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ABSTRACT 8 

Aim:  The interaction of land use with local vs. regional processes driving biological 9 

homogenization (β-diversity loss) is poorly understood. We explored: i) stream β-diversity 10 

responses to land cover (forest vs. agriculture) in terms of physicochemistry and 11 

physicochemical heterogeneity, ii) whether these responses were constrained by the regional 12 

species pool, i.e. γ-diversity, or local assembly processes through local (α) diversity, iii) if local 13 

assembly operated through the regional species abundance distribution (SAD) or intraspecific 14 

spatial aggregation, and iv) the dependency on body size, dispersal capacity, and trophic level 15 

(producer vs. consumer). 16 

 17 

Location:  United States of America, Canada, and France 18 

 19 

Time Period:  1993-2012 20 

 21 

Major Taxa Studied:  Stream diatoms, insects, and fish 22 

 23 
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Methods:  We analyzed six datasets totaling 1,225 stream samples. We compared diversity 24 

responses to eutrophication and physicochemical heterogeneity in forested vs. agricultural 25 

streams with regression methods. Null models quantified contribution of local assembly to β-26 

diversity (β-deviance, βDEV) for both land covers and partitioned it into fractions explained by the 27 

regional SAD (βSAD) vs. aggregation (βAGG).  28 

 29 

Results:  Eutrophication explained homogenization and more uneven regional SADs across 30 

groups, but local and regional biodiversity responses differed across taxa. βDEV was insensitive to 31 

land use. βSAD largely exceeded βAGG and was higher in agriculture. 32 

 33 

Main Conclusion:  Eutrophication but not physicochemical heterogeneity of agricultural streams 34 

underlay β-diversity loss in diatoms, insects and fish.  Agriculture did not constrain the 35 

magnitude of local vs. regional effects on β-diversity, but controlled the local assembly 36 

mechanisms. While the SAD fraction dominated in both land covers, it further increased in 37 

agriculture at the expense of aggregation. Notably, the regional SADs were more uneven in 38 

agriculture, exhibiting excess common species or stronger dominance.  Diatoms and insects 39 

diverged from fish in terms of biodiversity, SAD shape, and βDEV patterns, suggesting an 40 

overriding role of body size and/or dispersal capacity compared to trophic position. 41 

 42 

Key words: β-diversity, biodiversity loss, taxonomic homogenization, diatoms, fish, insects, 43 

land use, local assembly, spatial aggregation, species abundance distribution  44 
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INTRODUCTION 45 

Landscape transformations from continuous undeveloped expanses to agricultural fields and 46 

urban sprawls have accelerated the global biodiversity decline (Newbold, Hudson, Hill, Contu, 47 

Lysenko et al., 2015). Human land use (hereafter land use) underlies declines in both regional 48 

richness, i.e. γ-diversity (Barlow, Lennox, Ferreira, Berenguer, Lees et al., 2016), and 49 

dissimilarity among biological communities, i.e. β-diversity, resulting in taxonomic 50 

homogenization across space and time (Petsch, 2016). Biodiversity losses from land use stem 51 

from habitat loss, fragmentation, eutrophication, and physicochemical stress, altogether 52 

considered among the primary threats facing global biodiversity (Sala, Stuart Chapin, Iii, 53 

Armesto, Berlow et al., 2000; Devictor, Julliard, Clavel, Jiguet, Lee et al., 2008). Preventing 54 

biodiversity losses and mitigating subsequent homogenization remain a top priority because both 55 

can translate into decreased biological integrity and ecosystem resilience (de Juan, Thrush & 56 

Hewitt, 2013; Socolar, Gilroy, Kunin & Edwards, 2016). Therefore, it is critical from a 57 

conservation planning standpoint to continue investigating how land use affects ecological 58 

processes underlying global diversity in order to mitigate the ongoing biodiversity crisis. 59 

 Land use effects on biodiversity occur across scales, operating either in a top-down or 60 

bottom-up fashion or both (Flohre, Fischer, Aavik, Bengtsson, Berendse et al., 2011). Top-down 61 

mechanisms function through the regional species pool (γ-diversity), which is a product of 62 

speciation and extinction, large-scale dispersal, climate, and evolutionary, geological, and land 63 

use history (Zobel, 2016). Bottom-up mechanisms include local-level assembly processes, e.g. 64 

environmental filtering, interspecific interactions, and small-scale dispersal (Márquez & Kolasa, 65 

2013), which constrain local (α) diversity and subsequently affect site-to-site community 66 

dissimilarity. Studies across terrestrial and freshwater systems have reported a general decline in 67 
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γ-diversity because of land use, but divergent patterns of α-diversity, including decreased α-68 

diversity, owing to losses of sensitive and endemic species, and stable, or even increased α-69 

diversity, owing to greater rates of species invasion and colonization (Vellend, Baeten, Myers-70 

Smith, Elmendorf, Beauséjour et al., 2013; Newbold et al., 2015; Gonzalez, Cardinale, 71 

Allington, Byrnes, Arthur Endsley et al., 2016). Thus, land use likely exerts differential impact 72 

on the species pool and local assembly processes that may cause γ- and α-diversity, respectively, 73 

to vary at different rates, which in turn influences β-diversity response (Kraft, Comita, Chase, 74 

Sanders, Swenson et al., 2011).   75 

β-diversity is usually treated as a scalar linking average α-diversity with γ-diversity, thus 76 

reflecting spatial or temporal differences among localities. One can then measure the influence of 77 

α- and γ-diversity as proxies of local and regional drivers of β-diversity, respectively.  78 

Specifically, null models that constrain the observed species pool variation (i.e., γ-diversity) can 79 

assess the role of local assembly by calculating a β-diversity measure (βDEV) corresponding 80 

solely to α-diversity variation (e.g., Kraft et al., 2011) (Fig. 1a). βDEV can be further decomposed 81 

into fractions reflecting roles of intraspecific spatial aggregation (i.e., the spatial clumping 82 

pattern of individuals within species) and the regional species abundance distribution (SAD, 83 

vector of species abundances) (Xu, Chen, Liu & Ma, 2015) (Fig. 1b). Intraspecific spatial 84 

aggregation results from dispersal, competitive, and environmental mechanisms that cluster 85 

individuals of species across fewer sites, thus bolstering β-diversity (Veech, 2005). However, 86 

regional SADs influence β-diversity because rare species are less likely to be locally sampled 87 

due to low regional abundance (He & Legendre, 2002).  Although examined across latitudes, the 88 

two fractions of local assembly have not been studied in other contexts and it is unknown 89 

whether these components are responsive to strong ecological influences (e.g., land use). 90 
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 Studying how local assembly and regional species pool processes interplay is an ongoing 91 

area of research in terrestrial systems because it may explain how β-diversity varies with land 92 

use (Socolar et al., 2016). Surprisingly, little attention is focused on freshwater systems, even 93 

though freshwater biodiversity is more vulnerable to land use relative to terrestrial systems, 94 

particularly through habitat modification (Sala et al., 2000; Wiens, 2016) and eutrophication 95 

from agriculture (Withers, Neal, Jarvie & Doody, 2014). Although primary productivity in 96 

agricultural streams could increase with eutrophication, forest streams, which are usually low in 97 

nutrients and have more shading, tend to harbor higher biodiversity stemming from greater 98 

physical and environmental heterogeneity that translates into greater ecosystem complexity  99 

(Penaluna, Olson, Flitcroft, Weber, Bellmore et al., 2017). Agriculture probably causes changes 100 

in physicochemical heterogeneity as well, but this subject is poorly explored. Thus, the scarcity 101 

of data, especially for aquatic taxa, has inhibited general understanding of how land use 102 

influences local and regional processes driving β-diversity.   103 

Impacts of agricultural eutrophication on βDEV are not understood, although null models 104 

have been used to assess environmental disturbance (e.g., Myers, Chase, Crandall & Jiménez, 105 

2015). We hypothesize β-diversity response to eutrophication, including variation in βDEV, 106 

depends on trophic level, body size, and dispersal capacity. For example, many unicellular 107 

producers, like diatoms, have high nutrient demands and may benefit from increased nutrients 108 

(Passy, 2008; Soininen, Jamoneau, Rosebery & Passy, 2016). Diatom microscopic size, high 109 

local abundance, and broad geographic distributions, allowing both in-stream and overland 110 

passive dispersal (Finlay, 2002), may result in weak β-diversity and βDEV response to agriculture. 111 

Smaller bodied macroscopic organisms, such as aquatic insects, may be more constrained in 112 

active dispersal capacity during larval stages but exhibit greater overland mobility during winged 113 
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adult life stages, which could offset some harmful agricultural effects.  In contrast, larger 114 

consumers with more limited geographic dispersal capacity, such as fish, may be negatively 115 

affected by eutrophication due to ammonia toxicity, loss of suitable habitat, and lower quality 116 

food sources (Allan, 2004).  117 

 In this study, we compared spatial patterns of biodiversity and abundance in streams with 118 

watersheds dominated by agriculture vs. forest.  Our objectives were to determine: i) how β-119 

diversity and related biodiversity properties respond to agriculture (through nutrient enrichment 120 

or physicochemical heterogeneity), ii) if agriculture alters the relative contribution of local 121 

assembly effects to β-diversity, iii) whether agriculture differentially constrains the fractions of 122 

local assembly explained by spatial aggregation vs. the SAD, and iv) if the relationships outlined 123 

in i) to iii) vary across organismal groups (Table 1).   124 

 125 

MATERIALS AND METHODS 126 

Data sources and site selection 127 

Our datasets (six in total) comprise stream organisms sampled from the US, France, and Canada 128 

(Fig. 2). Each dataset included community data and physicochemistry from watersheds 129 

dominated by either forest or agriculture. Only streams with ≥ 50% of their upstream watershed 130 

belonging to one of the two land cover categories were included in our analyses. We examined 131 

biodiversity patterns across three US datasets (diatoms, insects, and fish), two French datasets 132 

(diatoms and fish), and one Canadian dataset (diatoms), constructed as follows. 133 

 134 

 135 

 136 
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United States 137 

US community data, spanning 19 latitudinal degrees and 55 longitudinal degrees, were obtained 138 

from the National Water-Quality Assessment (NAWQA) Program of the United States 139 

Geological Survey and the National Rivers and Streams Assessment (NRSA) of the United 140 

States Environmental Protection Agency. Communities were collected in the warm months 141 

during low flow conditions (July through September) to constrain seasonal succession and 142 

variation in temperature and flow. NAWQA communities (diatoms, insects, and fish) were 143 

sampled between 1993-2010, whereas NRSA communities (fish), between 2011 and 2012. 144 

Diatoms were collected from the richest-targeted habitats, encompassing hard substrates or 145 

macrophytes. Depending on available substrate, a defined area of 25 cobbles, 5 woody snags or 5 146 

macrophyte beds was sampled within a stream reach and the samples were composited. Diatoms 147 

were identified generally to species in counts of 400-800 cells. Benthic insects (class Insecta) 148 

were composed of combined sieved samples taken from the richest-targeted habitats (i.e., riffles, 149 

main-channel, and natural-bed instream habitats). Insects were identified to the lowest possible 150 

category (order to species) in counts of 400-800 individuals. Both NAWQA and NRSA fish were 151 

generally identified to species in counts of 400-950 individuals taken from riffle, pool, and run 152 

habitats using electrofishing equipment with seines.  153 

Land use and cover data were generated by the NAWQA and NRSA using National Land 154 

Cover Datasets 1992 and 2006, 30 m resolution. We selected 400 streams for diatoms and 126 155 

streams for insects split equally between both land cover categories. Since fish communities and 156 

environmental data in both the NAWQA and NRSA data were sampled with similar methods, we 157 

combined both fish datasets into a single dataset comprising 231 streams (116 agricultural and 158 

115 forested streams).   159 
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France 160 

French diatom data were sourced from a national dataset including field collections of 200 161 

streams from 2011.  Algae were collected from stones during the low flow period in June 162 

through September with a standardized sampling method (Afnor, 2007). Diatoms were identified 163 

generally to species in counts of about 320-475 cells. The French fish dataset was collected by 164 

the French National Agency for Water and Aquatic Environments (ONEMA) during low flow 165 

periods between May and October 2011. The dataset comprised 200 streams with fish identified 166 

to species in counts of 10-3300 individuals sampled with electrofishers. For both French 167 

datasets, we used 100 agricultural and 100 forest streams, spanning 8 latitudinal and 14 168 

longitudinal degrees. Land use cover data were obtained from the CORINE land cover database 169 

(European Environment Agency, 2013) 170 

 171 

Canada 172 

Canadian diatom data included 46 stream samples (23 streams in both land cover categories) 173 

collected in August to September during the low flow period between 2002 and 2009 (Lavoie, 174 

Campeau, Zugic-Drakulic, Winter & Fortin, 2014) spanning 3 latitudinal and 6 longitudinal 175 

degrees. Samples were composites of rock scrapes (5-10 rocks) per stream reach, targeting riffles 176 

and runs. Diatoms were mainly identified to species in counts of at least 400 valves. Land use 177 

cover data were compiled from government GIS databases, including the Ecoforestry 178 

Information System, Annual Crop Inventory, and the Insured Crop Database. 179 

 180 

Environmental data  181 

All datasets had associated physicochemical and coordinate data (i.e., GCS coordinates re-182 

projected with Lambert Conformal Conic). Environmental variables in our analyses included 183 
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water temperature, air temperature, nitrite + nitrate (or total nitrogen when absent), ammonia, 184 

orthophosphate, total phosphorus, specific conductance, and pH (Appendix 1, Table S1.1 in 185 

Supplemental Information). Environmental data for the US datasets consisted of the average for 186 

the month of sample collection. Environmental data for French diatoms included the median of 187 

measurements obtained 30 days before and 15 days after the diatom sample date. The French fish 188 

environmental data represented the average of 12 monthly measurements prior to fish sampling. 189 

Air temperature for French diatom data were not recorded at the time of sampling and were 190 

obtained from the WorldClim database (Hijmans, Cameron, Parra, Jones & Jarvis, 2005), 191 

whereas air temperatures for French fish streams were measured at the stream.  Canadian 192 

environmental data were seasonal averages calculated from water samples collected from July to 193 

September.  194 

 195 

Diversity, spatial aggregation, and species abundance distribution 196 

We calculated α-diversity (average richness across samples), γ-diversity (total richness per land 197 

use), and β-diversity of stream samples for both land cover categories for each dataset. We used 198 

equation (1) to calculate the observed β-diversity (βOBS), 199 

 βOBS= 1 − α
γ
       (1) 200 

 201 
which indicated the average proportion of the species pool absent from a stream.   202 

We used the null model framework developed by Xu et al. (2015) to quantify i) the 203 

magnitude of the local assembly effect on β-diversity after controlling for γ-diversity and ii) the 204 

contributions of the SAD vs. intraspecific spatial aggregation to local assembly (Fig. 1b).  First, 205 

the difference (i.e., β-deviance, βDEV) between βOBS and the expected β-diversity (βEXP, i.e., β-206 

diversity expected assuming completely random sampling, see Appendix S2) was taken to 207 
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quantify local assembly absent the effect of γ-diversity. βDEV is bounded between 0 and 1, with 208 

larger βDEV corresponding to greater local control.  Secondly, we calculated β-diversity predicted 209 

when intraspecific spatial aggregation is constant across all species (βPRED). Then, the difference 210 

between βPRED and βEXP reveals what fraction of βDEV is contributed by the SAD (βSAD), while the 211 

remaining fraction of βDEV is attributed to spatial aggregation (βAGG). In this model, βSAD can 212 

exceed βDEV if βPRED exceeds βOBS.  The corresponding aggregation fraction will in turn be 213 

negative because the sum of the two fractions, βSAD and βAGG, must equal 1, thus meaning that 214 

the pattern is less aggregated than expected by the null model. To test whether the two land 215 

covers differ in their magnitude of intraspecific spatial aggregation, we used maximum 216 

likelihood methods and calculated the aggregation parameter, k, across samples within each land 217 

cover (Appendix S3). Because smaller k corresponded to greater aggregation, we analyzed the 218 

reciprocal of the parameter for easier interpretation. In summary, the procedure yielded six 219 

measurements: βEXP, βPRED, βDEV, βSAD, βAGG, and 1/k.  220 

Regional SADs for both land cover categories was analyzed by summing abundances of 221 

each species across all stream samples and calculating the standard deviation (parameter σ) of 222 

the Poisson-lognormal distribution fit of the abundance data using the `sads´ R package (Prado, 223 

Mirands & Chalom, 2017). Parameter σ reflects SAD evenness with greater σ values 224 

corresponding to increased unevenness. To determine if changes in σ were associated with 225 

prevalence of rare vs. common species, we also examined the relationship of σ with the skewness 226 

(`skewness´ function from R package `moments´, Komsta & Novomestky, 2015) of the log-227 

transformed regional species abundances for each land cover category.  Skewness was 228 

significant if skewness divided by the standard error of the skewness (i.e., (6/n)0.5, where n = 229 

number of species) was greater than 2.  Significant positive skew indicates greater prevalence of 230 
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abundant species, while significant negative skew reveals higher number of rare species 231 

compared to the lognormal distribution.   232 

 233 

Statistical analyses 234 

Resampling scheme 235 

Generally, the described procedures in our study typically produced a single value without any 236 

estimate of error, which inhibits statistical comparisons between datasets. Therefore, to test for 237 

abiotic and biotic differences between land covers, we conducted a resampling procedure where 238 

we randomly selected 50% of the streams within each land cover category for each dataset 239 

without replacement 999 times. Each loop calculated the median of each physicochemical 240 

variable, an estimate of physicochemical heterogeneity, biodiversity (α-, β-, and γ-diversity), 241 

SAD, and null model measures including the null model β-diversity values, and the within group 242 

intraspecific aggregation (1/k). This procedure generated six new datasets that contained 243 

resampled physiochemistry data and biotic measures, which were used further statistical 244 

analyses. R scripts are available as supplementary material for online publication only (see 245 

Appendices S3 and S4). 246 

 247 

 Eutrophication and physicochemical heterogeneity 248 

We employed principal components analysis with all resampled, standardized median 249 

physicochemical variables (mean = 0, standard deviation = 1) to create a synthetic variable 250 

corresponding to the major physicochemical trend. The first PCA axis represented a 251 

eutrophication gradient and explained between 53.1% (French diatom samples) and 94.3% 252 

(Canadian diatom samples) of the variation among samples (Appendix 1, Fig. S1.1). 253 
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To estimate physicochemical heterogeneity within each land cover, we used 254 

permutational analysis of multivariate dispersion on standardized physiochemical data with the 255 

`betadisper´ function from R package `vegan´ (Anderson, Ellingsen & McArdle, 2006; Oksanen, 256 

Blanchet, Friendly, Kindt, Legendre et al., 2017). In this procedure, physicochemical 257 

heterogeneity is calculated as the average distance from a multivariate group median (group = 258 

land cover) with larger distances corresponding to greater within-group heterogeneity.   259 

 260 

Environmental effects 261 

We determined how land use-driven eutrophication and physicochemical heterogeneity affected 262 

diversity components using a combination of univariate and multivariate techniques and variance 263 

partitioning. For each dataset, we used permutational MANOVA function `adonis´ from package 264 

`vegan´ to test for differences in the multivariate mean of the  α-, β-, and γ-diversity between 265 

land covers.  If the permutational MANOVA was significant, we followed with permutational 266 

ANOVA using the `perm.anova´ function provided in `RVAideMemore´ (999 permutations; 267 

Herve, 2018) for each dependent variable. We then used RDA-based variance partitioning 268 

models (`vegan´ function `varpart´) on each dataset to identify major explanatory factors 269 

underlying diversity patterns, with eutrophication, physicochemical heterogeneity, and land 270 

cover (coded as dummy variables) as predictors and the diversity measures (α-, β-, and γ-271 

diversity) as response variables.  272 

We employed permutational MANOVA and permutational ANOVA to determine if the 273 

resampled βDEV, βSAD, βAGG, 1/k, σ, and skewness differed between land covers. Because total 274 

abundance and γ-diversity influence the shape of the regional SAD, we controlled their 275 

influences by regressing parameter σ against total abundance and γ-diversity of the resample and 276 
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obtaining the residuals, which were then used in subsequent analyses. To further explore if βDEV 277 

was sensitive to variation in SAD unevenness (residual σ) and intraspecific spatial aggregation 278 

(1/k), we calculated Pearson correlations within both land cover categories for all datasets. 279 

Pearson correlations were also used to assess whether residual σ correlated with skewness and 280 

1/k. We then implemented variance partitioning to determine if eutrophication, physicochemical 281 

heterogeneity, land cover, or their covariance explained the variation in βDEV.  282 

 283 

RESULTS 284 

Eutrophication and Environmental Heterogeneity Effects on Diversity and the SAD 285 

Permutational MANOVA and permutational ANOVAs of environmental data showed that all 286 

physiochemistry levels were significantly elevated (P < 0.05) in agricultural land use across all 287 

datasets.  Permutational ANOVAs also indicated greater physicochemical heterogeneity among 288 

agricultural streams in all but the Canadian diatom dataset (higher in forest land cover) and the 289 

US Fish dataset (no differences, Fig. 3). MANOVA of α-, β-, and γ-diversity against land use 290 

revealed that land use significantly affected the diversity measures across all datasets. Following 291 

our first objective, we demonstrated that β-diversity declined with agriculture across all datasets. 292 

Gamma diversity usually decreased, whereas α-diversity often increased with agriculture (Table 293 

2). Except for French fish, SADs were generally significantly more uneven for agricultural land 294 

use than forest (higher residual σ), although the differences were mainly small (Fig. 4, columns 295 

1-3). Intraspecific aggregation (1/k) was always greater in forest than in agriculture and was 296 

negatively correlated with residual σ, meaning more even SADs were always associated with 297 

higher aggregation (Appendix 1, Table S1.2).  Skewness was significantly positive in the insect 298 

and all three diatom datasets, but non-significant in the two fish datasets. When positive, 299 
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skewness correlated positively with residual σ regardless of land cover (although weakly for 300 

diatoms), indicating that SAD unevenness was generally characterized by greater abundances of 301 

more common species.  302 

Our first objective was to determine how biodiversity explained by land use, 303 

eutrophication, and physicochemical heterogeneity. Variation in all diversity measures was 304 

primarily explained by covariance effects, while pure land cover, pure eutrophication, and pure 305 

physicochemical heterogeneity contributed minorly (Fig. 5). In general, covariance of 306 

eutrophication with land cover explained most of the variation, indicating that land use 307 

constrained biotic variability mainly through eutrophication rather than physicochemical 308 

heterogeneity. However, the insect dataset differed from the rest in that the covariance fraction of 309 

land cover, eutrophication, and physicochemical heterogeneity captured most of the variation. 310 

 311 

Eutrophication-associated shifts in local assembly across organismal groups 312 

For our second objective, we found local assembly weakly drove diatom and insect β-diversity 313 

(βDEV generally less than 0.26 across land covers) but had a relatively greater influence on fish β-314 

diversity (βDEV between 0.38-0.45). βDEV differed significantly between forest and agriculture 315 

(permutational ANOVA) in all datasets except insects (no difference). However, the magnitude 316 

of the difference in βDEV was usually small (3.49 to 16.04%), with the direction of the difference 317 

depending on organismal group and biogeographic region (Fig. 4, column 4).  318 

 319 

Contribution of the SAD vs. intraspecific spatial aggregation to βDEV 320 

For objective three, the partitioning of βDEV revealed that βSAD generally exceeded 100% and 321 

βAGG was negative, regardless of land cover except for the US and French diatom datasets, which 322 
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showed βSAD < 100% and positive βAGG for forest land use (Fig. 4, columns 5-6). As changes in 323 

βSAD correspond to equal and opposite changes in βAGG, we focus on βSAD for brevity. βSAD 324 

represented nearly all of βDEV regardless of dataset and land cover type (~ 90-110% of total 325 

deviance) and was significantly (although marginally) larger in agricultural land use than in 326 

forest cover. Further, βDEV was generally negatively correlated with residual σ, regardless of land 327 

cover or organismal group, implying that increased SAD unevenness was usually associated with 328 

greater contribution of the regional species pool (Appendix 1, Table S2). Variance partitioning of 329 

βDEV across datasets showed mixed patterns among and within organismal groups over what 330 

effects best explained βDEV (Fig. 6).   331 

 332 

Variability across organismal groups 333 

Consistent with our fourth objective, we demonstrated that smaller organisms (diatoms and 334 

insects) with greater dispersal capacity were more similar in terms of SAD and βDEV patterns, but 335 

diverged from fish. However, we also observed divergence in some ecological patterns between 336 

datasets within organismal groups (i.e., diatoms and fish) in that α-diversity, γ-diversity, SAD 337 

skewness, and βDEV responses varied between country of origin, which indicated context 338 

dependency of our results. 339 

 340 

DISCUSSION 341 

In this comprehensive study of stream organisms from two continents, agriculture and 342 

subsequent eutrophication were generally associated with reduced β- and γ-diversity and 343 

increased α-diversity. First, covariance of land use with physicochemical gradients, rather than 344 

with physicochemical heterogeneity, characterized regional biodiversity loss with land use. 345 
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Second, all datasets showed significant shifts in magnitude of βDEV with eutrophication but the 346 

direction (i.e., stronger or weaker local assembly effects) depended on organismal group and 347 

potentially biogeographical factors. Third, the regional SAD overrode intraspecific spatial 348 

aggregation in explaining βDEV and its influence and unevenness increased with agriculture.   349 

 350 

Eutrophication and Environmental Heterogeneity Effects on Diversity and the SAD 351 

With respect to objective one, regional biodiversity loss, local diversity gains, and increased 352 

community similarity in aquatic taxa were correlated with agricultural land use, consistent with 353 

patterns expected for taxonomic homogenization (Petsch, 2016). Recently, Ribiero et al. (2015) 354 

explored the generality of floral homogenization consequential of agricultural land use and noted 355 

that too many studies focus on a single spatial scale or a single taxon. For aquatic taxa, 356 

agriculturally-associated changes in β-diversity have been reported, however, we have only 357 

begun to examine these changes at broader spatial scales. For example, Winegardner et al. 358 

(2017) attributed greater temporal β-diversity of diatoms across modified US landscapes to 359 

richness gains and losses stemming from disproportionate influence of contemporary vs. past 360 

land use, yet observed no changes in spatial β-diversity. In contrast, diatom spatial β-diversity 361 

declined with eutrophication in French streams (Jamoneau, Passy, Soininen, Leboucher & Tison‐362 

Rosebery, 2018). Our investigation, exploring diatoms, insects, and fish across regional to 363 

subcontinental scales, demonstrates that the detrimental effects of agriculture on the regional 364 

biodiversity in stream ecosystems are independent of species biology or scale.   365 

We further revealed that biodiversity variation between forest and agriculture was mainly 366 

driven by land use differences in physicochemistries rather than physicochemical heterogeneity, 367 

a result contrary to conventional wisdom that higher environmental heterogeneity brings greater 368 
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turnover. While agriculture may homogenize the landscape, we show that it tended to lead to 369 

greater stream physicochemical heterogeneity, possibly due to variability in fertilization and 370 

landscape management regimes.  Heterogeneity is an important mechanism of co-existence 371 

because it offsets competitive exclusion (Tilman & Pacala, 1993). However, we observed that 372 

physicochemical heterogeneity poorly explained β-diversity, because eutrophication in 373 

agricultural streams may have exceeded the physiological thresholds of sensitive species and 374 

decoupled compositional and environmental variability (Bini, Landeiro, Padial, Siqueira & 375 

Heino, 2014). The lack of a relationship may also be due to our measure of heterogeneity, which 376 

did not incorporate other aspects of heterogeneity, such as variability in substrate size, known to 377 

diminish with agriculture (Allan, 2004).   378 

Increased prevalence of common species over spatial and temporal scales is a hallmark of 379 

taxonomic homogenization (Olden & Rooney, 2006), but our findings are restricted to the spatial 380 

dimension.  Notably, while across datasets SADs were generally more uneven in agriculture, 381 

they were more positively skewed compared to forest only in two datasets, i.e. US insects and 382 

French diatoms. In these datasets, homogenization in agriculture was characterized by greater 383 

prevalence of common relative to rare species, which has also been observed in terrestrial 384 

arthropods (Simons, Gossner, Lewinsohn, Lange, Türke et al., 2015; Komonen & Elo, 2017). 385 

However, SADs were more positively skewed in forest cover than in agriculture for two datasets 386 

(US and Canadian diatoms), and not skewed for both fish datasets. This suggested that stronger 387 

SAD unevenness in agriculture resulted from either buildup of common species or greater 388 

regional dominance by a relatively few species. Like recent terrestrial and tropical studies 389 

(Vázquez & Gaston, 2004; Lohbeck, Bongers, Martinez‐Ramos & Poorter, 2016), we showed 390 

that SAD unevenness was associated with agriculturally-driven homogenization. Future research 391 
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on homogenization should incorporate novel methods and procedures, like we employed, to 392 

elucidate how habitat modification and trait distribution contribute to the two forms of 393 

unevenness, i.e. asymmetry vs. dominance. 394 

 395 

Land use-associated shifts in local assembly across organismal groups 396 

Following objective two, we examined how local assembly (βDEV) varied between forested and 397 

agricultural streams. In general, βDEV marginally differed between land covers, suggesting that 398 

the strength of local vs. regional mechanisms was relatively unaffected by physicochemical 399 

stressors, consistent with prior work, reporting that fire disturbance altered β-diversity but not its 400 

causes (Myers et al., 2015).  Community comparisons revealed that the magnitude of βDEV 401 

usually increased with body size, which here was linked with dispersal capacity. Smaller βDEV 402 

values in diatoms and insects indicated that the observed species pool exerted greater influence 403 

on β-diversity relative to local assembly. These results are corroborated by earlier research 404 

showing that diatom and insect communities are unsaturated, whereby local richness is limited 405 

by the size of the regional pool as opposed to local interactions (Passy, 2009; Al-Shami, Heino, 406 

Che Salmah, Abu Hassan, Suhaila et al., 2013; but see Thornhill, Batty, Death, Friberg & 407 

Ledger, 2017). Therefore, it is possible that regional effects play a greater role in structuring 408 

local richness and β-diversity of smaller and more dispersive organisms than of larger and less 409 

dispersive organisms, and these relationships are not consistently affected by eutrophication.  410 

In contrast, βDEV in both fish datasets approaching 0.50 suggested relatively similar local 411 

and regional control of β-diversity, in agreement with prior observations of comparable 412 

contributions of regional and local factors to fish richness (Angermeier & Winston, 1998). 413 

Taxonomic homogenization is a particularly prevalent phenomenon among freshwater fish 414 
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(Petsch, 2016) and our study elucidated that the possible causes include both local and regional 415 

processes.  416 

Other nearly uniform patterns, independent of land use, were the negative correlation of 417 

residual σ of the regional SAD and the positive correlation of intraspecific aggregation (1/k) with 418 

βDEV. These correlations indicated that more even regional SADs and increased intraspecific 419 

spatial aggregation were associated with stronger local constraints on β-diversity. Recent work 420 

has only begun to explore the relationship of SAD evenness with taxonomic homogenization, 421 

showing clear links between the two with implications for conservation (e.g., Simons et al., 422 

2015; Komonen & Elo, 2017). Our study is novel in that it demonstrates that local and regional 423 

processes controlling β-diversity are dependent on SAD evenness—a finding that could guide 424 

future stream conservation and management decisions, which need to be scale-explicit.  For 425 

example, if preserving β-diversity, then adopting practices promoting abundance of less common 426 

species may be beneficial, given that SAD evenness is positively correlated with β-diversity.   427 

 428 

The contribution of the SAD vs. intraspecific spatial aggregation to βDEV 429 

To our knowledge, we are the first to explore how land use affects partitioning of βDEV into SAD 430 

vs. spatial aggregation fractions, i.e. βSAD vs. βAGG (objective three). βSAD accounted for most of 431 

βDEV, similar to observations for global tree communities (Xu et al., 2015), but opposite to 432 

findings, with a different null model, for Czech forests (Sabatini, Jiménez‐Alfaro, Burrascano, 433 

Lora & Chytrý, 2017). We further discovered that βSAD largely exceeded βAGG across organismal 434 

groups, datasets, and land cover types. However, βSAD was significantly higher in agriculture 435 

compared to forest in all datasets. The two land covers also diverged in βAGG—less spatial 436 

aggregation than predicted by the null model (βAGG < 0) was detected in agriculture across all 437 
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datasets, while some aggregation (βAGG > 0) was observed in forest streams in four out of six 438 

datasets. These results suggest that although land use did not constrain the magnitude of local 439 

assembly effects (βDEV), it did control the mechanisms of local assembly, i.e. land use increased 440 

the role of the SAD, but diminished the influence of aggregation.   441 

 442 

Organismal and geographic dependencies in biodiversity response to homogenization 443 

In pursuit of our fourth objective, we found that organismal groups responded differently to land 444 

use, as reported by other studies (e.g., Angermeier & Winston, 1998; Thornhill et al., 2017). Insects 445 

resembled diatoms in biodiversity, SAD shape, and βDEV patterns, which suggested that body 446 

size and dispersal capacity may be more important than trophic position (autotroph vs. 447 

heterotroph) in predicting ecological responses to agricultural eutrophication. We generally 448 

expected consistent responses of these metrics to agriculture, regardless of country of origin (i.e., 449 

diatoms and fish). We reasoned that agriculture, being a major habitat alteration, will override all 450 

other influences, yet within both groups, there was divergence depending on region. We ensured 451 

that variation in individual counts and mean counts among samples and differences in 452 

geographic spread across datasets did not contribute to their dissimilarity (data not shown). Thus, 453 

our findings of within-taxon variability with respect to biodiversity and the SAD highlighted the 454 

importance of considering context dependency. Histories of land use disturbance among 455 

geographic regions can set biodiversity and relative abundance patterns on different trajectories 456 

by affecting processes underlying β-diversity (Cramer, Hobbs & Standish, 2008). For example, 457 

European fish diversity has been historically depauperate relative to North American fauna 458 

owing particularly to differences in glacial influence (Oberdorff, Hugueny & Guégan, 1997). 459 
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Furthermore, French aquatic communities have been impacted by agricultural activities far 460 

longer than their North American counterparts (Hahn & Orrock, 2015).  461 

 In summary, we determined eutrophication is a major driver of β-diversity losses among 462 

stream taxa, although the importance of geographic context was shown through the varied 463 

biodiversity responses within taxonomic groups.  Local assembly generally was weakly affected 464 

by agriculture. However, in agriculture the regional SAD became significantly more uneven and 465 

its effect on local assembly significantly increased compared to forest, which may be the 466 

underlying causes of taxonomic homogenization.  Biodiversity, SAD shape, and βDEV depended 467 

more strongly on body size and/or dispersal than trophic position. Future research should explore 468 

how local and regional processes operate in tandem with the SAD to uncover whether 469 

homogenization drivers are specific to organismal groups and the regions from which they were 470 

sampled.  Although we examined β-diversity loss from a taxonomic perspective, we recommend 471 

future investigations on whether agriculture leads to phylogenetic and functional homogenization 472 

across space and time.  Then, taxonomic, phylogenetic, and functional diversity responses to 473 

agriculture could be compared to generate more holistic understandings of the causes and 474 

patterns of biotic homogenization.  475 

 476 
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Table 1. Summary of procedures and analyses performed with corresponding expectations and observations. 

Procedures Analyses Expectations Observations 
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1) Determine the differences in 

physicochemistry and 

physicochemical heterogeneity 

between land covers. 

PCA, 

PERMDISP, 

MANOVA 

Land cover would be characterized 

effectively by physicochemical 

parameters and potentially by 

physicochemical heterogeneity. 

1) All analyses clearly separated streams 

into two groups, corresponding to forest and 

agriculture; 

2) Agricultural streams had elevated 

nutrient levels, suggestive of eutrophication; 

3) Physicochemical heterogeneity was 

greater among agricultural streams except in 

the Canadian diatom dataset. 
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2) Reveal the responses of α-, γ-, and 

β-diversity, SAD evenness, and SAD 

skewness to physicochemistry and 

physicochemical heterogeneity. 

MANOVA, 

Variance 

partitioning 

The responses of biodiversity 

components to physicochemistry 

and physicochemical heterogeneity 

may differ depending on body size, 

dispersal capacity, and trophic level 

(autotroph vs. heterotroph). 

1) In general, β- and γ-diversity were 

negatively related to eutrophication, 

whereas α-diversity increased.  SADs 

tended to be more uneven in agricultural 

streams due to buildup of common species 

and/or increased dominance; 

2) Covariance of land use with 

physiochemistry explained most of the 

diversity variation across datasets, whereas 

environmental heterogeneity poorly 

explained diversity; 

 3) Pure land cover and pure 

physicochemistry generally explained some 

additional variation in the diversity 

components. 
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3) Determine if land use influences 

the relative roles of local assembly 

and the regional species pool in 

driving β-diversity. 

Null models, 

Permutational 

ANOVA, 

Variance 

partitioning 

The contribution of local assembly 

should be responsive to agricultural 

land use, however, the magnitude 

and direction of the response may 

vary across organismal groups. 

1) The role of local assembly was generally 

weakly affected by land use, and not in a 

consistent way across datasets, suggesting a 

potential influence of organismal type and 

biogeography. 
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4) Determine if β-deviation (βDEV) is 

explained by the species abundance 

distribution (SAD) or intraspecific 

spatial aggregation. 

Null models, 

Permutational 

ANOVA 

It is unknown how land use may 

influence the fractions of βDEV 

explained by the SAD and 

intraspecific spatial aggregation. 

1) The SAD was the dominant fraction of 

βDEV and this pattern was independent of 

land use and organismal group. However, 

the SAD fraction was significantly higher in 

agriculture across all datasets, which may be 

the underlying factor of taxonomic 

homogenization; 

2) Intraspecific spatial aggregation fraction 

was negative for agricultural streams and 

positive for forest streams, indicating that 

intraspecific aggregation was lower than 

expected across disturbed streams; 
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Table 2.  Summary of the impact of agricultural land use on resampled diversity measures as positive or 

negative percent change relative to forest cover.  Significant differences between land covers were 

detected in all comparisons (permutational MANOVA and ANOVA, P < 0.05). 

 % Change from agriculture 

Taxonomic group Country α γ 1βOBS 

Diatoms US +20.71 −3.54 −1.09 

 France +13.33 −7.46 −2.22 

 Canada −12.15 −23.14 −4.64 

Insects US −20.42 −22.98 −0.59 

Fish US +9.55 +12.97 −2.29 

 France +54.99 +26.91 −6.41 

 
1β-diversity = 1 − α

γ
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FIGURE LEGENDS 

 

Figure 1. a. Conceptual model depicting the land use effect on the species abundance 

distribution (SAD) and intraspecific spatial aggregation, which in turn interact with local (α) and 

regional (γ) diversity. β-diversity is calculated as a function of average α-diversity and γ-

diversity. Interactions that were controlled for by the null models of Kraft et al. (2011) and Xu et 

al. (2015) are marked with a thick dotted line. b. Diagram summarizing the Xu et al. (2015) 

partition of βDEV into fractions explained by the SAD and intraspecific spatial aggregation using 

an occupancy-abundance based null model procedure. The null model βDEV is taken as the raw 

difference between expected β-diversity (βEXP) and observed β-diversity (βOBS). The fraction of 

βDEV explained by the SAD, βSAD, is the difference between predicted β-diversity (βPRED) and 

expected β-diversity (βEXP), whereas the fraction of βDEV explained by intraspecific aggregation 

(βAGG) represents the difference between βOBS and βPRED.  

 

Figure 2, a-f.  Maps of diatom, macroinvertebrate, and fish sampling localities in the US, 

France, and Canada.  Grey triangles represent agriculture samples, whereas black circles 

represent forest samples.  a = US diatoms, b = US insects, c = US fish, d = French diatoms, e = 

French fish, f = Canadian diatoms. 

 

Figure 3, a-f. Boxplots showing differences in resampled physicochemical heterogeneity 

between land covers for each dataset.  a = US diatoms, b = French diatoms, c = Canadian 

diatoms, d = US insects, e = US fish, f = French fish.  Points indicate resamples that fall outside 
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the interquartile range.  Different letters denote significant differences in mean heterogeneity 

(permutational ANOVA, P < 0.05).   

 

Figure 4, a-f. Boxplots of resampled SAD and null model metrics showing the differences 

between land covers for each dataset.  a = US diatoms, b = French diatoms, c = Canadian 

diatoms, d = US insects, e = US fish, f = French fish.  Significant differences were observed in 

all comparisons (permutational ANOVA, P < 0.05) except βDEV for US insects (panel D3, 

denoted by asterisk).   

 

Figure 5, a-f.  Venn diagrams showing output of redundancy analysis-based variance 

partitioning of diversity measures (α-, β-, and γ-diversity).  Values represent model adjusted R2 

values.  Values in intersections represent covariance fractions, whereas values in circles 

represent pure fractions. 

 

Figure 6, a-f. Venn diagrams showing output of regression-based variance partitioning of βDEV.  

Values represent model adjusted R2 values.  Values in intersections represent covariance 

fractions whereas values in circles represent pure fractions.   
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Appendix 4:  R-code script for analyses of loop output 


