f}=Y F K_{f}+Y F T R_{f}$
18. $Y F K_{f}=\sum_{k} \lambda_{f, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
19. \quad YFTR $_{f}=\sum_{a g} T R_{f, a g}$
20. $Y D F_{f}=Y F_{f}-T D F_{f}$
21. $S F_{f}=Y D F_{f}-\sum_{a g} T R_{a g, f}$

A1.2.3 Government

22. $Y G=Y G K+T D H T+T D F T+T P R O D N+T P R C T S+Y G T R$
23. $Y G K=\sum_{k} \lambda_{g v t, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
24. \quad TDHT $=\sum_{h} T D H_{h}$
25. $T D F T=\sum_{f} T D F_{f}$
26. $T P R O D N=T I W T+T I K T+T I P T$
27. $T I W T=\sum_{l, j} T I W_{l, j}$
28. $T I K T=\sum_{k, j} T I K_{k, j}$
29. $T I P T=\sum_{j} T I P_{j}$
30. TPRCTS $=$ TICT + TIMT + TIXT
31. $T I C T=\sum_{i} T I C_{i}$
32. \quad TIMT $=\sum_{m}$ TIM $_{m}$
33. TIXT $=\sum_{x} \operatorname{TIX}_{x}$
34. $Y G T R=\sum_{\text {agng }} T R_{g v t, a g n g}$
35. $T D H_{h}=P I X C O N{ }^{\eta} t t d h 0_{h}+t t d h 1_{h} Y H_{h}$
36. $\quad T D F_{f}=P I X C O N{ }^{\eta} t t d f 0_{f}+t t d f 1_{f} Y F K_{f}$
37. $T I W_{l, j}=\operatorname{tti}_{l, j} W_{l} L D_{l, j}$
38. $T I K_{k, j}=t t i k_{k, j} R_{k, j} K D_{k, j}$
39. $T I P_{j}=t t i p_{j} P P_{j} X S T_{j}$
40. $T I C_{n m}=t t i c_{n m}\left(P L_{n m}+\sum_{i} P C_{i} \operatorname{tmrg}_{i, n m}\right) D D_{n m}$
41. $\quad T I C_{m}=t t i C_{m}\left[\left(P L_{m}+\sum_{i} P C_{i} \operatorname{tmrg}_{i, m}\right) D D_{m}+\left(\left(1+t t i m_{m}\right) P W M_{m} e+\sum_{i} P C_{i} t m r g_{i, m}\right) I M_{m}\right]$
42. $\quad T I M_{m}=\operatorname{ttim}_{m}$ PWM $_{m}$ e $I M_{m}$
43. $T I X_{x}=t t i x_{x}\left(P E_{x}+\sum_{i} P C_{i} \operatorname{tmrg}_{i, x}^{X}\right) E X D_{x}$
44. $S G=Y G-\sum_{a g n g} T R_{a g n g, g v t}-G$

A1.2.4 Rest of the world

45. $\quad Y R O W=e \sum_{m} P W M_{m} I M_{m}+\sum_{k} \lambda_{r o w, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)+\sum_{\text {agd }} T R_{r o w, a g d}$
46. $S R O W=Y R O W-\sum_{x} P E_{x}^{F O B} E X D_{x}-\sum_{\text {agd }} T R_{\text {agd, row }}$
47. $S R O W=-C A B$

A1.2.5 Transfers

48. $\quad T R_{\text {agng }, h}=\lambda_{\text {agng }, h}^{T R} Y D H_{h}$
49. $\quad T R_{g v t, h}=P I X C O N{ }^{\eta} \operatorname{tr}_{h}+\operatorname{tr} 1_{h} Y H_{h}$
50. $\quad T R_{a g, f}=\lambda_{a g, f}^{T R} Y D F_{f}$
51. $\quad T R_{\text {agng,gvt }}=P I X C O N^{\eta} T R_{\text {agng,gvt }}^{0}$
52. $T R_{\text {agd,row }}=P I X C O N^{\eta} T R_{\text {agd,row }}^{0}$

A1.3 DEMAND

53. $\quad C_{i, h} P C_{i}=C_{i, h}^{M I N} P C_{i}+\gamma_{i, h}^{L E S}\left(C T H_{h}-\sum_{i j} C_{i j, h}^{M I N} P C_{i j}\right)$
54. $\quad G F C F=I T-\sum_{i} P C_{i} V S T K_{i}$
55. $\quad P C_{i} I N V_{i}=\gamma_{i}^{I N V} G F C F$
56. $\quad P C_{i} C G_{i}=\gamma_{i}^{G V T} G$
57. $D I T_{i}=\sum_{j} D I_{i, j}$
58. $\quad M R G N_{i}=\sum_{i j} \operatorname{tmrg}_{i, i j} D D_{i j}+\sum_{m} t m r g_{i, m} I M_{m}+\sum_{x} \operatorname{tmrg}_{i, x}^{X} E X D_{x}$

A1.4 Producer supplies of products and international trade

59. $X S T_{j}=B_{j}^{X T}\left[\sum_{i} \beta_{j, i}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j T}^{X T}}}$
60.

$$
X S_{j, i}=\frac{X S T_{j}}{\left(B_{j}^{X T}\right)^{1+\sigma_{j}^{X T}}}\left[\frac{P_{j, i}}{\beta_{j, i}^{X T} P T_{j}}\right]^{\sigma_{j}^{X T}}
$$

$\left[\begin{array}{l}\frac{1}{\rho_{j, x}^{X}}\end{array}\right.$
61. $\quad X S_{j, x}=B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D S_{j, x}^{\rho_{j, x}^{X}}\right]$
62. $X S_{j, n x}=D S_{j, n x}$
63. $E X_{j, x}=\left[\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}} \frac{P E_{X}}{P L_{x}}\right]^{\sigma_{j, x}^{X}} D S_{j, x}$
64. $E X D_{x}=E X D_{x}^{O}\left(\frac{e P W X_{x}}{P E_{x}^{F O B}}\right)^{\sigma_{x}^{X D}}$
65. $\quad Q_{m}=B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D D_{m}^{-\rho_{m}^{M}}\right]^{\frac{-1}{\rho_{m}^{M}}}$
66. $\quad Q_{n m}=D D_{n m}$
67. $\quad I M_{m}=\left[\frac{\beta_{m}^{M}}{1-\beta_{m}^{M}} \frac{P D_{m}}{P M_{m}}\right]^{\sigma_{m}^{M}} D D_{m}$

A1.5 Prices

A1.5.1 Production

68. $P P_{j}=\frac{P V A_{j} V A_{j}+P C I_{j} C I_{j}}{X S T_{j}}$
69. $P T_{j}=\left(1+t t i p_{j}\right) P P_{j}$
70. $P C I_{j}=\frac{\sum_{i} P C_{i} D I_{i, j}}{C I_{j}}$
71. $P V A_{j}=\frac{W C_{j} L D C_{j}+R C_{j} K D C_{j}}{V A_{j}}$
72. $W C_{j}=\frac{\sum_{l} W T I_{l, j} L D_{l, j}}{L D C_{j}}$
73. $W T I_{l, j}=W_{l}\left(1+t t i w_{l, j}\right)$
74. $R C_{j}=\frac{\sum_{k} R T I_{k, j} K D_{k, j}}{K D C_{j}}$
75. $R T I_{k, j}=R_{k, j}\left(1+t t i k_{k, j}\right)$
76. $\quad R_{k, j}=R K_{k}$, if capital is mobile

A1.5.2 International trade

77. $P T_{j}=\frac{\sum_{i} P_{j, i} X S_{j, i}}{X S T_{j}}$
78. $P_{j, x}=\frac{P E_{x} E X_{j, x}+P L_{x} D S_{j, x}}{X S_{j, x}}$
79. $\quad P_{j, n x}=P L_{n x}$
80. $\left(P E_{x}+\sum_{i} P C_{i} \operatorname{tmrg}_{i, x}^{X}\right)\left(1+t t i x_{x}\right)=P E_{x}^{F O B}$
81. $P D_{i}=\left(1+t t i c_{i}\right)\left(P L_{i}+\sum_{i j} P C_{i} t m r g_{i j, i}\right)$
82. $P M_{m}=\left(1+t t i c_{m}\right)\left(\left(1+t t i m_{m}\right) e P W M_{m}+\sum_{i} P C_{i} t m r g_{i, m}\right)$
83. $P C_{m}=\frac{P M_{m} I M_{m}+P D_{m} D D_{m}}{Q_{m}}$
84. $\quad P C_{n m}=P D_{n m}$

A1.5.3 Price indexes

85. PIXGDP $=\sqrt{\frac{\sum_{j} P V A_{j} V A O_{j}}{\sum_{j} P V A O_{j} V A O_{j}} \frac{\sum_{j} P V A_{j} V A_{j}}{\sum_{j} P V A O_{j} V A_{j}}}$
86. PIXCON $=\frac{\sum_{i} P C_{i} \sum_{h} C_{i, h}^{0}}{\sum_{i j} P C_{i j}^{0} \sum_{h} C_{i j, h}^{0}}$
87. PIXINV $=\prod_{i}\left(\frac{P C_{i}}{P C_{i}^{0}}\right)^{\gamma_{i}^{I N V}}$
88. $P I X G V T=\prod_{i}\left(\frac{P C_{i}}{P C_{i}^{0}}\right)^{\gamma_{i}^{G V T}}$

A1.6 EQUILIBRIUM

89. $Q_{i}=\sum_{h} C_{i, h}+C G_{i}+I N V_{i}+$ VSTK $_{i}+$ DIT $_{i}+$ MRGN $_{i}$
90. $\sum_{j} L D_{l, j}=L S_{l}$
91. $\sum_{j} K D_{k, j}=K S_{k}$
92. $I T=\sum_{h} S H_{h}+\sum_{f} S F_{f}+S G+S R O W$
93. $\sum_{j} D S_{j, i}=D D_{i}$
94. $\sum_{j} E X_{j, x}=E X D_{x}$

A1.7 Gross domestic product

95. $G D P^{B P}=\sum_{j} P V A_{j} V A_{j}+T I P T$
96. $G D P^{M P}=G D P^{B P}+$ TPRCTS
97. $G D P^{I B}=\sum_{l, j} W_{l} L D_{l, j}+\sum_{k, j} R_{k, j} K D_{k, j}+$ TPRODN + TPRCTS
98. $\quad G D P^{F D}=\sum_{i} P C_{i}\left[\sum_{h} C_{i, h}+C G_{i}+I N V_{i}+V S T K_{i}\right]+\sum_{x} P E_{x}^{F O B} E X D_{x}-e \sum_{m} P W M_{m} I M_{m}$

A2. Sets

A2.1 INDUSTRIES AND COMMODITIES

All industries: $j, j j \in J=\left\{J_{1}, \ldots, J_{j}, \ldots\right\}$
All commodities: $i, i j \in I=\left\{I_{1}, \ldots, I_{i}, \ldots\right\}$
Imported commodities: $m \in M \subset I ; M=\left\{M_{1}, \ldots, M_{m}, \ldots\right\}$
Non imported commodities: $n m \in N M \subset I ; N M=\left\{N M_{1}, \ldots, N M_{n m}, \ldots\right\} ; N M \cap M=\varnothing$
Exported commodities: $x \in X \subset I ; X=\left\{X_{1}, \ldots, X_{x}, \ldots\right\}$
Non exported commodities: $n x \in N X \subset I ; N X=\left\{N X_{1}, \ldots, N X_{n x}, \ldots\right\} ; N X \cap X=\varnothing$

A2.2 Production factors

Labor categories: $l \in L=\left\{L_{1}, \ldots, L_{l}, \ldots\right\}$
Capital categories: $k \in K=\left\{K_{1}, \ldots, K_{k}, \ldots\right\}$

A2.3 Agents

All agents: $a g, a g j \in A G=H \cup F \cup\{G V T, R O W\}=\left\{H_{1}, \ldots, H_{h}, \ldots, F_{1}, \ldots, F_{f}, \ldots, G V T, R O W\right\}$
Household categories: $h, h j \in H \subset A G=\left\{H_{1}, \ldots, H_{h}, \ldots\right\}$
Firm categories: $f, f j \in F \subset A G=\left\{F_{1}, \ldots, F_{f}, \ldots\right\}$
Non governmental agent:

$$
\text { agng } \in A G N G \subset A G=H \cup F \cup\{R O W\}=\left\{H_{1}, \ldots, H_{h}, \ldots, F_{1}, \ldots, F_{f}, \ldots, R O W\right\}
$$

Domestic agents: agd $\in A G D \subset A G=H \cup F \cup\{G V T\}=\left\{H_{1}, \ldots, H_{h}, \ldots, F_{1}, \ldots, F_{f}, \ldots, G V T\right\}$

A3. Variables

NOTE: In what follows, the word "taxes" should be understood as "taxes, minus subsidies".

A3.1 Volume variables

$C_{i, h}$: Consumption of commodity i by type h households
$C_{i, h}^{\text {MIN }}: \quad$ Minimum consumption of commodity i by type h households
$C G_{i}$: Public consumption of commodity i
$C I_{j}: \quad$ Total intermediate consumption of industry j
$D D_{i}$: \quad Domestic demand for commodity i produced locally
$D I_{i, j}$: Intermediate consumption of commodity i by industry j
$D I T_{i}: \quad$ Total intermediate demand for commodity i
$D S_{j, i}$: Supply of commodity i by sector j to the domestic market
$E X_{j, x}$: Quantity of product x exported by sector j
$E X D_{x}$: World demand for exports of product x
$I M_{m}$: Quantity of product m imported
$I N V_{i}: \quad$ Final demand of commodity i for investment purposes
$K D_{k, j}$: Demand for type k capital by industry j
$K D C_{j}$: Industry j demand for composite capital
$K S_{k}$: Supply of type k capital
$L D_{l, j}$: Demand for type l labor by industry j
$L D C_{j}: \quad$ Industry j demand for composite labor
$L S_{l}$: \quad Supply of type l labor
$M R G N_{i}$: Demand for commodity i as a trade or transport margin
$Q_{i}: \quad$ Quantity demanded of composite commodity i
$V A_{j}: \quad$ Value added of industry j
VSTK_{i} : Inventory change of commodity i
$X S_{j, i}: \quad$ Industry j production of commodity i
$X S T_{j}: \quad$ Total aggregate output of industry j

A3.2 PRICE VARIABLES

$e: \quad$ Exchange rate ${ }^{11}$; price of foreign currency in terms of local currency
$P_{j, i}: \quad$ Basic price of industry j 's production of commodity i
$P C_{i}$: Purchaser price of composite comodity i (including all taxes and margins)
$P C I_{j}: \quad$ Intermediate consumption price index of industry j
$P D_{i}$: \quad Price of local product i sold on the domestic market (including all taxes and margins)
$P E_{x}$: Price received for exported commodity x (excluding export taxes)
$P E_{x}^{F O B}:$ FOB price of exported commodity x (in local currency)
PIXCON: Consumer price index
PIXGDP: GDP deflator
PIXGVT:Public expenditures price index
PIXINV: Investment price index
$P L_{i}: \quad$ Price of local product i (excluding all taxes on products)
$P M_{m}$: \quad Price of imported product m (including all taxes and tariffs)
$P P_{j}$: Industry j unit cost, including taxes directly related to the use of capital and labor, but excluding other taxes on production
$P T_{j}: \quad$ Basic price of industry $j ’ s$ output
$P V A_{j}$: Price of industry j value added (including taxes on production directly related to the use of capital and labour)
$P W M_{m}$: World price of imported product m (expressed in foreign currency)

[^6]$P W X_{x}$: World price of exported product x (expressed in foreign currency)
$R_{k, j}: \quad$ Rental rate of type k capital in industry j
$R C_{j}: \quad$ Rental rate of industry j composite capital
$R K_{k}: \quad$ Rental rate of type k capital (if capital is mobile)
$R T I_{k, j}: \quad$ Rental rate paid by industry j for type k capital, including capital taxes
$W_{l}: \quad$ Wage rate of type l labor
$W C_{j}: \quad$ Wage rate of industry j composite labor
$W T I_{l, j}: \quad$ Wage rate paid by industry j for type l labor, including payroll taxes

A3.3 NOMINAL (VALUE) VARIABLES

$C A B$: Current account balance
$C T H_{h}$: Consumption budget of type h households
$G: \quad$ Current government expenditures on goods and services
$G D P^{B P}$: GDP at basic prices
$G D P^{F D}: G D P$ at purchasers' prices from the perspective of final demand
$G D P^{I B}: ~ G D P$ at market prices (income-based)
$G D P^{M P}$: GDP at market prices

GFCF : Gross fixed capital formation
IT : Total investment expenditures
$S F_{f}: \quad$ Savings of type f businesses
SG: Government savings
$S H_{h}$: Savings of type h households
SROW : Rest-of-the-world savings
$T D F_{f}$: Income taxes of type f businesses
TDFT : Total government revenue from business income taxes
$T D H_{h}$: Income taxes of type h households

TDHT : Total government revenue from household income taxes
$T I C_{i}$: \quad Government revenue from indirect taxes on product i
TICT : Total government receipts of indirect taxes on commodities
$T I K_{k, j}: \quad$ Government revenue from taxes on type k capital used by industry j
TIKT : Total government revenue from from taxes on capital
$T I M_{m}: \quad$ Government revenue from import duties on product m
TIMT : Total government revenue from import duties
$T I P_{j}: \quad$ Government revenue from taxes on industry j production (excluding taxes directly related to the use of capital and labor)

TIPT : Total government revenue from production taxes (excluding taxes directly related to the use of capital and labor)
$T I W_{l, j}: \quad$ Government revenue from payroll taxes on type l labor in industry j
TIWT : Total government revenue from payroll taxes
$T I X_{x}$: Government revenue from export taxes on product x
TIXT : Total government revenue from export taxes
TPRCTS : Total government revenue from taxes on products and imports
TPRODN : Total government revenue from other taxes on production ${ }^{12}$
$T R_{a g, a g j}:$ Transfers from agent agj to agent ag
$Y D F_{f}$: Disposable income of type f businesses
$Y D H_{h}$: Disposable income of type h households
$Y F_{f}: \quad$ Total income of type f businesses
YFK $_{f}$: Capital income of type f businesses
YFTR $_{f}$: Transfer income of type f businesses
YG: Total government income
YGK : Government capital income

YGTR: Government transfer income
$Y H_{h}: \quad$ Total income of type h households
$Y H K_{h}$: Capital income of type h households
$Y H L_{h}$: Labor income of type h households
$Y_{H T R}^{h}$: Transfer income of type h households
YROW : Rest-of-the-world income

A4. Parameters

$a i j_{i, j}: \quad$ Input-output coefficient
$B_{j}^{K D}: \quad$ Scale parameter (CES - composite capital)
$B_{j}^{L D}$: \quad Scale parameter (CES - composite labor)
$B_{m}^{M}: \quad$ Scale parameter (CES - composite commodity)
$B_{j}^{V A}: \quad$ Scale parameter (CES - value added)
$B_{j, x}^{X}: \quad$ Scale parameter (CET - exports and local sales)
$B_{j}^{X T}: \quad$ Scale parameter (CET - total output)
$\beta_{k, j}^{K D}: \quad$ Share parameter (CES - composite capital)
$\beta_{l, j}^{L D}: \quad$ Share parameter (CES - composite labor)
$\beta_{m}^{M}: \quad$ Share parameter (CES - composite commodity)
$\beta_{j}^{V A}: \quad$ Share parameter (CES - value added)
$\beta_{j, x}^{X}$: \quad Share parameter (CET - exports and local sales)
$\beta_{j, i}^{X T}: \quad$ Share parameter (CET - total output)
η : Price elasticity of indexed transfers and parameters
$\gamma_{i}^{G V T}$: Share of commodity i in total current public expenditures on goods and services

[^7]$\gamma_{i}^{I N V}: \quad$ Share of commodity i in total investment expenditures
$\gamma_{i, h}^{L E S}: \quad$ Marginal share of commodity i in type h household consumption budget
$i o_{j}: \quad$ Coefficient (Leontief - intermediate consumption)
$\lambda_{a g, k}^{R K}: \quad$ Share of type k capital income received by agent $a g$
$\lambda_{a g, a g j}^{T R}: \quad$ Share parameter (transfer functions)
$\lambda_{h, l}^{W L}: \quad$ Share of type l labor income received by type h households
$\rho_{j}^{K D}: \quad$ Elasticity parameter (CES - composite capital); $-1<\rho_{j}^{K D}<\infty$
$\rho_{j}^{L D}: \quad$ Elasticity parameter (CES - composite labor); $-1<\rho_{j}^{L D}<\infty$
$\rho_{m}^{M}: \quad$ Elasticity parameter (CES - composite commodity); $-1<\rho_{m}^{M}<\infty$
$\rho_{j}^{V A}: \quad$ Elasticity parameter (CES - value added) $;-1<\rho_{j}^{V A}<\infty$
$\rho_{j, x}^{X}: \quad$ Elasticity parameter (CET - exports and local sales) $; 1<\rho_{j, x}^{X}<\infty$
$\rho_{j}^{X T}: \quad$ Elasticity parameter (CET - total output) $; 1<\rho_{j}^{X T}<\infty$
$\sigma_{j}^{K D}: \quad$ Elasticity of substitution (CES - composite capital); $0<\sigma_{j}^{K D}<\infty$
$\sigma_{j}^{L D}: \quad$ Elasticity of substitution (CES - composite labor) $; 0<\sigma_{j}^{L D}<\infty$
$\sigma_{m}^{M}: \quad$ Elasticity of substitution (CES - composite commodity); $0<\sigma_{m}^{M}<\infty$
$\sigma_{j}^{V A}: \quad$ Elasticity of transformation (CES - value added) ; $0<\sigma_{j}^{V A}<\infty$
$\sigma_{j, x}^{X}: \quad$ Elasticity of transformation (CET - exports and local sales) ; $0<\sigma_{j, x}^{X}<\infty$
$\sigma_{x}^{X D}: \quad$ Price elasticity of the world demand for exports of product x
$\sigma_{j}^{X T}: \quad$ Elasticity of transformation (CET - total output) ; $0<\sigma_{j}^{X T}<\infty$
$s h 0_{h}$: Intercept (type h household savings)
$s h 1_{h}: \quad$ Slope (type h household savings)
$\operatorname{tmrg}_{i, i j}: \quad$ Rate of margin i applied to commodity $i j$
$\operatorname{tmrg}_{i, x}^{X}$: Rate of margin i applied to exported commodity x
$\operatorname{tr} 0_{h}$: \quad Intercept (transfers by type h households to government)
$\operatorname{tr} 1_{h}$: Marginal rate of transfers by type h households to government
$t t d f 0_{f}$: Intercept (income taxes of type f businesses)
$t t d f 1_{f}$: Marginal income tax rate of type f businesses
$t t d h 0_{h}$: Intercept (income taxes of type h households)
$t t d h 1_{h}$: Marginal income tax rate of type h households
ttic ${ }_{i}$: \quad Tax rate on commodity i
$t t i k_{k, j}$: Tax rate on type k capital used in industry j
ttim m_{m} : Rate of taxes and duties on imports of commodity m
ttip j_{j} : Tax rate on the production of industry j
$t t i w_{l, j}$: Tax rate on type l worker compensation in industry j
ttix ${ }_{x}$: Export tax rate on exported commodity x
$v_{j}: \quad$ Coefficient (Leontief - value added)

APPENDIX B: MODEL VARIABLES AND CONCEPTS OF THE 1993 SYSTEM OF NATIONAL ACCOUNTS (SNA93)

This Appendix is dedicated to clarifying the following concepts, on the basis of the 1993 System of National Accounts (Inter-Secretariat Working Group on National Accounts, 1993) ${ }^{13}$:

Taxes on production and imports
Taxes on products
Other taxes on production
Basic prices and value added at basic prices
Producers' prices and value added at producers' prices
Purchasers' prices
GDP at basic prices
GDP at market prices

B1. « Indirect» taxes

Paragraph 7.49 of the SNA93 says that taxes on products are a subset of taxes on production, rather than a separate category. Taxes on production, together with taxes and duties on imports, constitute the set of

Taxes on production and imports.

7.49. Taxes on production and imports consist of: taxes on products payable on goods and services when they are produced, delivered, sold, transferred or otherwise disposed of by their producers; they include taxes and duties on imports that become payable when goods enter the economic territory by crossing the frontier or when services are delivered to resident units by nonresident units; when outputs are valued at basic prices, taxes on domestically produced products are not recorded in the accounts of the System as being payable by their producers
plus:
other taxes on production, consisting mainly of taxes on the ownership or use of land, buildings or other assets used in production or on the labour employed, or compensation of employees paid.
Taxes on the personal use of vehicles, etc., by households are recorded under current taxes on income, wealth, etc.

The word « other » is important here. This implies the following classification scheme:

Taxes on production and imports	Taxes and duties on imports	
	Taxes on production	Taxes on products
		Other taxes on production

Paragraph 7.50 defines taxes on production, and says that they correspond grosso modo to «indirect taxes», although that expression is no longer part of the national accounts terminology (it is nonetheless still used, by Statistics Canada, among others - see box below).
7.50. At the level of an individual enterprise, taxes on production are recorded as being payable out of its value added. Similarly, in business accounting, taxes on production, except invoiced VAT, are usually regarded as costs of production that may be charged against sales or other receipts when calculating profits for tax or other purposes. They correspond grosso modo to "indirect taxes" as traditionally understood, indirect taxes being taxes that supposedly can be passed on, in whole or in part, to other institutional units by increasing the prices of the goods or services sold. However, it is extremely difficult, if not impossible, to determine the real incidence of different kinds of taxes, and the use of the terms "direct" and "indirect" taxes has fallen out of favour in economics and is no longer used in the System.

B1.1 OTHER TAXES ON PRODUCTION

As indicated in 7.49, and detailed in 7.70 below, Other taxes on production include payroll taxes, taxes on capital, as well as property or real estate taxes. But they do not include taxes on products, defined in Paragraph 7.62 below.

3. Other taxes on production (D.29)

7.70. These consist of all taxes, except taxes on products, that enterprises incur as a result of engaging in production. Such taxes do not include any taxes on the profits or other income received by the enterprise and are payable irrespective of the profitability of the production. They may be payable on the land, fixed assets or labour employed in the production process or on certain activities or transactions. Other taxes on production include the following:
(a) Taxes on payroll or work force: these consist of taxes payable by enterprises assessed either as a proportion of the wages and salaries paid or as a fixed amount per person employed. They do not include compulsory social security contributions paid by employers or any taxes paid by the employees themselves out of their wages or salaries (GFS, 3; OECD, 3000);
(b) Recurrent taxes on land, buildings or other structures: these consist of taxes payable regularly, usually each year, in respect of the use or ownership of land,
buildings or other structures utilized by enterprises in production, whether the enterprises own or rent such assets (GFS, 4.1; OECD, 4100);
(c) Business and professional licences: these consist of taxes paid by enterprises in order to obtain a licence to carry on a particular kind of business or profession. However, if the government carries out checks on the suitability, or safety of the business premises, on the reliability, or safety, of the equipment employed, on the professional competence of the staff employed, or on the quality or standard of goods or services produced, as a condition for granting such a licence, the payments are not unrequited and should be treated as payments for services rendered, unless the amounts charged for the licences are out of all proportion to the costs of the checks carried out by governments (GFS, 5.5.1; OECD, 5210). (See also paragraph 8.54 (c) of chapter VIII for the treatment of licences obtained by households for their own personal use.);
(d) Taxes on the use of fixed assets or other activities: these include taxes levied periodically on the use of vehicles, ships, aircraft or other machinery or equipment used by enterprises for purposes of production, whether such assets are owned or rented. These taxes are often described as licences, and are usually fixed amounts which do not depend on the actual rate of usage (GFS, 5.5.2 and 5.5.3; OECD, 5200);
(e) Stamp taxes: these consist of stamp taxes which do not fall on particular classes of transactions already identified, for example, stamps on legal documents or cheques. These are treated as taxes on the production of business or financial services. However, stamp taxes on the sale of specific products, such as alcoholic beverages or tobacco, are treated as taxes on products (GFS, 7.2; OECD, 6200);
(f) Taxes on pollution: these consist of taxes levied on the emission or discharge into the environment of noxious gases, liquids or other harmful substances. They do not include payments made for the collection and disposal of waste or noxious substances by public authorities, which constitute intermediate consumption of enterprises (GFS, 7.3; OECD, 5200);
(g) Taxes on international transactions: these consist of taxes on travel abroad, foreign remittances or similar transactions with non-residents (GFS, 6.5 and 6.6; OECD, 5127).

B1.2 TAXES ON PRODUCTS

Taxes on products are defined in 7.62.

2. Taxes on products (D.21)

7.62. A tax on a product is a tax that is payable per unit of some good or service. The tax may be a specific amount of money per unit of quantity of a good or service (the quantity units being measured either in terms of discrete units or continuous physical variables such as volume, weight, strength, distance, time, etc.), or it may be calculated ad valorem as a specified percentage of the price per unit or value of the goods or services transacted. A tax on a product usually becomes payable when it is produced, sold or imported, but it may also become payable in other circumstances, such as when a good is exported, leased, transferred, delivered, or used for own consumption or own capital formation. An enterprise may or may not itemize the amount of a tax on a product separately on the invoice or bill which they charge their customers.

B1.3 CORRESPONDING VARIABLES IN PEP-1-1

Variables In PEP-1-1 which correspond to these concepts are:

TIC C_{i} : Government revenue from indirect taxes on product i; part of SNA93 « taxes on products »
$T I K_{k, j}: \quad$ Government revenue from taxes on type k capital used by industry j; part of SNA93 « other taxes on production »
$T I M_{m}$: Government revenue from import duties on product m; part of SNA93 « taxes and duties on imports »
$T I P_{j}: \quad$ Government revenue from taxes on industry j production (excluding taxes directly related to the use of capital and labor);
part of SNA93 « other taxes on production »
$T I W_{l, j}: \quad$ Government revenue from payroll taxes on type l labor in industry j; part of SNA93 « other taxes on production »
$T I X_{x}$: Government revenue from export taxes on product x; part of SNA93 « taxes on products »
TPRCTS : Total government revenue from taxes on products and imports; correspond to SNA93 « taxes on products»
TPRODN : Total government revenue from other taxes on production; correspond to SNA93 « other taxes on production »

B2. Price concepts

B2.1 PRODUCERS' PRICES AND BASIC PRICES

Value added is defined at the level of individual producer units, and is aggregated to sectors or industries, or to the whole economy. It is calculated by subtracting the value of intermediate consumption from the value of production. Now, the values of intermediate consumption and production depend on which price concepts are used in their measurement. Consequently, SNA93 defines price concepts in reference to the valuation of production and intermediate consumption.

Price concepts differ according to which taxes are included or excluded. Taxes on imports are recorded only at the level of the total economy, as they are not payable out of the values added of domestic producers: consequently, they are not relevant in the valuation of production. Output valued at basic prices excludes all taxes (subsidies) on products payable (receivable) on the goods or services produced as outputs, but includes other taxes on production (see Paragraph 7.53 below). Producers' prices also include all taxes or subsidies on products payable or receivable on outputs, except invoiced VAT or similar deductible taxes as invoiced VAT is never included in the value of output.

> 7.52. In the generation of income account, taxes on imports are recorded only at the level of the total economy as they are not payable out of the values added of domestic producers. Moreover, at the level of an individual institutional unit or sector, only those taxes on products that have not been deducted from the value of the output of that unit or sector need to be recorded under uses in its generation of income account. These vary depending upon the way in which output is valued. When output is valued at basic prices, all taxes (subsidies) on products payable (receivable) on the goods or services produced as outputs are deducted from (added to) the value of that output at producers' prices. They do not, therefore, have to be recorded under uses in the generation of income account of the units or sectors concerned, being recorded only at the level of the total economy, in the same way as taxes on imports. When output is valued at producers' prices, all taxes or subsidies on products payable or receivable on outputs have to be recorded under uses in the generation of income accounts of the units or sectors concerned, except invoiced VAT or similar deductible taxes as invoiced VAT is never included in the value of output. Non-deductible VAT and similar taxes are recorded under uses only at the level of the total economy, like taxes on imports.
7.53. Other taxes or subsidies on production - i.e., taxes payable on the land, assets, labour, etc., employed in production - are not taxes payable per unit of output and cannot be deducted from the producer's price. They are recorded as being payable out of the values added of the individual producers or sectors concerned.

The implications of the above are presented in the two following figures: in Figure B1, value added is recorded at basic prices; in Figure B2, it is recorded at producer prices. In both cases, the starting point is production at producers' prices. But in the calculation of value added at basic prices, taxes on products are immediately deducted to obtain production at basic prices. It follows that taxes on products do not appear in the «Generation of income account» when value added is at basic prices, but they do when value added is at producer prices.

Figure B1 - Value added of a single producer unit at basic prices

Figure B2 - Value added of a single producer unit at producers' prices

B2.2 PURCHASERS' PRICES

The reader will have noticed that, in computing value added, whether at basic prices or at producers' prices, intermediate consumption at purchasers' prices is deducted from the value of production. This is justified, particularly in the case of value added at basic prices, by the fact that « From the point of view of the producer, purchasers' prices for inputs and basic prices for outputs represent the prices actually paid and received» (SNA93, Paragraph 6.226).

As a general principle, the SNA records product uses at purchasers' prices, which include taxes and margins.
3.81. Usually, the producer and the user of a given product perceive its value differently owing to the existence of taxes and subsidies on products, transport costs to be paid and the occurrence of trade margins. In order to keep as close as possible to the views of the economic transactors themselves, the System records all uses at purchasers' prices including these elements, but excludes them from the value of output of the product.

The most explicit definition of purchasers' prices is given in Paragraph 3.83 (and repeated in 6.215):
3.83. Use of products is recorded at purchasers' prices. The purchaser's price is defined as the amount payable by the purchaser, excluding any deductible VAT or similar deductible tax, in order to take delivery of a unit of a good or service at the time and place required by the purchaser. The purchaser's price of a good includes any transport charges paid separately by the purchaser to take delivery at the required time and place.

But there may be more than one definition of purchasers' price for a given product, when it goes through several successive transactions before its final use.
6.216. When comparing the purchaser's price with the producer's or basic price, it is important to specify whether they refer to the same transaction or two different transactions. For certain purposes, including input-output analysis, it may be convenient to compare the price paid by the final purchaser of a good after it has passed through the wholesale and retail distribution chains with the producer's price received by its original producer. In this case the prices refer to two different transactions taking place at quite different times and locations: they must differ at least by the amount of the wholesale and retail trade margins.

Paragraph 6.217 is useful in that it indirectly confirms that the difference between producer price and basic price is indeed « the value of any taxes less subsidies on the product (other than VAT) ».
6.217. When the prices refer to the same transaction, that is, the purchaser buys directly from the producer, the purchaser's price may exceed the producer's price by:
(a) The value of any non-deductible VAT, payable by the purchaser; and
(b) The value of any transport charges on a good paid separately by the purchaser and not included in the producer's price.
It follows that the purchaser's price may exceed the basic price by the amount of the two items just listed plus the value of any taxes less subsidies on the product (other than VAT).

The existence of a value-added tax (VAT) is a complicating factor (see Paragraphs 6.207 to 6.214, not reproduced here).

B2.3 Corresponding variables in PEP-1-1

Variables In PEP-1-1 which correspond to these concepts are:

$$
\begin{aligned}
& P_{j}: \quad \text { Basic price of industry } j \text { 's output } \\
& \Rightarrow \text { SNA93 « basic price» of aggregate output } \\
& P C I_{j} \text { : Intermediate consumption price index of industry } j \\
& \Rightarrow \text { SNA93 « purchaser price» index of intermediate consumption } \\
& P C_{i} \text { : Purchaser price of composite comodity } i \text { (including all taxes and margins) } \\
& \Rightarrow \text { SNA93 «purchaser price» } \\
& P D_{i} \text { : Price of local product } i \text { sold on the domestic market (including all taxes and margins) } \\
& \Rightarrow \text { SNA93 « purchaser price» } \\
& P M_{m} \text { : Price of imported product } m \text { (including all taxes and margins) } \\
& \Rightarrow \text { SNA93 « purchaser price» } \\
& P E_{X} \text { : Price received for exported commodity } x \text { (excluding export taxes) } \\
& \Rightarrow \text { SNA93 « basic price » of exports } \\
& P E_{x}^{F O B} \text { : FOB price of exported commodity } x \text { (in local currency) } \\
& \Rightarrow \text { SNA93 « producer price » and « purchaser price» of exported products } \\
& P L_{i}: \quad \text { Price of local product } i \text { (excluding all taxes on products) } \\
& \Rightarrow \text { SNA93 « basic price » of local products sold on the domestic market } \\
& P P_{j} \text { : Industry } j \text { unit cost, including taxes directly related to the use of capital and labor, but } \\
& \text { excluding other taxes on production } \\
& \Rightarrow \text { SNA93 « basic price », minus taxes on production not directly related to the use of } \\
& \text { capital and labor }
\end{aligned}
$$

There is no variable in PEP-1-1 corresponding to producer prices, except for $P E_{x}^{F O B}$. Subtracting margins from $P D_{i}$ would yield producer prices of local products sold domestically.

B3. Trade and transport margins

In the SNA93, the output of wholesale and retail trade is not measured by the value of their sales, but rather by the value of the services rendered as intermediaries between producers and buyers. The value of these services is the gross trade margin. In the SNA, a purchase is recorded as two simultaneous flows:
one is the value of what is purchased, and the other is the trade margin that is included in the price paid by the buyer. ${ }^{14}$
3.30. The System's recording of transactions for wholesalers and retailers does not mirror the way in which those involved view them. The purchases of goods for resale by wholesalers and retailers are not recorded explicitly, and they are viewed as selling, not the goods, but the services of storing and displaying a selection of goods in convenient locations and making them easily available for customers. This partitioning implements the System's measure of output for traders, which is by the value of the margins on goods they purchase for resale.

Transport services are treated both as margins and as directly purchased services. But transport services produced for own use within enterprises are not recorded separately (see SNA93 Paragraph 6.103).

Trade and transport margins appear in the supply part of the supply-and-use table. SNA93 Table 2.10, reproduced after section B4.3 below, provides an example of how trade margins are recorded in the System.

> 2.214. The upper part of the table shows the origin of the resources of goods and services. In the rows, the various types of products are presented according to a classification which can be used at various levels of detail. In the columns, starting from the right side, imports are shown first. Then a matrix showing the output of industries, according to the activity classification, appears. This is the make matrix. It may be valued either at basic prices or at producers' prices in the absence of a value added tax (VAT), or at producers' prices in the presence of VAT. The actual figures in the table are at basic prices which is the preferred method of valuation for output. The column for total industries records the total output of industries for each kind of product. The output of a given industry may cover a number of different products, the principal and the secondary ones.
> Text refers to: table 2.10 .
2.215. Taxes, less subsidies, on products - with varying content according to the valuation of output - and trade and transport margins are recorded in two columns in order to get total supply of each type of product valued at purchasers' prices. The corresponding trade and transport services are deducted globally at the intersection between the relevant rows and the column for trade and transport margins. Thus the total of the latter is zero.

Text refers to: table 2.10.
In column (2) of the SNA93 Table 2.10, the production of trade and transport services as margins is subtracted from total supply (-68 for trade, and -10 for transport), so that the column total is zero. In PEP-1-1, margins are treated in a different, but arithmetically equivalent, manner. In the underlying SAM,

[^8]there is a « Trade and transport margins » column in the use table (bottom part of the supply-and-use table): margins are formally treated as a (fictitious) industry. Its sales are the amount of trade and transport margins included in the supply of goods and services (78 = 2 + 2 + 74) ; its intermediate purchases are trade services (68) and transport services (10); no value added is generated. The only difference with Table 2.10 is that total supply of trade services (line 6 of the supply table - top part of Table 2.10) is then increased by 68, and that of transport services (line 7) by 10, while total uses of these services are increased by the same amounts (lines 6 and 7 of the use table - bottom part of Table 2.10).

See variable $M R G N_{i}$ in equations 58 and 89.

B4. GDP concepts

B4.1 GDP AT BASIC PRICES AND AT PRODUCERS' PRICES

GDP is the sum of value added of all resident producer units. So, just as value added can be evaluated at basic prices or producer prices, so can GDP be evaluated at both sets of prices.

> 2.172. Basically, GDP is a concept of value added. It is the sum of gross value added of all resident producer units (institutional sectors or, alternatively, industries) plus that part (possibly the total) of taxes, less subsidies, on products which is not included in the valuation of output.* Gross value added is the difference between output and intermediate consumption.
> * If basic prices are used for valuing output, GDP is equal to the sum of gross value added of all resident producer units plus all taxes on products (less subsidies on products). If producers' prices are used for valuing output, GDP is equal to the sum of gross value added of all resident producer units plus taxes and duties on imports, less import subsidies - in absence of a value added tax system - or plus taxes and duties on imports (less import subsidies) and value added type taxes - when such a taxation system does exist.

GDP at basic prices is computed from gross value added at basic prices, defined as:

> 6.226. Gross value added at basic prices is defined as output valued at basic prices less intermediate consumption valued at purchasers' prices. Although the outputs and inputs are valued using different sets of prices, for brevity the value added is described by the prices used to value the outputs. From the point of view of the producer, purchasers' prices for inputs and basic prices for outputs represent the prices actually paid and received. Their use leads to a measure of gross value added which is particularly relevant for the producer. The resulting measure has also some convenient properties for aggregation purposes as explained later, although there is no named aggregate in the System which corresponds to the sum of the gross values added of all enterprises measured at basic prices.

GDP at producers' prices is computed from gross value added at producers' prices, defined as:

```
6.227. Gross value added at producers' prices is defined as output valued at
    producers' prices less intermediate consumption valued at purchasers'
    prices. As already explained, in the absence of VAT, the total value of the
    intermediate inputs consumed is the same whether they are valued at producers' or at
    purchasers' prices, in which case this measure of gross value added is the same as one
```

which uses producers' prices to value both inputs and outputs. It is an economically meaningful measure that is equivalent to the traditional measure of gross value added at market prices. However, in the presence of VAT, the producer's price excludes invoiced VAT, and it would be inappropriate to describe this measure as being at "market" prices.

The difference between the two measures of GDP is the sum of taxes included in value added at producers' prices and at basic prices:

> 6.228. Both this measure of gross value added and that described in the previous section use purchasers' prices to value intermediate inputs. The difference between the two measures is entirely attributable to their differing treatments of taxes or subsidies on products payable on outputs (other than invoiced VAT). By definition, the value of output at producers' prices exceeds that at basic prices by the amount, if any, of the taxes, less subsidies, on the output so that the two associated measures of gross value added must differ by the same amount.

B4.2 GDP AT PURCHASERS' PRICES FROM THE PERSPECTIVE OF FINAL DEMAND

GDP can also be computed from final demand. Since final demand is valued at purchasers' prices, this measure of GDP is different from gross value added aggregations:
2.173. Next, GDP is also equal to the sum of the final uses of goods and services (all uses except intermediate consumption) measured in purchasers' prices, less the value of imports of goods and services.

B4.3 GDP FROM THE INCOME PERSPECTIVE

Finally, GDP can be computed as the sum of incomes distributed by resident producer units:
2.174. Finally, GDP is also equal to the sum of primary incomes distributed by resident producer units.

This is detailed in Paragraph 2.222. This paragraph refers to Table 2.10, which may be downloaded from the SNA93 site (reproduced on the following page).
2.222. The three approaches to GDP $(1,854)$ appear in the supply and use table, as well as in the integrated economic accounts:

From the production side, GDP is equal to total output $(3,604)$ minus total intermediate consumption $(1,883)$ plus taxes, less subsidies, on products (133) not included in the value of output.

From the demand side, GDP is equal to final consumption expenditure ($1,015+16$ $+156+212)$ plus gross capital formation $(376+28+10)$ plus exports (540) minus imports (499).

From the income side, GDP is equal to compensation of employees (762) plus taxes, less subsidies, on production and imports (191), plus mixed income, gross (442), plus operating surplus, gross (459).

Table 2.10. Supply and use (reduced format)

B4.4 WHAT ABOUT GDP AT FACTOR COST?

This concepts no longer exists in the System of National Accounts. Nonetheless, GDP at factor costs can easily be computed. In the absence of other taxes on production, GDP at factor costs is identical to GDP at basic prices.

> 6.229. Gross value added at factor cost is not a concept used explicitly in the System. Nevertheless, it can easily be derived from either of the measures of gross value added presented above by subtracting the value of any taxes, less subsidies, on production payable out of gross value added as defined. For example, the only taxes on production remaining to be paid out of gross value added at basic prices consist of "other taxes on production". These consist mostly of current taxes (or subsidies) on the labour or capital employed in the enterprise, such as payroll taxes or current taxes on vehicles or buildings. Gross value added at factor cost can, therefore, be derived from gross value added at basic prices by subtracting "other taxes, less subsidies, on production".

> 6.230. The conceptual difficulty with gross value added at factor cost is that there is no observable vector of prices such that gross value added at factor cost is obtained directly by multiplying the price vector by the vector of quantities of inputs and outputs that defines the production process. By definition, "other taxes or subsidies on production" are not taxes or subsidies on products that can be eliminated from the input and output prices. Thus, despite its traditional name, gross value added at factor cost is not strictly a measure of value added.
6.231. Gross value added at factor cost is essentially a measure of income and not output. It represents the amount remaining for distribution out of gross value added, however defined, after the payment of all taxes on production and the receipt of all subsidies on production. It makes no difference which measure of gross value added is used because the measures considered above differ only in respect of the amounts of the taxes or subsidies on production which remain payable out of gross value added.
6.232. Claims on gross value added, other than payments of taxes, less subsidies, to government used to be described as "factor incomes". While the concept of factor income is no longer used in the System, gross value added at factor cost could be interpreted as measuring the value of the fund out of which so-called "factor incomes" can be paid: it follows that it is equal to the total value of the "factor" incomes generated by production.

Statistics Canada, among other statistical agencies, has abandoned the concept of «GDP at factor costs »:

What is the difference between the GDP at factor cost and the GDP at basic prices?

Whereas in the past, Statistics Canada published net domestic product at factor cost, this practice changed with the publication of the estimates of the first quarter of 2001 of the national economic and financial accounts. To bring the Canadian System of National Economic Accounts into line with international standards, the valuation of production is now done according to basic prices.
The concept of GDP at basic prices differs from the concept of GDP at factor costs in that the former includes net indirect taxes (indirect taxes less subsidies) attached to factors of production. For example, whereas property taxes, capital taxes and payroll taxes were not included in the valuation of GDP at factor costs, they are included in the
valuation of GDP at basic prices. These production expenses are included in GDP at basic prices, subtracting from them any subsidies attached to factors of production, such as subsidies allocated for job creation and training.
The concept of GDP at basic prices also differs from GDP at market prices, but in this case the difference concerns the taxes and subsidies on the products themselves, such as sales taxes, fuel taxes, duties and taxes on imports, excise taxes on tobacco and alcohol products and subsidies paid on agricultural commodities, transportation services and energy. Whereas production at basic prices excludes taxes and subsidies on products, GDP at market prices includes taxes net of subsidies on products.

Source: http://www.statcan.gc.ca/nea-cen/faq-foq/gdp-pib-eng.htm

APPENDIX C: MATHEMATICAL DERIVATIONS

C1. Relative demand of capital and labor

C1.1 COST-MINIMIZING PROBLEM

The production function of value added is given by equation 3 :
3. $V A_{j}=B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{-\frac{1}{\rho_{j}^{V A}}}$

The producer's problem is to minimize the cost of value added
99. $W C_{j} L D C_{j}+R C_{j} K D C_{j}$
subject to 3 and the constraint $V A_{j}=\overline{V A_{j}}$. Form the Lagrangian
100. $\Lambda=W C_{j} L D C_{j}+R C_{j} K D C_{j}-\lambda\left(V A_{j}-\overline{V A_{j}}\right)$
101. $\Lambda=W C_{j} L D C_{j}+R C_{j} K D C_{j}-\lambda\left(B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{-\frac{1}{\rho_{j}^{V A}}}-\overline{V A_{j}}\right)$

First order conditions are:
102. $\frac{\partial \Lambda}{\partial \lambda}=-\left(V A_{j}-\overline{V A_{j}}\right)=0$
103. $\frac{\partial \Lambda}{\partial L D C_{j}}=W C_{j}-\lambda\left(\frac{\partial V A_{j}}{\partial L D C_{j}}\right)=0$
104. $\frac{\partial \Lambda}{\partial K D C_{j}}=R C_{j}-\lambda\left(\frac{\partial V A_{j}}{\partial K D C_{j}}\right)=0$
with
105. $\frac{\partial V A_{j}}{\partial L D C_{j}}=\frac{\partial}{\partial L D C_{j}} B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{-\frac{1}{\rho_{j}^{V A}}}$
106. $\frac{\partial V A_{j}}{\partial L D C_{j}}=B_{j}^{V A}\left(\frac{-1}{\rho_{j}^{V A}}\right)\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{\frac{-1}{\rho_{j}^{V /}-1}}\left(-\rho_{j}^{V A} \beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}-1}\right)$
107. $\frac{\partial V A_{j}}{\partial L D C_{j}}=B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{\frac{-1}{\rho_{j}^{V A}}-1}\left(\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}-1}\right)$

Likewise,
108. $\frac{\partial V A_{j}}{\partial K D C_{j}}=B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{\frac{-1}{\rho_{j}^{V A}-1}}\left(\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}-1}\right)$

C1.2 RELATIVE DEMAND

It follows from equations 103, 104, 107, and 108 that
109. $\frac{W C_{j}}{R C_{j}}=\frac{B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{\frac{-1}{\rho_{j A}^{V A}-1}}\left(\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}-1}\right)}{B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{\frac{-1}{\rho_{j}-1}}\left(\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}-1}\right)}$
110. $\frac{W C_{j}}{R C_{j}}=\frac{\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}-1}}{\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}-1}}$
111. $\left(\frac{L D C_{j}}{K D C_{j}}\right)^{-\rho_{j}^{V A}-1}=\frac{1-\beta_{j}^{V A}}{\beta_{j}^{V A}} \frac{W C_{j}}{R C_{j}}$
112. $\frac{L D C_{j}}{K D C_{j}}=\left(\frac{1-\beta_{j}^{V A}}{\beta_{j}^{V A}} \frac{W C_{j}}{R C_{j}}\right)^{-\frac{1}{\rho_{j}^{V A}+1}}$

Substituting $\sigma_{j}^{V A}=\frac{1}{\rho_{j}^{V A}+1}$, equation 4 follows
4. $L D C_{j}=\left[\frac{\beta_{j}^{V A}}{1-\beta_{j}^{V A}} \frac{R C_{j}}{W C_{j}}\right]^{\sigma_{j}^{V A}} K D C_{j}$

C1.3 ELASTICITY OF SUBSTITUTION

In C1.2 above, nothing was said about the interpretation of $\sigma_{j}^{V A}=\frac{1}{\rho_{j}^{V A}+1}$. Here we show that $\sigma_{j}^{V A}$ is indeed the elasticity of substitution. The elasticity of substitution between composite labor and composite capital is defined as
113. $\frac{\partial \ln \left(\frac{L D C_{j}}{K D C_{j}}\right)}{\partial \ln \left(\frac{\partial V A_{j} / \partial K D C_{j}}{\partial V A_{j} / \partial L D C_{j}}\right)}=\frac{\left(\frac{\partial V A_{j} / \partial K D C_{j}}{\partial V A_{j} / \partial L D C_{j}}\right)}{\left(\frac{L D C_{j}}{K D C_{j}}\right)} \frac{\partial\left(\frac{L D C_{j}}{K D C_{j}}\right)}{\partial\left(\frac{\partial V A_{j} / \partial K D C_{j}}{\partial V A_{j} / \partial L D C_{j}}\right)}$
where $\frac{\partial V A_{j} / \partial K D C_{j}}{\partial V A_{j} / \partial L D C_{j}}$ is the marginal rate of substitution between composite labor and composite capital $\left(M R S_{L D C, K D C}^{j}\right):$
114. $M R S_{L D C, K D C}^{j}=-\frac{d L D C_{j}}{d k D C_{j}}=\frac{\partial V A_{j} / \partial K D C_{j}}{\partial V A_{j} / \partial L D C_{j}}$

Substitute from equations 107 and 108,

The elasticity of substitution is therefore

118. $\left.\left.\left.\frac{\partial \ln \left(\frac{L D C_{j}}{K D C_{j}}\right)}{\partial \ln \left(\frac{\partial V A_{j} / \partial K D C_{j}}{\partial V A_{j} / \partial L D C_{j}}\right)}=\frac{\left(\frac{1-\beta_{j}^{V A}}{\beta_{j}^{V A}}\right)\left(\frac{K D C_{j}}{L D C_{j}}\right)^{-\rho_{j}^{V A}-1}\left[\left(\frac{1-\beta_{j}^{V A}}{K D C_{j}}\right)\left(\frac{K D C_{j}}{\beta_{j}^{V A}}\right)\right.}{L D C_{j}}\right)^{-\rho_{j}^{V A}-1}\right]^{-1}\right]^{-1}$

Noting that $\left(\frac{K D C_{j}}{L D C_{j}}\right)^{-\rho_{j}^{V A}-1}=\left(\frac{L D C_{j}}{K D C_{j}}\right)^{\rho_{j}^{V A}+1}$, simplify as

Hence $\sigma_{j}^{V A}=\frac{1}{\rho_{j}^{V A}+1}$ is indeed the elasticity of substitution.

C2. Labor demand by category

C2.1 WAGE BILL MINIMIZING PROBLEM

The aggregator function of composite labor is given by equation 5 :

$$
\text { 5. } \quad L D C_{j}=B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L}}}
$$

The producer's problem is to minimize the wage bill $\sum_{l} W T I_{l, j} L D_{l, j}$ subject to equation 5 and the constraint $L D C_{j}=\overline{L D C_{j}}$. Form the Lagrangian
122. $\Lambda=\sum_{l} W T I_{l, j} L D_{l, j}-\lambda\left(L D C_{J}-\overline{L D C_{j}}\right)$
123. $\Lambda=\sum_{l} W T I_{l, j} L D_{l, j}-\lambda\left\{B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L D}}}-\overline{L D C_{j}}\right\}$

First order conditions are:
124. $\frac{\partial \Lambda}{\partial \lambda}=-\left(L D C_{J}-\overline{L D C_{j}}\right)=0$
125. $\frac{\partial \Lambda}{\partial L D_{l j, j}}=W T I_{l j, j}-\lambda \frac{\partial L D C_{j}}{\partial L D_{l j, j}}=0$
with
$\partial L D C \quad\left[\quad-\frac{1}{-\frac{10}{\rho_{j}^{L D}}}\right.$
126. $\frac{\partial L D C_{j}}{\partial L D_{l j, j}}=\frac{\partial}{\partial L D_{l j, j}} B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]$
127. $\frac{\partial L D C_{j}}{\partial L D_{l j, j}}=B_{j}^{L D}\left(-\frac{1}{\rho_{j}^{L D}}\right)\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L D}}-1}\left(-\rho_{j}^{L D} \beta_{l j, j}^{L D} L D_{l j, j}^{-\rho_{j}^{L D}-1}\right)$
128. $\frac{\partial L D C_{j}}{\partial L D_{l j, j}}=B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L D}-1}}\left(\beta_{l j, j}^{L D} L D_{l j, j}^{-\rho_{j}^{L D}-1}\right)$

C2.2 ReLATIVE LABOR DEMAND

It follows from equations 125 and 128 that
129. $\frac{W T I_{l i, j}}{W T I_{l j, j}}=\frac{B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L D}-1}}\left(\beta_{l i, j}^{L D} L D_{l i, j}^{-\rho_{j}^{L D}-1}\right)}{B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L D}-1}}\left(\beta_{l j, j}^{L D} L D_{l j, j}^{-\rho_{j}^{L D}-1}\right)}$
130. $\frac{W T I_{l i, j}}{W T I_{l j, j}}=\frac{\beta_{l i, j}^{L D} L D_{l i, j}^{-\rho_{j}^{L D}-1}}{\beta_{l j, j}^{L D} L D_{l j, j}^{-\rho_{j}^{L D}-1}}$
131. $\left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)^{-\rho_{j}^{L D}-1}=\frac{\beta_{l j, j}^{L D} W T I_{l i, j}}{\beta_{l i, j}^{L D} W T I_{l j, j}}$
132. $\frac{L D_{l i, j}}{L D_{l j, j}}=\left(\frac{\beta_{l j, j}^{L D} W T I_{l i, j}}{\beta_{l i, j}^{L D} W T I_{l j, j}}\right)^{\frac{1}{-\rho_{j}^{L D}-1}}$

Substituting $\sigma_{j}^{L D}=\frac{1}{\rho_{j}^{L D}+1}$, it follows that
133. $\frac{L D_{l i, j}}{L D_{l j, j}}=\left(\frac{\beta_{l j, j}^{L D} W T I_{l i, j}}{\beta_{l i, j}^{L D} W T I_{l j, j}}\right)^{-\sigma_{j}^{L D}}=\left(\frac{\beta_{l i, j}^{L D} W T I_{l j, j}}{\beta_{l j, j}^{L D} W T I_{l i, j}}\right)^{\sigma_{j}^{L D}}$
134. $L D_{l i, j}=\left(\frac{\beta_{l i, j}^{L D} W T I_{l j, j}}{\beta_{l j, j}^{L D} W T I_{l i, j}}\right)^{\sigma_{j}^{L D}} L D_{l j, j}$

C2.3 UNIT COST OF COMPOSITE LABOR

Remembering that $\sigma_{j}^{L D}=\frac{1}{\rho_{j}^{L D}+1}$, and substituting equation 134 into 5,
135. $L D C_{j}=B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D}\left(\left(\frac{\beta_{l, j}^{L D} W T I_{l j, j}}{\beta_{l j, j}^{L D} W T I_{l, j}}\right)^{\frac{1}{\rho_{j}^{L D}+1}} L D_{l j, j}\right)^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L D}}}$
136. $L D C_{j}=B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D}\left(\frac{\beta_{l, j}^{L D} W T I_{l j, j}}{\beta_{l j, j}^{L D} W T I_{l, j}}\right)^{-\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}} L D_{l j, j}^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L D}}}$
137. $L D C_{j}=L D_{l j, j} B_{j}^{L D}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{1-\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\left(\frac{W T I_{l j, j}}{\beta_{l j, j}^{L D}}\right)^{-\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]^{-\frac{1}{\rho_{j}^{L D}}}$
138. $L D C_{j}=L D_{l j, j}\left(\frac{W T I_{l j, j}}{\beta_{l j, j}^{L D}}\right)^{\frac{1}{\rho_{j}^{L D}+1}} B_{j}^{L D}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]^{-\frac{1}{\rho_{j}^{L D}}}$
139. $L D_{l j, j}=\frac{L D C_{j}}{B_{j}^{L D}}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]^{\frac{1}{\rho_{j}^{L D}}}\left(\frac{W T I_{l j, j}}{\beta_{l j, j}^{L D}}\right)^{-\frac{1}{\rho_{j}^{L D}+1}}$

Now, the unit cost of composite labor is defined by equation 72
72. $W C_{j}=\frac{\sum_{l} W T I_{l, j} L D_{l, j}}{L D C_{j}}$

Substituting $L D_{l j, j}$ from equation 139 for $L D_{l, j}$ in equation 72 yields
140. $W C_{j}=\frac{1}{B_{j}^{L D}}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]^{\frac{1}{\rho_{j}^{L D}}}\left[\sum_{l j} W T I_{l j, j}\left(\frac{W T I_{l j, j}}{\beta_{l j, j}^{L D}}\right)^{-\frac{1}{\rho_{j}^{L D}+1}}\right]$
141. $W C_{j}=\frac{1}{B_{j}^{L D}}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]^{\frac{1}{\rho_{j}^{L D}}}\left[\sum_{l j}\left(\beta_{l j, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l j, j}\right)^{1-\frac{1}{\rho_{j}^{L D}+1}}\right]$
where
142. $\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right] \equiv\left[\sum_{l j}\left(\beta_{l j, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l j, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]$

Hence,
143. $W C_{j}=\frac{1}{B_{j}^{L D}}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]^{1+\frac{1}{\rho_{j}^{L D}}}$
144. $W C_{j}=\frac{1}{B_{j}^{L D}}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]^{\frac{\rho_{j}^{L D}+1}{\rho_{j}^{L D}}}$

Using $\sigma_{j}^{L D}=\frac{1}{\rho_{j}^{L D}+1}$,
145. $\quad W C_{j}=\frac{1}{B_{j}^{L D}}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\sigma_{j}^{L D}}\left(W T I_{l, j}\right)^{1-\sigma_{j}^{L D}}\right]^{\frac{1}{1-\sigma_{j}^{L D}}}$

C2.4 LABOR DEMAND FOR A SINGLE CATEGORY IN TERMS OF RELATIVE WAGE RATES

From equation 145, it follows that
146. $\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\sigma_{j}^{L D}}\left(W T I_{l, j}\right)^{1-\sigma_{j}^{L D}}\right]^{\frac{\sigma_{j}^{L D}}{1-\sigma_{j}^{L D}}}=\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}} W C_{j}^{\sigma_{j}^{L D}}$

Substituting equation 146 into equation 139 yields

$$
\text { 147. } L D_{l j, j}=\frac{L D C_{j}}{B_{j}^{L D}}\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}} W C_{j}^{\sigma_{j}^{L D}}\left(\frac{W T I_{l j, j}}{\beta_{l j, j}^{L D}}\right)^{-\sigma_{j}^{L D}}
$$

After rearranging, equation 6 follows.
6. $L D_{l, j}=\left[\frac{\beta_{l, j}^{L D} W C_{j}}{W T I_{l, j}}\right]^{\sigma_{j}^{L D}}\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}-1} L D C_{j}$

C2.6 ELASTICITY OF SUBSTITUTION

In C2.2 above, nothing was said about the interpretation of $\sigma_{j}^{L D}=\frac{1}{\rho_{j}^{L D}+1}$. Here we show that $\sigma_{j}^{L D}$ is indeed the elasticity of substitution. The elasticity of substitution between type $l i$ and type $l j$ labor is defined as
148.

$$
\frac{\partial \ln \left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)}{\partial \ln \left(\frac{\partial L D C_{j} / \partial L D_{l j, j}}{\partial L D C_{j} / \partial L D_{l i, j}}\right)}=\frac{\left(\frac{\partial L D C_{j} / \partial L D_{l j, j}}{\partial L D C_{j} / \partial L D_{l i, j}}\right)}{\left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)} \frac{\partial\left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)}{\partial\left(\frac{\partial L D C_{j} / \partial L D_{l j, j}}{\partial L D C_{j} / \partial L D_{l i, j}}\right)}
$$

where $\frac{\partial L D C_{j} / \partial L D_{l j, j}}{\partial L D C_{j} / \partial L D_{l i, j}}$ is the marginal rate of substitution between li and $l j$ in industry $j\left(M R S_{l i, l j}^{j}\right)$:
149. $M R S_{l i, l j}^{j}=-\frac{d L D_{l i, j}}{d L D_{l j, j}}=\frac{\partial L D C_{j} / \partial L D_{l j, j}}{\partial L D C_{j} / \partial L D_{l i, j}}$

Substitute from equation 128,
$\begin{aligned} & \text { 150. } M R S_{l i, l j}^{j}=- \frac{d L D_{l i, j}}{d L D_{l j, j}}=\frac{B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L D}-1}}\left(\beta_{l j, j}^{L D} L D_{l j, j}^{-\rho_{j}^{L D}-1}\right)}{-\frac{1}{\rho_{j}^{L D}-1}} \\ &\left.\left.\left.\text { 151. } M R S_{l i, l j}^{j}=-\frac{B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]_{l i, j}^{d L D_{l j, j}}}{\left(\beta_{l i, j}^{L D} L D_{l i, j}^{-\rho_{j}^{L D}-1}\right)}=\frac{\left(\beta_{l i, j}^{L D} L D_{l i, j}^{-\rho_{j}^{L D}-1}\right)}{\beta_{l i, j}^{L D}}\right)_{\left.l D_{l j, j}^{-\rho_{j}^{L D}-1}\right)}^{L D_{l i, j}^{L D}}\right)^{L D_{l j, j}^{L D}}\right)^{-\rho_{j}^{L D}-1}\end{aligned}$
The elasticity of substitution is therefore
152.
$\frac{\partial \ln \left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)}{\partial \ln \left(\frac{\partial L D C_{j} / \partial L D_{l j, j}}{\partial L D C_{j} / \partial L D_{l i, j}}\right)}=\frac{\frac{\beta_{l j, j}^{L D}}{\beta_{l i, j}^{L D}}\left(\frac{L D_{l j, j}}{L D_{l i, j}}\right)^{-\rho_{j}^{L D}-1}}{\left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)} \frac{\left.\partial\left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)^{-\rho_{j}^{L D}-1}\right)}{\partial\left(\frac{\beta_{l j, j}^{L D}}{\beta_{l i, j}^{L D}}\left(\frac{L D_{l j, j}}{L D_{l i, j}}\right)^{-l^{2}}\right)}$
153. $\frac{\partial \ln \left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)}{\partial \ln \left(\frac{\partial L D C_{j} / \partial L D_{l j, j}}{\partial L D C_{j} / \partial L D_{l i, j}}\right)}=\frac{\frac{\beta_{l j, j}^{L D}}{\beta_{l i, j}^{L D}}\left(\frac{L D_{l j, j}}{L D_{l i, j}}\right)^{-\rho_{j}^{L D}-1}}{\left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)}\left[\frac{\partial\left(\frac{\beta_{l j, j}^{L D}}{\beta_{l i, j}^{L D}}\left(\frac{L D_{l j, j}}{L D_{l i, j}}\right)^{-\rho_{j}^{L D}-1}\right)^{-1}}{\partial\left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)}\right]^{-1}$

Noting that $\left(\frac{L D_{l j, j}}{L D_{l i, j}}\right)^{-\rho_{j}^{L D}-1}=\left(\frac{L D_{l i, j}}{L D_{l j, j}}\right)^{\rho_{j}^{L D}+1}$, simplify as

Hence $\sigma_{j}^{L D}=\frac{1}{\rho_{j}^{L D}+1}$ is indeed the elasticity of substitution.

C3. Demand for capital by category

The CES aggregator function of composite capital has the same form as the aggregator function of composite labor. It is straightforward to rewrite the developments of C 2 for the demand of type k capital by industry j.

C4. Stone-Geary utility and the demand for consumer goods

The utility function of the representative agent of type h households is a Stone-Geary utility function:
156. $U_{h}=\prod_{i}\left(C_{i, h}-C_{i, h}^{M I N}\right)^{\gamma_{i, h}^{L E S}}$, where
157. $\sum_{i} \gamma_{i, h}^{L E S}=1$

Utility function 157 is equivalent to
158. $\ln U_{h}=\sum_{i} \gamma_{i, h}^{L E S} \ln \left(C_{i, h}-C_{i, h}^{M I N}\right)$

The representative household maximizes utility subject to the budget constraint
159. $\sum_{i} P C_{i} C_{i, h}=C T H_{h}$

Form the Lagrangian:
160. $\Lambda=\sum_{i} \gamma_{i, h}^{L E S} \ln \left(C_{i, h}-C_{i, h}^{M I N}\right)-\lambda\left(\sum_{i} P C_{i} C_{i, h}-C T H_{h}\right)$

The first-order conditions are:
161. $\frac{\partial \Lambda}{\partial \lambda}=-\left(\sum_{i} P C_{i} C_{i, h}-C T H_{h}\right)=0$
162. $\frac{\partial \Lambda}{\partial C_{i, h}}=\frac{\gamma_{i, h}^{L E S}}{\left(C_{i, h}-C_{i, h}^{M I N}\right)}-\lambda P C_{i}=0$

First-order condition equation 162 is equivalent to
163. $\lambda P C_{i}\left(C_{i, h}-C_{i, h}^{M I N}\right)=\gamma_{i, h}^{L E S}$

Summing equation 163 over i, remembering equation 157, yields
164. $\lambda \sum_{i} P C_{i}\left(C_{i, h}-C_{i, h}^{\text {MIN }}\right)=\sum_{i} \gamma_{i, h}^{\text {LES }}=1$
165. $\sum_{i} P C_{i}\left(C_{i, h}-C_{i, h}^{M I N}\right)=\frac{1}{\lambda}$

And, given first-order condition equation 161,
166. $C T H_{h}-\sum_{i} P C_{i} C_{i, h}^{M I N}=\frac{1}{\lambda}$

Substituting equation 166 into equation 165 and rearranging, one obtains demand function equation 53 :
53. $C_{i, h} P C_{i}=C_{i, h}^{M I N} P C_{i}+\gamma_{i, h}^{L E S}\left(C T H_{h}-\sum_{i j} C_{i j, h}^{M I N} P C_{i j}\right)$

It should be mentioned in passing that methods of calibration of the Linear Expenditure System parameters often make use of the Frisch parameter, given by: $-\lambda C T H_{h}=-\frac{C T H_{h}}{C T H_{h}-\sum_{i} P C_{i} C_{i, h}^{M I N}}$.

C5. Allocation of aggregate output to product supplies

C5.1 SALES REVENUE MAXIMIZING PROBLEM

The aggregator function of production sold on the domestic market and exported is given by equation 59:
$\left[\quad \rho_{\rho^{\prime}}^{\frac{1}{\rho_{j}^{X T}}}\right.$
59. $X S T_{j}=B_{j}^{X T}\left[\sum_{i} \beta_{j, i}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]$

The producer's problem is to maximize sales revenue $\sum_{i} P_{j, i} X S_{j, i}$ subject to equation 59 and the constraint $X S T_{j}=\overline{X S T_{j}}$. Form the Lagrangian
167. $\Lambda=\sum_{i} P_{j, i} X S_{j, i}-\lambda\left(X S T_{j}-\overline{X S T_{j}}\right)$
168. $\Lambda=\sum_{i} P_{j, i} X S_{j, i}-\lambda\left(B_{j}^{X T}\left[\sum_{i} \beta_{j, i}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j}^{X T}}}-\overline{X S T}{ }_{j}\right)$

First order conditions are:
169. $\frac{\partial \Lambda}{\partial \lambda}=-\left(X S T_{j}-\overline{X S T_{j}}\right)=0$
170. $\frac{\partial \Lambda}{\partial X S_{j, i}}=P_{j, i}-\lambda \frac{\partial X S T_{j}}{\partial X S_{j, i}}$
with
171. $\frac{\partial X S T_{j}}{\partial X S_{j, i j}}=\frac{\partial}{\partial X S_{j, i j}} B_{j}^{X T}\left[\sum_{i} \beta_{j, i}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j}^{X T}}}$
172. $\frac{\partial X S T_{j}}{\partial X S_{j, i j}}=B_{j}^{X T}\left(\frac{1}{\rho_{j}^{X T}}\right)\left[\sum_{i} \beta_{j, i}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j}^{X T}-1}}\left(\rho_{j}^{X T} \beta_{j, i j}^{X T} X S_{j, i j}^{\rho_{j}^{X T}-1}\right)$
173. $\frac{\partial X S T_{j}}{\partial X S_{j, i j}}=B_{j}^{X T}\left[\sum_{i} \beta_{j}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j}^{X T}-1}}\left(\beta_{j, i j}^{X T} X S_{j, i j}^{\rho_{j}^{X T}-1}\right)$

C5.2 RELATIVE SUPPLY OF PRODUCTS

It follows from equations 170 and 173 that
174. $\frac{P_{j, i i}}{P_{j, i j}}=\frac{B_{j}^{X T}\left[\sum_{i} \beta_{j}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j}^{X T}-1}}\left(\beta_{j, i i}^{X T} X S_{j, i i}^{\rho_{j}^{X T}-1}\right)}{\frac{1}{\rho_{j}^{X T}-1}}$

$$
B_{j}^{X T}\left[\sum_{i} \beta_{j}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\prime \prime} \quad\left(\beta_{j, i j}^{X T} X S_{j, i j}^{\rho_{j}^{X T}-1}\right)
$$

175. $\frac{P_{j, i i}}{P_{j, i j}}=\frac{\left(\beta_{j, i i}^{X T} X S_{j, i i}^{\rho_{j}^{X T}-1}\right)}{\left(\beta_{j, i j}^{X T} X S_{j, i j}^{\rho_{j}^{X T}-1}\right)}=\frac{\beta_{j, i i}^{X T}}{\beta_{j, i j}^{X T}}\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)^{\rho_{j}^{X T}-1}$
176. $\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)^{\rho_{j}^{X T}-1}=\frac{\beta_{j, i j}^{X T}}{\beta_{j, i i}^{X T}} \frac{P_{j, i i}}{P_{j, i j}}$
177. $\frac{X S_{j, i i}}{X S_{j, i j}}=\left(\frac{\beta_{j, i j}^{X T}}{\beta_{j, i i}^{X T}} \frac{P_{j, i i}}{P_{j, i j}}\right)^{\frac{1}{\rho_{j}^{X T}-1}}$

Substituting $\sigma_{j}^{X T}=\frac{1}{\rho_{j}^{X T}-1}$, it follows that:
178. $\frac{X S_{j, i i}}{X S_{j, i j}}=\left(\frac{\beta_{j, i j}^{X T}}{\beta_{j, i i}^{X T}} \frac{P_{j, i i}}{P_{j, i j}}\right)^{\sigma_{j}^{X T}}$
179. $\quad X S_{j, i i}=\left(\frac{\beta_{j, i j}^{X T}}{\beta_{j, i i}^{X T}} \frac{P_{j, i i}}{P_{j, i j}}\right)^{\sigma_{j}^{X T}} X S_{j, i j}$

C5.3 PRICE OF AGGREGATE OUTPUT

Remembering that $\sigma_{j}^{X T}=\frac{1}{\rho_{j}^{X T}-1}$, and substituting equation 179 into equation 59 ,
180. $X S T_{j}=B_{j}^{X T}\left[\sum_{i} \beta_{j, i}^{X T}\left(\left(\frac{\beta_{j, i j}^{X T}}{\beta_{j, i}^{X T}} \frac{P_{j, i}}{P_{j, i j}}\right)^{\frac{1}{\rho_{j}^{X T}-1}} X S_{j, i j}\right)^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j}^{X T}}}$
181. $\quad X S T_{j}=B_{j}^{X T}\left[\sum_{i} \beta_{j, i}^{X T}\left(\frac{\beta_{j, i j}^{X T}}{\beta_{j, i}^{X T}} \frac{P_{j, i}}{P_{j, i j}}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}} X S_{j, i j}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j}^{X T}}}$
182. $\left.\quad X S T_{j}=B_{j}^{X T} X S_{j, i j}\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{1-\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\left(P_{j, i}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\left(\frac{\beta_{j, i j}^{X T}}{P_{j, i j}}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\right]^{\frac{1}{\rho_{j}^{X T}}}\right]^{\frac{1}{2}}$
183. $\left.X S T_{j}=B_{j}^{X T} X S_{j, i j}\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{-\frac{1}{\rho_{j}^{X T}-1}}\left(P_{j, i}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\left(\frac{P_{j, i j}}{\beta_{j, i j}^{X T}}\right)^{-\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\right]^{\frac{1}{\rho_{j}^{X T}}}\right]^{\frac{1}{}}$
184. $\quad X S T_{j}=B_{j}^{X T} X S_{j, i j}\left(\frac{P_{j, i j}}{\beta_{j, j}^{X T}}\right)^{\frac{\rho_{j}^{X T}-1}{X}}\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{1-\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\left(P_{j, i}\right)^{\frac{\rho_{j}^{X T}}{\rho_{T}^{X T}-1}}\right]$
185. $\quad X S_{j, i j}=\frac{X S T}{B_{j}^{X T}}\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{-\frac{1}{\rho_{j}^{X T}-1}}\left(P_{j, i}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\right]^{-\frac{1}{\rho_{j}^{X T}}}\left(\frac{P_{j, i j}}{\beta_{j, i j}^{X T}}\right)^{\frac{1}{\rho_{j}^{X T}-1}}$

Now, the price of the aggregate output is defined by equation 77
77. $P T_{j}=\frac{\sum_{i} P_{j, i} X S_{j, i}}{X S T_{j}}$

Substituting $X S_{j, i j}$ from equation 185 for $X S_{j, i}$ in equation 77 yields

where
188.

$$
\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{-\frac{1}{\rho_{j}^{X T}-1}}\left(P_{j, i}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\right] \equiv\left[\sum_{i j}\left(\beta_{j, i j}^{X T}\right)^{-\frac{1}{\rho_{j}^{X T}-1}}\left(P_{j, i j}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\right]
$$

Hence,
189. $P T_{j}=\frac{1}{B_{j}^{X T}}\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{-\frac{1}{\rho_{j}^{X T}-1}}\left(P_{j, i}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\right]^{1-\frac{1}{\rho_{j}^{X T}}}$ $\frac{\rho_{j}^{X T}-1}{\rho_{j}^{X T}}$
190. $P T_{j}=\frac{1}{B_{j}^{X T}}\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{-\frac{1}{\rho_{j}^{X T}-1}}\left(P_{j, i}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\right]$

Given $\sigma_{j}^{X T}=\frac{1}{\rho_{j}^{X T}-1}$, we have
191. $P T_{j}=\frac{1}{B_{j}^{X T}}\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{-\sigma_{j}^{X T}}\left(P_{j, i}\right)^{\sigma_{j}^{X T}+1}\right]^{\sigma}$

C5.4 SUPPLY OF INDIVIDUAL PRODUCTS

Using $\sigma_{j}^{X T}=\frac{1}{\rho_{j}^{X T}-1}$ and equation 191, one obtains
192. $\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{-\frac{1}{\rho_{j}^{X T}-1}}\left(P_{j, i}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\right]^{-\frac{1}{\rho_{j}^{X T}}}=\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{-\sigma_{j}^{X T}}\left(P_{j, i}\right)^{\sigma_{j}^{X T}+1}\right]^{-\frac{\sigma_{j}^{X T}}{\sigma_{j}^{X T}+1}}{ }^{-\sigma_{j}^{X T}}$
193. $\left[\sum_{i}\left(\beta_{j, i}^{X T}\right)^{-\frac{1}{\rho_{j}^{X T}-1}}\left(P_{j, i}\right)^{\frac{\rho_{j}^{X T}}{\rho_{j}^{X T}-1}}\right]^{-\frac{1}{\rho_{j}^{X T}}}=\left(B_{j}^{X T}\right)^{-\sigma_{j}^{X T}} P T_{j}^{-\sigma_{j}^{X T}}$

Substituting into equation 185 yields
194. $X S_{j, i j}=\frac{X S T}{B_{j}^{X T}}\left(B_{j}^{X T}\right)^{-\sigma_{j}^{X T}} P T_{j}^{-\sigma_{j}^{X T}}\left(\frac{P_{j, i j}}{\beta_{j, i j}^{X T}}\right)^{\sigma_{j}^{X T}}$

After rearranging, equation 60 follows:
60. $X S_{j, i}=\frac{X S T_{j}}{\left(B_{j}^{X T}\right)^{1+\sigma_{j}^{X T}}}\left[\frac{P_{j, i}}{\beta_{j, i}^{X T} P T_{j}}\right]^{\sigma_{j}^{X T}}$

C5.5 ELASTICITY OF TRANSFORMATION

In C5.2 above, nothing was said about the interpretation of $\sigma_{j}^{X T}=\frac{1}{\rho_{j}^{X T}-1}$. Here we show that $\sigma_{j}^{X T}$ is indeed the elasticity of transformation.

Here, the elasticity of transformation between products is defined as ${ }^{15}$
195. $-\frac{\partial \ln \left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}{\partial \ln \left(\frac{\partial X S T_{j} / \partial X S_{j . i j}}{\partial X S T_{j} / \partial X S_{j . i i}}\right)}=-\frac{\left(\frac{\partial X S T_{j} / \partial X S_{j . i j}}{\partial X S T_{j} / \partial X S_{j . i i}}\right)}{\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)} \frac{\partial\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}{\partial\left(\frac{\partial X S T_{j} / \partial X S_{j . i j}}{\partial X S T_{j} / \partial X S_{j . i i}}\right)}$
where $\frac{\partial X S T_{j} / \partial X S_{j . i j}}{\partial X S T_{j} / \partial X S_{j . i i}}$ is the marginal rate of transformation between industry j 's products ii and $i j$
$\left(M R T_{i i, i j}^{j}\right):$
196. $M R T_{i i, i j}^{j}=-\frac{d X S_{j . i i}}{d X S_{j . i j}}=\frac{\partial X S T_{j} / \partial X S_{j . i j}}{\partial X S T_{j} / \partial X S_{j . i i}}$

Substitute from 175

15 In microeconomic textbooks, the elasticity of transformation and the elasticity of substitution are identically defined. What differenciates them in practice is that the former is negative, while the latter is positive (think of movement along an twofactor isoquant, compared to movement along a two-goods transformation curve, in response to changes in relative prices: they are in opposite directions). Here the elasticity of transformation is defined with a minus sign, so it will take on positive values.
197. $M R T_{i i, i j}^{j}=-\frac{d X S_{j . i i}}{d X S_{j . i j}}=\frac{B_{j}^{X T}\left[\sum_{i} \beta_{j}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j}^{X T}}-1}\left(\beta_{j, i j}^{X T} X S_{j, i j}^{\rho_{j}^{X T}-1}\right)}{\frac{1}{\rho_{j}^{X T}-1}}$

$$
B_{j}^{X T}\left[\sum_{i} \beta_{j}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\rho_{j}^{\hat{j}}} \quad\left(\beta_{j, i i}^{X T} X S_{j, i i}^{\rho_{j}^{X T}-1}\right)
$$

198. $\quad M R T_{i i, i j}^{j}=-\frac{d X S_{j . i i}}{d X S_{j . i j}}=\frac{\left(\beta_{j, i j}^{X T} X S_{j, i j}^{\rho_{j}^{X T}-1}\right)}{\left(\beta_{j, i i}^{X T} X S_{j, i i}^{\rho_{j}^{X T}-1}\right)}=\frac{\beta_{j, i j}^{X T}}{\beta_{j, i i}^{X T}}\left(\frac{X S_{j, i j}}{X S_{j, i i}}\right)^{\rho_{j}^{X T}-1}$

The elasticity of transformation is therefore
199.

$\left.200 .-\frac{\partial \ln \left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}{\partial \ln \left(\frac{\partial X S T_{j} / \partial X S_{j, i j}}{\partial X S T_{j} / \partial X S_{j, i i}}\right)}=-\frac{\left(\frac{\beta_{j, i j}^{X T}}{\beta_{j, i i}^{X T}}\left(\frac{X S_{j, i j}}{X S_{j, i i}}\right)^{\rho_{j}^{X T}-1}\right)}{\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}\left[\frac{\left(\frac{\beta_{j, i j}^{X T}}{\beta_{j, i i}^{X T}}\left(\frac{X S_{j, i j}}{X S_{j, i i}}\right)^{\rho_{j}^{X T}-1}\right)}{\partial\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}\right]^{-1}\right]$
Noting that $\left(\frac{X S_{j, i j}}{X S_{j, i i}}\right)^{\rho_{j}^{X T}-1}=\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)^{1-\rho_{j}^{X T}}$, simplify as

$$
\begin{aligned}
& \left.201 .-\frac{\partial \ln \left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}{\partial \ln \left(\frac{\partial X S T_{j} / \partial X S_{j . i j}}{\partial X S T_{j} / \partial X S_{j . i i}}\right)}=-\frac{\left.\left(\frac{\beta_{j, i j}^{X T}}{\beta_{j, i i}^{X T}} \frac{X S_{j, i i}}{X S_{j, i j}}\right)^{1-\rho_{j}^{X T}}\right)}{\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}\left[\frac{\left(\frac{\beta_{j, i j}^{X T}}{\beta_{j, i i}^{X T}}\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)^{1-\rho_{j}^{X T}}\right)}{\partial\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}\right]^{-1}\right]^{-1} \\
& \text { 202. }-\frac{\partial \ln \left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}{\partial \ln \left(\frac{\partial X S T_{j} / \partial X S_{j . i j}}{\partial X S T_{j} / \partial X S_{j . i i}}\right)}=-\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)^{-\rho_{j}^{X T}}\left[\left(1-\rho_{j}^{X T}\right)\left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)^{-\rho_{j}^{X T}}\right]^{-1} \\
& \text { 203. }-\frac{\partial \ln \left(\frac{X S_{j, i i}}{X S_{j, i j}}\right)}{\partial \ln \left(\frac{\partial X S T_{j} / \partial X S_{j . i j}}{\partial X S T_{j} / \partial X S_{j . i i}}\right)}=-\frac{1}{1-\rho_{j}^{X T}}=\frac{1}{\rho_{j}^{X T}-1}
\end{aligned}
$$

Hence $\sigma_{j}^{X T}=\frac{1}{\rho_{j}^{X T}-1}$ is indeed the elasticity of transformation.

C6. Supply on domestic and export markets

C6.1 SALES REVENUE MAXIMIZING PROBLEM

The aggregator function of production sold on the domestic market and exported is given by equation 61:
61. $\quad X S_{j, x}=B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D S_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}}$

The producer's problem is to maximize sales revenue of exportable product x :
204. $P E_{j, x} E X_{j, x}+P L_{j, x} D_{j, x}$
subject to 61 and the constraint $X S_{j, x}=\overline{X S_{j, x}}$. Form the Lagrangian

First order conditions are:
with
and, similarly,

C6.2 RELATIVE SUPPLY ON THE DOMESTIC AND EXPORT MARKETS

It follows from 208. 209, 212, and 213 that
205. $\Lambda=P E_{j, x} E X_{j, x}+P L_{j, x} D_{j, x}-\lambda\left(X S_{j, x}-\overline{X S_{j, x}}\right)$
206. $\Lambda=P E_{j, x} E X_{j, x}+P L_{j, x} D_{j, x}-\lambda\left(B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}}-\overline{X S_{x}}\right)$
207. $\frac{\partial \Lambda}{\partial \lambda}=-\left(X S_{j, x}-\overline{X S_{j, x}}\right)=0$
208. $\frac{\partial \Lambda}{\partial E X_{j, x}}=P E_{j, x}-\lambda \frac{\partial X S_{j, x}}{\partial E X_{j, x}}$
209. $\frac{\partial \Lambda}{\partial D_{j, x}}=P L_{j, x}-\lambda \frac{\partial X S_{j, x}}{\partial D_{j, x}}$
210. $\frac{\partial X S_{j, x}}{\partial E X_{j, x}}=\frac{\partial}{\partial E X_{j, x}}\left\{B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}}\right\}$
211. $\frac{\partial X S_{j, x}}{\partial E X_{j, x}}=B_{j, x}^{X} \frac{1}{\rho_{j, x}^{X}}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}-1}\left(\beta_{j, x}^{X} \rho_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}-1}\right)$
212. $\frac{\partial X S_{j, x}}{\partial E X_{j, x}}=B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}-1}\left(\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}-1}\right)$
213. $\frac{\partial X S_{j, x}}{\partial D_{j, x}}=B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}-1}\left(\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}-1}\right)$
214. $\frac{P E_{j, x}}{P L_{j, x}}=\frac{\lambda B_{j . x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}-1}\left(\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}-1}\right)}{\left[\frac{1}{\rho_{j, x}^{X}-1}\right.}$

$$
\lambda B_{j . x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}}\right]^{\rho_{j, x}}\left(\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}-1}\right)
$$

215. $\frac{P E_{j, x}}{P L_{j, x}}=\frac{\left(\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}\right)}{\left(\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}-1}\right)}$
216. $\left(\frac{E X_{j, x}}{D_{j, x}}\right)^{\rho_{j, x}^{X}-1}=\frac{\left(1-\beta_{j, x}^{X}\right) P E_{j, x}}{\beta_{j, x}^{X} P L_{j, x}}$
217. $\frac{E X_{j, x}}{D_{j, x}}=\left[\frac{\left(1-\beta_{j, x}^{X}\right) P E_{j, x}}{\beta_{j, x}^{X} P L_{j, x}}\right]^{\overline{\rho_{j, x}^{X}}}$

Substituting $\sigma_{j, x}^{X}=\frac{1}{\rho_{j, x}^{X}-1}$, equation 63 follows:
218. $E X_{j, x}=\left[\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}} \frac{P E_{x}}{P L_{x}}\right]^{\sigma_{j, x}^{X}} D S_{j, x}$

C6.3 ELASTICITY OF TRANSFORMATION

In C2.3 above, nothing was said about the interpretation of $\sigma_{j, x}^{X}=\frac{1}{\rho_{j, x}^{X}-1}$. Here we show that $\sigma_{j, x}^{X}$ is indeed the elasticity of transformation.

Here, the elasticity of transformation between production sold on the domestic market and production exported is defined as ${ }^{16}$
219. $-\frac{\partial \ln \left(\frac{E X_{j, x}}{D_{j, x}}\right)}{\partial \ln \left(\frac{\partial X S_{j, x} / \partial D_{j, x}}{\partial X S_{j, x} / \partial E X_{j, x}}\right)}=-\frac{\left(\frac{\partial X S_{j, x} / \partial D_{j, x}}{\partial X S_{j, x} / \partial E X_{j, x}}\right)}{\left(\frac{E X_{j, x}}{D_{j, x}}\right)} \frac{\partial\left(\frac{E X_{j, x}}{D_{j, x}}\right)}{\partial\left(\frac{\partial X S_{j, x} / \partial D_{j, x}}{\partial X S_{j, x} / \partial E X_{j, x}}\right)}$
where $\frac{\partial X S_{j, x} / \partial D_{j, x}}{\partial X S_{j, x} / \partial E X_{j, x}}$ is the marginal rate of transformation between production sold locally and $\operatorname{exported}\left(M R T_{j, x}^{E X, D}\right)$:
220. $M R T_{j, x}^{E X, D}=-\frac{d E X_{j, x}}{d D_{j, x}}=\frac{\partial X S_{j, x} / \partial D_{j, x}}{\partial X S_{j, x} / \partial E X_{j, x}}$

Substitute from equations 212 and 213

$$
\begin{aligned}
& \text { 221. } \quad M R T_{j, x}^{E X, D}=-\frac{d E X_{j, x}}{d D_{j, x}}=\frac{B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}-1}\left(\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}-1}\right)}{B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}-1}}\left(\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}-1}\right)} \\
& \text { 222. } \quad M R T_{j, x}^{E X, D}=-\frac{d E X_{j, x}}{d D_{j, x}}=\left(\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}}\right)\left(\frac{D_{j, x}}{E X_{j, x}}\right)^{\rho_{j, x}^{X}-1}
\end{aligned}
$$

The elasticity of transformation is therefore

16 In microeconomic textbooks, the elasticity of transformation and the elasticity of substitution are identically defined. What differenciates them in practice is that the former is negative, while the latter is positive (think of movement along an twofactor isoquant, compared to movement along a two-goods transformation curve, in response to changes in relative prices: they are in opposite directions). Here the elasticity of transformation is defined with a minus sign, so it will take on positive values.
223. $-\frac{\partial \ln \left(\frac{E X_{j, x}}{D_{j, x}}\right)}{\partial \ln \left(\frac{\partial X S_{j, x} / \partial D_{j, x}}{\partial X S_{j, x} / \partial E X_{j, x}}\right)}=-\frac{\left(\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}}\right)\left(\frac{D_{j, x}}{E X_{j, x}}\right)^{\rho_{j, x}^{X}-1}}{\left(\frac{E X_{j, x}}{D_{j, x}}\right)} \frac{\partial\left(\frac{E X_{j, x}}{D_{j, x}}\right)}{\left.\partial\left(\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}}\right)\left(\frac{D_{j, x}}{E X_{j, x}}\right)^{\rho_{j, x}^{X}-1}\right)}$
224. $\left.-\frac{\partial \ln \left(\frac{E X_{j, x}}{D_{j, x}}\right)}{\partial \ln \left(\frac{\partial X S_{j, x} / \partial D_{j, x}}{\partial X S_{j, x} / \partial E X_{j, x}}\right)}=-\frac{\left(\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}}\right)\left(\frac{D_{j, x}}{E X_{j, x}}\right)^{\rho_{j, x^{-1}}^{X}}}{\left(\frac{E X_{j, x}}{D_{j, x}}\right)}\left[\frac{\partial\left(\left(\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}}\right)\left(\frac{D_{j, x}}{E X_{j, x}}\right)^{\rho_{j, x}^{X}-1}\right)}{\partial\left(\frac{E X_{j, x}}{D_{j, x}}\right)}\right]^{-1}\right]$

Noting that $\left(\frac{D_{j, x}}{E X_{j, x}}\right)^{\rho_{j, x^{-1}}^{X}}=\left(\frac{E X_{j, x}}{D_{j, x}}\right)^{1-\rho_{j, x}^{X}}$, simplify as

Hence $\sigma_{j, x}^{X}=\frac{1}{\rho_{j, x}^{X}-1}$ is indeed the elasticity of transformation.

C7. Demand for local products and imports

C7.1 EXPENDITURE MINIMIZING PROBLEM

The aggregator function of composite commodity is given by equation 65:
65. $\quad Q_{m}=B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D D_{m}^{-\rho_{m}^{M}}\right]^{\frac{-1}{\rho_{m}^{M}}}$

The buyer's problem is to minimize expenditure on the composite commodity
227. $P M_{m} I M_{m}+P D_{m} D_{m}$
subject to 65 and the constraint $Q_{m}=\overline{Q_{m}}$. Form the Lagrangian
228. $\Lambda=P M_{m} I M_{m}+P D_{m} D_{m}-\lambda\left(Q_{m}-\overline{Q_{m}}\right)$
229. $\Lambda=P M_{m} I M_{m}+P D_{m} D_{m}-\lambda\left(B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D_{m}^{-\rho_{m}^{M}}\right]^{\frac{-1}{\rho_{m}^{M}}}-\overline{Q_{m}}\right)$

First order conditions are:
230. $\frac{\partial \Lambda}{\partial \lambda}=-\lambda\left(Q_{m}-\overline{Q_{m}}\right)=0$
231. $\frac{\partial \Lambda}{\partial I M_{m}}=P M_{m}-\lambda \frac{\partial Q_{m}}{\partial I M_{m}}=0$
232. $\frac{\partial \Lambda}{\partial D_{m}}=P D_{m}-\lambda \frac{\partial Q_{m}}{\partial D_{m}}=0$
with
233.

$$
\frac{\partial Q_{m}}{\partial I M_{m}}=B_{m}^{M} \frac{\partial}{\partial I M_{m}}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D_{m}^{-\rho_{m}^{M}}\right]^{\frac{-1}{\rho_{m}^{M}}}
$$

234. $\frac{\partial Q_{m}}{\partial I M_{m}}=B_{m}^{M}\left(\frac{-1}{\rho_{m}^{M}}\right)\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D_{m}^{-\rho_{m}^{M}}\right]^{-\frac{1}{\rho_{m}^{M}-1}}\left(-\rho_{m}^{M}\right)\left(\beta_{m}^{M} I M_{m}{ }^{-\rho_{m}^{M}-1}\right)$
235. $\frac{\partial Q_{m}}{\partial I M_{m}}=B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D_{m}^{-\rho_{m}^{M}}\right]^{-\frac{1}{\rho_{m}^{M}-1}}\left(\beta_{m}^{\left.M^{M} I M_{m}^{-\rho_{m}^{M}-1}\right)}\right.$

Likewise,
236. $\frac{\partial Q_{m}}{\partial D_{m}}=B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D_{m}^{-\rho_{m}^{M}}\right]^{-\frac{1}{\rho_{m}^{M}-1}}\left(1-\beta_{m}^{M}\right)\left(D_{m}^{-\rho_{m}^{M}-1}\right)$

C7.2 RELATIVE DEMAND FOR LOCAL PRODUCTS AND IMPORTS

It follows from equations 231, 232, 235, and 236 that
237. $\frac{P M_{m}}{P D_{m}}=\frac{B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D_{m}^{-\rho_{m}^{M}}\right]^{\rho_{m}}\left(\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}-1}\right)}{-\frac{1}{\rho_{m}^{M}-1}}$

$$
B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D_{m}^{-\rho_{m}^{M}}\right]^{\rho_{m}} \quad\left(1-\beta_{m}^{M}\right)\left(D_{m}^{-\rho_{m}^{M}-1}\right)
$$

238. $\frac{P M_{m}}{P D_{m}}=\left(\frac{\beta_{m}^{M}}{1-\beta_{m}^{M}}\right)\left(\frac{I M_{m}}{D_{m}}\right)^{-\rho_{m}^{M}-1}$
239. $\left(\frac{I M_{m}}{D_{m}}\right)^{-\rho_{m}^{M}-1}=\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right) \frac{P M_{m}}{P D_{m}}$
240. $\frac{I M_{m}}{D_{m}}=\left[\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right) \frac{P M_{m}}{P D_{m}}\right]^{\frac{1}{-\rho_{m}^{M}-1}}=\left[\left(\frac{\beta_{m}^{M}}{1-\beta_{m}^{M}}\right) \frac{P D_{m}}{P M_{m}}\right]^{\frac{1}{\rho_{m}^{M}+1}}$

Substituting $\sigma_{m}^{M}=\frac{1}{\rho_{m}^{M}+1}$, equation 67 follows
241. $I M_{m}=\left[\frac{\beta_{m}^{M}}{1-\beta_{m}^{M}} \frac{P D_{m}}{P M_{m}}\right]^{\sigma_{m}^{M}} D_{m}$

C7.3 ELASTICITY OF SUBSTITUTION

In C7.2 above, nothing was said about the interpretation of $\sigma_{m}^{M}=\frac{1}{\rho_{m}^{M}+1}$. Here we show that σ_{m}^{M} is indeed the elasticity of substitution. The elasticity of substitution between imported and locally produced commodity m is defined as
242.

$$
\frac{\partial \ln \left(\frac{I M_{m}}{D_{m}}\right)}{\partial \ln \left(\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}\right)}=\frac{\left(\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}\right)}{\left(\frac{I M_{m}}{D_{m}}\right)} \frac{\partial\left(\frac{I M_{m}}{D_{m}}\right)}{\partial\left(\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}\right)}
$$

where $\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}$ is the marginal rate of substitution between imported and locally produced commodity $m\left(M R S_{m}^{I M, D}\right)$:
243. $M R S_{m}^{I M, D}=-\frac{d I M_{m}}{d D_{m}}=\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}$

Substitute from 233 and 234
244. $M R S_{m}^{I M, D}=-\frac{d I M_{m}}{d D_{m}}=\frac{B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D_{m}^{-\rho_{m}^{M}}\right]^{-\frac{1}{\rho_{m}^{M}-1}}\left(1-\beta_{m}^{M}\right)\left(D_{m}^{-\rho_{m}^{M}-1}\right)}{-\frac{1}{\rho_{m}^{M}-1}}$

$$
B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D_{m}^{-\rho_{m}^{M}}\right]^{\rho_{m}} \quad\left(\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}-1}\right)
$$

245. $\quad M R S_{m}^{I M, D}=-\frac{d I M_{m}}{d D_{m}}=\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right)\left(\frac{D_{m}}{I M_{m}}\right)^{-\rho_{m}^{M}-1}$

The elasticity of substitution is therefore
246. $\frac{\partial \ln \left(\frac{I M_{m}}{D_{m}}\right)}{\partial \ln \left(\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}\right)}=\frac{\left(\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right)\left(\frac{D_{m}}{I M_{m}}\right)^{-\rho_{m}^{M}-1}\right)}{\left(\frac{I M_{m}}{D_{m}}\right)} \frac{\partial\left(\frac{I M_{m}}{D_{m}}\right)}{\left.\partial\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right)\left(\frac{D_{m}}{I M_{m}}\right)^{-\rho_{m}^{M-1}}\right)}$
247. $\frac{\partial \ln \left(\frac{I M_{m}}{D_{m}}\right)}{\partial \ln \left(\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}\right)}=\frac{\left(\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right)\left(\frac{D_{m}}{I M_{m}}\right)^{-\rho_{m}^{M}-1}\right)}{\left(\frac{I M_{m}}{D_{m}}\right)}\left[\frac{\partial\left(\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right)\left(\frac{D_{m}}{I M_{m}}\right)^{-\rho_{m}^{M}-1}\right)}{\partial\left(\frac{I M_{m}}{D_{m}}\right)}\right]^{-1}$

Noting that $\left(\frac{D_{m}}{I M_{m}}\right)^{-\rho_{m}^{M}-1}=\left(\frac{I M_{m}}{D_{m}}\right)^{\rho_{m}^{M}+1}$, simplify as
248. $\left.\frac{\partial \ln \left(\frac{I M_{m}}{D_{m}}\right)}{\partial \ln \left(\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}\right)}=\frac{\left(\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right)\left(\frac{I M_{m}}{D_{m}}\right)^{\rho_{m}^{M}+1}\right.}{\left(\frac{I M_{m}}{D_{m}}\right)}\left[\frac{\partial\left(\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right)\left(\frac{I M_{m}}{D_{m}}\right)^{\rho_{m}^{M}+1}\right.}{\partial\left(\frac{I M_{m}}{D_{m}}\right)}\right]^{-1}\right]^{-1}$
249. $\frac{\partial \ln \left(\frac{I M_{m}}{D_{m}}\right)}{\partial \ln \left(\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}\right)}=\frac{\left(\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right)\left(\frac{I M_{m}}{D_{m}}\right)^{\rho_{m}^{M}+1}\right)}{\left(\frac{I M_{m}}{D_{m}}\right)}\left(\frac{1-\beta_{m}^{M}}{\beta_{m}^{M}}\right)^{-1}\left[\frac{\partial\left(\left(\frac{I M_{m}}{D_{m}}\right)^{\rho_{m}^{M}+1}\right)}{\partial\left(\frac{I M_{m}}{D_{m}}\right)}\right]^{-1}$
250. $\frac{\partial \ln \left(\frac{I M_{m}}{D_{m}}\right)}{\partial \ln \left(\frac{\partial Q_{m} / \partial D_{m}}{\partial Q_{m} / \partial I M_{m}}\right)}=\left(\frac{I M_{m}}{D_{m}}\right)^{\rho_{m}^{M}}\left[\left(\rho_{m}^{M}+1\right)\left(\frac{I M_{m}}{D_{m}}\right)^{\rho_{m}^{M}}\right]^{-1}=\frac{1}{\rho_{m}^{M}+1}$

Hence $\sigma_{m}^{M}=\frac{1}{\rho_{m}^{M}+1}$ is indeed the elasticity of substitution.

C8. Exact price indexes PIXINV and PIXGVT

The GFCF demand for commodities is given by equation 55, where total GFCF expenditure is distributed among commodities in fixed shares:
55. $\quad P C_{i} I N V_{i}=\gamma_{i}^{I N V} G F C F$
251. $I N V_{i}=\frac{\gamma_{i}^{I N V} G F C F}{P C_{i}}$

Implicitly, the production function of new capital is a Cobb-Douglas function of the form:
252. $\Delta K=A^{K} \prod_{i} I N V_{i}^{\gamma_{i}^{I N V}}$

The indirect production function is obtained by substituting equation 251 into equation 252:
253. $\Delta K=A^{K} \prod_{i}\left(\gamma_{i}^{I N V} \frac{G F C F}{P C_{i}}\right)^{\gamma_{i}^{I N V}}=A^{K} G F C F^{\sum_{i} \gamma_{i}^{I N V}} \prod_{i}\left(\frac{\gamma_{i}^{I N V}}{P C_{i}}\right)^{\gamma_{i}^{I N V}}$
254. $\Delta K=A^{K} G F C F \prod_{i}\left(\frac{\gamma_{i}^{I N V}}{P C_{i}}\right)^{\gamma_{i}^{I N V}}$

Let
$G F C F^{0}$: gross fixed capital formation expenditures in the SAM
$P C_{i}^{0}$: initial commodity prices
$G F C F^{*}$: expenditure necessary to produce the same quantity of new capital at current prices $P C_{i}$
GFCF* is calculated by solving
255. $\quad A^{K} G F C F^{*} \prod_{i}\left(\frac{\gamma_{i}^{I N V}}{P C_{i}}\right)^{\gamma_{i}^{I N V}}=A^{K} G F C F^{0} \prod_{i}\left(\frac{\gamma_{i}^{I N V}}{P C_{i}^{0}}\right)^{\gamma_{i}^{I N V}}$

An exact ${ }^{17}$ GFCF price index is a formula which will yield the ratio $G F C F^{*} / G F C F^{0}$ as a function of the price ratios for any initial level of expenditures $G F C F^{0}$. The exact price index is therefore
256. $\frac{G F C F^{*}}{G F C F^{0}}=\frac{A^{K} \prod_{i}\left(\frac{\gamma_{i}^{I N V}}{P C_{i}^{0}}\right)^{\gamma_{i}^{I N V}}}{A^{K} \prod_{i}\left(\frac{\gamma_{i}^{I N V}}{P C_{i}}\right)^{\gamma_{i}^{I N V}}}=\prod_{i}\left(\frac{P C_{i}}{P C_{i}^{0}}\right)^{\gamma_{i}^{I N V}}$
which is precisely PIXINV as given in equation 87 .
87. PIXINV $=\prod_{i}\left(\frac{P C_{i}}{P C_{i}^{0}}\right)^{\gamma_{i}^{I N V}}$

It can be shown in the same manner that PIXGVT in equation 88 is also an exact price index of government current expenditures on goods and services.

[^9]
APPENDIX D: NOTE ON THE RENTAL RATE AND THE RATE OF RETURN ON CAPITAL

Throughout this document, we have been careful to avoid inappropriate uses of the expression « rate of return on capital». This short appendix aims at clarifying the meaning of «rate of return on capital », as distinct from the rental rate of capital.

The rental rate of capital in PEP-1-1 is

$$
R_{k, j}: \quad \text { Rental rate of type } k \text { capital in industry } j
$$

This is the price received by owners for allowing the use of one unit of type k capital in industry j for one period. It enters the calculation of the capital income of households, businesses and government (equations 12, 18, and 23):
12. $Y H K_{h}=\sum_{k} \lambda_{h, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
18. $\quad Y F K_{f}=\sum_{k} \lambda_{f, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
23. $Y G K=\sum_{k} \lambda_{g v t, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$

In the case where capital is perfectly mobile, owners will allocate their capital to the most advantageous uses, so that the rental rate of each type of capital will be uniform across industries, equal to
$R K_{k}: \quad$ Rental rate of type k capital (if capital is mobile)
as described by equation 76:
76. $\quad R_{k, j}=R K_{k}$, if capital is mobile

The rental rate of capital $R_{k, j}$ is related to
$R T I_{k, j}$: Rental rate paid by industry j for type k capital, including capital taxes by equation 75 :

$$
\text { 75. } \quad R T I_{k, j}=R_{k, j}\left(1+t t i k_{k, j}\right)
$$

In turn, $R T I_{k, j}$ appears in the calculation of

$$
R C_{j}: \quad \text { Rental rate of industry } j \text { composite capital }
$$

in equation 74 :
74. $R C_{j}=\frac{\sum_{k} R T I_{k, j} K D_{k, j}}{K D C_{j}}$

Finally, $R C_{j}$ is the rental rate of capital that enters equation 71 , which determines the price of value added:
71. $P V A_{j}=\frac{W C_{j} L D C_{j}+R C_{j} K D C_{j}}{V A_{j}}$

Now, the rate of return on capital is a different concept. A rate of return is the ratio of income received on an asset to the value of that asset. In order to compute the rate of return on capital, our model would need a price of capital, which does not appear in the static model PEP-1-1. So let
$P K_{k}$: \quad Price of private investment in type k capital
$P K_{k}$ is the replacement cost of capital. The rate of return on type k capital used in industry j is

$$
R h o_{k, j}=\frac{R_{k, j} K D_{k, j}}{P K_{k} K D_{k, j}}=\frac{R_{k, j}}{P K_{k}}
$$

Therefore, one must be careful to use the expression « return rate on capital » only when appropriate, that is, when the variable refered to is the ratio of capital income over the value of the asset.

APPENDIX E: WALRAS' LAW, REDUNDANT EQUATIONS, AND SLACK VARIABLES (LEON)

E1. Walras' Law and the LEON slack variable

Walras' Law states that, in a closed n-commodity system of supply and demand equilibrium, there is one redundant equation, due to the income-expenditure accounting identity. A CGE is such a closed system: basically, income generated in production is used to pay for the purchase of commodities. Therefore, in a CGE, it is necessary to eliminate one of the commodity supply-demand equilibrium conditions, to avoid creating a model with more equations than free variables (when counting equations and variables, GAMS does not distinguish redundant from non-redundant equations). The choice of the discarded equation is arbitrary. It is customary - at least in the PEP tradition - to introduce a slack variable, called LEON (in honor of Leon Walras), whose value is the imbalance in the discarded equation. This adds one equation and one variable, and so maintains the equality between number of variables and equations. Naturally, in a well-specified model, the equilibrium value of the slack variable is zero. Otherwise, a non-zero LEON signals an error in the model.

In PEP-1-1, supply-demand equilibrium conditions are represented by equation 89, of which there are as many as there are commodities, minus 1. LEON is the excess supply on the last commodity market, whose value is computed in the equation called WALRAS in the GAMS code.

E2. Demand for labor by category and the price of composite labor

There are, however, other redundant equations that are discarded from the model. For instance, equation 72 is inserted in the GAMS code as a mere comment, with the statement that « Given the way equation 6 is written, equation 72 is redundant ». Now, in Appendix C2, the following has been demonstrated:

- equations 5 and 134 (the latter derived from the first-order cost-minimization conditions) together imply equation 139 ;
- equations 139 and 72 together imply equation 6 .

We shall now see that

- equation 139 implies 134;
- equation 6 implies 134;
- equation 139 implies 5 ;
- equations 5 and 6 together imply 72.

To summarize, equations 5 and 6 together make equation 72 redundant.

E2.1 EQUATION 140 IMPLIES EQUATIONS 135 AND 5

To begin, we demonstrate that equation 139 implies equations 134 and 5. It is straightforward to take the ratio of equation 139 for $L D_{l i, j}$ over the same equation for $L D_{l j, j}$:
257. $\left.\frac{L D_{l i, j}}{L D_{l j, j}}=\frac{\frac{L D C_{j}}{B_{j}^{L D}}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]^{\frac{1}{\rho_{j}^{L D}}}\left(\frac{W T I_{l i, j}}{\beta_{l i, j}^{L D}}\right)^{-\frac{1}{\rho_{j}^{L D}+1}}}{\frac{L D C_{j}}{B_{j}^{L D}}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\right.}\left(W T I_{l, j}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]^{\frac{1}{\rho_{j}^{L D}}}\left(\frac{W T I_{l j, j}}{\beta_{l j, j}^{L D}}\right)^{-\frac{1}{\rho_{j}^{L D}+1}}$
258. $\frac{L D_{l i, j}}{L D_{l j, j}}=\frac{\left(\frac{W T I_{l i, j}}{\beta_{l i, j}^{L D}}\right)^{-\frac{1}{\rho_{j}^{L D}+1}}}{-\frac{1}{\rho_{j}^{L D}+1}}$

$$
\left(\frac{W T I_{l j, j}}{\beta_{l j, j}^{L D}}\right)
$$

which, given $\sigma_{j}^{L D}=\frac{1}{\rho_{j}^{L D}+1}$, is equivalent to equation 134 :
134. $L D_{l i, j}=\left(\frac{\beta_{l i, j}^{L D} W T I_{l j, j}}{\beta_{l j, j}^{L D} W T I_{l i, j}}\right)^{\sigma_{j}^{L D}} L D_{l j, j}$

It is equally straightforward to verify in the same manner that equation 6 also implies equation 134.

Next, the development in Appendix C2 from equations 135 to 139 can be reversed, so that equations 135
and 139 are equivalent (each one implies the other). Finally, substituting for $\left(\frac{\beta_{l, j}^{L D} W T I_{l j, j}}{\beta_{l j, j}^{L D} W T I_{l, j}}\right)^{\frac{1}{\rho_{j}^{L D}+1}} L D_{l j, j}$
from equation 134 into equation 135, equation 5 follows.

E2.2 EQUATION 72 REDUNDANT GIVEN EQUATIONS 5 AND 6

Second, we prove that, given equations 5 and 6 , equation 72 is redundant.

E2.2.1 Equations 5 and 6 together imply equation 144

The first step in the demonstration is to show that 5 and 6 together imply 144 . Substitute 6 into 5 , and there results:
259. $L D C_{j}=B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D}\left\{\left[\frac{\beta_{l, j}^{L D} W C_{j}}{W T I_{l, j}}\right]^{\sigma_{j}^{L D}}\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}-1} L D C_{j}\right\}^{-\rho_{j}^{L D}}\right]^{-\frac{\rho_{j}^{L D}}{}}$

Given $\sigma_{j}^{L D}=\frac{1}{\rho_{j}^{L D}+1}$,
260. $L D C_{j}=B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D}\left\{\left[\frac{\beta_{l, j}^{L D} W C_{j}}{W T I_{l, j}}\right]^{\frac{1}{\rho_{j}^{L D}+1}}\left(B_{j}^{L D}\right)^{-\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}} L D C_{j}\right\}^{-\rho_{j}^{L D}}\right]$
261. $L D C_{j}=W C_{j}^{\frac{1}{\rho_{j}^{L D}+1}} L D C_{j} B_{j}^{L D}\left(B_{j}^{L D}\right)^{-\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}$

$$
\lceil\quad L D]^{-\frac{1}{\rho_{j}^{L D}}}
$$

$$
-\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}\left[\sum_{l} \beta_{l, j}^{L D}\left\{\left[\frac{\beta_{l, j}^{L D}}{W T I_{l, j}}\right]^{\frac{1}{\rho_{j}^{L D}+1}}\right]^{-\rho_{j}^{L D}}\right]
$$

262. $1=W C_{j}^{\frac{1}{\rho_{j}^{L D}+1}}\left(B_{j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}\left[\sum_{l} \beta_{l, j}^{L D}\left\{\left[\frac{\beta_{l, j}^{L D}}{W T I_{l, j}}\right]^{\frac{-\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right\}\right]$
263. $W C_{j}^{\frac{1}{\rho_{j}^{L D}+1}}\left(B_{j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}}=\left[\sum_{l} \beta_{l, j}^{L D}\left\{\left[\frac{\beta_{l, j}^{L D}}{W T I_{l, j}}\right]^{\frac{-\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right\}\right]^{\frac{1}{\rho_{j}^{L D}}}$

264. $\quad W C_{j} B_{j}^{L D}=\left[\sum_{l} \beta_{l, j}^{L D}\left\{\left[\frac{\beta_{l, j}^{L D}}{W T I_{l, j}}\right]^{\frac{-\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right\}\right]$

And equation 144 follows:
$\left[\quad \frac{\rho_{j}^{L D}+1}{\rho_{j}^{L D}}\right.$
144. $W C_{j}=\frac{1}{B_{j}^{L D}}\left[\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}} W T I_{l, j}^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}\right]$

E2.2.2 Equations 6 and 144 together imply equation 72

Next, from equation 6, it follows that
265. $\sum_{l} W T I_{l, j} L D_{l, j}=\sum_{l} W T I_{l, j}\left[\frac{\beta_{l, j}^{L D} W C_{j}}{W T I_{l, j}}\right]^{\sigma_{j}^{L D}}\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}-1} L D C_{j}$
266. $\sum_{l} W T I_{l, j} L D_{l, j}=\sum_{l} W T I_{l, j}^{1-\sigma_{j}^{L D}}\left[\beta_{l, j}^{L D} W C_{j}\right]^{\sigma_{j}^{L D}}\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}-1} L D C_{j}$
267. $\sum_{l} W T I_{l, j} L D_{l, j}=\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}-1} L D C_{j} W C_{j}^{\sigma_{j}^{L D}} \sum_{l}\left(\beta_{l, j}^{L D}\right)^{\sigma_{j}^{L D}} W T I_{l, j}^{1-\sigma_{j}^{L D}}$
268. $\left(B_{j}^{L D}\right)^{1-\sigma_{j}^{L D}} L D C_{j}^{-1} W C_{j}^{-\sigma_{j}^{L D}} \sum_{l} W T I_{l, j} L D_{l, j}=\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\sigma_{j}^{L D}} W T I_{l, j}^{1-\sigma_{j}^{L D}}$

Since $\sigma_{j}^{L D}=\frac{1}{\rho_{j}^{L D}+1}$, we have
269. $\left(B_{j}^{L D}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}} L D C_{j}^{-1} W C_{j}^{-\frac{1}{\rho_{j}^{L D}+1}} \sum_{l} W T I_{l, j} L D_{l, j}=\sum_{l}\left(\beta_{l, j}^{L D}\right)^{\frac{1}{\rho_{j}^{L D}+1}} W T I_{l, j}^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}}$

Substitute into equation 144, and find
270. $W C_{j}=\frac{1}{B_{j}^{L D}}\left[\left(B_{j}^{L D}\right)^{\frac{\rho_{j}^{L D}}{\rho_{j}^{L D}+1}} L D C_{j}^{-1} W C_{j}^{-\frac{1}{\rho_{j}^{L D}+1}} \sum_{l} W T I_{l, j} L D_{l, j}\right]$
271. $W C_{j}=W C_{j}^{-\frac{1}{\rho_{j}^{L D}}} L D C_{j}^{-\frac{\rho_{j}^{L D}+1}{\rho_{j}^{L D}}}\left[\sum_{l} W T I_{l, j} L D_{l, j}\right]^{\frac{\rho_{j}^{L D}+1}{\rho_{j}^{L D}}}$
272. $W C_{j}^{\frac{\rho_{j}^{L D}+1}{\rho_{j}^{L D}}} L D C_{j}^{\frac{\rho_{j}^{L D}+1}{\rho_{j}^{L D}}}=\left[\sum_{l} W T I_{l, j} L D_{l, j}\right]^{\frac{\rho_{j}^{L D}+1}{\rho_{j}^{L D}}}$
which is equivalent to equation 72 .

E2.3 SUMMARY OF THE LOGICAL STRUCTURE

The logical developments just presented are summarized in Figures E1 and E2 ${ }^{18}$. Figure E1 illustrates the following relationships:

- equations 5 and 134 together imply 139;
- equation 139 implies 134;
- equation 139 is equivalent to 135 ;
- equations 139 and 72 together imply 6 ;
- equation 6 implies 134 ;
- equations 134 and 135 together imply 5 ;
- equations 5 and 6 together imply 144;
- equations 6 and 144 together imply 72.

Figure E2 is more compact, because intermediate equations 135 and 144 are kept implicit. Figure E2 illustrates the following relationships:

- equations 5 and 134 together imply 139;
- equation 139 implies 134;
- equation 139 implies 5;
- equations 139 and 72 together imply 6 ;
- equation 6 implies 134;
- equations 5 and 6 together imply 72.

[^10]Figure E1: Logical structure of labor demand by category

Figure E2: Logical structure of labor demand by category (compact form)

To summarize, given the logical structure described in Figures E1 and E2, the set of equations relating to labor demand by category and the price of composite labor may be formulated in three combinations:

- equations 5, 134, and 72;
- equations 139 and 72;
- equations 5 and 6 .

The latter configuration is the one chosen in PEP-1-1, which implies that equation 72 is redundant. The number of equations is the same in all configurations. Let N_{J} be the number of industries, and N_{L}, the number of labor categories. Then

- equations 5 and 72 are families of N_{J} equations each;
- equations 139 and 6 are families of $N_{J} \times N_{L}$ equations each;
- but equation 134 is a family of $N_{J} \times\left(N_{L}-1\right)$ equations.

In the case of equation 134 , the equation with $L D_{l j, j}$ on the left hand side is a tautology:
273. $L D_{l j, j} \equiv\left(\frac{\beta_{l j, j}^{L D} W T I_{l j, j}}{\beta_{l j, j}^{L D} W T I_{l j, j}}\right)^{\sigma_{j}^{L D}} L D_{l j, j} \equiv L D_{l j, j}$

So there are only $N_{J} \times\left(N_{L}-1\right)$ independent equations 135 .

The same configuration of equations that represents labor demand by category was also chosen to represent the demand for capital by category and the allocation of aggregate output to product supplies. The equations involved are, in the first case, equations 7,8 , and 74 , and in the second case, equations 59 , 60, and 77. Just as equation 72 is redundant given 5 and 6, so are 74 given 7 and 8, and 77 given 59 and 60. The underlying logical structure is similar to the one underlying the redundancy of equation 72.

On the other hand, when there are only two products or commodities involved, the configuration chosen in PEP-1-1 is analogous to the combination of equations 5, 72, and 135. The cases in point are: value added production (equations 3, 4, and 71), the allocation of production between domestic sales and exports (equations 61, 63, and 78), and the Armington demand for local products and imports (equations 65, 67, and 83). Of course, in these three cases, it would have been possible to apply the same configuration as for labor demand by category.

E3. Other slack variables

Just as the $L E O N$ variable was introduced as the imbalance of the equation chosen as redundant according to Walras’s Law, other slack variables could be introduced for each redundant equation that was
discarded. In complex models, this device may be useful to verify that redundant equations are satisfied. It is illustrated in the variant PEP_Base_1-1.v1-1_slack.gms of the PEP-1-1 GAMS code.

APPENDIX F: MODEL PARAMETRIZATION

F1. What is model parametrization?

To implement a CGE model, values must be assigned to its parameters and exogenous variables. This process comprises two aspects: calibration of the parameters that can be determined from the information contained in the underlying social accounting matrix (SAM), and assignment of values to the so-called free parameters that remain.

Calibration can be considered a form of estimation. Unlike econometric estimation, however, calibration is not based on statistical inference procedures. Rather, it consists in determining parameter values on the basis of a detailed «snapshot» of the economy. Calibration goes back at least as far as the «structural analysis» approach of Leontief $(1941,1951,1953)$ and Stone (1951, 1953, who coined the expression «social accounting matrix»). Indeed, Leontief input-output coefficients are computed from an inputoutput table as the ratios of input purchases over the value of production. And, given the extremely restrictive form of the Leontief fixed-proportions production function, all the parameters of the inputoutput model can be determined in that manner.

CGE models can be viewed as generalizations of input-output models. Of course, the latter are usually confined to the production system as represented by an input-output table, whereas CGE models are based on a SAM encompassing the whole of the economy. But the major difference lies in the fact that CGE models are, as their name indicates, models of economy-wide supply-and-demand equilibria regulated by the price system. In order for economic agents to be responsive to price changes, at least some of the functional forms which represent their behavior in CGE models have to be more flexible than simple fixed-proportions Leontief functions. However, more flexible functional forms have more parameters. Consequently, the information contained in the SAM is not sufficient to uniquely determine the values of all parameters.

The parameters that cannot be «calibrated» (that is, determined from the SAM) are called « free », and they must be assigned values by other methods. These include ad hoc econometric estimation, or, more frequently, a search of the empirical literature to find plausible values for the free parameters. In the demonstration version of PEP-1-1, the free parameters are assigned arbitrary values which, in the experience of the authors, are reasonable ballpark figures.

The parametrization strategy involves, first, determining which parameters are to be calibrated, and which are to be determined otherwise (in some cases, modelers have a choice of which of a given pair of
parameters is to be calibrated). Secondly, it involves specifying adequate formulae to compute calibrated parameters from SAM values, together with the order in which the formulae are to be applied in the calibration procedure, which is sometimes critical.

The following pages describe the calibration procedure in the demonstration version of PEP-1-1.

F2. Assignments from SAM data

Figure F1 below reproduces the file SAM-rec.prn, which contains the SAM data that is read into the GAMS program. The gray parts of the SAM are supposed to be empty. Superimposed cartoon balloons describe the content of the non-empty cells of the SAM.

F2.1 NOTATION

In what follows, values retrieved from the SAM are denoted $S A M\}$; inside the curly parentheses is a mathematical expression which corresponds to the description of a cell or group of cells in the SAM found in Figure F1. The initial values, or base values, of variables are identified by a superscript O. In the GAMS code, this is done by adding the letter « O » to the variable name. In the GAMS language, these initial values are parameters.

In order to economize on the number of symbols, some parameters or variables are given temporary values. Such temporary values are topped by a horizontal stroke. Some of these temporary values are revised more than once, so that some of the equations below are of the form $\bar{x}=f(\bar{x})$ (for example, F094 and F095); this way of writing assignments is often used in programming, but in mathematics, the two \bar{X} should be represented by different symbols, because the left-hand side \bar{X} is different from the right-hand side \bar{X}.

F2.2 ASSIGNMENT OF TEMPORARY BASE VALUES TO VOLUME VARIABLES

Once the SAM has been read into the GAMS program, the following base values of volume variables are assigned temporary values. These assignments are provisional, because SAM data are not volumes (quantities); they are nominal values.

F001. $\overline{C_{i, h}^{O}}=S A M\left\{P C_{i} C_{i, h}\right\}$
F002. $\overline{C G_{i}^{O}}=S A M\left\{P C_{i} C G_{i}\right\}$
F003. $\overline{D S_{j, i}^{O}}=S A M\left\{P L_{i} D S_{j, i}\right\}$
F004. $\overline{D D_{i}^{O}}=\sum_{j} \overline{D S_{j, i}^{O}}$

F005. $\overline{D I_{i, j}^{O}}=S A M\left\{P C_{i} D I_{i, j}\right\}$
F006. $\overline{E X_{j, x}^{O}}=S A M\left\{P E_{x} E X_{j, x}\right\}$
F007. $\overline{E X D_{x}^{O}}=S A M\left\{P E_{x}^{F O B} E X D_{x}\right\}$
F008. $\overline{I N V_{i}^{O}}=S A M\left\{P C_{i} I N V_{i}\right\}$
F009. $\overline{\operatorname{VSTK}_{i}^{O}}=S A M\left\{P C_{i} V S T K_{i}\right\}$
F010. $\overline{I M_{m}^{O}}=S A M\left\{e P W M_{m} I M_{m}\right\}$
F011. $\overline{K D_{k, j}^{O}}=S A M\left\{R_{k, j} K D_{k, j}\right\}$
F012. $\overline{L D_{l, j}^{O}}=S A M\left\{W_{l} L D_{l, j}\right\}$

F2.3 ASSIGNMENT OF BASE VALUES TO NOMINAL VARIABLES

Next, base values are assigned to the following nominal variables (variables defined in terms of value).
F013. $S F_{f}^{O}=S A M\left\{S F_{f}\right\}$
F014. $S G^{O}=S A M\{S G\}$
F015. $S H_{h}^{O}=S A M\left\{S H_{h}\right\}$
F016. $S R O W^{O}=S A M\{S R O W\}$
F017. $T D F_{f}^{O}=S A M\left\{T D F_{f}\right\}$
F018. $T D H_{h}^{O}=S A M\left\{T D H_{h}\right\}$
F019. $T I C_{i}^{O}=S A M\left\{T I C_{i}\right\}$
F020. $T I K_{k, j}^{O}=S A M\left\{T I K_{k, j}\right\}$
F021. $\operatorname{TIM}_{m}^{O}=S A M\left\{T I M_{m}\right\}$
F022. $T I P_{j}^{O}=S A M\left\{T I P_{j}\right\}$
F023. $T I X_{X}^{O}=S A M\left\{T I X_{x}\right\}$
F024. $T I W_{l, j}^{O}=S A M\left\{T I W_{l, j}\right\}$
F025. $T R_{a g, a g j}^{O}=\operatorname{SAM}\left\{T R_{a g, a g j}\right\}$
It should be noted that $T R_{a g d, R O W}$ and $T R_{a g n g, G V T}$ are indexed transfers, and their base value is revised below (F4.4) given the base value of the consumer price index. However, in the present calibration procedure of PEP-1-1, the base value of the consumer price index is 1 and the revised value of the indexed transfers is equal to their temporary value.

F2.4 ASSIGNMENT OF TEMPORARY VALUES TO PARAMETERS

Finally, some parameters are assigned temporary values from SAM data.
F026. $\overline{\lambda_{a g, k}^{R K}}=\operatorname{SAM}\left\{\lambda_{a g, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)\right\}$
F027. $\overline{\lambda_{h, l}^{W L}}=S A M\left\{\lambda_{h, l}^{W L}\left(W_{l} \sum_{j} L D_{l, j}\right)\right\}$
F028. $\overline{\operatorname{tmrg}_{i, m}}=S A M\left\{P C_{i} \operatorname{tmrg}_{i, m}\left(D D_{m}+I M_{m}\right)\right\}$
F029. $\overline{\mathrm{tmrg}_{i, n m}}=S A M\left\{P C_{i} \operatorname{tmrg}_{i, n m} D D_{n m}\right\}$
F030. $\overline{\operatorname{tmrg}_{i, x}^{X}}=S A M\left\{P C_{i} \operatorname{tmrg}_{i, x}^{X} E X D_{x}\right\}$

F3. Free parameters

In the demonstration version of PEP-1-1, free parameters are assigned the following values.

F3.1 PRICE ELASTICITY OF INDEXED VALUES

The price elasticity of indexed values should be set equal to one when verifying model homogeneity.
F031. $\eta=1$

F3.2 CES AND CET ELASTICITIES

F032. $\sigma_{j}^{K D}=0.8$
F033. $\sigma_{j}^{L D}=0.8$
F034. $\sigma_{m}^{M}=2$
F035. $\sigma_{j}^{V A}=1.5$
F036. $\sigma_{j, x}^{X}=2$
F037. $\sigma_{j}^{X T}=2$

F3.3 ELASTICITY OF INTERNATIONAL DEMAND FOR EXPORTED COMMODITY X

F038. $\sigma_{x}^{X D}=2$

F3.4 LES PARAMETERS

F039. Frisch $_{h}=-1.5$
F040. $\overline{\sigma_{A G R, h}^{Y}}=0.7$
F041. $\overline{\sigma_{F O O D, h}^{Y}}=1.1$
F042. $\overline{\sigma_{O T H I N D, h}^{Y}}=1.1$
F043. $\overline{\sigma_{S E R, h}^{Y}}=1.05$
F044. $\overline{\sigma_{A D M, h}^{Y}}=1.05$

F3.4 INTERCEPTS OF TRANSFERS, DIRECT TAXES AND SAVINGS

In household savings and transfers-to-government functions, and in income-tax functions, one can choose to assign a value to the intercept and calibrate the slope accordingly, or the other way around. This type of modelling can be useful to take into account known marginal savings or taxation rates or to deal with negative average saving rates in cases where savings are negative for some household groups. When no specific information is available, one can simply set the intercepts to zero and calibrate an average rate: this is what we do here.

F045. $\operatorname{sh}{ }_{h}=0$
F046. $\operatorname{trO}_{h}=0$
F047. ${ }^{t t d f} 0_{f}=0$
F048. $\operatorname{ttdh}_{h}=0$
It should be noted that these intercepts are indexed, and their value is revised below (F4.4) given the base value of the consumer price index. However, in the present calibration procedure of PEP-1-1, the base value of the consumer price index is 1 and the revised value of the indexed intercepts is equal to their temporary value.

F3.5 EXOGENOUS PRICES

The base value of some prices is arbitrary, insofar as it is constrained only by the price \times quantity product. In such cases, the arbitrary value assigned to the price implicitely determines the measurement unit of the quantity. The most convenient arbitrary price is obviously 1.

F049. $P L_{i}^{O}=1$
F050. $P E_{x}^{O}=1$

F051. $e^{O}=1$
F052. $P W M_{m}^{O}=1$
F053. $W_{l}^{O}=1$
F054. $R_{k}^{O}=1$
F055. $R_{k, j}^{O}=R_{k}^{O}$

F4. Calibration

F4.1 NOMINAL VARIABLES

The base values of nominal variables determined in equations 10-15 are computed in the following sequence:

F056. $Y H K_{h}^{O}=\sum_{k} \overline{\lambda_{h, k}^{R K}}$
F057. $Y H L_{h}^{O}=\sum_{l} \overline{\lambda_{h, l}^{W L}}$
F058. $Y H T R_{h}^{O}=\sum_{a g} T R_{h, a g}^{O}$
F059. $Y H_{h}^{O}=Y H L_{h}^{O}+Y H K_{h}^{O}+Y H T R_{h}^{O}$
F060. $Y D H_{h}^{O}=Y H_{h}^{O}-T D H_{h}^{O}-T R_{g v t, h}^{O}$
F061. $C T H_{h}^{O}=Y D H_{h}^{O}-S H_{h}^{O}-\sum_{\text {agng }} T R_{\text {agng,h }}^{O}$
The base values of nominal variables determined in equations 17-20 are computed in the following sequence:

F062. $Y F K_{f}^{O}=\sum_{k} \overline{\lambda_{f, k}^{R K}}$
F063. $Y^{\prime} T R_{f}^{O}=\sum_{a g} T R_{f, a g}^{O}$
F064. $Y F_{f}^{O}=Y F K_{f}^{O}+Y F T R_{f}^{O}$
F065. $Y D F_{f}^{O}=Y F_{f}^{O}-T D F_{f}^{O}$

The base values of nominal variables determined in equations 23-34 are computed in the following sequence:

F066. $Y G K^{O}=\sum_{k} \overline{\lambda_{g v t, k}^{R K}}$
F067. $T D H T^{O}=\sum_{h} T D H_{h}^{O}$
F068. $T D F T^{O}=\sum_{f} T D F_{f}^{O}$
F069. TICT $^{O}=\sum_{i} T I C_{i}^{O}$
F070. TIMT $^{O}=\sum_{m} \operatorname{TIM}_{m}^{O}$
F071. $\operatorname{TIXT}^{O}=\sum_{x} \operatorname{TIX}_{x}^{O}$
F072. $\operatorname{TIWT}^{O}=\sum_{l, j} T I W_{l, j}^{O}$
F073. $\operatorname{TIKT}^{O}=\sum_{k, j} T I K_{k, j}^{O}$
F074. TIPT $^{O}=\sum_{j} T I P_{j}^{O}$
F075. TPRODN ${ }^{O}=T I W T^{O}+$ TIKT $^{O}+$ TIPT O
F076. TPRCTS $^{O}=\operatorname{TICT}^{O}+$ TIMT $^{O}+$ TIXT O
F077. YGTR $^{O}=\sum_{\text {agng }} T R_{g v t, a g n g}^{O}$
F078. $Y G^{O}=Y G K^{O}+T D H T^{O}+T D F T^{O}+T P R O D N^{O}+$ TPRCTS $^{O}+Y G T R^{O}$
From equations 45 and 47:
F079. $Y R O W^{O}=\sum_{m} I M_{m}^{O}+\sum_{k} \overline{\lambda_{\text {row }, k}^{R K}}+\sum_{\text {agd }} T R_{\text {row,agd }}^{O}$
F080. $C A B^{O}=-S R O W^{O}$

Equation 92 yields
F081. $I T^{O}=\sum_{h} S H_{h}^{O}+\sum_{f} S F_{f}^{O}+S G^{O}+S R O W^{O}$

F4.2 REVISED PARAMETER ASSIGNMENTS

Revised values are assigned to some parameters which had been assigned temporary values.
F082. $\lambda_{a g, k}^{R K}=\frac{\overline{\lambda_{a g, k}^{R K}}}{\sum_{j} K D_{k, j}^{O}}$
F083. $\lambda_{h, l}^{W L}=\frac{\overline{\lambda_{h, l}^{W L}}}{\sum_{j} L D_{l, j}^{O}}$

F4.3 PARAMETERS

F4.3.1 Miscelaneous

F084. $\lambda_{\text {agng, } h}^{T R}=\frac{T R_{\text {agng,h }}^{O}}{Y D H_{h}^{O}}$
F085. $\lambda_{a g, f}^{T R}=\frac{T R_{a g, f}^{O}}{Y D F_{f}^{O}}$
F086. $\operatorname{sh} 1_{h}=\frac{S H_{h}^{O}-\overline{s h 0_{h}}}{Y D H_{h}^{O}}$
F087. $\operatorname{tr} 1_{h}=\frac{T R_{G V T, h}^{O}-\overline{\operatorname{tr} 0_{h}}}{Y H_{h}^{O}}$

F4.3.2 Investment and government expenditure shares

F088. $\gamma_{i}^{G V T}=\frac{\overline{C G_{i}^{O}}}{\sum_{i j}^{C G_{i j}^{O}}}$
F089. $\gamma_{i}^{I N V}=\frac{\overline{I N V_{i}^{O}}}{\sum_{i j}^{I N V_{i j}^{O}}}$

F4.3.3 Margin rates, tax rates, prices and volumes

F090. $t t d f 1_{f}=\frac{T D F_{f}^{O}-\overline{t t d f 0_{f}}}{Y F K_{f}^{O}}$
F091. $\operatorname{ttdh}_{h}=\frac{T D H_{h}^{O}-\overline{t t d h 0_{h}}}{Y H_{h}^{O}}$
F092. $P C_{m}^{O}=\frac{\overline{D D_{m}^{O}}+\overline{I M_{m}^{O}}+\sum_{i} \overline{t m r g_{i, m}}+T I C_{m}^{O}+T I M_{m}^{O}}{\overline{D D_{m}^{O}}+\overline{I M_{m}^{O}}}$
F093. $P C_{n m}^{O}=\frac{\overline{D D_{n m}^{O}}+\sum_{i} \overline{\operatorname{tmrg}_{i, n m}}+T I C_{n m}^{O}}{\overline{D D_{m}^{O}}}$
F094. $\overline{\operatorname{tmrg}_{i, i j}}=\frac{\overline{\operatorname{tmrg}_{i, i j}}}{P C_{i}^{O}}$
F095. $\overline{\operatorname{tmrg}_{i, i j}^{X}}=\frac{\overline{\operatorname{tmrg}_{i, i j}^{X}}}{P C_{i}^{O}}$
F096. $D D_{i}^{O}=\frac{\overline{D D_{i}^{O}}}{P L_{i}^{O}}$
F097. $I M_{m}^{O}=\frac{\overline{I M_{m}^{O}}}{e^{O} P W M_{m}^{O}}$
F098. $\operatorname{tmrg}_{i, n m}=\frac{\overline{t m r g_{i, n m}}}{D D_{n m}^{O}}$
F099. $\mathrm{tmrg}_{i, m}=\frac{\overline{\mathrm{tmrg}_{i, m}}}{D D_{n m}^{O}+I M_{m}^{O}}$
F100. ${ }^{t t i c_{n m}^{O}}=\frac{T I C_{n m}^{O}}{\left(P L_{n m}^{O}+\sum_{i} P C_{i}^{O} t m r g_{i, n m}\right) D D_{n m}^{O}}$
F101. ${ }^{\text {ttic }}{ }_{m}^{O}=\frac{T I C_{m}^{O}}{\left(P L_{m}^{O}+\sum_{i} P C_{i}^{O} t m r g_{i, m}\right) D D_{m}^{O}+\left(e^{O} P W M_{m}^{O}+\sum_{i} P C_{i}^{O} t m r g_{i, m}\right) I M_{m}^{O}}$

F102. $P D_{i}^{O}=\left(1+t t i c_{i}\right)\left(P L_{i}^{O}+\sum_{i j} P C_{i j}^{O} \operatorname{tmrg}_{i j, i}\right)$
F103. ttim $_{m}=\frac{T I M_{m}^{O}}{e^{O} P W M_{m}^{O} I M_{m}^{O}}$

From equation 82:
F104. $P M_{m}^{O}=\left(1+t t i c_{m}\right)\left(\left(1+t t i m_{m}\right) e^{O} P W M_{m}^{O}+\sum_{i} P C_{i}^{O} t m r g_{i, m}\right)$

F105. $E X_{j, x}^{O}=\frac{\overline{E X_{j, x}^{O}}}{P E_{x}^{O}}$
F106. $\operatorname{tmrg}_{x}^{X}=\frac{\overline{\operatorname{tmrg}_{X}^{X}}}{\sum_{j} E X_{j, x}^{O}}$
F107. ttix $_{x}=\frac{T I X_{x}^{O}}{E X D_{x}^{O}-T I X_{x}^{O}}$
From equation 80, compute the FOB price of exports:
F108. $P E_{x}^{F O B_{-} O}=P E_{x}^{O}\left(1+\sum_{i} t m r g_{i, x}^{X}\right)\left(1+t t i x_{x}\right)$

Next, in order that the base value of $E X D_{X}$ be consistent with equation 64 , set
F109. $P W X_{x}^{O}=\frac{P E_{x}^{F O B_{-} O}}{e^{O}}$

And then revise the temporary values of the following:
F110. $E X D_{x}^{O}=\frac{\overline{E X D_{X}^{O}}}{e^{O} P W X_{X}^{O}}$

From equations 62 and 79:
F111. $X S_{j, n x}^{O}=D S_{j, n x}^{O}$
F112. $P_{j, n x}^{O}=P L_{n x}^{O}$

F113. $D S_{i}^{O}=\frac{\overline{D S_{i}^{O}}}{P L_{i}^{O}}$
The following assignment may be seen as a normalization rule which implicitely defines the measurement unit of $X S_{j, x}$, the base value of its price given $P L_{x}^{O}$ and $P E_{x}^{O}$, and the parameter $B_{j, x}^{X}$ given the aggregator function of equation 61.
F114. $X S_{j, x}^{O}=D S_{j, x}^{O}+E X_{j, x}^{O}$
From equation 78:
F115. $P_{j, x}^{O}=\frac{P L_{x}^{O} D S_{j, x}^{O}+P E_{x}^{O} E X_{j, x}^{O}}{X S_{j, x}^{O}}$
The following assignment may be seen as a normalization rule which implicitely defines the measurement unit of $X S T_{j}$, the base value of its price given the $P_{j, x}^{O}$, and the parameter $B_{j, x}^{X T}$ given the aggregator function of equation 59.

F116. $X S T_{j}^{O}=\sum_{i} X S_{j, i}^{O}$
From equation 77:
F117. $P T_{j}^{O}=\frac{\sum_{i} P_{j, i}^{O} X S_{j, i}^{O}}{X S T_{j}^{O}}$
The following assignment may be seen as a normalization rule which implicitely defines the measurement unit of Q_{m}, the base value of its price given $P M_{m}^{O}$ and $P D_{m}^{O}$, and the parameter B_{m}^{M} given the aggregator function of equation 65.

F118. $Q_{m}^{O}=I M_{m}^{O}+D D_{m}^{O}$
From equation 66:
F119. $Q_{n m}^{O}=D D_{n m}^{O}$
From equation 58:
F120.

$$
\operatorname{MRGN}_{i}^{O}=\sum_{i j} \operatorname{tmrg}_{i, i j} D D_{i j}^{O}+\sum_{m} \operatorname{tmrg}_{i, m} I M_{m}^{O}+\sum_{j, x} \operatorname{tmrg}_{i, x}^{X} E X_{j, x}^{O}
$$

Conversion of other temporary base values of volume variables into true volumes:
F121. $C_{i}^{O}=\frac{\overline{C_{i}^{O}}}{P C_{i}^{O}}$
F122. $C G_{i}^{O}=\frac{\overline{C G_{i}^{O}}}{P C_{i}^{O}}$
F123. $D I_{i, j}^{O}=\frac{\overline{D I_{i, j}^{O}}}{P C_{i}^{O}}$
F124. $I N V_{i}^{O}=\frac{\overline{I N V_{i}^{O}}}{P C_{i}^{O}}$
F125. $\operatorname{VSTK}_{i}^{O}=\frac{\overline{\operatorname{VSTK}_{i}^{O}}}{P C_{i}^{O}}$

From equation 54:
F126. $G F C F^{O}=I T^{O}-\sum_{i} P C_{i}^{O} V S T K_{i}^{O}$

The following assignment may be seen as a normalization rule which implicitely defines the measurement unit of $C I_{j}$ (the aggregate intermediate demand of industry j), and, hence, the base value of its price given the $P C_{i}^{O}$, and also, given equation 9 , implicitely scales the $a i j_{i, j}$ input-output coefficients so that their sum is equal to 1.

F127. $C I_{j}^{O}=\sum_{i} D I_{i, j}^{O}$

From equation 57:
F128. $D I T_{i}^{O}=\sum_{j} D I_{i, j}^{O}$

Applying the definition of total government expenditures on goods and services yields
F129. $G^{O}=\sum_{i} P C_{i}^{O} C G_{i}^{O}$

The price of industry j 's aggregate intermediate input, given the $P C_{i}^{O}$, is given by
F130. $P C I_{j}^{O}=\frac{\sum_{i} P C_{i}^{O} D I_{i, j}^{O}}{C I_{j}^{O}}$
F131. ttiw $_{l, j}=\frac{T I W_{l, j}^{O}}{L D_{l, j}^{O}}$

From equations 73 and 75:
F132. $W T I_{l, j}^{O}=W_{l}^{O}\left(1+t t i w_{l, j}\right)$
F133. $t t i k_{k, j}=\frac{T I K_{k, j}^{O}}{K D_{k, j}^{O}}$
F134. $R T I_{k, j}^{O}=R_{k, j}^{O}\left(1+t t i k_{k, j}\right)$

Conversion of temporary base values of labor volume variables into true volumes, given wage rates W_{l}^{O} :
F135. $L D_{l, j}^{O}=\frac{\overline{L D_{l, j}^{O}}}{W_{l}^{O}}$

The following assignment may be seen as a normalization rule which implicitely defines the measurement unit of $L D C_{j}$ (the aggregate labor demand of industry j), and, hence, the base value of aggregate wage rate $W C_{j}$ given the $W T I_{l, j}^{O}$, and the parameter $B_{j}^{L D}$ given the aggregator function of equation 5.

F136. $L D C_{j}^{O}=\sum_{l} L D_{l, j}^{O}$

From equation 72:
F137. $W C_{j}^{O}=\frac{\sum_{l} W T I_{l, j}^{O} L D_{l, j}^{O}}{L D C_{j}^{O}}$

Conversion of temporary base values of capital volume variables into true volumes, given rental rates $R_{k, j}^{O}:$

F138. $K D_{k, j}^{O}=\frac{\overline{K D_{k, j}^{O}}}{R_{k, j}^{O}}$

The following assignment may be seen as a normalization rule which implicitely defines the measurement unit of $K D C_{j}$ (the aggregate capital demand of industry j), and, hence, the base value of aggregate rental rate $R C_{j}$ given the $R T I_{k, j}^{O}$, and the parameter $B_{j}^{K D}$ given the aggregator function of equation 7 .

F139. $K D C_{j}^{O}=\sum_{k} K D_{k, j}^{O}$
From equation 91:
F140. $K S_{k}^{O}=\sum_{j} K D_{k, j}^{O}$

From equation 74, the base value of aggregate rental rate $R C_{j}$ given the $R T I_{k, j}^{O}$ is computed to be consistent with the normalization rule applied above:

F141. $R C_{j}^{O}=\frac{\sum_{k} R T I_{k, j}^{O} K D_{k, j}^{O}}{K D C_{j}^{O}}$
The following assignment may be seen as a normalization rule which implicitely defines the measurement unit of $V A_{j}$ (the aggregate value added of industry j), and, hence, the base value of its price $P V A_{j}$ given $W C_{j}^{O}$ and $R C_{j}^{O}$, and the parameter $B_{j}^{V A}$ given the aggregator function of equation 3 .

F142. $V A_{j}^{O}=L D C_{j}^{O}+K D C_{j}^{O}$

Then, from equation 71 :
F143. $P V A_{j}^{O}=\frac{W C_{j}^{O} L D C_{j}^{O}+R C_{j}^{O} K D C_{j}^{O}}{V A_{j}^{O}}$
F144. ttip $_{j}=\frac{T I P_{j}^{O}}{P V A_{j}^{O} V A_{j}^{O}+\sum_{i} P C_{i}^{O} D I O_{i, j}^{O}}$
F145. $P P_{j}^{O}=\frac{P T_{j}^{O}}{\left(1+t t i p_{j}\right)}$

The base values of price indexes are computed from equations $85-88$. It is easily verified that they are all equal to 1 .

F146. PIXGDP ${ }^{O}=\sqrt{\frac{\sum_{j} P V A_{j}^{O} V A_{j}^{O}}{\sum_{j} P V A_{j}^{O} V A_{j}^{O}} \frac{\sum_{j} P V A_{j}^{O} V A_{j}^{O}}{\sum_{j} P V A_{j}^{O} V A_{j}^{O}}}$
F147. PIXCON ${ }^{O}=\frac{\sum_{i} P C_{i}^{O} \sum_{h} C_{i, h}^{O}}{\sum_{i} P C_{i}^{O} \sum_{h} C_{i, h}^{O}}$
F148. $P_{\text {PIXGVT }}{ }^{O}=\prod_{i}\left(\frac{P C_{i}^{O}}{P C_{i}^{O}}\right)^{\gamma_{i}^{G V T}}$
F149. PIXINV ${ }^{O}=\prod_{i}\left(\frac{P C_{i}^{O}}{P C_{i}^{O}}\right)^{\gamma_{i}^{I N V}}$

F4.4 INDEXED TRANSFERS AND INTERCEPTS

Indexed transfers and intercepts are now revised in accordance with the base value of the consumer price index. Given that the base value of the consumer price index is 1 , the revised values are equal to the original ones: these assignments are executed merely as a matter of caution, so that the calibration remains consistent in the case of changes in the calibration procedure.

F150. $T R_{a g d, R O W}^{O}=\frac{\overline{T R_{a g d, R O W}^{O}}}{\left(\operatorname{PIXCON}^{O}\right)^{\eta}}$
F151. $T R_{\text {agng }, G V T}^{O}=\frac{\overline{T R_{a g n g, G V T}^{O}}}{\left(\operatorname{PIXCON}^{O}\right)^{\eta}}$
F152. $\operatorname{ttdf} 0_{f}=\frac{\overline{t d d f 0_{f}}}{\left(\text { PIXCON }^{O}\right)^{7}}$
F153. $t t d h 0_{h}=\frac{\overline{t t d h} 0_{h}}{\left(\text { PIXCON }^{O}\right)^{7}}$
F154. $\operatorname{sh}_{\mathrm{h}}{ }_{h}=\frac{\overline{\operatorname{sh} 0_{h}}}{\left(\text { PIXCON }^{O}\right)^{7}}$

F155. $\operatorname{tr}^{0}{ }_{h}=\frac{\overline{\operatorname{trO}_{h}}}{\left(\text { PIXCON }^{O}\right)^{7}}$

F4.5 LEONTIEF INPUT COEFFICIENTS

Leontief input coefficients are calibrated as volume ratios:
F156. io $_{j}=\frac{C I_{j}^{O}}{X S T_{j}^{O}}$
F157. $v_{j}=\frac{V A_{j}^{O}}{X S T_{j}^{O}}$
F158. $a i j_{i, j}=\frac{D I_{i, j}^{O}}{C I_{j}^{O}}$

F4.6 CET PARAMETERS

F4.6.1 CET between commodities

In accordance with the algebra of the CET transformation function (Appendix C5),
F159. $\rho_{j}^{X T}=\frac{1+\sigma_{j}^{X T}}{\sigma_{j}^{X T}}$
Next comes the calibration of the $\beta_{j, i}^{X T}$.First, note that these are defined only up to a factor of proportionality. Indeed, let
F160. $\beta_{j, i}^{X T^{*}}=\mu \beta_{j, i}^{X T}$
and

F161.

Now let
F162. $B_{j}^{X T^{*}}=\mu^{-\frac{1}{\rho_{j}^{X T}}} B_{j}^{X T}$
and it follows that

F163.

$\left[\quad \frac{1}{\frac{1}{\rho_{j}^{X T}}} \quad\left[\quad \rho_{\rho_{j}}^{\frac{1}{\rho_{j}^{X T}}}\right.\right.$
F164. $X S T_{j}=B_{j}^{X T^{*}}\left[\sum_{i} \beta_{j, i}^{X T^{*}} X S_{j, i}^{\rho_{j}^{X T}}\right]=B_{j}^{X T}\left[\sum_{i} \beta_{j, i}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]$
With that in mind, develop equation 60 to obtain relative commodity supply:
F165. $\frac{X S_{j, i}}{X S_{j, i j}}=\left[\frac{P_{j, i}}{\beta_{j, i}^{X T}} \frac{\beta_{j, i j}^{X T}}{P_{j, i j}}\right]^{\sigma_{j}^{X T}}$
$\left[\frac{1}{\rho_{j}^{X T}-1}\right.$
F166. $\frac{X S_{j, i}}{X S_{j, i j}}=\left[\frac{P_{j, i}}{\beta_{j, i}^{X T}} \frac{\beta_{j, i j}^{X T}}{P_{j, i j}}\right]$

F167. $\frac{X S_{j, i}}{X S_{j, i j}}=\left[\frac{\beta_{j, i}^{X T}}{P_{j, i}} \frac{P_{j, i j}}{\beta_{j, i j}^{X T}}\right]$
F168. $\left(\frac{X S_{j, i}}{X S_{j, i j}}\right)^{1-\rho_{j}^{X T}}=\frac{\beta_{j, i}^{X T}}{P_{j, i}} \frac{P_{j, i j}}{\beta_{j, i j}^{X T}}$
F169. $\beta_{j, i j}^{X T} P_{j, i} X S_{j, i}^{1-\rho_{j}^{X T}}=\beta_{j, i}^{X T} P_{j, i j} X S_{j, i j}^{1-\rho_{j}^{X T}}$
F170. $\sum_{i j} \beta_{j, i j}^{X T} P_{j, i} X S_{j, i}^{1-\rho_{j}^{X T}}=\sum_{i j} \beta_{j, i}^{X T} P_{j, i j} X S_{j, i j}^{1-\rho_{j}^{X T}}$

F171.

$$
P_{j, i} X S_{j, i}^{1-\rho_{j}^{X T}} \sum_{i j} \beta_{j, i j}^{X T}=\beta_{j, i}^{X T} \sum_{i j} P_{j, i j} X S_{j, i j}^{1-\rho_{j}^{X T}}
$$

We have shown that the $\beta_{j, i}^{X T}$ are defined only up to a factor of proportionality. Therefore, we can, without loss of generality, impose the normalization rule $\sum_{i j} \beta_{j, i j}^{X T}=1$. It then follows that

F172.

$$
P_{j, i} X S_{j, i}^{1-\rho_{j}^{X T}}=\beta_{j, i}^{X T} \sum_{i j} P_{j, i j} X S_{j, i j}^{1-\rho_{j}^{X T}}
$$

Whence

F173. $\beta_{j, i}^{X T}=\frac{P_{j, i} X S^{1-\rho_{j, i}^{X T}}}{\sum_{i j} P_{j, i j} X S_{j, i j}^{1-\rho_{j}^{X T}}}$
Then, from equation 59
F174. $B_{j}^{X T}=\frac{X S T_{j}^{O}}{\frac{1}{\rho_{j}^{X T}}}$

$$
\left[\sum_{i} \beta_{j, i}^{X T}\left(X S_{j, i}^{O}\right)^{\rho_{j}^{X T}}\right]^{\rho_{j}}
$$

F4.6.2 CET between exports and local production

In accordance with the algebra of the CET transformation function (Appendix C6),
F175. $\rho_{j, x}^{X}=\frac{1+\sigma_{j, x}^{X}}{\sigma_{j, x}^{X}}$
Following the same calibration strategy as for the CET between commodities, develop equation 63:
F176. $\frac{E X_{j, x}}{D S_{j, x}}=\left[\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}} \frac{P E_{x}}{P L_{x}}\right]^{\sigma_{j, x}^{X}}$

F177. $\frac{E X_{j, x}}{D S_{j, x}}=\left[\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}} \frac{P E_{x}}{P L_{x}}\right]$

F178. $\frac{E X_{j, x}}{D S_{j, x}}=\left[\frac{\beta_{j, x}^{X}}{1-\beta_{j, x}^{X}} \frac{P L_{x}}{P E_{x}}\right]$
F179. $\left(\frac{E X_{j, x}}{D S_{j, x}}\right)^{1-\rho_{j, x}^{X}}=\frac{\beta_{j, x}^{X}}{1-\beta_{j, x}^{X}} \frac{P L_{x}}{P E_{x}}$
F180. $\beta_{j, x}^{X} P L_{x} D S_{j, x}^{1-\rho_{j, x}^{X}}=\left(1-\beta_{j, x}^{X}\right) P E_{x} E X{ }_{j, x}^{1-\rho_{j, x}^{X}}$

F181.

$$
\beta_{j, x}^{X} P L_{x} D S_{j, x}^{1-\rho_{j, x}^{X}}=P E_{x} E X{ }_{j, x}^{1-\rho_{j, x}^{X}}-\beta_{j, x}^{X} P E_{x} E X{ }_{j, x}^{1-\rho_{j, x}^{X}}
$$

F182.

$$
\beta_{j, x}^{X}\left(P L_{x} D S_{j, x}^{1-\rho_{j, x}^{X}}+P E_{x} E X_{j, x}^{1-\rho_{j, x}^{X}}\right)=P E_{x} E X_{j, x}^{1-\rho_{j, x}^{X}}
$$

F183. $\beta_{j, x}^{X}=\frac{P E_{x} E X_{j, x}^{1-\rho_{j, x}^{X}}}{P L_{x} D S_{j, x}^{1-\rho_{j, x}^{X}}+P E_{x} E X_{j, x}^{1-\rho_{j, x}^{X}}}$
And from equation 61

$$
B_{j, x}^{X}=\frac{X S_{j, x}^{O}}{\frac{1}{\rho_{j, x}^{X}}}
$$

F184.

$$
\left[\beta_{j, x}^{X}\left(E X_{j, x}^{O}\right)^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right)\left(D S_{j, x}^{O}\right)^{\rho_{j, x}^{X}}\right]
$$

F4.7 CES PARAMETERS

F4.7.1 Composite good

In accordance with the algebra of CES aggregator functions (Appendix C7),
F185. $\rho_{m}^{M}=\frac{1-\sigma_{m}^{M}}{\sigma_{m}^{M}}$
Develop equation 67:
F186. $\frac{I M_{m}}{D D_{m}}=\left[\frac{\beta_{m}^{M}}{1-\beta_{m}^{M}} \frac{P D_{m}}{P M_{m}}\right]^{\sigma_{m}^{M}}$
$\left[\beta_{m}^{M} \quad\right]^{\frac{1}{\rho_{m}^{M}+1}}$
F187. $\frac{I M_{m}}{D D_{m}}=\left[\frac{\beta_{m}^{M}}{1-\beta_{m}^{M}} \frac{P D_{m}}{P M_{m}}\right]$
F188. $\left(\frac{I M_{m}}{D D_{m}}\right)^{\rho_{m}^{M}+1}=\frac{\beta_{m}^{M}}{1-\beta_{m}^{M}} \frac{P D_{m}}{P M_{m}}$
F189. $\beta_{m}^{M} P D_{m} D D_{m}^{\rho_{m}^{M}+1}=\left(1-\beta_{m}^{M}\right) P M_{m} I M_{m}^{\rho_{m}^{M}+1}$

F190.

F191. $\beta_{m}^{M}=\frac{P M_{m} I M_{m}^{\rho_{m}^{M}+1}}{P D_{m} D D_{m}^{\rho_{m}^{M}+1}+P M_{m} I M_{m}^{\rho_{m}^{M}+1}}$
From equation 65
F192.. $B_{m}^{M}=\frac{Q_{m}^{O}}{-\frac{1}{\rho_{m}^{M}}}$

$$
\left[\beta_{m}^{M}\left(I M_{m}^{O}\right)^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right)\left(D D_{m}^{O}\right)^{-\rho_{m}^{M}}\right]
$$

F4.7.2 Composite capital

In accordance with the algebra of the CES production function (Appendix C2),
F193. $\rho_{j}^{K D}=\frac{1-\sigma_{j}^{K D}}{\sigma_{j}^{K D}}$
The calibration of the $\beta_{k, j}^{K D}$ follows the same strategy as that of the $\beta_{j, i}^{X T}$.

Develop equation 8 to obtain relative demand:
F194. $\frac{K D_{k, j}}{K D_{k j, j}}=\left[\frac{\beta_{k, j}^{K D}}{\beta_{k j, j}^{K D}} \frac{R T I_{k j, j}}{R T I_{k, j}}\right]^{\sigma_{j}^{K D}}$
F195. $\frac{K D_{k, j}}{K D_{k j, j}}=\left[\frac{\beta_{k, j}^{K D}}{\beta_{k j, j}^{K D}} \frac{R T I_{k j, j}}{R T I_{k, j}}\right]^{\frac{1}{\rho_{j}^{K D}+1}}$
F196. $\left(\frac{K D_{k, j}}{K D_{k j, j}}\right)^{\rho_{j}^{K D}+1}=\frac{\beta_{k, j}^{K D}}{\beta_{k j, j}^{K D}} \frac{R T I_{k j, j}}{R T I_{k, j}}$
F197. $\beta_{k j, j}^{K D} R T I_{k, j} K D_{k, j}^{\rho_{j}^{K D}+1}=\beta_{k, j}^{K D} R T I_{k j, j} K D_{k j, j}^{\rho_{j}^{K D}+1}$
F198. $\sum_{k j} \beta_{k j, j}^{K D} R T I_{k, j} K D_{k, j}^{\rho_{j}^{K D}+1}=\sum_{k j} \beta_{k, j}^{K D} R T I_{k j, j} K D_{k j, j}^{\rho_{j}^{K D}+1}$

F199. $R T I_{k, j} K D_{k, j}^{\rho_{j}^{K D}+1} \sum_{k j} \beta_{k j, j}^{K D}=\beta_{k, j}^{K D} \sum_{k j} R T I_{k j, j} K D_{k j, j}^{\rho_{j}^{K D}+1}$
We know that the $\beta_{k, j}^{K D}$, like the $\beta_{j, i}^{X T}$, are defined only up to a factor of proportionality. Therefore, we can, without loss of generality, impose the normalization rule $\sum_{k j} \beta_{k j, j}^{K D}=1$. It then follows that

F200.

$$
R T I_{k, j} K D_{k, j}^{\rho_{j}^{K D}+1}=\beta_{k, j}^{K D} \sum_{k j} R T I_{k j, j} K D_{k j, j}^{\rho_{j}^{K D}+1}
$$

Whence
F201. $\beta_{k, j}^{K D}=\frac{R T I_{k, j}^{O}\left(K D_{k, j}^{O}\right)^{\rho_{j}^{K D}+1}}{\sum_{k j} R T I_{k j, j}^{O}\left(K D_{k j, j}^{O}\right)^{\rho_{j}^{K D}+1}}$
Then, from equation 7
F202. $B_{j}^{K D}=\frac{K D C_{j}^{O}}{-\frac{1}{\rho_{j}^{K D}}}$

$$
\left[\sum_{k} \beta_{k, j}^{K D}\left(K D_{k, j}^{O}\right)^{-\rho_{j}^{K D}}\right]
$$

F4.7.3 Composite labor

In accordance with the algebra of the CES production function (Appendix C2),
F203. $\rho_{j}^{L D}=\frac{1-\sigma_{j}^{L D}}{\sigma_{j}^{L D}}$
The calibration of the $\beta_{l, j}^{L D}$ follows the same strategy as that of the $\beta_{j, i}^{X T}$.

Develop equation 5 to obtain relative demand:
F204. $\frac{L D_{l, j}}{L D_{l j, j}}=\left[\frac{\beta_{l, j}^{L D}}{\beta_{l j, j}^{L D}} \frac{W T I_{l j, j}}{W T I_{l, j}}\right]^{\sigma_{j}^{L D}}$
$\left[\beta^{L D} \frac{1}{\rho_{j}^{L D}+1}\right.$
F205. $\frac{L D_{l, j}}{L D_{l j, j}}=\left[\frac{\beta_{l, j}^{L D}}{\beta_{l j, j}^{L D}} \frac{W T I_{l j, j}}{W T I_{l, j}}\right]$
F206. $\left(\frac{L D_{l, j}}{L D_{l j, j}}\right)^{\rho_{j}^{L D}+1}=\frac{\beta_{l, j}^{L D}}{\beta_{l j, j}^{L D}} \frac{W T I_{l j, j}}{W T I_{l, j}}$
F207. $W T I_{l, j}\left(\frac{L D_{l, j}}{L D_{l j, j}}\right)^{\rho_{j}^{L D}+1}=W T I_{l j, j} \frac{\beta_{l, j}^{L D}}{\beta_{l j, j}^{L D}}$
F208. $\beta_{l j, j}^{L D^{j}} W T I_{l, j} L D_{l, j}^{\rho_{j}^{L D}+1}=\beta_{l, j}^{L D^{2}} W T I_{l j, j} L D_{l j, j}^{\rho_{j}^{L D}+1}$
F209. $\sum_{l j} \beta_{l j, j}^{L D_{j}} W T I_{l, j} L D_{l, j}^{\rho_{j}^{L D}+1}=\sum_{l j} \beta_{l, j}^{L D_{j}} W T I_{l j, j}^{L D_{l j, j}^{\rho_{j}^{L D}+1}}$

F210.

$$
W T I_{l, j}^{L D_{l, j}^{\rho_{j}^{L D}+1}} \sum_{l j} \beta_{l j, j}^{L D}=\beta_{l, j}^{L D} \sum_{l j} W T I_{l j, j} L D_{l j, j}^{\rho_{j}^{L D}+1}
$$

We know that the $\beta_{l, j}^{L D}$, like the $\beta_{j, i}^{X T}$, are defined only up to a factor of proportionality. Therefore, we can, without loss of generality, impose the normalization rule $\sum_{l j} \beta_{l j, j}^{L D}=1$. It then follows that

F211. $W T I_{l, j}^{L D_{l, j}^{\rho_{j}^{L D}+1}}=\beta_{l, j}^{L D} \sum_{l j} W T I_{l j, j} L D_{l j, j}^{\rho_{j}^{L D}+1}$
Whence
F212. $\beta_{l, j}^{L D}==\frac{W T I_{l, j}^{O}\left(L D_{l, j}^{O}\right)^{\rho_{j}^{L D}+1}}{\sum_{l j} W T I_{l j, j}^{O}\left(L D_{l j, j}^{O}\right)^{\rho_{j}^{L D}+1}}$
Then, from equation 5
F213. $B_{j}^{L D}=$
$=\frac{L D C_{j}^{O}}{\left[\sum_{l} \beta_{l, j}^{L D}\left(L D_{l, j}^{O}\right)^{-\rho_{j}^{L D}}\right]}$

F4.7.4 Value added

In accordance with the algebra of CES aggregator functions (Appendix C1),
F214. $\rho_{j}^{V A}=\frac{1-\sigma_{j}^{V A}}{\sigma_{j}^{V A}}$
Develop equation 4:
F215. $\frac{L D C_{j}}{K D C_{j}}=\left[\frac{\beta_{j}^{V A}}{1-\beta_{j}^{V A}} \frac{R C_{j}}{W C_{j}}\right]^{\sigma_{j}^{V A}}$
$\left[\quad \frac{1}{\rho_{j}^{V A}+1}\right.$
F216. $\frac{L D C_{j}}{K D C_{j}}=\left[\frac{\beta_{j}^{V A}}{1-\beta_{j}^{V A}} \frac{R C_{j}}{W C_{j}}\right]$
F217. $\left(\frac{L D C_{j}}{K D C_{j}}\right)^{\rho_{j}^{V A}+1}=\frac{\beta_{j}^{V A}}{1-\beta_{j}^{V A}} \frac{R C_{j}}{W C_{j}}$
F218. $\beta_{j}^{V A} R C_{j} K D C_{j}^{\rho_{j}^{V A}+1}=\left(1-\beta_{j}^{V A}\right) W C_{j} L D C_{j}^{\rho_{j}^{V A}+1}$
Whence
F219. $\beta_{j}^{V A}=\frac{W C_{j}^{O}\left(L D C_{j}^{O}\right)^{\rho_{j}^{V A}+1}}{W C_{j}^{O}\left(L D C_{j}^{O}\right) \rho_{j}^{V A}+1}+R C_{j}^{O}\left(K D C_{j}^{O}\right)^{\rho_{j}^{V A}+1}$
From equation 3

F220.

F4.8 LES PARAMETERS

We refer to the elasticity of consumption demand for commodity i with respect to household h 's total consumption budget CTH_{h} as the «income elasticity » of the consumption of commodity i by household h^{19}. From equation 53, the income elasticity is given by

F221. $\sigma_{i, h}^{Y}=\frac{\partial \ln C_{i, h}}{\partial \ln C T H_{h}}=\frac{C T H_{h}}{C_{i, h}} \frac{\partial C_{i, h}}{\partial C T H_{h}}=\frac{C T H_{h}}{C_{i, h}} \frac{\partial}{\partial C T H_{h}}\left[C_{i, h}^{M I N}+\frac{\gamma_{i, h}^{L E S}}{P C_{i}}\left(C T H_{h}-\sum_{i j} C_{i j, h}^{M I N} P C_{i j}\right)\right]$
F222. $\sigma_{i, h}^{Y}=\frac{C T H_{h}}{C_{i, h}} \frac{\gamma_{i, h}^{L E S}}{P C_{i}} \frac{\partial C T H_{h}}{\partial C T H_{h}}=\gamma_{i, h}^{L E S} \frac{C T H_{h}}{P C_{i} C_{i, h}}$
This implies
F223. $\gamma_{i, h}^{L E S}=\frac{\sigma_{i, h}^{Y} P C_{i} C_{i, h}}{C T H_{h}}$
Now it is readily verified from equation 53 that the household budget constraint $\sum_{i} P C_{i} C_{i, h}=C T H_{h}$
implies $\sum_{i} \gamma_{i, h}^{L E S}=1$. Given equation F217, this requires the elasticities to fulfill the condition
F224. $\frac{\sum_{i} \sigma_{i, h}^{Y} P C_{i} C_{i, h}}{C T H_{h}}=\sum_{i} \gamma_{i, h}^{L E S}=1$
As the assigned values of income elasticities may not satisfy this condition a priori, the elasticities are adjusted proportionnally as follows:

F225. $\sigma_{i, h}^{Y}=\frac{\overline{\sigma_{i, h}^{Y}} C T H_{h}}{\sum_{i j} \overline{\sigma_{i j, h}^{Y}} P C_{i j}^{O} C_{i j, h}^{O}}$
Then, from equation F217
F226. $\gamma_{i, h}^{L E S}=\frac{\sigma_{i, h}^{Y} P C_{i}^{O} C_{i, h}^{O}}{C T H_{h}^{O}}$

[^11]The Frisch parameter is (Appendix C4)

F227. Frisch $=-\lambda$ CTH $_{h}=-\frac{C T H_{h}}{C T H_{h}-\sum_{i} P C_{i} C_{i, h}^{M I N}}$
So, from equation 53
F228. $C_{i, h} P C_{i}=C_{i, h}^{M I N} P C_{i}+\gamma_{i, h}^{L E S} \frac{C T H_{h}}{- \text { Frisch }}=C_{i, h}^{M I N} P C_{i}-\gamma_{i, h}^{L E S} \frac{C T H_{h}}{\text { Frisch }}$
F229. $C_{i, h}^{M I N} P C_{i}=C_{i, h} P C_{i}+\gamma_{i, h}^{L E S} \frac{C T H_{h}}{\text { Frisch }}$
The calibration formula is then
F230. $C_{i, h}^{M I N}{ }_{-}^{O}=C_{i, h}^{O}+\gamma_{i, h}^{L E S} \frac{C T H_{h}^{O}}{P C_{i}^{O} \text { Frisch }}$

F5. Calibration of gross domestic products

From equations 95-98,
F231. $G D P^{B P}{ }_{-}^{O}=\sum_{j} P V A_{j}^{O} V A_{j}^{O}+T I P T^{O}$
F232. $G D P^{M P}{ }_{-} O=G D P^{B P-O}+\operatorname{TPRCTS}^{O}$

F233.

$$
G D P^{I B-O}=\sum_{l, j} W_{l}^{O} L D_{l, j}^{O}+\sum_{k, j} R_{k, j}^{O} K D_{k, j}^{O}+T P R O D N^{O}+\operatorname{TPRCTS}^{O}
$$

F234. $G D P^{F D _O}=\sum_{i} P C_{i}^{O}\left[\sum_{h} C_{i, h}^{O}+C G_{i}^{O}+I N V_{i}^{O}+V S T K_{i}^{O}\right]$

$$
+\sum_{x} P E_{x}^{F O B_{-} O} E X_{x}^{O}-\sum_{m} e^{O} * P W M_{m}^{O} I M_{m}^{O}
$$

References for Appendix F

ANNABI, Nabil, Bernard DECALUWÉ and John COCKBURN (2006) Functional Forms and Parametrization of CGE Models, PEP-MPIA Working Paper 2006-04, Politiques économiques et pauvreté / Poverty and Economic Policies, Université Laval, Québec.

LEONTIEF, Wassily W. (1941), The structure of American economy 1919-1929, New York, Oxford University Press.

LEONTIEF, Wassily W. (1951), The structure of American economy 1919-1939, New York, Oxford University Press.

LEONTIEF, Wassily W. et al. (1953), Studies in the structure of the American economy, New York, Oxford University Press.

STONE, J.R.N. (1951), «Simple transaction models, information and computing», Review of Economic Studies, 19.

STONE, J.R.N. et UTTING, J.E.G. (1953), «The relationship between input-output analysis and national accounting», in NETHERLANDS ECONOMIC INSTITUTE (1953), Input-Output Relations, Proceedings of a conference on inter-industrial relations held at Driebergen, Holland, 1953; Leyden, H.E. Stenfort Kroese N.V.

Figure F1 - Structure of the SAM (part I)

Figure F1 - Structure of the SAM (part II)

[^0]: 1 Département d'économique, Université Laval, Québec
 2 Centre INRS-UCS, Université du Québec, Montréal
 3 Financial and Fiscal Commission, South Africa, and PEP, Université Laval, Québec
 CIRPÉE et PEP, Université Laval, Québec

[^1]: 5 PEP-1-1 stands for single-country, single-period model. Forthcoming are: (i) single-country, multi-period, recursive dynamic model PEP-1-t, (ii) single-period world model PEP-w-1, and finally, (iii) multi-period, recursive dynamic world model PEP-w-t.

[^2]: 6 That is, taxes on production other than taxes on products and taxes and duties on imports (see Appendix B1).

[^3]: 7 This opens the door to applying the « marginal effective tax rates » (METR) approach in the CGE (Decaluwé et al., 2005 and

[^4]: 9 Equation 61 implies that there is a single trading partner, the «Rest-of-the-world ». It is left up to the modeler to adapt the model, whenever appropriate, to distinguish more than one trading partner.

[^5]: 10 Note that, in general, the weights do not add up to 1 . An alternative, mathematically equivalent, modeling approach would have been to determine aggregate prices from the cost (or value) functions dual to the aggregation functions, and then to compute the quantity indexes of the aggregates from the identities between the value of an aggregate and the sum of its components' values.

[^6]: 11 The default choice of numeraire in PEP-1-1 is the exchange rate e. This is implemented by fixing the value of e as exogenous. But the choice of numeraire in a CGE model is arbitrary (although the interpretation of results can be more or less easy, depending on which numeraire is selected).

[^7]: 12 That is, taxes on production other than taxes on products and taxes and duties on imports (see Appendix B1).

[^8]: 14 Also see SNA93 Paragraphs 6.110 to 6.114 (not reproduced here).

[^9]: 17 Diewert, W. E. (1976) «Exact and superlative index numbers» Journal of Econometrics 4: 115-145. Reproduced in W. E. Diewert and A. O. Nakamura (1993), Essays in Index Number Theory, Vol. 1, North-Holland Publishing Co., Amsterdam, p. 223-257. Available on line at http://www.econ.ubc.ca/diewert/hmpgdie.htm.

[^10]: 18 Logical implication («If A then B ») is represented by solid arrows (\Rightarrow). Logical equivalence (« If A then B and If B then $A »)$ is represented by double-headed solid arrows (\diamond) Braces indicate that an implication follows from the combination of two or more equations.

[^11]: 19 If income taxes, transfers and savings were a constant proportion of income, then so would total consumption expenditure, and the elasticity of consumption demand for commodity i with respect to household h 's total consumption budget would indeed be identical to its income-elasticity.

