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Abstract 
Mining exploration increasingly relies on large, multivariate databases storing data ranging from drill core 
geochemical analysis to geophysical data or geological descriptions. Utilizing these large datasets to their full 
potential implies the use of multivariate statistical analysis such as machine learning. The Random Forest 
algorithm has proved its efficiency in mining applications. In this study we use it to estimate a key geochemical 
element, sodium, using a multivariate chemo-physical dataset measured on drill cores in the Matagami mining 
district of Québec, Canada. Sodium is important to characterize hydrothermal alteration in volcanogenic massive 
sulfide settings, since Na depletion can be used to vector towards ore, but this element is not readily measured by 
portable X-ray fluorescence (pXRF). We first test the algorithm on a database of over 8000 traditional laboratory 
geochemistry analyses and find a correlation of 0.95 between estimated and measured Na. We then test the 
algorithm on the multi-sensor core logging data, including density, magnetic susceptibility, and 15 geochemical 
elements by pXRF, but borrowing Na from traditional geochemistry (n = 260). This yields correlations of 0.66 to 
0.75 depending on the training and testing sets. Finally the algorithm is applied to the whole multiparameter 
database (n = 9675) to estimate Na downcore. There is a good general correspondence with the downcore Na 
patterns seen through traditional geochemistry, and the estimated Na which has much greater spatial resolution. 
Random Forest appears to be a very good estimation tool when using large amounts of data and variables, as it 
uses all variables and automatically prioritizes the most useful. This method also allows visualization of the weight 
of each variable in the estimation. Future studies should compare RF with other methods. 

 
1. Introduction 
Modern mining exploration increasingly relies on 
processing large, multivariate databases which includes data 
coming from various sources (drill core analysis, 
geophysics, geological mapping, …) and ranges from 
qualitative to quantitative (e.g. the recent Integra Gold Rush 
competition). Even at the diamond drill core 
characterization stage, which used to consist primarily of a 
visual log by the geologist, more and more data is becoming 
available (e.g., physical rock properties, geochemistry, 
mineralogy, …) (e.g., Ross et al., 2013, 2016a; Jácomo et 
al., 2015; Ross and Bourke, 2017; Wang et al., 2017; Bérubé 
et al., 2018; Chen et al., 2018). Utilizing such large multi-
parameter datasets to their full potential requires specific 
algorithms such as multivariate statistical analysis (e.g., 
Fresia et al., 2017) or ensemble trees (e.g., Bérubé et al., 
2018; Caté et al., 2018; Chen et al., 2018). Artificial 
intelligence methods are already used by some mining 

companies, but generally remain little known in the mining 
sector. However they have proven themselves in many other 
applied fields (diagnostic systems in hospitals, electrical 
network management, image processing, ...). A particularly 
relevant branch of artificial intelligence for the mining 
sector is supervised machine learning (Heutte et al., 2008; 
Caté et al., 2017). Supervised learning brings together 
machine learning techniques that automatically produce 
rules from a learning database that contains "examples". 
Once the rule is generated and tested, it is applied to a set of 
inputs (e.g., variables measured along the drill core) to 
predict outputs (e.g., gold grades or any other sought-after 
parameter) (Mohamadally and Fomani, 2006; Fischer, 
2014). 
 
In this article, we apply a supervised machine learning 
method, the Random Forest (RF) algorithm, to a multi-
sensor drill core logging database. This algorithm, 



developed by Breiman in 1984 (see Breiman, 2001), can be 
used for classification (predicting a categorical variable 
such as lithology) or regression (predicting a continuous 
variable such as a geochemical element). Here we focus on 
the latter application. This study was conducted at the 
McLeod volcanogenic massive sulphide (VMS) deposit in 
the Matagami mining camp, Quebec, Canada. We use the 
RF algorithm to estimate a missing parameter, sodium, from 
multiparameter data which contains density, magnetic 
susceptibility, 15 geochemical elements, average visible 
light reflectance, and infrared spectrometry. Sodium is 
missing or difficult to measure by portable x-ray 
fluorescence (pXRF) analyzers, a commonly employed 
technology to acquire in situ geochemical measurements on 
drill cores (e.g., Ross et al., 2014a, 2014b). Yet sodium 
variations can be used to characterize the hydrothermal 
alteration that rocks have undergone around a VMS deposit 
(e.g., Large et al., 2001; Franklin et al., 2005; Gifkins et al., 
2005), and are therefore very useful for mining exploration. 
We briefly present the data acquisition methods, then all the 
tests performed and the results obtained for the estimation 
of sodium with the RF algorithm. A first step validates the 
method using known geochemical data from our industrial 
partner, then the same method is applied on the 
multiparameter data. We conclude that the RF algorithm is 
a good tool in this case. 
 
2. Geological context 

The McLeod VMS deposit, around which this study was 
made, is located in the Matagami mining district, in the 
northern part of Abitibi Subprovince, Québec (Fig. 1a). 
VMS deposits of the Matagami district are mainly found 
along two bands, the North Flank and the South Flank (Fig. 
1b). An area further west, informally referred to as the 
"West Camp", forms a third prospective band for 
exploration. The McLeod deposit – the topic of this 
investigation – and the Bracemac deposit, 1 km to the NW, 
are currently exploited together by Glencore as part of the 
Bracemac-McLeod mine (Fig. 2). 
 
The lithological succession at McLeod is typical of the 
South Flank. It dips about 70° towards the SW, its 
stratigraphic summit being in the same direction (Fig. 3). 
The succession includes the Watson Lake and Wabassee 
groups (Sharpe, 1968; Debreil et al., 2018). Given the great 
thickness of the Wabassee Group, the lithologic succession 
is dominated by mafic to intermediate flows with a smaller 
proportion of felsic flows. Mineralization in the South Flank 
is mainly found at the level of the Key Tuffite (e.g., Adair, 
2009; Genna et al., 2014), the main marker horizon in the 
South Flank. At McLeod, the Key Tuffite and the ore zones 
are sandwiched between the Watson Lake Rhyolite 
(footwall) and the Bracemac Rhyolite (immediate 
hangingwall). The Bracemac Rhyolite is overlain by the 
Bracemac Tuffite, then by mafic to intermediate rocks of the 
Wabassee Group (Fig. 3). Volcanic rocks are cut by 
intrusions of gabbro and diorite and rare felsic intrusions. 
 

Ore lenses are composed mainly of pyrite, chalcopyrite, 
sphalerite, and sometimes pyrrhotite. Many VMS deposits 
in the South Flank are surrounded by discordant 
hydrothermal alteration, but at McLeod, alteration is semi-
concordant with stratigraphy (Fig. 3). The proximal and 
intense alteration underlies the mineralized lenses, at the top 
of the Watson Lake Rhyolite. This zone corresponds to 
intense chloritization with a leaching of silica, sodium, 
calcium and potassium. In the most altered rocks, Na 
concentration falls close to zero. In some drillholes, there is 
also intense alteration just above the mineralized lenses in 
the lower part of the Bracemac Rhyolite. Moving laterally 
away from the mineralization, chlorite alteration becomes 
less intense (Genna et al., 2014), sericite increases, and Na 
increases, both in the footwall and in the hanging wall. 
 
3. Methods 

3.1 Datasets  
The data used here was acquired on exploration drill cores, 
mostly of NQ caliber, and consists of two types. The first 
type of data is traditional, destructive, laboratory 
lithogeochemistry on 10-25 cm-long whole core samples, 
with a downcore sample spacing on the order of 30 m, 
available for 314 drillholes from the entire Bracemac-
McLeod area, courtesy of Glencore (n = 8287 analyses). 
This first dataset therefore includes the full suite of rock 
types (except ore zones) and Na concentrations for the 
whole area. This dataset covers a larger geographic area 
than the second one (as detailed below), but the geology is 
the same at Bracemac and McLeod. 
 
The second dataset consists of non-destructive multi-sensor 
core logging data acquired by Institut national de la 

recherche scientifique on nine selected drillholes located 0-
1.5 km ESE of the McLeod deposit (Ross et al., 2016b). 
After a detailed visual relogging of the nine drillholes by the 
first author, the multi-sensor dataset was acquired at the 
mine site using a mobile laboratory called the Laboratoire 

mobile de caractérisation physique, minéralogique et 

chimique des roches (LAMROC). The laboratory measures 
magnetic susceptibility, density with gamma ray 
attenuation, alteration mineralogy with infrared 
spectrometry, and geochemistry through pXRF (15 
elements). The downcore sample spacing was about 30 cm 
(n = 9675 data points). The measured data set was corrected 
(to fix calibration issues) and compiled as downhole 
profiles. An example of these profiles is given here for 
drillhole MCL-12-09 (Figs. 4 to 7) and profiles for the eight 
other holes are available in Ross et al. (2016b) and 
Schnitzler (2017). For further methodological details, the 
reader is referred to Ross et al. (2013, 2014a, 2014b), Fresia 
(2013), Bourke and Ross (2016) and Ross and Bourke 
(2017).  
 
The large amount of data and the diversity of parameters 
(several thousand measurement points per drillhole with 
more than 20 variables) generated by LAMROC increases 
the spatial resolution and quantity of information, which in 
turn allows a better understanding of the geology around a 



deposit. This abundance of collocated measures opens the 
way for quantitative integration and the prediction of 
exploration vectors. On the other hand, this requires new 
approaches to quantitative assimilation of data to facilitate 
interpretation. 
 
3.2 Data exploration 
Before applying any algorithm, a data exploration step is 
required. We computed basic statistics, histograms, cross-
plots and a correlation matrix using the first dataset, i.e. 
whole-rock geochemistry from Glencore (n = 8287 
analyses). We did this with the unprocessed geochemical 
variables and then again with the major oxides transformed 
into centered log-ratio (CLR) values. The cross-plots and 
histograms (available upon request from the corresponding 
author) show that the variables do not display a Gaussian or 
even symmetric distribution, and that the variables have 
complex relationships. Furthermore, the correlations 
between the primary variable (here Na2O) and the other 
variables are weak: the maximum correlation is -0.7 in the 
CLR-transformed data (Fig. 8), and only 0.4 in the 
untransformed data (correlation matrix for raw data 
available upon request from the corresponding author). 
 
In summary, the correlations are weak, the data do not show 
Gaussian distributions, and the data are clustered in multiple 
classes. This prevents the use of methods relying on strict 
stationarity like multiple regression or support vector 
machine. Therefore we selected the random forest 
algorithm, which does not have this limitation. 
 
3.3 The Random Forest algorithm 
The machine learning method selected here, which allows 
the estimation of sodium or any other missing parameter 
from a dataset, is the Random Forest (RF) algorithm. This 
choice is justified by the simplicity of use, its versatility and 
its ability to quantitatively rank the most important variables 
in the training step (Rakotomalala, 2005; Heutte et al., 2008; 
Carranza and Laborte, 2015; Rodriguez-Galiano et al., 
2015). The RF method was utilized successful by a team that 
included the first author during the International Integra 
Gold Rush competition (2015), which was aimed at 
predicting targets for gold exploration.  
 
Random Forest is part of a family referred to as "bagging" 
algorithms, which refers to bootstrap averaging methods. 
They allow the user to build optimal decision trees based on 
the aggregation of multiple iterative trees built from 
randomly selected samples of the training step. The 
aggregation and the construction of small trees from small 
subset allows for an increase of the prediction on noisy data 
sets. The training set consists of a part of the database for 
which all the variables are known, including the one that we 
want to estimate later (here, sodium). This training step 
permits to calibrate the parameters that optimize the 
prediction of sodium (number of trees, leaf size, size of the 
random subset, …). The algorithm is then applied to a test 
subset for which the parameter to be estimated has been set 

aside for validation purposes. Finally, if these two steps are 
satisfactory, the prediction step can be deployed. 
 
3.4 Implementation 
For this project, sodium concentrations were estimated 
using an RF regression algorithm (Python Code 
RandomForestRegressor, from Pedregosa et al., 2011). 
Several test and validation steps were performed to validate 
the method (Table 1; Schnitzler, 2017). The first three steps 
involved the use of Glencore's lithogeochemical data – 
which does include Na – to check the performance of the 
algorithm. The fourth step allowed us to explore the use of 
variables coming from the LAMROC multiparameter 
database. Finally, the fifth and final step was the prediction 
of sodium from LAMROC measurements. Note that all of 
these steps are independent of each other: each time, the 
algorithm was re-run with the specific data and variables 
listed in Table 1 and described below. In other words, what 
the machine learned in a specific step did not influence what 
went on in subsequent steps. 
 
Step 1. In more detail, our first step was to validate the 
chosen method using Glencore's conventional 
lithogeochemistry data. Only the chemical elements that 
were systematically analyzed in all drill cores were retained 
as variables. This represents 18 elements and oxides: Al2O3, 
Ba, CaO, Cr2O3, Fe2O3, K2O, LOI (loss on ignition, the loss 
of mass resulting from heating a powdered material to a very 
high temperature), MgO, MnO, Na2O, Nb, P2O5, Rb, SiO2, 
Sr, TiO2, Y and Zr. Measurements below the detection limit 
were replaced by half the value of the detection limit for 
each element, to avoid zeros. This choice avoids modifying 
the structure of the data and limits the loss of information 
(Martín-Fernández et al., 2003). The algorithm was applied 
with the unprocessed geochemical variables and then again 
with the major oxides transformed into CLR values. The 
training set corresponded to 2/3 of the measurements, taken 
randomly (ntraining = 5524 data points). The algorithm was 
then applied to the test subset (the remaining 1/3 of the data, 
ntest = 2763) for which sodium had been set aside for 
validation purposes. 
 
Step 2. The same process was performed on the Glencore 
geochemical data taken only on the nine drillholes selected 
for the LAMROC multiparameter study, in order to verify 
the results when the number of data decreased (n = 260). 
The variables used initially were the same 18 geochemical 
elements and oxides as those used in step 1. We also added 
two other variables, Cu and Zn, to verify the impact (nvariable 
= 20). The data were randomly divided 2/3 – 1/3 to form the 
training set (ntraining = 173) and the test set (ntest = 87). 
 
Step 3. In the third step, the RF algorithm was tested on 
three different training and test sets (A, B and C), keeping 
the same variables as before (nvariable = 20). These tests were 
done without and with the CLR transformation on the 
Glencore geochemical data for the nine drill holes. 
 



Step 4. To train and test the algorithm on LAMROC data, it 
was necessary to know the sodium concentration at certain 
points, but of course the LAMROC data does not contain it. 
Therefore Na for each traditional geochemical analysis for 
the nine holes was “loaned” to the nearest LAMROC data 
point. It was not possible to have perfectly colocated data 
since the traditional geochemistry, done in this case before 
pXRF analysis, had destroyed the sample. Even though 
pXRF and conventional geochemistry do not involve 
measurements on the same volume of rock, we did not 
explicitly consider the different support sizes. A “change of 
support analysis” is not needed for machine learning 
algorithms. In conventional geostatistics and regressions, 
links between variables are linear and variances are 
important. However this does not apply to ensemble 
methods (Rashka and Mirjalili, 2017). 
 
This gave a total of 260 measurements (LAMROC data plus 
borrowed Na) for the nine boreholes studied. This was 
randomly divided into a training set corresponding to 2/3 of 
the measurements (ntraining = 173) and a test set for which Na 
was set aside (ntest = 87). The same three training and test 
sets as before were used (i.e., A, B and C). For each set, the 
algorithm was first incremented with all variables measured 
by LAMROC (nvariable = 20), including geochemistry (Al2O3, 
CaO, Cr, Fe2O3

t, K2O, MgO, MnO, Nb, Ni, Rb, SiO2, Sr, 
TiO2, Y, Zr), average visible light reflectance, physical 
properties (density, magnetic susceptibility) and near-
infrared mineralogy expressed as two mineral groups per 
sample (e.g., Fig. 7, black diamonds and red squares). These 
"group 1" and "group 2" mineralogical variables were used 
because they did not require any treatment. Then the 
algorithm was used with all the variables, but transforming 
the major oxides (including Na2O) into CLR (nvariable = 20) 
and finally removing the chemical elements having more 
than 10% of data points below the limit of detection (nvariable 
= 13). 
 
Step 5. In the final step, the algorithm was used with all the 
variables measured by LAMROC, on the unprocessed data 
(nvariable = 20). The training set consisted of the 260 
LAMROC measurement points with the borrowed Na. The 
algorithm was applied to the prediction set corresponding to 
all measurements made by LAMROC (n = 9675 
measurements), so that Na could be estimated everywhere 
along the nine drill holes. 
 
4. Results 

4.1 Step 1 
Step 1, testing the RF algorithm on a large traditional 
geochemistry database for the Bracemac-McLeod area, 
shows a Pearson correlation of 0.93 on unprocessed data 
(Table 1, Fig. 9a) and 0.95 with the CLR transformation for 
the major oxides (Table 1, Figs. 9c). The RF method allows 
an excellent estimation of Na in this test, regardless of 
whether the unprocessed data or the CLR transformed data 
is used. 
 

However, the CLR transformation has a large impact on 
which variables contribute the most to the estimation. When 
the variables are not transformed, Sr is the most influential 
element (35%), then iron (13%), while MgO is only the 10th 
most important variable (Fig. 9b). Sr is an element contained 
in particular in plagioclase, which is likely to be destroyed 
during alteration in VMS settings (Franklin et al., 2005). 
With the CLR transformation, Mg is clearly the most 
influential variable (57%), followed by iron (10%) (Fig. 9d). 
The link between Na and Fe-Mg might be related to the 
chloritization of rhyolites (gains in Fe-Mg and leaching of 
Na; Piché, 1991), even if there is no simple linear 
relationship between Fe-Mg and Na.  
 
4.2 Step 2 
In the second step, with CLR-transformed traditional 
geochemistry for only 9 drill holes, and the same 18 
variables, the results show a correlation of 0.84 (Fig. 10a). 
Here, LOI and Sr are the most influential variables (31% 
and 25% respectively; Fig. 10b). LOI generally increases 
with hydrothermal alteration in greenschist facies rocks, and 
so might be correlated to Na leaching. Adding copper and 
zinc (nvariable = 20) yields a nearly identical correlation of 
0.83 (Fig. 10c), and LOI and Sr remain the most influential 
variables (30% and 24% respectively, Fig. 10d). Overall, 
this second step shows that using a much smaller dataset 
reduces the quality of the estimation, but the correlation is 
still acceptable, and most data points are correctly 
estimated. 
 
4.3 Step 3 
The third step explores the effect varying the training and 
test sets (A, B and C), without and with the CLR 
transformation. Overall, the correlation coefficients vary 
from 0.82 to 0.88 (Table 1, Fig. 11). The CLR 
transformation improves the correlation in two cases out of 
three (random sets A and B, Fig. 11). In step 3, Sr is the 
most, or second most, influential variable (Fig. 12), and Fe 
is in the top three, but other variables vary in importance 
from one random set to another. This indicates a fairly high 
level of noise in the database. 
 
4.4 Step 4 
LAMROC data is used in step 4, with the borrowed Na, 
without and with the CLR transformation, on 13 to 20 
variables and three training and test sets (Table 1). Of the 
three tests listed in Table 1 for step 4, only two are illustrated 
in figure 13: 20 versus 13 variables, without the CLR 
transformation. The correlation coefficients vary from 0.66 
to 0.75 overall (Table 1). The CLR transformation of major 
oxides and the suppression of elements with more than 10% 
of data below the detection limit (nvariable = 13) do not 
systematically increase the correlation. 
 
The most influential variable is Sr (30-40%), generally 
followed by density (10-18%) (Table 1, Fig. 14). We note 
that the two physical properties, density and magnetic 
susceptibility, are typically among the ten most important 



variables, and sometimes among the five most important, 
for estimating Na.  
 
Step 4 shows that with almost similar data points (ntotal = 
260, on the same nine drillholes), the use of LAMROC data 
instead of traditional geochemistry decreases the quality of 
Na estimation. Possible reasons for this include: (1) during 
step 4, Na has to be borrowed from traditional geochemistry 
on an adjacent sample, i.e. the loaned Na and the other 
variables entering the RF algorithm are not perfectly co-
located; (2) pXRF data is not as accurate and precise as 
traditional geochemistry. But the estimated Na should still 
be useful to show trends. 
 
4.5 Step 5 
The final step is the estimation of Na for all LAMROC data 
points. We show estimated Na as a function of depth for four 
drillholes, placed from proximal to distal relative to the 
McLeod VMS deposit (Fig. 15); the profiles for the other 
five holes are available in Schnitzler (2017). The graphs 
show a good general correspondence in Na measured by 
traditional geochemistry versus its estimate from the 
LAMROC data. Although the Na estimation is far from 
perfect, the advantage of the large amount of data provided 
by LAMROC is to be able to observe trends where there is 
no traditional geochemistry information, which is over 99% 
of the length of the drill core, assuming the average sample 
length is 20 cm and the sampling interval is 30 m, for 
traditional geochemistry. 
 
5. Discussion 

5.1 Effectiveness of the RF algorithm to estimate a key 
missing variable 
Step 1 of our methodology shows that a RF algorithm, 
applied to a very large database of traditional geochemistry 
(ndata > 8000), is excellent at predicting Na. In steps 2 and 3, 
we drastically cut the number of traditional geochemistry 
samples by using only the nine drill holes selected for this 
project (ndata = 260). We explored the influence of adding 
extra variables, of doing the CLR transformation on major 
oxides or not, and of different training and test sets. 
Correlations for steps 2 and 3 ranged from 0.82 to 0.88, i.e. 
lower than in step 1, but still satisfactory. In these tests, 
adding Cu and Zn to the geochemical dataset yielded no 
benefit, whereas the impact of the CLR transformation was 
sometimes positive, and sometimes not. Changing the 
training and test sets was the main factor generating 
variability in the correlations coefficients, showing that the 
RF algorithm is less robust for these much smaller training 
sets than it was in step 1. 
 
In step 1, with unprocessed data, the most important 
variables were Sr, Fe2O3 and SiO2; with the CLR 
transformation, it was MgO, Fe2O3, and LOI. In steps 2 and 
3, LOI or Sr became the most influential variables, or even 
Fe2O3 in some cases, depending on the training and test sets. 
The variability in the importance of the variables may be 
due to outliers in the training set or in the test set. 

 
After these three steps using traditional geochemistry from 
Glencore, we were confident that the RF algorithm would 
allow Na estimation when applied to the multiparameter 
LAMROC data. In step 4, we paired the LAMROC data 
with Na borrowed from traditional geochemistry. We tested 
the impact of the CLR transformation, of removing 
chemical elements having more than 10% of their 
measurements below the detection limit, and of changing 
the training and test sets. Correlations were in the range 
0.66-0.75, and changing the training and test sets was again 
the most important factor influencing the correlation 
coefficient. This variability may be due to outliers. It is 
interesting to note that in step 4, the second most important 
variable was typically density, which indicates that the 
addition of physical properties can be helpful to estimate a 
geochemical variable. 
 
Step 4 showed that the RF algorithm could be used on the 
LAMROC data, so in step 5 we estimated Na for the whole 
dataset (ndata = 9625), using the non-transformed pXRF 
data, two physical properties, average visible light 
reflectance, and some mineralogical parameters. We 
obtained estimated downhole Na profiles at high spatial 
resolution for the nine studied holes. Comparison with 
analytically accurate but low spatial resolution traditional 
geochemistry shows a reasonable overall agreement, 
although there are some discrepancies (Fig. 15). The 
estimation would have been better had a larger training set 
been available. Despite the imperfect correlation between 
measured Na and estimated Na, the spatial resolution of the 
estimated Na is two orders of magnitude better. 
 
5.2 Na variations with distance from ore  
Along the studied drill holes that pass through the sulphide 
lenses, the Na concentration gradually decreases to near 
zero, about 60 m above the mineralization, and stays low for 
over 100 m below the ore zone (Fig. 15, MCL-12-09). This 
is the mineralization-proximity signal related to 
hydrothermal alteration in the footwall and hangingwall 
rhyolites (the Watson Lake Rhyolite and Bracemac 
Rhyolite, respectively). This signal decreases in strength 
laterally away from the ore zone. Some 50 m further, in MC-
04-11, the loss of sodium is mostly localized in the Watson 
Lake Rhyolite (Fig. 15). Finally, there is no Na depletion 
pattern in MC-05-19/19A and MC-09-76, respectively 200 
and 600 m laterally from the sulphide lens. 
 
5.3 Other possible uses of machine learning in mining 
exploration 
Our approach illustrates how a large multiparameter 
database (here 9675 measurement points, 20 parameters) 
can be exploited and enhanced using machine learning 
methods. This case study demonstrates how to estimate 
parameters that are not directly measured, but may be 
important for mineral exploration. Here we have estimated 
Na to assess hydrothermal alteration, but RF and similar 
ensemble methods could be used to predict ore grades and 
the distribution of mineralisation. Other potential uses of 



such multiparameter databases and artificial intelligence in 
exploration include: the prediction of lithology (pseudo-
logs) along the boreholes, the generation of predictive maps 
of metals, resource estimation, and sample classification 
(e.g., Rodriguez-Galiano et al., 2015; Bérubé et al., 2018; 
Caté et al., 2018; Chen et al., 2018). 
 
6. Conclusions 

This study was made on a known VMS deposit, to validate 
the chosen method and then allow it to be used for 
exploration in Matagami or in other contexts. Our aim was 
to utilize machine learning to estimate an important 
chemical element, Na, which was missing from a multi-
sensor core logging database. We first tested a Random 
Forest algorithm on our industrial partner’s traditional 
lithogeochemistry data and obtained excellent results. We 
then applied the algorithm to the multiparameter data and 
obtained a usable estimate of Na at high spatial resolution. 
Random Forest is a very good tool when using large 
amounts of data and variables, whether relevant, or less 
relevant. However, it is important to have a sufficient 
number of relevant variables, in absolute terms and relative 
to the total number of variables. The RF method uses all 
variables, but automatically prioritizes the most useful, 
depending on the prediction requested. This method also 
allows visualization of the weight that each variable 
represents in the estimation. Future studies should compare 
RF with other methods. 
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Figures  

 
 
Figure 1: Geological context of the Matagami mining district. (a) Simplified geological map of the Abitibi Subprovince (after 
Mercier-Langevin et al., 2014), showing the position of the Matagami district (black star). Inset at lower right shows the 
Abitibi Subprovince within the Superior Province. (b) Simplified geological map of the Matagami area, after Roy and Allard 
(2006). UTM grid is NAD 83, zone 18.  



 
 
Figure 2: Geological map of the Bracemac-McLeod area, compiled par Glencore, showing the distribution of the nine analyzed 
drill holes used in this study. Note that the ore lenses are projected vertically to the surface, whereas the volcanic strata dip 
steeply to the SW. UTM grid is NAD 83, zone 17. 



 
 
Figure 3: Vertical section passing through the McLeod deposit (see Fig. 2), showing the typical geological sequence of the 
area. The two drill holes used in this study are in blue. BT= Bracemac Tuffite, KT = Key Tuffite. 
 



 
 
Figure 4: Physical properties and geochemical ratios as a function of depth for drillhole MCL-12-09. Blank areas: 
concentration is below the limit of detection. The geology log was produced by the first author. Lithological codes: BRV1B 
= Bracemac Rhyolite; I1P = felsic intrusion, porphyritic; I2, I2P = intermediate intrusion (P = porphyritic); I3, I3A = gabbro; 
MS = massive sulfides; Ovb = overburden; SMS = semi-massive sulfides; T = tuffite; V2J, V3, V3B = intermediate to mafic 
lavas, undifferentiated; WV1B = Watson Lake Rhyolite. 
 



 

 

Figure 5: Corrected major oxides (%) as a function of depth for drillhole MCL-12-09. See figure 4 for other explanations. 
 



 

 
Figure 6: Corrected trace elements (ppm) as a function of depth for drillhole MCL-12-09. See figure 4 for other explanations. 
 



 

 

Figure 7: Infrared mineralogy as a function of depth for drillhole MCL-12-09. A small black diamond is the main mineral 
group (“Group 1”), and a small red square is the second mineral group (“Group 2”) that explains each infrared spectrum. 
"N.M.D." = no mineral detected. Right part of figure shows the composition of white mica, based on the wavelength of the 
AlOH peak, in nanometers. 



 

 

Figure 8: Correlation matrix for the Glencore geochemical data in the Bracemac- McLeod sector. The centered log ratio data 
is used for the major oxides. 
 



 

 

Figure 9: Step 1, estimating Na with the Glencore geochemical data in the Bracemac- McLeod sector, 314 drill holes, nvariable 
= 18, result of the test subset (ndata = 2763). (a) Estimated versus measured Na using untransformed data. (b) Importance of 
variables for the estimation shown in (a). (c) Estimated versus measured Na using centered log ratio data. (d) Importance of 
variables for the estimation shown in (c). 
 



 

 

Figure 10: Step 2, estimating Na with the Glencore geochemical data, nine holes only, centered log ratio transformation, 
results of the test subset (ndata = 87). (a) Estimated versus measured Na, nvariable = 18. (b) Importance of variables for the 
estimation shown in (a). (c) Estimated versus measured Na, nvariable = 20. (d) Importance of variables for the estimation shown 
in (c). 
 



 

 

Figure 11: Step 3, testing the influence of the training set, with the Glencore geochemical data for the nine drill holes, nvariable 
= 20. Results (estimated versus measured Na) are shown for three random sets (called A, B and C). (a)-(b)-(c) Untransformed 
data. (d)-(e)-(f) Centered log ratio data. 



 

 

Figure 12: Step 3, testing the influence of the training set with three random subsets, continued: importance of variables for 
the estimations shown in figure 11. (a)-(b)-(c) Untransformed data. (d)-(e)-(f) Centered log ratio data. 



 

 

Figure 13: Step 4, estimating Na with the untransformed LAMROC data, with the measured Na borrowed from adjacent 
Glencore geochemical analyses, for three random sets (called A, B and C). (a) (b)-(c) nvariable = 20. (d)-(e)-(f) nvariable = 13 
(suppression of elements with more than 10% of data below the detection limit). 



 

 

Figure 14: Step 4, estimating Na with the untransformed LAMROC data, continued: importance of variables for the 
estimations shown in figure 13. (a) (b)-(c) nvariable = 20. (d)-(e)-(f) nvariable = 13. 



 

 

Figure 15: Profiles of sodium versus depth for four drill holes (MCL-12-09, MC-04-11, MC-05-19/19A and MC-09-76) 
arranged from proximal to distal relative to the McLeod VMS deposit (see Fig. 2 for locations). Blue line shows estimated 
sodium based on LAMROC data. Red squares are Glencore geochemical data. BRV1B = Bracemac Rhyolite; BT = Bracemac 
Tuffite; KT = Key Tuffite; MS = massive sulfide; SMS = semi-massive sulfide; T = tuffite; WV1B = Watson Lake Rhyolite. 
The profiles are vertically arranged so that the KT horizon is always at the same level. Downhole depth does not represent 
true thickness. 



 
 
Tables 

Table 1: Summary of the steps performed to estimate sodium. 
 

Raw 

data 
Step Goal 

Number of 

drillholes 

Number 

of data 

Number 

of 

variables 

Data type 

(unprocessed 

or centered 

log-ratio) 

Results/Pe

arson 

correlation 

Most 

influential 

variables 

Glencore 

Step 
1 

Test algorithm on large 
database of conventional 

geochemistry 

314 8287 18 
Unprocessed 

data 
0.93 

Sr (35%); 
Fe2O3 (13%) 

314 8287 18 CLR 0.95 
MgO (57%); 
Fe2O3 (10%) 

Step 
2 

Test algorithm with less 
data 

9 260 18 

CLR 

0.84 
LOI (31%); Sr 

(25%) 

Test algorithm with less 
data, but adding two 

variables 
9 260 20 0.83 

LOI (30%); Sr 
(24%) 

Step 
3 

Vary training and test sets 
(A, B and C) 

9 260 20 

Unprocessed 
data 

0.82-0.88 

Sr (30%); SiO2 

(10%) (A) 
Sr (30%); 

Fe2O3 (10%) (B 
and C) 

CLR 0.82-0.88 

LOI (25-35%); 
Sr (20%) (A 

and B) 
Sr (35%); LOI 

(20%) (C) 

LAMRO
C 

Step 
4 

Variation of variables and 
training and test sets  (A, B 

and C) 

9 260 20 
Unprocessed 

data 
0.66-0.75 

Sr (30%); 
density (12-

18%) (A, B and 
C) 

9 260 20 CLR 0.66-0.74 

Sr (30-35%); 
density (15-

18%) (A, B and 
C) 

9 260 13 
Unprocessed 

data 
0.69-0.75 

Sr (40%); 
density (10%) 

(A and C) 
Sr (40%); 

Al2O3 (15%) 
(B) 

Step 
5 

Estimate Na based on full 
multivariate dataset 

9 9675 20 
Unprocessed 

data 
- - 
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