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ABSTRACT
Fumaric acid (FA), a metabolic intermediate, has been identified as an important carbohydrate
derived platform chemical. Currently, it is commercially sourced from petrochemicals by chemical
conversion. The shift to biochemical synthesis has become essential for sustainable development
and for the transition to a biobased economy from a petroleum-based economy. The main limi-
tation is that the concentrations of FA achieved during bioproduction are lower than that from a
chemical process. Moreover, the high cost associated with bioproduction necessitates a higher
yield to improve the feasibility of the process. To this effect, genetic modification of microorgan-
ism can be considered as an important tool to improve FA yield. This review discusses various
genetic modifications strategies that have been studied in order to improve FA production.
These strategies include the development of recombinant strains of Rhizopus oryzae, Escherichia
coli, Saccharomyces cerevisiae, and Torulopsis glabrata as well as their mutants. The transformed
strains were able to accumulate fumaric acid at a higher concentration than the corresponding
wild strains but the fumaric acid titers obtained were lower than that reported with native
fumaric acid producing R. oryzae strains. Moreover, one plausible adoption of gene editing tools,
such as Agrobacterium-mediated transformation (AMT), CRISPR CAS-9 and RNA interference
(RNAi) mediated knockout and silencing, have been proposed in order to improve fumaric acid
yield. Additionally, the introduction of the glyoxylate pathway in R. oryzae to improve fumaric
acid yield as well as the biosynthesis of fumarate esters have been proposed to improve the eco-
nomic feasibility of the bioprocess. The adoption of some of these genetic engineering strategies
may be essential to enable the development of a feasible bioproduction process.
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Introduction

Microorganisms can produce a diverse range of chemi-
cals and materials. These products of microbial metab-
olism, such as organic acids, have a wide range of
applications and can be used in our daily life. Humans
have a long history of reliance on microorganisms to
produce diverse products ranging from chemicals,
such as ethanol and organic acids, to consumables,
such as bread, yogurt, and cheese. Fumaric acid (FA),
also referred to as (E)-2-butenedioic acid or trans-1,2-
ethylene dicarboxylic acid, is one such microbial meta-
bolic products that have been identified as a platform
chemical by the US Department of Energy (DOE) in
2004 [1,2]. It is as an important carbohydrate derived
platform chemical, a key intermediate of microbial
metabolism, with several applications in the synthesis
of bio-based chemicals and polymer production. The
diverse applications are rendered due to the presence

of the dicarboxylic groups. This makes FA amenable to
chemical modifications and being suitable for use as
a monomer for the synthesis of biodegradable poly-
mers [3].

FA is mainly used as a food additive and food
acidulant and in the production of paper resins, unsat-
urated polyester resins, and plasticizers [4–6]. The
application of fumaric acid, in general, has been
reviewed extensively by Das et al. [7,8] and the diverse
industrial applications of this acid as a resin, plasti-
cizer, and component for polymer synthesis has been
reviewed by Doscher et al. [9]. More recently, deriva-
tives of FA, especially fumaric acid esters (FAEs) have
found its application as an important chemical with a
wide array of biomedical applications, such as psoriasis
and sclerosis treatment and a support material for tis-
sue engineering. Clinical level studies on the pharma-
cological effects of FA and its ester derivatives (FAEs)
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have confirmed their efficacy. Methyl esters of fumaric
acid, mono-methyl fumarate (MMF) and dimethyl
fumarate (DMF) esters, has been even licensed for use
in Europe for the treatment of severe psoriasis vulgaris
[10,11]. The recent approval of FDA of DMF (Tecfidera)
for use in the treatment of relapsing forms of multiple
sclerosis, proves the importance of FA and FAEs. In
addition, FAEs, specifically their ethyl esters, has found
its application in tissue engineering as a scaffold as
well as for drug delivery [12,13]. The review by Das
et al. [8] provides comprehensive information about
the diverse medical applications of fumaric acid and
its derivatives.

The diverse applications of FA have fueled the
demand for dicarboxylic acid, which is fulfilled by the
means of chemical synthesis from petroleum prod-
ucts. Emphasis on the transition towards the bio-
based economy has led to the recognition of interest
in the development of bioproduction strategies for
FA production. FA is a key intermediate of the meta-
bolic pathway of a diverse group of microorganisms
and has led to the investigation of these microorgan-
isms as a potential means of FA production. Fungal
strains such as Rhizopus oryzae, has been identified as
a FA overproducer and a potential source for FA. This
review discusses various strain improvement strat-
egies to improve R. oryzae mediated FA production
as well as metabolic and genetic engineering strat-
egies investigated to achieve microbial production
using non-FA producers. These investigations have
not led to commercial bioproduction of FA and
the plausible reasons for this have been provided.
Moreover, the advancement in metabolic engineering
techniques have provided us with novel tools and
possible avenues for the use of these strategies for
the bioproduction of FA and its derivatives. Previous
reviews have emphasized primarily on the control of
process parameters in order to improve and control
FA production. These reviews have provided little dis-
cussion on genetic engineering strategies that can be
adopted to improve FA production. This lack of com-
piled information on strain improvement strategies,
especially genetic engineering, is attempted to be
considered in this review.

Current status of the commercial synthesis of
fumaric acid

At present, the global demand for FA is solely fulfilled
by petrochemical methods of synthesis as represented
in Figure 1. It is derived by the isomerization of maleic
acid obtained from hydrolysis of maleic anhydride.

The maleic anhydride is obtained by the oxidation of
butane or benzene in the presence of the catalyst,
vanadyl pyrophosphate [3,4]. The catalyst mediated
conversion is the only feasible technique for the
selective conversion of butane into maleic acid [14].
This chemical catalyst mediated process provides a
high process yield of FA (112% w/w) from maleic
anhydride [3,14]. However, this process also leads to
the formation of the toxic gas, carbon monoxide, and
greenhouse gas, carbon dioxide, as byproducts, which
in turn leads to environmental pollution and contrib-
utes to global warming [7]. The global demand for FA
is expected to expand to over 300 Kilotons by the
year 2020 from 225.2 Kilotons (2012). This increase in
demand is mainly fueled by a rise in the demand for
the acid used in the food and beverage industry,
which accounts for over 35% of global consump-
tion [15–17].

Moreover, FA is an important intermediate in the
synthesis of edible products, such as L-malic acid and
L-aspartic acid. The increase in demand for artificial
sweeteners, such as aspartame, in beverages and
foods, will further increase the worldwide demand
for FA and its derivatives [18]. Furthermore, the
recent identification of its pharmaceutical properties
can lead to increased usage of FA and its derivatives
in the pharmaceutical industry, as discussed earlier.
This will further enhance the global demand for this
acid. Additionally, the high price of crude oil, its
depletion and the recent emphasis on green chemis-
try for sustainable development, has necessitated
the adoption of alternate means for increased FA
production [15,19].

Bioproduction of fumaric acid

Microbial bioproduction of this carbohydrate derived
biochemical provides an attractive alternative which
ensures sustainable development by reducing the
dependence on fossil fuels. Moreover, the use of
renewable feedstocks helps the recovery of valuable
carbon. FA is one such compound synthesized by
many microorganisms, especially aerobic microbes, as
an intermediate compound during the TCA cycle
[7,20]. As early as 1911 the fungal strain, Rhizopus nig-
ricans, was identified for its ability to synthesize FA as
early as 1911. Later studies, involving multiple fungal
species, concluded that Rhizopus species was the best
producer of fumaric acid. Xu et al. [5] provided a brief
summary of the history of the bioproduction of FA.
Additionally, the adoption of a bioproduction strategy

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

2 J. SEBASTIAN ET AL.



allows for carbon dioxide fixation and recovery, espe-
cially when organic industrial residues are employed.

However, the advent of less expensive petrochem-
ical means of fumaric acid synthesis led to the discon-
tinuation of the bioproduction of FA. Higher yields of
FA are obtained during the chemical process (112%
w/w against 85% w/w via fermentation using glucose
as carbon source). Also, the lower production cost and
better control over production conditions led to the
widespread use of the chemical process for FA pro-
duction [3]. The recent increase in the price of petrol-
eum products, increasing the emphasis on low carbon
footprint production strategies and green chemistry
approaches for sustainable development. This has
resulted in the resurgence of interest in fumaric acid
production by fermentation [5,15]. Moreover, the
adoption of bioproduction strategy allows for the util-
ization of renewable biomass as well as industrial
residues for FA production. This in turn significantly
reduces the production costs thereby improving
its feasibility. Additionally, the low solubility of FA,
5–7 g/L (at room temperature), ensures its easy

recovery by simple precipitation following acidification.
Hence, no specialized strategies are required for the
recovery of FA [21,22]. The FA crystals so recovered
have been observed to be of high purity, with inor-
ganic components in the fermentation medium being
the primary contaminant, and can be used thereafter
for low purity applications such as the manufacture of
resins or polymers as well as cattle feed supplements
[3]. To further improve FA purity, the use of activated
carbon has been investigated and found to be effect-
ive [23,24]. The recovered FA (of purity >99%) can be
used for biomedical applications such as psoriasis
and multiple sclerosis treatment.

Metabolic pathway of fumaric acid synthesis

Fumaric acid is an important intermediate of the tri-
carboxylic acid (TCA) cycle (Krebs cycle). Two different
metabolic pathways are mainly involved in the synthe-
sis of FA viz. oxidative TCA cycle and reductive TCA
pathway. Fixation of CO2 and conversion of pyruvate
to oxaloacetate occurs during the TCA cycle. Reductive
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Figure 1. Chemical fumaric acid synthesis and its derivatives.
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CO2 fixation catalyzed by the pyruvate carboxylase
enzyme is the main reason for the accumulation of
fumaric acid during fermentation as it was observed in
the case of the Rhizopus species [5]. The reductive cycle
has a maximal theoretical yield of 2 moles of FA per
mole of glucose consumed and 2 moles of CO2 fixed.
Reliance on reductive pyruvate carboxylation, as the
sole pathway, will lead to no ATP formation. This ATP is
required for cell maintenance and will affect overall cell
growth. Hence, the TCA cycle is active during FA pro-
duction and complete theoretical fumaric yield will
not be achieved [3,7]. Adoption of strategies to limit
fungal growth has the potential to ensure optimum
fumaric acid production. The metabolic pathway and
enzymes involved in the key steps of this pathway are
represented in Figure 2 and a brief summary of the
metabolic pathways involved in the microbial fumaric
acid production is provided in reviews by Engel et al.
[3] and Xu et al. [5]. Additionally, it was identified
that amino acid and fatty acid metabolism, as well
as activation of the glyoxylate pathway, can have a
potential impact on FA accumulation [25–27].

Rhizopus sp. mediated fumaric acid production

Fungal species have been employed to produce a vast
array of compounds and consumables. Multicellular

filamentous fungi or molds are extensively used to
produce fermented foods, secondary metabolites, and
industrial enzymes. Rhizopus sp. is an example of fila-
mentous fungi, belonging to the “Mucoraceae” family,
that is used to produce a wide array compounds
ranging from fermented food products to platform
chemicals such as fumaric acid [20,28,29].

Rhizopus oryzae, generally regarded as safe (GRAS),
has usually been employed for FA production via fer-
mentation at neutral pH values to produce fumarate
salts [22]. This fungal species is subdivided into two
groups (Type I and Type II) according to their genetic
and phenotypic differences. Type I accumulates lactic
acid whereas Type II mostly synthesize FA in the pres-
ence of fermentable sugars. The main difference
between these two types is that Type I contains two
lactate dehydrogenase (ldh) genes, ldhA, and ldhB,
whereas Type II only has one of the genes ldhB. The
lactate dehydrogenase enzyme, LdhA, encoded by the
ldhA gene enables the conversion of pyruvic acid to
lactic acid whereas the enzyme encoded by ldhB gene
possesses insufficient reductive capacity. This reduced
capacity allows for the conversion of excess pyruvate
to fumaric acid and/or ethanol [28,30]. Table 1 pro-
vides a summary of FA production studies conducted
using R. oryzae.
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Figure 2. Overview of metabolic pathway and enzymes involved in the fumaric acid synthesis in R. oryzae. EMP stands for
Embden–Meyerhof–Parnas pathway or glycolysis. The enzymes involved in the various steps of the pathway are PDC—pyruvate
decarboxylase (EC 4.1.1.1); ADH—alcohol dehydrogenase (EC 1.1.1.1); LDH—lactate dehydrogenase (EC 1.1.1.27); PDH—PYRUVATE
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fumarase (EC 4.2.1.2). For color version of the figure refer e-print.
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Limitations of R. oryzae based production

R. oryzae mediated FA production is usually per-
formed at neutral pH values. The production of the
acid during fermentation leads to a significant
decrease in pH from 6 to 4 within the first 48 h of
fermentation. This reduction in pH causes the rate of
production to slow down and eventually cease com-
pletely. To prevent this drop in pH, the fumaric acid
is converted to fumarate salts by using neutralizers,
such as calcium carbonate and sodium carbonate.
Fumaric acid is then recovered from the fermentation
broth by precipitation, due to its low solubility, fol-
lowing acidification. The requirement of neutralizers
and acids during the recovery step leads to high
consumption of bases and acids as along with the
production of large quantities of salts. Calcium car-
bonate is commonly used as the neutralizer but
the insolubility of calcium salts causes considerable
power consumption and process difficulties, such as
increased viscosity and associated power consump-
tion [22,39,48]. Hence, sodium carbonate is mainly
proposed as a neutralizing agent because the sodium
salt of fumarate is soluble. Gangl et al. [48] have per-
formed a comprehensive comparison of the advan-
tages and disadvantages of using calcium carbonate
and sodium carbonate as the neutralizing agent.

Some of the above-mentioned limitations of the
fungal strain mediated fumaric acid fermentation can
be overcome by performing the fermentation at a
lower pH. The move to a lower pH fermentation
reduces the quantity of neutralizing agent required in
order to maintain pH close to neutral as well as the
quantity of salt generated during the recovery of
fumaric acid from the fermented broth. Moreover, the

undissociated fumaric acid so formed can be recov-
ered by the crystallization from the broth due to the
low solubility of FA. Additionally, the direct recovery
of fumaric acid from the broth using adsorbents, such
as polyvinyl pyridine (PVP) resin and Amberlite IRA-
900, would be possible [5]. This strategy of FA recov-
ery using adsorbents was successfully used by Cao
et al. [47] to recover high purity FA following desorp-
tion and acidification. To this effect, the shortened
duration of pH control and fermentation at pH 5 was
proposed [22]. It was observed that eliminating off pH
control at 90 h instead of 120 h did not lead to
important effects on FA production. The drawback of
this strategy is that pH control is required during the
initial stages of fermentation even though reduced
consumption of the neutralizing agent is achieved.

Moreover, it has been observed that the morph-
ology of the fungus during fermentation has a pro-
found impact on FA production and has been
extensively studied by Engel et al. [22] and Zhou et al
[49]. It was also observed by them that the fungal
pellet diameter played a key role in FA productivity.
Zhou et al. [49] concluded that lower pellet diameter
enhanced for mass transfer as well as better contact
with more of the actively growing fungi present
on the surface of the culture. Furthermore, it was
observed by Engel et al. [22] that an anaerobic envir-
onment was present at the core of the fungal pellet.
Therefore, fungal pellets of smaller diameter are pre-
ferred which requires the optimization of conditions,
such as agitation rate, pH conditions, temperature,
and working volume, to achieve the optimum pellet
diameter. This dependence on fungal morphology
further adds to the complexities associated with
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Table 1. Summary of fumaric acid production studies carried out using R. oryzae.

Carbon source Fermenter
Fumaric acid
concentration

Productivity
(g/L/h) Reference

Glucose Stirred tank 56.2 g/L 0.7 [31]
Glucose Stirred tank 41.1 g/L 0.37 [32]
Glucose Stirred tank 32.1 g/L 0.32 [33]
Glucose Stirred tank 30.2 g/L 0.19 [22]
Xylose Shake flask 28.4 g/L – [34]
Xylose Shake flask (immobilization) 45.3 g/L – [35]
Glucose/xylose Shake flask 46.7 g/L – [36]
Corn straw Shake Flask 27.8 g/L 0.33 [37]
Cornstarch Shake flask (Simultaneous saccharification fermentation) 44.1 g/L 0.53 [38]
Cornstarch Shake Flask 45.0 g/L 0.55 [32]
Brewery wastewater Shake Flask 31.3 g/L – [39]
Apple juice extraction waste Shake Flask 25.2 g/L 0.35 [40]
Diary manure Stirred tank 31.0 g/L 0.32 [41]
Apple pomace Solid state-Rotating drum fermenter 138 g/kg dry weight – [40]
Glucose/crude glycerol Shake flask 22.81 g/L 0.34 [42]
Synthetic medium Immobilized fungi 32.03 g/L 1.33 [43]
Synthetic medium Immobilized fungi 40.13 g/L 0.32 [44]
Synthetic medium Immobilized fungi 30.3 g/L 0.21 [45]
Brewery wastewater Immobilized fungi 43.67 g/L 1.21 [46]
Synthetic medium Immobilized fungi- fed-batch 85 g/L 4.25 [47]
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fungal bioproduction of fumaric acid. To this effect,
immobilization of fungi on the support have been
proposed to reduce the effects of pellet morphology
and has been found effective in increasing FA prod-
uctivity as well as its yield [43,46,47]. Reduction in the
duration of fermentation, leading to increased prod-
uctivity, from 144 h to 24 h was observed by Gu et al.
[43]. The fumaric acid yield of 32.03 g/L was obtained
post immobilization of the fungi R. arrhizus during
this study. In addition, a glucose to nitrogen ratio of
the production media has been observed to have a
profound impact on FA production. To enable max-
imum FA yield, nitrogen limitation is recommended to
limit fungal growth and achieve optimal diversion of
sugars towards fumarate production. It has also been
observed that optimal activity of the cytosolic fumar-
ase enzyme was obtained under nitrogen limiting
conditions and this activity increased 300% upon
reduction of the urea concentration from 2.0 to
0.1 g l–1 [3,19,50].

To overcome the above-mentioned complexities
of R. oryzae mediated fumaric acid production, the
genetic transformation of microorganisms, such as
S. cerevisiae (capable of growing at low pH), to accu-
mulate fumarate has been considered. These strat-
egies of genetic engineering microorganisms to
produce fumaric acid are discussed in the follow-
ing sections.

Improved fumaric acid production through
strain improvement and genetic modification

The lower yield of FA, during bioproduction, com-
pared to chemical synthesis has motivated researchers
to investigate strategies for improving the FA yield
of the filamentous fungus R. oryzae. These strain
improvement strategies primarily rely on increasing
product yields thereby enhancing the feasibility of
commercial bioproduction. These techniques of strain
improvement have been extensively reviewed by
Meussen et al. [51] and Li et al. [52] but strain
improvement techniques targeted towards FA

production have so far not been discussed and this
discussion occurs in later sections of this review.
Moreover, under low pH conditions (3–5), due to
reduced fungal growth as well as the complexities of
this fermentative fungal strain mediated fumaric acid
production has led researchers to investigate the pos-
sibility of using alternate microorganisms for the pro-
duction of FA. Developments in genetic engineering
techniques, such as genetic transformation and over-
expression of homologous genes, such as fum, pyc
and mdh, and metabolic engineering, have provided
the tools for improving microbial production of
organic acids, such as: malic acid, succinic acid, and
fumaric acid [29,51].

Strain improvement strategies for R. oryzae

Random mutagenesis

Random mutagenesis involves the use of chemical
mutagens, such as diethyl sulfate, nitrosoguanidine
and diethyl sulfate, or radiation, such as UV light and
gamma radiation, to induce changes in the genetic
makeup of an organism. This technique has for centu-
ries been employed for the development of novel
strains. The main drawback of this technique is that
following induction of the mutation, multiple mutant
strains are generated. These strains generate the need
to be screened and a suitable strain selected which is
time-consuming and laborious [19,51]. The mutant
strains selected were able to produce higher yields
of fumaric acid than the parent strain but these titers
were significantly lower than the maximum titers
reported for strains obtained from culture collections
(represented in Table 2) but comparable to other titers
that have been reported [31–33]. Hence, random
mutagenesis can be used as a viable tool for strain
improvement. The adoption of novel strategies, dis-
cussed in a later section, in combination with random
mutagenesis can be useful for the selection of appro-
priate high yielding strains. Q1Moreover, the use of
this technique generates multiple mutations in the
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Table 2. Random mutagenesis of R. oryzae and fumaric acid concentrations obtained (R. oryzae reassigned as R.
arrhizus, [53]).
Fungal strain Mutagen Fumaric acid titer (g/L) Yield (g/g) Reference

Pure culture
R. arrhizus NRRL 2582 – 103 0.79 [54]
R. arrhizus NRRL1526 – 98 0.82 [55]

Mutant
R. oryzae RUR709 UV and c-ray mutagenesis 32.1 0.45 [33]
R. oryzae ZD-35 UV irradiation 57.4 0.67 [32]
R. oryzae ME-F01 UV and nitrosoguanidine 52.7 – [56]
R. oryzae ME-F12 Nitrogen ion implantation 44.1 0.44 [38]
R. oryzae FM19 Femtosecond laser irradiation 49.4 0.56 [25]
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microorganism and the other metabolic activities may
be hampered in addition to the targeted metabolite
production. Also, the damage to the DNA by the use
of high energy radiations may prevent DNA replication
and hamper the overall transfer of the desired trait.

Homologous and heterologous gene expression in
R. oryzae for fumaric acid production

Fumaric acid is an intermediate of the TCA cycle, as
mentioned in the earlier section, but the fumaric
acid generated during the oxidative pathway is not
accumulated as it is consumed for cell growth and
maintenance. The accumulation of fumaric acid
occurs via the reductive TCA pathway, as observed
in the case of R. oryzae. Multiple enzymes are
involved in the synthesis of fumaric acid from pyru-
vate. Pyruvate carboxylase (PYC) catalyzes the ATP-
dependent condensation of pyruvate and CO2 to
form oxaloacetic acid (OAA). The OAA, so formed,
is converted to malate by malate dehydrogenase
(MDH), followed by conversion of malate to fumarate
by the enzyme fumarase. [57] The overexpression of
the enzymes involved should be able to increase
fumarate production.

Zhang et al. [57] observed a 26% increase in
fumaric acid production in their study by transforming
R. oryzae to express homologous and heterologous
enzymes. They introduced the exogenous phosphoe-
nolpyruvate carboxylase enzyme (PEPC) in addition to
PYC using the plasmid (pPyrF2.1A) mediated trans-
formation of fungi R. oryzae M16. The PEPC enzyme,
not present in R. oryzae, is involved in the conversion
of phosphoenolpyruvate to OAA with CO2 fixation.
Increased PYC and PEPC activity of 3–6mU/mg were
observed. The redirection of this metabolic pathway
resulted in the introduction of these genes that lead
to an increase in fumarate production [57]. In another
study, the impact of the overexpression of the fumR
gene that encodes for the fumarase enzyme was
investigated. It was observed that the over-expression
of fumarase in R. oryzae lead to malic acid production
instead of FA. The over-expressed fumarase is also
able to catalyze the hydration of FA to malic acid.
Hence, it can be concluded that the presence of
fumarase alone may not be responsible for FA accu-
mulation during R. oryzae mediated fermentation [58].
To this effect, the observation by Peleg et al. has a
particular significance [59]. They identified two isoen-
zymes of fumarase with a different localization within
the cell. One isoenzyme was solely present in the
cytosol whereas the other was found in both the
cytosol and in the mitochondria. It was also observed

that the inhibition of fumarase activity by cyclohexi-
mide only affected fumaric acid production and
decreased the activity of the cytosolic fumarase isoen-
zyme [59]. Therefore, the transformation of R. oryzae
with the appropriate isoenzyme has the potential to
improve FA production as the reductive TCA cycle
occurs in the cytosol.

In addition, a dicarboxylic acid transporter with
high selectivity for fumaric acid can also play an
important role in its production with R. oryzae. This
conclusion is supported by the observation that malic
acid production by Aspergillus oryzae NRRL 3488 was
improved twofold by the overexpression of a C4-dicar-
boxylate transporter. The overexpression of malate
dehydrogenase and pyruvate carboxylase in conjunc-
tion with the transporter led to an additional increase
of 27% and achieved a malic acid concentration of
154 g/L in 164 h [60]. The high concentration of malic
acid achieved in this study points to the possibility of
achieving a similar titer for fumaric acid by providing
an efficient system for the conversion of the malic
acid into fumaric acid.

Fumaric acid production in recombinant
microorganisms

The limitations of R. oryzae mediated synthesis of
fumaric acid, discussed previously in Limitations of R.
oryzae based production section, has motivated
researchers to investigate the possibility of using
other microorganisms, particularly Escherichia coli and
Saccharomyces cerevisiae, to produce fumaric acid. To
this effect, the metabolic pathways that influence FA
production have to be investigated prior to the gen-
eration of recombinant strains. Cellular metabolism
is highly regulated and made up of a plethora of vari-
ous components, such as transcripts, proteins, and
metabolites, and the production of the compound of
interest is directly linked to the cellular activities.
Hence, an accurate understanding of the metabolic
states and regulatory mechanisms are important.

The most effective way to evaluate the metabolic
state is to quantify various metabolites. Therefore, the
advances in analytical techniques, such as NMR, gas
chromatography-mass spectrometry (GC-MS), gas
chromatography time-of-flight mass spectrometry (GC-
TOF) and liquid chromatography-mass spectrometry
(LC-MS), has enabled high-throughput analysis of the
metabolites. This has allowed for quick comparative
analysis of metabolite profiles post-genetic modifica-
tion and provides an understanding of the physio-
logical state of the cell, which in turn provides us
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with an understanding of their metabolic status. To
further improve an understanding of the metabolic
state of the cell, isotopomer experiments can be per-
formed. These studies provide us with additional
information on intracellular fluxes and metabolic rates.
13C-labeled glucose is the most frequently used iso-
topomer. The monitoring of the distribution of the
isotopomer, as the labeled glucose is metabolized,
can be used to estimate metabolic reaction rates.
Hence, provide quantitative information regarding car-
bon flow through the metabolic pathways [60,61]. An
understanding of this would allow for the selection of
the metabolic pathway of interest that would enable
maximum conversion of glucose to fumaric acid with
reduced byproduct formation.

Improvement of the cellular systems by metabolic
engineering strategies is vital to enhance the overall
productivity and yield of the target compound. The
development of stoichiometric metabolic models
which includes all enzymatic reactions of organisms,
such as E. coli and S. cerevisiae, has enabled the pre-
diction of metabolic states using in silico simulations.
Metabolic flux analysis (MFA), flux balance analysis
(FBA), and metabolic pathway analysis (MPA) are the
most popular tools in stoichiometric metabolic net-
work analysis. Additionally, database resources, such
as UniProt, BRENDA, BioCyc, KEGG, and the Enzyme
Commission database, can be used for the reconstruc-
tion of a metabolic pathway [29,62]. The above-men-
tioned tools for metabolic engineering have been
extensively used for transformation of E. coli and S.
cerevisiae strains but have not been readily used for
the transformation of R. oryzae. There are only a few
reports the transformation of R. oryzae that adopted
metabolic flux analysis for metabolic engineering of
considering this fungal strain.

One such early study used TELUX, a specific radio-
activity curve-matching program, to investigate glu-
cose metabolism by R. oryzae. In the study, 14C
isoprotomer labeled glucose was used to understand
glucose metabolism and thereby increase lactate yield.
This was followed by UV-mediated random mutagen-
esis and the selection of a lactate overproducing
strain. The prediction of metabolic pathway modifica-
tion that led to lactate overproduction, provided by
glucose flux analysis, helped in the identification of a
suitable strain. This selected strain showed reduced
ethanol production and chitin synthesis, as predicted,
and a lactic acid yield of 30 g/L was obtained [63]. In
another study, the results of the carbon flux analysis
of a mutant lactic acid overproducing strain, R. oryzae
R1021, and the parent strain, R. oryzae R3017, showed

that pyruvate was the key metabolic intermediate. The
mutant strain showed reduced loss of carbon to etha-
nol and acetyl-CoA and provided a lactic acid yield of
79.4 g/L, which was 52% higher than that of the par-
ent strain [64]. These studies focused on the synthesis
of lactic acid but the understandings can possibly be
adopted for FA production. Such a study on metabolic
profiling, post femtosecond laser-mediated random
mutagenesis, identified that modifications to amino
acid and fatty acid metabolism led to a 1.59-fold
increase in FA production [25]. These studies used
MFA or metabolic profiling for understanding carbon
metabolism either before or after random mutagenesis
but not for designing metabolic pathways and trans-
forming the fungi. The importance of a better under-
standing of metabolic activities using metabolite
profiling is further signified by the observation that
the FA production was enhanced by 39.7% as a result
of supplementation with 1% linoleic acid during R.
oryzae mediated fermentation at low pH (pH 3) condi-
tion. The strategy of supplementation with linoleic
acid was adopted based on the understanding of the
changes to the metabolic activity at low pH conditions
provided by GC-MS assisted metabolite profiling [65].
The use of in silico metabolic modeling was found to
be effective in designing a metabolic engineering
strategy to achieve a higher FA titer in T. glabrata
[66]. Hence, an in silico model of fumarate synthesis
of R. oryzae is essential to achieve effective conversion
of glucose to fumarate.

The successful adoption of MFA assisted strain
selection, in combination with strain improvement
strategies, can also be adopted to improve FA yield in
R. oryzae. MFA can act as an important tool for the
selection of an appropriate high FA producing strain
following random mutagenesis. Moreover, it would be
possible to obtain far higher titers for FA by using
MFA mediated design and then transform the fungal
strain using targeted genetic modification approaches.
These strategies would enable reduced byproduct
synthesis, such as ethanol and malic acid, as well
as effective redirection of a metabolic pathway that
allows for maximum productivity by optimal conver-
sion of glucose to FA, as observed in case of both E.
coli and S. cerevisiae discussed below.

Escherichia coli

High concentrations of fumaric acid are not normally
produced in E. coli and 20 g/L has been shown to
have an impact on cell growth [26]. The adoption of
genetic engineering strategies has allowed the use
of E. coli for the production of a diverse range of
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compounds and possibly fumarate. This possibility has
been investigated. The de-repression of the glyoxylate
pathway in combination with overexpression and
deletion of specific genes was exploited to induce FA
accumulation [26,27]. Song et al. [26] used rational
metabolic engineering strategies coupled with in silico
flux response simulation to develop a novel E. coli
strain. The in silico flux modeling simulation (E. coli
genome-scale metabolic model EcoMBEL979) was
used to investigate the influence of PEPC flux on
fumarate production and helps to understand the
response to a metabolic shift. It was observed the
overexpression of PEPC was able to increase the FA
production and further genetic modifications selected
based on their effect on FA production. The final con-
centration of FA was achieved by transforming E. coli
to overproduce FA via the noncyclic glyoxylate route.
The isocitrate lyase repressor gene iclR was deleted
to enhance the carbon flow into the glyoxylate shunt
in addition to the silencing of fumarase isozymes.
Moreover, endogenous PEPC was also overexpressed
to increase the reductive TCA cycle flux to achieve FA
production. Additionally, genes involved in the further
conversion of FA and byproduct syntheses, such as
arcA, aspA, lacL, and ptsG, were deleted. FA produc-
tion with the final strain obtained was 28.2 g/L, and a
productivity of 0.448 g/L/h under aerobic fed-batch
culture conditions [26].

The glyoxylate pathway flux was enhanced simi-
larly to obtain a genetically modified strain of E. coli
capable of utilizing glycerol as a feedstock for FA
production. The conversion of fumaric acid to malic
acid was prevented by the deletion of fumA, fumB,
and fumC genes that code for three fumarases. It
was observed that the overexpression of glyoxylate
shunt and PEPC enzyme led to enhanced fumaric
acid production as well as reduction of acetate for-
mation (a byproduct). Additionally, the gene coding
for aspartase, which converts fumarate to aspartate,
was deleted to prevent the reverse conversion. An
FA concentration of 41.5 g/L was achieved with the
overall productivity of 0.51 g/L/h following fermenta-
tion under fed-batch conditions. This corresponded
to 70% of the maximum theoretical yield [27]. The
concentration of FA achieved during these investiga-
tions is still lower than the titers obtained by cultur-
ing R. oryzae. These studies focused primarily on the
redirection of the TCA cycle towards the glyoxylate
pathway for FA accumulation. However, the reduc-
tive TCA pathway has the potential to produce 2
moles of FA for every mole of glucose. This yield is
double than that of the theoretical maximum of the

oxidative glyoxylate pathway (1mol/mol glucose)
[67]. Hence, it may be possible to obtain even a
higher titer for FA with the enhancement of the
reductive TCA pathway along with the genetic modi-
fication strategies adopted during these studies.

Another metabolic pathway that has been investi-
gated for fumarate bioproduction in E. coli was the
introduction of the mammalian urea cycle [68].
Fumaric acid is produced as a byproduct in this meta-
bolic pathway during the conversion of L-arginosucci-
nate to arginine. The recombinant E. coli (ABCDIA-
RAC) was produced by blocking the Krebs cycle and
introducing the urea cycle. To improve FA production,
several genes, such as fumA, fumB, fumC, frdABCD,
iclR, and arcA, were deleted. Additionally, the urea
cycle was introduced by overexpressing the homolo-
gous carAB, argI, and heterologous rocF genes which
encoded for carbamoyl phosphate synthase (CPS),
ornithine carbamoyl transferase (OTC), and arginase,
respectively. The strain isolated was able to yield a
fumarate titer of 11.38mmol/L (1.32 g/L) and more-
over, it was concluded that cell growth and the dere-
pression of the Krebs cycle were required for high-
titer FA production in aerobic conditions [68]. In
another study by the same research group, the FA
yield of the strain was further improved to 9.42 g/L by
the overexpression of the homologous C-4 dicarboxy-
late carrier gene dcuB [69]. These studies have failed
to achieve the FA yields reported for R. oryzae but
shows that targeted multilevel genetic transformations
are essential to improve fumarate yield.

Saccharomyces cerevisiae

The yeast, S. cerevisiae is a well-established industrial
production organism and it possesses exceptional cul-
tivation characteristics. They require only simple
media for growth and are tolerant to the presence of
inhibitors. Moreover, there is a high degree of toler-
ance to (high) sugar concentrations and their ability
to grow under acidic conditions. The inability to grow
under low pH conditions is one of the main limita-
tions to R. oryzae mediated FA production. S. cerevi-
siae is not naturally capable of accumulating FA and
the feasibility of the induction of FA accumulation by
engineering S. cerevisiae has been investigated [5].

The introduction of heterologous cytosolic R. oryzae
malate dehydrogenase, high-level expression of the R.
oryzae fumarase and overexpression of the native
cytosolic pyruvate carboxylase was observed to only
yield an FA concentration of 3.2 g/L [70]. In a similar
study, simultaneous co-expression of both reductive
and oxidative routes of FA was investigated. This
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co-expression of heterologous RoMDH and RoFUM1
failed to accumulate FA in the engineered strain. It
was also observed that the fumarase deleted strain
could produce FA via the oxidative route. Moreover, it
was observed that the introduction of the heterol-
ogous reductive route of FA led to lower production
of FA but the introduction of a heterologous gene for
pyruvate carboxylase (RoPYC) led to a higher FA titer
(2.48 g/L). The maximum FA titer obtained, under opti-
mal conditions of nitrogen limitation and the presence
of biotin (co-factor of PYC), was 5.6 g/L [5].

Another strategy investigated improved FA yield,
investigated by the same group, was to subject the S.
cerevisiae CEN.PK2-1C pdc1adh1fum1 strain to site-
directed mutagenesis for improving the catalytic activ-
ity of RoPYC as well as overexpression of the same
strain. The site-directed mutagenesis was able to
improve the catalytic activity of it by reducing the
conformational instability afforded by the presence of
the amino acid proline at 474 positions. Substitution
of the amino acid with asparagine led to improved FA
production than the wild type strains. The best FA
yield of 448.4mg/L was obtained following biotin
supplementation of 56 mg/L [71]. This yield is consid-
erably lower than their previous study which yielded
5.6 g/L fumarate [5]. Hence, a better understanding of
the underlying mechanism of the metabolic pathways
influencing fumarate production is essential for suc-
cessful genetic modification strategies to improve
its yield.

Torulopsis glabrata

Recently, multivitamin auxotrophic mutant strains of
T. glabrata have been investigated for fumaric acid pro-
duction following genetic modifications. The auxo-
trophic strains have been known to produce high titers
of pyruvic acid and reported to have a higher glucose
and acid tolerance than S. cerevisiae [66]. Hence, is
an ideal strain for use in the industrial production of
organic acids, mainly pyruvate, but has been subjected
to genetic modification to enable the production of
malic acid as well as FA [66,72].

The genetic modification strategy adopted involved
identification of the metabolic pathways that contrib-
uted to the accumulation of FA in the cytosol fol-
lowed by the introduction of enzymes involved in the
metabolic pathways. To this effect, key enzymes affect-
ing fumarate accumulation, involved in both carbon
and nitrogen metabolism such as argininosuccinate
lyase (ASL), adenylosuccinate lyase (ADSL), fumarylace-
toacetase (FAA), and fumarase (FUM1), were identified
using in the silico metabolic model (iNX804). The

overexpression of the enzymes individually led to the
accumulation of FA in the modified strains compared
to the parent auxotrophic T. glabrata strain but ASL
and ADSL were identified as the key enzymes leading
to higher FA accumulation. Optimization of overex-
pression levels of enzymes ASL and ADSL gave a FA
titer of 5.62 g/L. This was further improved by intro-
ducing a heterogeneous gene, SpMAE1, that encodes
for a C4-dicarboxylic acids transporter in S. pombe.
The final titer obtained was 8.83 g/L [66].

Genetic modification of T. glabrata was performed in
another study which involved the introduction of heter-
ogenous R. oryzae genes that code for the fumarase
enzyme (RoFUM), pyruvate carboxylase (RoPYC) and
malate dehydrogenase (RoMDH) as well as the C4-
dicarboxylic transporter, SpMAE1, from S. pombe. The
binding site B of RoFUM was subject to site-directed
mutagenesis to enhance the catalytic efficiency of the
enzyme. The resulting modified strain yielded a fumar-
ate titer of 5.1 g/L. Further increases in FA yield were
achieved by subjecting the strain to additional modifi-
cation. This additional modification involved deletion
of the gene, ade12, that codes for adenylosuccinate
synthetase that is involved in purine metabolism. The
obtained strain resulted in a significantly higher FA
yield of 9.2 g/L as well as increased acid tolerance [72].

Limitations of current genetic engineering strategies

The concentrations of the fumaric acid obtained using
genetically engineered strains of E. coli, S. cerevisiae,
and T. glabrata are significantly lower than that
reported for R. oryzae, this is summarized in Table 3.
Despite the lower yields, genetic modification techni-
ques are an important tool to improve to further
improve fumarate yield. These genetic and metabolic
engineering strategies exhibit a special significance to
decrease the cost of production as well as efficient
utilization of biomass and industrial residues as feed-
stocks for fumaric acid production. Moreover, these
modifications allow for the alleviation of the problems
associated with R. oryzae mediated FA bioproduction
discussed in Limitations of R. oryzae based production
section. Advanced genetic and metabolic engineering
strategies that may be adopted for strain improve-
ment are discussed in the following sections.

Advanced genetic and metabolic engineering
strategies for fumaric acid production and its
derivatives

Advances in genetic and metabolic engineering have
permitted for modifications to inherent metabolic
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pathways to be carried out as well as the expression
of relevant heterologous pathways in desired micro-
organisms. Few of such strategies that can be con-
sidered for the production of fumaric acid as well
as its derivative esters are discussed in the follow-
ing sections.

Genetic and metabolic engineering tools for the
bioproduction of fumaric acid

Genetic transformation systems have allowed for the
introduction of foreign DNA in filamentous fungi, such
as R. oryzae, to produce strains with desired character-
istics. Most of these transformation techniques, such
as plasmid vector-mediated transformation, produce
strains with the transforming DNA remaining extrac-
hromosomally leading to low mitotic stability [75].
Moreover, alternate transformation techniques, such as
protoplast (spheroplast) fusion, are complicated as
well as inconsistent due to inherent variability in the
composition of fungal cell walls of different strains
[52]. To this effect, alternate transformation techniques
that provide for stable chromosomal integration of the
introduced DNA are required.

Agrobacterium-mediated transformation (AMT)

For successful genetic transformation, an efficient
transformation technique is required to insert genes
of interest. Agrobacterium tumefaciens-mediated trans-
formation (ATMT) is a such technique and has been
used for the transformation of filamentous fungi. The
main advantage of this method is that it generates
transformants that have single genomic integration of
the desired gene [76]. The soil bacterium A. tumefa-
ciens has the ability to transfer a part of its DNA called
transfer DNA (T-DNA) and this ability is exploited for
heterologous protein expression in the host organism.
For this purpose, the T-DNA is altered to contain the

gene of interest. After the introduction of the modi-
fied T-DNA into the host by A. tumefaciens, the T-DNA
integrates into the chromosome of the host, thereby
achieving the transformation of the host organism. A
brief summary of the technique and factors affecting
AMT efficiency has been provided by Li et al. [52].

The filamentous fungus R. oryzae has been sub-
jected to transformation using the AMT technique
[75]. It was concluded that the technique was not suit-
able for the expression of the gene of interest in
R. oryzae due to the presence of a possible defense
mechanism. However, more recent researches have
proved that heterologous gene expression is possible.
The ectomycorrhizal fungus Laccaria laccata was suc-
cessfully transformed through the ATM technique to
express hygromycin B phosphotransferase (hph) [76].
In another study, the filamentous fungus Trichoderma
reesei QM9414 was transformed using the AMT tech-
nique which resulted in the formation of a hygromycin
B-resistant fungi [77]. On the other hand, a decrease
in resistance to hygromycin B was observed during
several cultivation cycles of the fungus Backusella
lamprospora post successful integration of the heterol-
ogous gene [78].

The AMT technique has been used for the genetic
engineering of a diverse group of organisms but there
are no reports of using this technique for the trans-
formation of fungi for organic acid production, espe-
cially fumaric acid. The requirement of binary vectors
for this method may be one of the probable reasons.
These binary vector systems are tedious to prepare
[79]. Also, there are numerous factors that play a key
role in determining the transformation efficiency
which needs to be optimized. This genetic modifica-
tion and successful integration is a time-consuming
process. Moreover, the presence of a possible defense
mechanism against the presence of heterologous
genes may have contributed to the non-adoption of
the AMT technique for the fungal transformation [75].
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Table 3. Comparison of fumaric acid titer and yield of natural strains and genetically engineered strains.
Strains Fumaric acid titer (g/L) Yield (g/g) Reference

Natural strains
R. arrhizus 103 0.79 [54]

98 0.82 [55]
R. oryzae 56.2 0.54 [31]

56.5 0.94 [73]
40.5 0.51 [74]

Engineered strains
E. coli CWF812 28.2 0.39 [26]
E. coli EF02(pSCppc) 41.5 0.44 [27]
R. oryzae ppc 25 0.78 [57]
S. cerevisiae FMME 001 PYC2 þ RoMDH 3.18 0.05 [70]
S. cerevisiae FMME 006 DFUM1 þ RoPYCþ RoMDHþ RoFUM1 5.64 0.11 [5]
T. glabrata ASL(H) – ADSL(L) – SpMAE1 8.83 0.15 [66]
T. glabrata (Dade12) – PMS – P160A 9.2 0.15 [72]
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The loss of introduced heterologous characteristics
with time further contributes to the unsuitability of
the technique [78].

crispr cas-9

The advances in genetic engineering technologies have
created a number of opportunities for basic biological
research with filamentous fungi. Clustered regularly
interspaced short palindromic repeats (CRISPR)-CRISPR-
associated proteins (Cas) has recently emerged as a
potent genetic engineering technique. It is a potential
candidate to resolve the issue of low edit gene fre-
quency observed in the case of filamentous fungi. A
comprehensive review of using the system for editing
the fungal genome is provided by Deng et al. [80] and
Shi et al. [81]. The efficient, simple, and fast technique
of genetic modification allows for systemic research
on filamentous fungi. This technique is in its infancy
and researchers are continuously learning about the
potential applications of this potent genome-edit-
ing tool.

This genetic engineering technique has been mostly
used to perform gene deletion or creating a knockout
transformants. The versatility of the Cas9-multiple
SgRNA allows for insertion, deletion, and replacement
of target genes, thereby generating positive multiple
gene modifications. From the fumaric acid production
point of view, the system can be used to efficiently pro-
duce transformants with the deletion of genes that
encode enzymes, such as lactate dehydrogenase and
alcohol dehydrogenase, that causes the production of
byproducts. This enables the redirection of metabolic
flux towards fumarate production [82].

Moreover, this system was used in the develop-
ment of a genetic engineering toolbox for A. niger.
The toolbox allows for the generation of strains car-
rying heterologous expression cassettes at a defined
genetic locus. The proof of this concept was shown
by the transformation of A. niger to produce aconitic
acid. The transformed cells produced aconitate only
in the presence of the inducer 10 mg/mL doxycycline
[83]. Similar expression systems may be used for the
production of fumaric acid whereas R. oryzae can be
transformed to overexpress the enzymes involved in
the reductive pathway. Additionally, the enzymes
involved in the glyoxylate pathway may be overex-
pressed leading to the accumulation of succinate
and malate which can then be converted to fumaric
acid by succinate dehydrogenase and fumarase
respectively.

Gene knockout and silencing

Gene knockout and gene silencing have become
important tools for genetic engineering. During gene
knockout, the DNA is modified deliberately to remove
the entire or part of the gene whereas gene silencing is
a natural process where the expression is reduced. The
interlinked nature of metabolic pathways, as repre-
sented in Figure 3(a), can lead to the production of
multiple byproducts in addition to the compound of
interest. For example, during the synthesis of fumarate
from the glucose, byproducts, such as ethanol, lactic
acid, and glycerol, are also synthesized. This leads to
the loss or redirection of some of the glucose in the
culture towards the synthesis of these byproducts. The
inactivation of the genes responsible for the synthesis
of the enzymes, or the prevention of their synthesis,
involved in the production of these byproducts can
lead to the redirection of the metabolic pathway
towards the synthesis of only the desired product, as
depicted in Figure 3(b).

For example, the inactivation of enzymes pyruvate
decarboxylase and lactate dehydrogenase can prevent
the formation of the byproducts ethanol and lactate,
respectively. This redirects the metabolic pathway
towards fumarate synthesis. The inactivation of the
enzymes involved can be achieved by the use of
techniques such as gene knockout or RNAi (RNA inter-
ference) [84]. Gheinani et al. [85] were able to suc-
cessfully silence the ldhA and ldhB genes of R. oryzae
with siRNA technology, the most commonly used RNA
interference (RNAi) tool and redirects metabolic activ-
ity towards ethanol synthesis. Similar deactivation
of the lactate dehydrogenase gene of an anaerobic
gut fungus, Pecoramyces ruminantium strain C1A
was performed and reduced lactate production was
observed [86].

Possible metabolic pathway modifications in
R. oryzae

The modification of the metabolic pathway of E. coli
by activation of the glyoxylate pathway has proved to
be successful in enabling the transformed strain to
accumulate FA [26,27]. Hence, this re-direction of the
metabolic pathway in conjunction with the inherent
reductive TCA cycle can be introduced in R. oryzae to
enhance the production of FA. This possibility of
transformation has not been reported and the redir-
ected metabolic pathway is represented in Figure 4.
This redirection via the glyoxylate pathway has
the potential to enhance FA accumulation in this fun-
gal strain. It has been reported that the glyoxylate
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pathway is required for fungal virulence [87]. Hence, a
comprehensive understanding of the underlying risk
of enhanced fungal virulence, if any, needs to be
studied extensively before any commercial application
of the transformed strain is considered.

Additionally, metabolic modifications similar to that
described by Chen et al. [66,72] can be investigated
with R. oryzae. These modifications have been able to

increase FA titers in T. glabrata. Hence, the introduc-
tion of metabolic enzymes involved in nitrogen and
purine metabolism are that carbon metabolism can
be considered to improve fumarate yield. Moreover,
the introduction of an effective C4-dicarboxylic
acid transporter, such as SpMAE1 and DcuB, that has
been shown to significantly improve fumarate produc-
tion can be considered [66]. The acid tolerance of
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Figure 3. (a) Metabolic pathways involved in the production of fumaric acid and byproducts and (b) reduction of byproduct for-
mation by gene inactivation (represented in red) to obtain a high fumaric acid titer. gdp—Glyceraldehyde-3-phosphate dehydro-
genase; ldh—lactate dehydrogenase, and pdc—pyruvate decarboxylase. For color version of the figure refer e-print.
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T. glabrata, as well as fumarate production, was
improved by the deletion of the gene that codes for
adenylosuccinate synthase (ade12). Similarly, the
modification can be studied to improve the acid toler-
ance of R. oryzae. This modification will have a dra-
matic impact on the feasibility of commercial FA
bioproduction strategies as the cost associated with
the use of the neutralizing agents as well as the
recovery of FA from the fumarate complex formed by
the use of a neutralizing agent.

In situ biosynthesis of fumarate esters

The derivative of the fumaric acid, fumaric acid ester
(FAEs), has recently been identified as an important
derivative due to its diverse medical applications.
Hence, in situ bioconversion of fumaric acid to its ester
forms provided an attractive alternative for the green
synthesis of the esters. The current methods for indus-
trial synthesis of esters are nonselective, tedious, and
consume considerable energy. Most often these com-
mercial processes rely on direct chemical esterification.

This high-temperature inorganic catalyst mediated
esterification reactions convert organic acids to esters
in the presence of alcohol [88]. Due to the drawbacks
of chemical processes, such as non-selectivity and high
energy consumption, biosynthesis has been proposed
as a suitable alternative.

Lipases are the most used enzymes for the biosyn-
thesis of a diverse group of pharmaceutical com-
pounds. These enzymes have excellent stability even
in the presence of organic solvents, hence, their appli-
cation in the production of diverse biosynthetic com-
pounds. This application of enzymes in the synthesis
of a diverse array of compounds has been reviewed
extensively by Carvalho et al. [89]. R. oryzae is a
known producer of lipases and widely used for indus-
trial applications [90,91]. Hence, it would be possible
to bioconvert FA produced to FAEs by inducing lipase
synthesis either via genetic modification or induction
of their synthesis. The alcohol needed for conversion
of FA to FAEs may be provided externally. Ethanol
production during FA production fermentation has
been reported [40]. The induction of this ethanol
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Figure 4. Possible fumaric acid production via the introduction of the glyoxylate pathway (highlighted in blue) in conjunction
with reductive TCA pathway (highlighted in blue) in R. oryzae. The various enzymes involved in the metabolic pathway have
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synthesis would not be recommended as the diversion
of sugars to ethanol synthesis can lead to reduced
FA production.

Conclusion

The depletion of the fossil fuels, their impact on the
environment and the emphasis on green chemistry
has necessitated the production of microorganism
mediated synthesis of platform chemicals. This shift
allows for the use of the renewable substrate as well
as industrial and domestic residues as feedstocks
for the manufacture of biochemicals. Due to the low
price of commodity chemicals, such as fumaric acid,
the main factors that determine economic viability is
the costs of substrate and downstream processing.
These issues can be overcome by the use of biomass
or organic residues as feedstocks for synthesis as
well as by employing efficient downstream processing
strategies. Hence, the main factor the determines
feasibility is the product yield. Maximum product yield
is vital to lower manufacturing costs and to make bio-
chemical production competitive against fossil fuel-
based production.

Fumaric acid has been identified as one of the key
biobased platform chemicals that have diverse appli-
cations. Studies to produce this dicarboxylic acid
have yielded high titers, especially by the fungus R.
oryzae, but these high titers obtained are still lower
than the theoretical expected yield. Moreover, the
complications associated with the use of this fungal
strain have necessitated the development of an alter-
native means for producing this acid. The advances
in metabolic engineering tools have allowed for the
development of novel microorganisms capable to
yield higher fumaric concentration compared to the
parental strain. Some of these metabolic engineering
strategies that have been investigated and can be
adopted for improving FA yield has been discussed in
this review. The concentrations achieved are still
lower than those obtained by overproducing strains
of R. oryzae obtained from culture collections. Hence,
more research particularly the optimization of the
metabolic engineering strategies is essential to obtain
higher titers to make bioproduction feasible. This
is particularly true of the redirection of metabolic
pathways via the introduction of modifications that
enable in situ conversion of fumaric acid to its deriva-
tives, such as fumarate esters and aspartic acid. This
can potentially improve the feasibility of the biopro-
duction process.
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