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Abstract.

Statistical simulation in hydrology is discussed from a Bayesian perspective.

The inherent difficulties in both parametric simulation, based on a parent distribution, and
classical nonparametric simulation, based on the bootstrap, are discussed. As an
alternative to these procedures, a nonparametric Bayesian simulation methodology, Polya
resampling, is introduced. It consists of simulating from a nonparametric predictive
distribution obtained from the analysis of a reference sample, and it is asymptotically
equivalent to the bootstrap. The method is generalized to take into account a prior
hypothesis on the parametric distribution of a variable. A hybrid simulation model is then
obtained that includes parametric and nonparametric simulation as particular cases. An
extensive application is presented in a related paper [Fortin et al., 1997], where Pélya
resampling is used to compare statistical models for flood frequency analysis. In this paper
an example is used to demonstrate how Pélya resampling can help assess the influence of

a distribution hypothesis on simulation results.

1. Introduction

In statistical hydrology, parametric and nonparametric sim-
ulation procedures have been extensively used to compare
statistical models of hydrological variables. The purpose of this
paper is to present an alternative, based on Bayesian analysis,
to classical parametric and nonparametric simulation tech-
niques for independent and identically distributed (i.i.d.) vari-
ables. The proposed method, which we call Pélya resampling,
is similar to the bootstrap [Efron, 1979], which consists in
drawing observations with replacement from a reference sam-
ple. This simulation scheme, introduced by Lo [1988], is dis-
cussed in detail for binomial variables, then for multinomial
variables, and finally in a completely nonparametric setting.
The methodology is then generalized to take into account prior
information independent from the reference sample. The
present paper is mainly theoretical; an-illustrative example
which compares the GEV and Gumbel distributions for at-site
flood frequency analysis is included. An extensive application
to at-site flood frequency analysis is presented in a related
paper [Fortin et al., 1997].

1.1.

A common problem in statistical hydrology is to approxi-
mate the unknown statistical distribution F of a (hydrological)
random variable X, given prior information and observed data.
The usual approach consists in selecting a parametric distribu-
tion having probability density function (p.d.f.) f(x; 8) which
approximates the empirical distribution of X. The parameters
8 of f are estimated from the data, and a model f(x; 8) of the
true distribution F is obtained. As different parametric distri-
butions f and different estimation methods may lead to differ-
ent models for F, simulation procedures have emerged to
compare estimation models. Simulation procedures fall into
two categories:

1. Parametric simulation: A parent distribution g(x; 8)
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assumed to be sufficiently flexible to model the observations is
selected. Plausible sets of parameters are determined for the
parent distribution. Samples {x;, { = 1, 2, ---, R} of various
sizes are randomly generated for each set of parameters.

2. Nonparametric simulation: Samples {x,,i = 1, 2, ---, R}
of various sizes are generated by sampling from the empirical
frequency distribution of a reference sample y = {y;, j = 1,
2, -+, N} of i.id. observations of the variable X, using, for
example, the bootstrap [Efron, 1979].

In both cases, statistical distributions and methods for esti-
mating the parameters may be compared in terms of their
ability to approximate the distribution of the simulated sam-
ples. The main problem with parametric simulation is that the
parametric distribution of most hydrological variables is un-
known and that the choice of the parent distribution usually is
arbitrary. Although the robustness of the conclusions to the
hypothesis of a given parent distribution may be studied [Slack
et al., 1975; Kuczera, 1982; Haktanir, 1992), parametric simu-
lation has been criticized for comparing statistical models in an
artificial setting [Klemes, 1986; Potter, 1987; Bobée et al., 1993].
Nonparametric simulation based on the bootstrap may seem
more attractive, since no hypothesis on the statistical distribu-
tion of the variable appears necessary to simulate data. How-
ever, when resampling with replacement from a reference sam-
ple, it is implicitly assumed that the finite reference sample is
equivalent to the whole population. When the reference sam-
ple is small, this hypothesis may lead to unreasonable conclu-
sions [Rubin, 1981].

Most simulation studies in statistical hydrology are paramet-
ric [see Matalas et al., 1975; Slack et al., 1975; Landwehr et al.,
1978;. Wallis and Wood, 1985; Kuczera, 1982; Ahmad et al.,
1988; World Meteorological Organization (WMO) 1989; Hakta-
nir, 1992; Lu and Stedinger, 1992; Haktanir and Horlacher,
1993; Moon et al., 1993], although some nonparametric simu-
lation studies have been reported [see Tasker, 1987; Potter and
Lettenmaier, 1990; Ashkar et al., 1992; Rasmussen et al., 1994].
However, the authors are unaware of any attempt to address
the problem of statistical simulation in hydrology from a
Bayesian point of view. The objective of this paper is to intro-
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1. Prior analysis:
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1.1. State the parametric model f{x;§) and the possible values of xe'and P @:
for a sample x={x;, /=1,2,...,n} of i.i.d. observations, fx;0)=fx1;)fx2;6)- - fx;0).

1.2. Using prior information, determine the prior distribution 5(8) of the parameters &
with no prior information, use a non informative (locally uniform) prior.

2. Posterior analysis (on the basis of information x):

2.1. Determine the action acA implied by a statistical procedure p(x)=a for each x.

2.2. Determine the loss function /(a, 6) corresponding to each action a given &.

2.3. Compute the predictive distribution f(x):

f®=[7(x; 06040
®

2.4. Compute the posterior distribution 5(gx):

S(x9)-5(0)

b =0

2.5. Compute the posterior expected cost ¢(a,x) of the action a selected by p(x):

ola,x) = [(a,0)b(8x)d8

3. Preposterior analysis (before observing x, on the basis of information y):
3.1. Compute the updated predictive distribution f{x]y):

F&IY) =] f(x,0b(8y)d6

®©

3.2. Compute the preposterior expected cost ¢{ply) of the statistical procedure p(x)=a:

c(ply) = [ e(p(x),y) 7 (xly)ax
€

Figure 1.

duce a Bayesian nonparametric simulation procedure for i.i.d.
variables, to discuss its attractive features and drawbacks, and
to demonstrate its usefulness in statistical hydrology.

1.2. Simulation and Bayesian Analysis

From a Bayesian point of view, assessing the performance of
a statistical model by simulation is a preposterior analysis prob-
lem which can be conducted on the basis of a known paramet-
ric distribution type or by using only the information contained
in a reference sample. Figure 1 summarizes the main steps of
Bayesian analysis: prior, posterior, and preposterior analysis.
Box and Tiao [1973] and Berger [1985] provide a more thor-
ough presentation of Bayesian analysis. Given a statistical pro-
cedure p(x) and an information y, a preposterior analysis con-
sists in evaluating the expected cost of p(x) with respect to the
predictive distribution f(x]y).

The main difficulty with preposterior analysis is to determine
the predictive distribution f(x[y), which requires knowledge of
the distribution function f(x; 8). However, the basic problem is
precisely that this function is not known. To obtain robust
results, one may generalize f(x; 6) by adding extra parameters,
as suggested by Bernier [1993]. An alternative procedure, which
will be considered in this paper, consists in sampling from a
nonparametric predictive distribution [Lo, 1988]. Using this
procedure, no hypothesis on the parent distribution is made,
although a hypothesis for the distribution b(8) used to model
prior information is still necessary.

2. Bayesian Simulation of Binomial Variables

Consider # 1.i.d. Bernouilli trials represented by the random
variables X, X,, -+, X,,, with X; = 1 if an event £ occurs,
and X; = 0 otherwise (E occurs). The number of successes
K =27, X; inn trials has a binomial distribution with p.d.f.
Pr{K = k] = f(k|8) = (£)8°(1 — 6)* % where 6§ = Pr{E]
represents the probability of success in each individual trial
and () = n!/[k!(n — k)!] is the binomial coefficient. The
results of a Bayesian analysis depend on the prior distribution

Bayesian analysis: a summary.

b(6). The usual choice for b(8) is the beta distribution B(a,
) with p.d.f b(0) « 67 1(1 — 8)*>~ ', which is a naturat
conjugate of the binomial distribution, meaning that if the
prior b(0) is the beta distribution %(e;, a,), then the posterior
distribution b(8|k) after n trials is also a beta distribution with
modified parameters B(a; + k, o, + n — k) [Berger, 1985].
For a beta prior »(8) and a binomial model f(k|0) the pre-
dictive probability, f(x), of observing k = X7'_,x; successes in
asample x = {x;,j = 1, 2, -+, n} of n i.id. trials is given
by (compare Figure 1):

fx) = <Z) r(z(fi Zzaj)n)

- (i)

where I'(z) = (z — 1)! is the gamma function. If a reference
sampley = {y;,j = 1,2, --+, N} is observed which contains
r = 3N, y; successes in N trials, the predictive distribution
can be updated by replacing a; by ) = «; + r and a, by
ay = a, + N — r. If a noninformative prior distribution
B(a, = 0, a, = 0) is used to model the lack of prior informa-
tion, the updated parameters are o} = r and ¢, = N — r, and
the updated predictive distribution f(xly) is given by

flxly) = <Z>

[r(r+1)- - -<r+k—1)][(N—r)(N—r+1)- (N-r+n—k-1)]
' NWN+1)- - (N+n—1)

I'lo, + k)T (ay, +n— k)
I'(o)I ()

a(a;+1) - (e +k - 1) - aa,+1) - (e tn—k-1)
(ayFa)(ata, +1) - (o, +a,+r—1)

(2

The above expression is based on the somewhat arbitrary
choice of B(0, 0) as the prior distribution. Another choice for
b(0) could be the uniform distribution, b(8) = 1, which
corresponds to the beta distribution ®B(1, 1). This prior distri-
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bution would lead to a different predictive distribution, but the
difference would be small and would be negligible for large
values of N [Box and Tiao, 1973].

Simulation of samples from f(xJy) can be done using a tech-
nique called Pélya resampling [Lo, 1988], since (2) is a Pdlya
urn model defined by the following experiment [Feller, 1971]:
An urn contains r white balls and N — r black balls, and balls
are drawn sequentially from the urn. Each time a ball is drawn,
two balls of the same color as the ball that was drawn are put
back into the urn. If n balls are successively drawn in this way,
the probability of observing & white balls is glven by (2) In-
deed, consider the probabllltyf(x1 =lx,=1,"--,x,. =1,
X1 =0,%.,,=0,---,x, = 0) of drawing successively k
white balls, and thenn — & black balls using PSlya resampling.
For the first draw the probability f(x; = 1) of drawing a white
ball is /N, the ratio of white balls to the total number of
balls, but it increases after each successive drawing of a white
ball, so that f(x; = 1lx;, = 1,x, = 1,+, %, = 1) =
(r +j — 1)/(N + j — 1). Therefore the probability of
drawing k white balls is given by

3 B .+ 1) r+k—1)
fir=1,x,=1, -, x= _N(N+1)"'(N+k—1)
(3)

After k white balls have been drawn, the probability of
drawing a black ball is (N — r)/(N + k), the ratio of the
initial number of black balls to the total number of balls, and
it increases after each successive drawing of a black ball, so that
f(xes; = Oy = Lo, =1, -, = Lx = 0,%,, =
0, , %451 =0)isgiven by (N —r +j - 1)/(N + k +
j — 1). Therefore the probability of drawing n — & black balls
after having drawn k white balls is given by

f(xk+1:09xk+2:07'..7xn=0|x1= 17x2= 17..'7xk: 1)
 N-nN—-r+1)-(N-r+n—-k-1) s
 (N+ROWNN+k+1)(N+n—1) (4)

The probability of drawing k white balls followed by n — &
black balls is the product of (3) and (4):

f(x1: 1,X2: 1" T X = laxk+1=0’xk+2= 07. T Xy = 0)
L+ 1) ek =DIIIN =) (N-1+1) - -(N=r+n—k—1)]
B NWN+1)---(N+n—1)

(%)

It can be shown in a similar way that the probability of
drawing any sequence containing k£ white balls and n — k black
balls independently of the order in which they appear is given
by (5). As there are (%) such samples, the probability of draw-
ing k white balls in a sample of » balls is given by (2). Notice
that if n/N << 1 and k/r << 1, then adding balls to the urn
does not greatly modify the initial probability /N of drawing a
white ball. Hence, under these conditions, drawing balls from
the urn with simple replacement (i.e., bootstrapping) is ap-
proximately equivalent to Pdlya resampling (Lo [1988] gives a
rigorous demonstration).

3. Bayesian Simulation of Multinomial
Variables

The discussion in the preceding section was based on the
observation of two mutually exclusive events E and E. The
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results obtained may be generalized to m > 2 mutually exclu-
sive events £, E,, -+, E,,. Consider a vector N whose m
components are random variables N,, N,, -+, N,,, represent-
ing, respectively, the number of occurrences of the events E;,
E, -+, E, inniid. trials. Letn = {n;,j = 1,2,---, m}
denote a realization of the random variable N = {N i =1,
2, -++, m}. The probability of observing N = n is given by the
multinomial distribution:

Pr[N=n]=f(n|6,, 6, ---, 6,)

) H 0 ()

(nlanb..',n

where

n
=n!/(n!ny! - n,!
(nl’nb'..ynm) (1 2 m)

is the multinomial coefficient and 6, is the probability of oc-
currence of £; in each individual trial, with 37, 6, = 1. Ina
Bayesian analysis, uncertainty related to the probabilities 8 =
{6,, 05, -+, 6,,} is modeled by a prior distribution b(8). It

is usually chosen to be the Dirichlet distribution, @ (o,

ay, *, @,,), with p.d.f. given by [Ferguson, 1973]
T'(a) e
b(§) = o7 7
(,) Fa)T(ay)- - -T(a,,) ]1:[1 ’ @

where @ = X7, «;. Notice that the beta distribution is a
particular case of the Dirichlet distribution, obtained for m =
2. By using Bayes’ formula, it can be shown that when the prior
distribution, 5(8), is a Dirichlet distribution @ (a4, a,, *--,
@,,), the posterior distribution b(8|n) is also a Dirichlet
distribution with parameters @(o;, + 1y, o, + R,y cc-,
a,, + n,,). The predictive distribution f(n) is obtained from

(6) and (7):

IN'a) =1
I'la + 1) m

H I'(a)

= (o)

ITle(e;+ 1) (a; + m;— 1)]
_ n j=1
B <n17 n27 T, nm)
(8)

with a(; + 1)+ +(a; + n; — 1) = 1 ifn; = 0. For a
noninformative prior dlstrlbutlon D(a; =0, a, =0,

a,, = 0), the updated predictive distribution f(n|y) after
observing, in a reference sample y, ry, r,, - -, r,, realizations

ofE\, E,, -+, E,, respectively, is given by

ala+ 1) - (a+n—-1)

I1 [rir; + 1)
j=1

NN + 1) -

(r;+n;— 1)]

faly) = (") e

9

with r;(r; + 1)-+«(r; + n, — 1) = 1 if n;, = 0. This
distribution is a generalization of (2), and it also corresponds
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to a PSlya urn model. Here, instead of black and white balls,
there are m colors of balls, and initially r; balls of color j. If
after each trial two balls whose color is the same as the one that

was drawn are put back into the urn, then the probability of ‘

drawing n,, n,, **+, n,, balls of each of the m colors is given
by (9). Again, if n/N << 1, then the initial probability of
drawing a ball of a given color s will not be significantly mod-
ified by the addition of balls to the urn and will correspond
approximately to the empirical frequency #,/N observed in the
reference sample y. Thus, when #n/N << 1, the bootstrap is
approximately equivalent to Pélya resampling.

4. Polya Resampling in a Nonparametric
Setting

In the preceding section it was shown that Pdlya resampling
is a Bayesian counterpart to the bootstrap in the multinomial
case. Since any continuous distribution can be approximated by
a discrete multinomial distribution, one would expect that
Polya resampling also constitutes a Bayesian counterpart to
the bootstrap in a nonparametric setting. This intuitive conjec-
ture is demonstrated in Appendix A. A nonparametric Bayes-
ian simulation of a sample x based on a reference sample y
corresponds to a PSlya urn model. Consider an urn containing
N balls of different colors, corresponding to each of the N
observations of the reference sample. The first observation x,
is drawn at random from the reference sample. Two observa-
tions identical to x, are put back into the reference sample y,
which then consists of N + 1 observations. A second obser-
vation x, is drawn at random from these N + 1 observations,
and two observations identical to x, are put back into y. This
process is repeated until n observations have been drawn.
When n << N, this simulation process is approximately equiv-
alent to the bootstrap. However, preference should be given to
Polya resampling in the general case because it takes into
account sampling variance in y, whereas in using the bootstrap
one assumes that the reference sample y is equivalent to the
whole population.

For Pélya resampling to be applicable the observations in y
need not be real numbers. They could for instance belong to a
k-dimensional euclidean space representing cross-correlated
variables. Such a representation may be useful in nonparamet-
ric regionalization studies to preserve cross correlations be-
tween series at different sites.

5. Nonparametric Analysis and Extrapolation

With a parametric approach to simulation it is possible to
simulate data outside the range of the reference sample y. This
is not possible with the bootstrap, and with Pdlya resampling it
requires prior information independent from y, as will be
shown in this section. While this may seem to be an important
limitation of nonparametric methods, it must be emphasized
that extrapolating a parent distribution chosen for its ability to
fit a given reference sample may lead to worse results since
nothing is known about the tails of the parent distribution. As
shown in Appendix B, for a quadratic loss function I(F, F) =
I [F(x) — F(x)]? dx an estimate F of the cumulative distri-
bution F of a random variable X based on a reference sample
y of size N is given by a mixture of F,, one’s prior idea about
the distribution of X, and F,(x|y), the empirical distribution
of y:

ﬁ(x) =pyFolx) + (1 _PN)FN(X|Y) (10)
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where p, represents the strength of one’s belief in F,, and is
related to the weight « of the evidence used to determine F:

(11)

Notice that « must be measured in units homogeneous to a
sample size. In practice, a could be assessed by evaluating how
many observations one would be ready to exchange for the
evidence modeled by F,. If no evidence is available to deter-
mine F, then p, = 0, and if the weight of the evidence « is
large compared to N, then p, = 1. For values larger than the
maximum y ,, of y and values smaller than the minimum y
of y, (10) simplifies to

pn=a/(a + N)

ifx =y
Fy(xly) =1 = F(x) = palFo(x) — 1] + 1

ifx <yq,

12)

Fy(xly) =0 = F(x) = ppFy(x)

Hence F(x) depends entirely on the prior guess Fy(x)
whenever x <y, or x = y,. Only the size N of the
reference sample is taken into account through p 5. This result
is a consequence of the discrete nature of the empirical distri-
bution F,(x|y). By using kernel functions, it is possible to
modify F(x|y) so as to obtain an empirical distribution which
is continuous and positive everywhere [Adamowski, 1985]. This
would allow extrapolations of F(x) to depend also on F (x]y).
However, the objective of kernel methods is to provide a
smooth interpolation inside the range of observed values.
Their use for extrapolation is not justified. In fact, the tails of
a nonparametric density function are sensitive both to the
kernel function and the smoothing factor, not to the observed
data [Lall et al., 1993]. Therefore (12) suggests that extrapola-
tion of the distribution function of a hydrological variable
should be based on additional independent information (his-
torical, physical, meteorological, etc.), which does not have to
be numerical. For example, knowledge of an expert can be
explicitly taken into account.

6. Incorporating Prior Information
in Preposterior Analysis

Simulating observations outside the range of the reference
sample y may be accomplished with nonparametric Bayesian
analysis by including a prior hypothesis on the parametric
distribution of the random variable [Bernier, 1997]. When there
is evidence of weight « independent from y suggesting a prior
distribution F,, the observation x; of a sample x should be

simulated from £@;
F<i)(xi) :PX/)FO(XL‘) + (1 _PJ(Q)FXJ)(X;')

pi=alla + N+i—1)

(13)

where F( is the empirical distribution of the reference sample
to which the observations {x,, x,, **+, x;,_;} have been
added. This is proven in Appendix C. The distribution £
corresponds to a generalized Pdlya urn model. To simulate x;,
a real number u is chosen at random between 0 and 1. If u =
PP, then x, is obtained from F(x). Otherwise, an integer k is
randomly selected from between 1 and N + i — 1. Ifk < N,
then x; is set equal to y,; otherwise x; is set equal to x; .
Notice that if the weight « of the prior hypothesis is zero, then
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P = a = 0 and the predictive distribution £ depends only
on the reference sample y.

In practice, F,, could be chosen from a family of parametric
distributions whose parameters would have to be estimated. If
the reference sample is used for that purpose, the prior infor-
mation represented by F, will not be independent from the
sample, and therefore the procedure described previously will
not be rigorously applicable. It would be preferable to use
independent physical, historical or meteorological informa-
tion. However, estimating the parameters of F, using the ref-
erence sample can be an acceptable procedure to obtain a
hybrid simulation model, combining both nonparametric resa-
mpling and parametric simulation. By changing the value of p
(between 0 and 1), it is then possible to go from a completely
nonparametric simulation model (p, = 0) to a standard
parametric simulation model (py = 1).

7. Comparing Statistical Models for Flood
Frequency Analysis

To illustrate the Bayesian approach to simulation discussed
in this paper, we consider the classical problem of estimating
X7, the design flood of return period T from a sample of flood
data. This quantile can be estimated by fitting a probability
distribution D using a method E for estimating the parameters.
The choice of the combination D/E for return periods T larger
than the sample size n has a significant influence on the result.
Suppose that one has to choose between two D/E combina-
tions, the generalized extreme value distribution (GEV) [Jen-
kinson, 1955] and the Gumbel distribution (EV1) [Gumbel,
1960], for fitting flood data of low coefficient of variation (CV)
from the province of Ontario (Canada), and that parameters
are to be estimated using the method of probability-weighted
moment (PWM) [Landwehr et al., 1978]. The p.d.f of the GEV
distribution is given by

F(x) =Pr{X=x]=exp{—[1 — k(x — u)/a]"} k#0
(14)
F(x) =Pr[X =x] = exp {—exp[ — (x — u)/a]} k=20

where k, u, and «(>0) are respectively, the shape, location,
and scale parameters of the distribution. The shape parameter
k determines the coefficient of skewness (CS) of the distribu-
tion. The EV1 is a particular case of the GEV corresponding
tok = 0, or CS = 1.14. The problem of choosing between the
GEV/PWM and EV1/PWM models has been discussed in a
parametric context by Lu and Stedinger [1992]. Nonparametric
Bayesian analysis provides a complementary analysis.

7.1.

Fortin [1994] has shown that the sample of maximum annual
flood data observed on the Black River near Washago is rep-
resentative of series with low CV (=0.3) in Ontario, meaning
that it is possible to reproduce the variability of CS values
observed in these flood series by resampling the Black River
data. Seventy-five years of data are available. CV and CS,
estimated from the sample, are, respectively, 0.24 and 0.19.
Figure 2 shows the observations plotted on Gumbel [1960]
probability paper, using Cunnane’s [1978] plotting position p;
= (j — 0.4)/(N + 0.2), together with GEV/PWM and
EV1/PWM models fitted to the data. Clearly, the EV1/PWM
model does not fit the smallest observations satisfactorily. The
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Figure 2. Probability plot of the maximum annual flood se-
ries recorded on the Black River near Washago (Ontario) until
1990.

GEV/PWM model, on the other hand, fits the lower observa-
tions well, but seems to underestimate x, for large return
periods. Apparently, neither distribution is flexible enough to
model the underlying distribution of floods, but both could
provide a satisfactory approximation.

7.2. Simulation Design

To compare the GEV/PWM and EV1/PWM models by sim-
ulation, three procedures are considered: parametric simula-
tion, the bootstrap, and Pélya resampling. R = 1000 samples
of size n = 10(10)70 were simulated using each simulation
model. The parameters of the GEV parent distribution, ob-
tained by the PWM method, are k = 0.273, o = 30.1, and
u = 119. For this population CV = 0.23 and CS = 0.01. The
EV1/PWM and GEV/PWM models can be compared on the
basis of the standard deviation ¢ = E[(£; — E[£:])*]"?,
bias b = E[£; — x;], and root mean square error RMSE =
E[(#; — xp)?]Y? = (¢® + b*)"2 of design flood estimates
£ for various return periods 7' = 2, 5, 10, 20, and 50 years.

Standard deviation, bias, and RMSE are easily computed
from the simulated samples using parametric simulation, but
estimation of bias and RMSE using nonparametric simulation
is more difficult. Indeed, it is not obvious how the reference
value of x,, to which the estimates £, must be compared,
should be computed from the reference sample y. Ferguson
[1973] proposes a nonparametric Bayes estimate of a quantile
under absolute error loss, but since the loss function is arbi-
trary there is no reason to prefer this estimate to others. It is
also possible to obtain x ;- by interpolating between the plotting
positions, but this approach is sensitive both to the choice of
the plotting position and to their variability. We obtained more
stable reference values for x,- by using a nonparametric kernel
estimation with a Cauchy kernel [Adamowski, 1985]. The
smoothing factor # was estimated by minimizing the sum of
squared differences 2, [p; — f“ (x(;y)]? between the non-
parametric distribution function F and the plotting positions p;
[Adamowski, 1985]. This method of fitting a nonparametric
distribution was chosen because it depends on the choice of a
plotting position and therefore can be used to study the sen-
sitivity of the computed reference values. The differences ob-

e
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Table 1. Reference Values of x

Reference Value of x

T GEV Parent Kernel Method
2 129 130

5 156 152

10 170 166

20 180 184

50 191 199

GEV, generalized extreme value.

served by considering all plotting positions p, = (j — a)/(N +
1 — 2a)for 0 = a = 0.5 were smaller than 1%. The values
obtained with Cunnane’s [1978] plotting position are presented
in Table 1.

7.3.  Parametric and Nonparametric Simulation Results

Figure 3 shows that for ' = 50 years, Pdlya resampling is
preferable to the bootstrap. Compared with the exact results
obtained using Pdlya resampling, the bootstrap gives a fair
approximation of the mean value of £, but significantly under-
estimates its standard deviation, especially for large sample
sizes. As the use of the bootstrap will result in systematic
underestimation of the standard deviation and RMSE, that
simulation model will not be considered further in this exam-
ple.

Figures 4a—4c show, respectively, the standard deviation,
bias, and RMSE of the GEV/PWM and EV1/PWM models
obtained using both Pdlya resampling and a GEV parent dis-
tribution for T = 50 years. The use of a GEV parent leads to
smaller standard deviations for both the GEV/PWM and EV1/
PWM models (Figure 4a). Notice that under the hypothesis of
a GEV parent, both models have similar standard deviations.
This is somewhat surprising, since the EV1/PWM model has
only two parameters compared with the three parameters of
the GEV/PWM model. However, Lu and Stedinger [1992] have
shown that for a GEV parent distrihution, the standard devi-
ation of the GEV/PWM model approaches the standard devi-
ation of the EV1/PWM model for large values of k.

The results for the bias (Figure 4b) are also interesting:
under a GEV hypothesis, GEV/PWM estimates are almost
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Figure 3. Mean and standard deviation of x5, for GEV/
PWM model estimated by bootstrap and computed by Pélya
resampling.
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bias-free, but the EVI/PWM estimates are highly biased
(around 20 m>/s) for all sample sizes (for T = 50 years). This
was to be expected, since the parent distribution is almost
symmetric, whereas the EV1 distribution always has a CS of
1.14, leading to a systematic overestimation of design floods.
The bias obtained by Podlya resampling is smaller for both
models and reflects the difference of 8 m/s between the para-
metric and the nonparametric reference value of x5,. Notice
that for all sample sizes and for both simulation approaches,
the bias of both models is found to be independent of the
sample size.

The standard deviation and bias can be combined to obtain
the RMSE (Figure 4c). With the hypothesis of a GEV parent
the RMSE for EV1/PWM is higher than for GEV/PWM, es-
pecially for large sample sizes. Since both modeis have similar
variance (Figure 4a), the lower RMSE of the GEV/PWM
model is entirely due to its very low bias. The results obtained
using Poélya resampling are reversed: the EV1/PWM does bet-
ter than the GEV/PWM model, especially for small sample
sizes. However, the difference between the two models is less
important than with parametric simulation. When the RMSE
is plotted as a function of the return period T for a fixed
sample size n = 20 years (Figure 5), it is seen that similar
conclusions would be drawn for T = 20 years. For return
periods smaller than the sample size, it is difficult to discrim-
inate between the estimation models, but since the difference
between the models is small, it does not matter much which
model is chosen. Given the contradictory results obtained us-
ing parametric and nonparametric simulation models, it is dif-
ficult to choose between the EV1/PWM and GEV/PWM mod-
els. The conclusions of the simulation study depend on the
confidence one has in the hypothesis of the GEV distribution.

7.4. Combining Parametric and Nonparametric Simulation

The degree of confidence in the GEV parent distribution
needed to accept the results of the parametric simulation may
be estimated by incorporating this hypothesis in the nonpara-
metric analysis. As previously explained (equation (13)), this is
done by considering a mixture F of a prior hypothesis F,, (in
this case the GEV distribution) and the empirical distribution
F(xly). To use this approach, it is necessary to specify p .,
which represents the degree of confidence (between 0 and 1) in
the prior hypothesis F,. A hybrid simulation model is then
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Figure 4a. Standard deviation of x5, for the GEV/PWM and
EV1/PWM models.
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Figure 4b. Bias of x5, for the GEV/PWM and EVI/PWM models.

obtained which has parametric simulation (if p,, = 1) and
Pélya resampling (if p,, = 0) as particular cases.

For a sample size of n = 20 and values of py, = 0(0.1)1,
the RMSE of the GEV/PWM and EV1/PWM models were
compared on the basis of R = 1000 simulated samples. Figure
6 shows the results for return periods of 7 = 20 and T = 50
years. It is interesting to determine the threshold value of p
for which the RMSE of the GEV/PWM model becomes lower
than the RMSE of the EV1/PWM model. For values of p,
larger than this threshold, one should prefer the GEV/PWM
model to the simpler EV1/PWM model; for values lower than
the threshold, the prior hypothesis of the GEV parent is not
strong enough to reach this conclusion. For both 7 = 20 and
T = 50 years the threshold is about p,, = 0.4. The confidence
in the GEV hypothesis necessary to reach a conclusion is
relatively high. It is best understood by a change of scale: to
each value of p 5, corresponds a weight « = N « po/(1 — pu)s
measured in units homogeneous to a sample size. To conclude
that the RMSE of the GEV/PWM model is lower, information
independent from the reference sample equivalent to 50 years
of data must support the hypothesis of a GEV parent distri-
bution. This value is relatively large, when compared to the size
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Figure 4c. RMSE of x5, for the GEV/PWM and EV1/PWM
models.

of the reference sample N = 75 years, but depending on one’s
confidence in the GEV parent distribution, one might accept
the conclusion that the GEV/PWM model is superior. If in-
sufficient prior information is available to favor a GEV parent,
then the conclusions of the nonparametric analysis are more
attractive. In that case the low bias of the GEV/PWM model,
although useful in the artificial GEV world, has less bearing on
the decision, and the EV1/PWM model can be preferred.

8. Summary and Conclusion

A Bayesian procedure called Pélya resampling for simulat-
ing i.i.d. observations from a nonparametric predictive distri-
bution has been presented. For large samples the procedure is
approximately equivalent to the bootstrap, but Pélya resam-
pling is preferable in all cases. Indeed, it takes into account the
fact that the observed data is only a sample of an unknown
population, whereas using the bootstrap one assumes that the
observed sample is equivalent to the unknown population. The
procedure was extended to take into account prior informa-
tion, mainly in the form of a parametric distribution whose
weight, relative to the reference sample size, may be adjusted
depending on the confidence in this prior information. Conse-
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Figure 5. RMSE of x; for the GEV/PWM and EV1/PWM
models (n = 20).
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Figure 6. RMSE of x,, and x5, for the GEV/PWM and
EV1/PWM models, computed by generalized Pélya resam-

pling.

quently, the proposed simulation procedure generalizes both
nonparametric and parametric simulation.

Although we propose a nonparametric simulation proce-
dure, we do not advocate nonparametric extrapolation of
quantiles. On the contrary, a sound parametric hypothesis is
necessary for extrapolation. The nonparametric simulation
procedure presented in this paper can, however, be used to
compare the performance of various parametric models for
extrapolating the distribution of a hydrological variable whose
parametric distribution type is unknown.

Like parametric simulation, Pélya resampling is limited to
stationary series and independent observations. A moving
block bootstrap was presented by Kunsch [1989] and a nearest
neighbor bootstrap was proposed by Lall and Sharma [1996] to
preserve the dependence structure of time series in nonpara-
metric simulation. A similar Bayesian methodology for resam-
pling time series could be devised. When the hypothesis of
stationarity is not respected, simulation based on past data is
more problematic. In some cases a nonparametric analysis
based on the theory of chaotic dynamical systems may be
appropriate [Lall et al., 1996].

In Bayesian analysis, however, the hypothesis of i.i.d. obser-
vations may be replaced by the weaker requirement that the
observations be exchangeable [Berger, 1985]. Plya resampling
is appropriate if the same subjective probability applies to any
permutation of the reference sample. A weakness of the Bayes-
ian approach is the need to specify a parametric prior distri-
bution for the parameters of the model. For Pélya resampling a
complete Bayesian analysis should include a robustness study of
the conclusions to the hypothesis of an improper Dirichlet prior.

Nonparametric simulation cannot entirely replace paramet-
ric simulation: a nonparametric analysis requires a large sam-
ple size N, and when N is large, goodness-of-fit tests may be
sufficiently powerful to assist in identifying a parent distribu-
tion. However, nonparametric simulation may put the results
of a parametric analysis into perspective. Indeed, as shown in
the example, the two methods can give very different results.
Nonparametric simulation provides a simple way of assessing
the sensitivity of the results of a parametric simulation to the
hypothesis of the parent distribution, which can either
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strengthen or relax the conclusions of a parametric analysis.
Furthermore, the confidence in the hypothesis of a parent
distribution needed for the conclusions of a parametric simu-
lation to hold may be evaluated quantitatively by taking into
account in the nonparametric analysis a hypothesis F, on the
parametric distribution of a variable. In our example, the pa-
rameters of F, were estimated from the sample, which is not
strictly correct, since F, must be based on information inde-
pendent from the sample. Another way of estimating the param-
eters is to use independent regional information. This would be
particularly useful at sites where the sample size is small.

Apart from the example presented here to illustrate the
methodology, Pélya resampling has been used to compare at-
site flood frequency analysis procedures for the provinces of
Québec and Ontario [Fortin, 1994; Fortin et al., 1997]. While
the results obtained by this method were encouraging, addi-
tional applications are needed to determine the practical value
of the method.

Appendix A: Nonparametric Preposterior
Analysis

This appendix shows that a nonparametric predictive distri-
bution based on the Dirichlet process corresponds to a Polya
urn model [Lo, 1988]. Let % be the sample space of a random
variable X and let & be a o field of %, that is, a set of events
closed under union, intersection, and complement. Let a(B)
be a finite non-null measure on (¥, ). A random process P is
said to be a Dirichlet process @(«) on (¥, o) with parameter
a(B) if, for any measurable partition B = {B,, B,, **-, B,,,}
of ¥, the probabilities P(B,), P(B,), -+, P(B,,) follow a
Dirichlet distribution @[a(B,), «(B,), -+, «(B,,)].

If additional information becomes available, the parameter
a(B) can be updated through the use of Ferguson’s [1973]

theorem. Given a sample x = {x;,j = 1, 2, ---, n} of size
n from P, the updated distribution of the random variables
P(B1)7 P(Bz): Tt P(Bm) is gb(O‘X(Bl)’ ax(B2)7 Tt

a*(B,,)) with o*(B) = a(B) + 2/ _ | 8,(B), where 8,(B)
denotes the measure giving mass one to the pointx if x € B
and zero otherwise (x & B). Let n, = X7, 8, (B;) denote
the number of occurrences of event B, in x. The predictive

distribution f(x) is given by (15), which is similar to (8):

.ﬂX):'(nl’nb7..,nm)

-[HNM@MHFMMJ

j=1

I'(a(¥))
I'(aX(%))

(15)
j=1

The updated predictive distribution f(x|y) for a reference
sample y = {y,, j = 1, 2, -+, N} of size N containing,

respectively, ry, 5, *** , ¥,, occurrences of B, B,, +*+, B, is
given by
n F(a’(%))
f(X|y) - (nl’ Ry o, nm) F(ax‘y(%))
-Hnwwwﬂnﬂmw (16)
j=1 j=1

where o”(B) and o™Y(B) are obtained using Ferguson’s the-
orem:
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o*(B) = a(B) + 2, 3,(B) (17)
j=1
a*(B) = &*(B) + 2, 8,(B) = a(B) + 2, 8,(B)
+ 2 5,(B) (18)

j=1

When no other information than a reference sample y is
available, «(B) = 0; therefore o’(¥) = N, «”(B;) = r
oY (%) = N + n, and o®¥(B;) = r; + n;. Consequently,
(16) simplifies to

fxly) = (n e ,,)

. [ [Tre+ nj)/H r(r,)]

j=1 j=1

T'(N)
T'(N+n)

(19)

Equation (19), valid for all measurable partitions B of %,
simplifies further for specific partitions. Consider a partition
B={B,,B,, "+, BN,y of X into N + 1 subsets such that
y; € B;,j = 1,2, -+, N; that is, only one observation of the
reference sample falls into each subset B;, j = 1,2,---, N
and no observation falls into B, ;. Of course, all observations
in y must be different for this to be possible, but it is not
essential for the final result to hold. If », represents the num-

ber of occurrences of the event B, iny, thenr, = 1, r, =
1, -, rny = 1, ry.q = 0. Therefore (19) simplifies to

\ |7 B !

\ n niln,t Ryt
f(X|Y)—(nb nz;'.',nN> N(N+1)(N+n‘1) (20)

which is a P6lya urn model, since (20) is a particular case of (9)
obtained forr, = 1, r, = 1, ,ry =1

Appendix B: Posterior Estimation
of a Distribution Function

A nonparametric estimation of a distribution function can

be based on the Dirichlet process [Ferguson, 1973]. Let X be a

random variable with distribution F(x) = Pr [X = x] defined

) on the real line R. Let the space of actions 4 include all

distributions F defined on R, and suppose a quadratic loss

function I(F, F) = [ [F(x) — F(x)]? dx. Suppose that apart

from a random sample y = {y;,j = 1, 2, +--, N}, all other

prior information on F can be represented by a Dirichlet pro-

cess (@) on (R, B), where B is the o field of Borel sets.

Ferguson [1973] shows that the Bayesian estimate F(x) mini-
mizes the posterior expectation of F(x|y) which is given by

N
a((—=, x]) + 2, 8,((—, x])

Fx a(R) + N

= E[F(x|y)] = (21

Equation (21) can alternatively be written as a mixture of the
prior guess F,(x) and of the empirical distribution function

Fr(xly):
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F(x) = E[F(x]y)] = pnFo(x) + (1 — py) Falxly)

y=a(R)/(a(R) + N
v = a(R)/(a(R) + N) -

Fo(x) = a((=, x])/a(R)

Fy(xly) = UN 27 8,((==, x))

Appendix C: Using Prior Information
With Polya Resampling

Poélya resampling may be generalized to include a prior hy-
pothesis of the distribution of a variable X, restricted to R to
simplify the notation. Consider the updated predictive distri-

bution f(x,|y) of a single observation x;, obtained from (16),
(17), and (18), by lettingn = 1

I'(a(R) + N)

faly) = Fam+ N+ D

11 r( a(B) + 2, 8,(B) + 5M<B,.))

j=1 i=1

(23)

m N
II F( a(B) + 2, 3y1(37))

j=1 i=1

Equation (23) is valid for all measurable partitions B =
{B,, B,, *--, B,,} of ¥ and in particular for B = {B,, B,}
with By = (-, x,] and B, = (x,, «). For this simple
partition, (23) simplifies to

a((==, x,]) + > 8,((—, x,])

j=1

faly) = a(R) + N (24)
which, according to (22), can be rewritten as
FOaly) = F(e) = puFox) + (1= p Fa(xly)  (25)

where F,(x) is an hypothesis on the distribution of X, p, is
the strength of this hypothesis, and F,{(x|y) is the empirical
distribution function based on the observed reference sample
y. The predictive distribution of a second observation x,, given
x; and y, can be obtained in a similar manner by applying
Ferguson’s theorem:

INa(R) + N+ 1)

f(xz|x1, y) = ﬂa(R) +N+2)

11 rla(m + 2 8,(B)) + 8,(B)) + MB)]

):l

(26)

m N
11 rl a(B) + >, 8,(B) + SXI(B,-)}
j=1 i=1

Recalling that (26) is valid for all measurable partitions, and
considering the simple partition B’ = {B, B}}, with B} =
(—=, x,] and B, = (x,, »), a simpler distribution is ob-
tained:
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f(x2|xl5 Y)

N
al(—=, x,]) + >, 8,((==, x,]) + 8,((—, x,])

j=1

- a(R) + N + 1 (27)
which can be rewritten as
f(x2’x]’ y) = F(Z)(xz) :Pz(\%)Fo(xz) + (1 _Pﬁ)) Fz(\%)(xz) (28)

Here p’ = a(R)/(a(R) + N + 1) and FP(x) =
[22) 8, ((—, x]) + 8, ((—=, x])]/(N + 1), which cor-
responds to the empirical distribution function of the reference
sample to which observation x; has been added. It can be
proven by induction that observation x; is obtained from a
mixture of Fo(x) and F(x):

X Y) Zﬁ(i)(xi) :PX)FO(XI') +(1 *PXJ))F}\I})(XI')

(29)

/(N+iﬁ1)
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f(xi|x1,x2,' :
pY=aR)/(a(R) + N +i—-1)

N

FO(x) ={ > 8,((—», x]) +2 8,((—, x])
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