Performance estimation of a remote field eddy current method for the inspection of water distribution pipes

Sophie Duchesne - INRS Centre Eau Terre Environnement

Nabila Bouzida

Jean-Pierre Villeneuve

June 6 - 8 Centre des congrès de Québec Québec City, Québec

Degradation and renewal of water distribution pipes

- Replacement of water pipes: important expenditures
 - e.g. Burn et al. (2007): annual worldwide expenditure for water distribution pipes > US\$ 33,000 million/year
 - should rise significantly in the future as existing assets increasingly come to the end of their useful lives
- Most of small diameter pipes installed < 1990 = metallic (ductile or gray cast iron)

Source : http://www.cfgservices.fr

Corrosion of water distribution pipes

Consequences of corrosion

- Increased frequency / probability of pipe breaks and leaks
- Increased costs + interruptions in water supply
- <u>Solutions :</u>
 - replace?
 - repair?
 - which pipes?
 - when?

ource : http://video.monteregie.hebdosregionaux.ca

Source : http://www.cfgservices.fr

Existing tools to plan the renewal

- Prediction models and planning tools:
 - assess the required financial resources
 - prioritizing pipes that should be replaced and/or rehabilitated
- Decision to replace / repair a specific pipe:
 - requires assessment of its conditions
 - observed breaks and leaks (indicators)
 - observations from inspection

RFEC technique for the inspection of water distribution pipes

- Remote Field Eddy Current:
 - application well known for the identification and sizing of defects in metallic gas distribution pipes
 - can be applied to water distribution pipes

Source : http://www.popsci.com/technology/article/2011-01/pigrobots-keep-gas-lines-blowing

RFEC technique for the inspection of water distribution pipes

- Exciter transmits a low frequency magnetic field that can reach receivers by two paths:
 - 1. inside the pipe through the water (direct path)
 - 2. through the outside of the pipe (indirect path)
- Strength of magnetic field attenuated rapidly in direct path
 - ➤ at ≈ two pipe diameters from exciter, indirect field dominates the direct field: the remote field zone begins

RFEC technique for the inspection of water distribution pipes

- Variations of wall thickness at the locations where the magnetic field goes through the pipe modify phase and/or amplitude of the signal
 - can be translated into wall thickness reduction and spatial extent of the detected flaw
- Does not measure the actual pipe-wall thickness: evaluation of the material loss percentage

Objective and general methodology

<u>Objective</u> : Assess the performance of an existing RFEC probe for the inspection of cast iron water pipes

1. Inspect 6 pipes with the probe

2. Compare size and location of corrosion defects estimations with values resulting from the processing of computed tomography (CT) images of the same pipes

Analyzed pipes (excavated)

	Estimated date of installation	Estimated age at inspection	Diameter	Length	Average wall thickness
		(years)	(mm)	(m)	(mm)
NEW-PIPE	-	-	150	1.1	7
SILL-MAG-1A	1948	61	200	1.6	14
B-MAN-1A	1909	100	150	2.6	10
B-MAN-1B	1909	100	150	2.5	10
B-MAN-2A	1909	100	150	1.7	12
B-MAN-2B	1909	100	150	1.7	9
LHSTCH-MC	1945	64	150	1.3	7
LHSTCH-HOP	1957	52	150	3.2	8

- RFEC probe passed once in each pipe (laboratory = air)
- Comparison with in situ inspection for one pipe

10

Inspection results

	Defect	Location	Thickness loss	Sensitivity zone coverage	
		(m)	(%)	(%)	
B-MAN-1A	#1	1.2	22	22	
B-MAN-1B	#1 #2	0.8 1.6	17 28	13 17	
B-MAN-2A	#1	1.8	15	63	
B-MAN-2B	#1 #2	0.4 1.3	23 26	< 13 13	
LHSTCH-MC	#1	0.7	38	24	
LHSTCH-HOP	#1	1.4	20	< 13	

• Based on Lambert-Beer law:

$$N = N_0 e^{-\mu x}$$

N = measured intensity after layer of thickness *x*;

 N_0 = incident radiation intensity (usually in keV);

- $\mu~$ = linear attenuation coefficient $\rightarrow~$ depends linearly on the density of the material
- Output from CT scan computer:

$$HU = rac{\mu - \mu_{water}}{\mu_{water}} imes 1000$$

• When viewed in Matlab:

12

$$pixel_value = \frac{HU + 10240}{10}$$

• When viewed in Matlab:

13

$$pixel_value = \frac{HU + 10240}{10}$$

• When viewed in Matlab :

$$pixel_value = \frac{HU + 10240}{10}$$

NDT in Canada 2017 Conference (June 6-8, 2017)

14

- Objective, to compare with the RFEC tool:
 - 1. pipe thickness loss = percentage of lost material on 100 mm sensitivity zones, all along the pipes

PIPE

Sensitivity zone

Receiver coils

360°

- 2. spatial extent of this loss
- <u>Steps :</u>
 - 1. Correction of artifacts
 - Estimation of the mean percentage of material loss for 100 mm by 360° zones
 - 3. Estimation of the worst percentage of material loss on specific proportions of these
 - 15 100 mm by 360° sensitivity zones

Exciter coil

100 mm

Inspection probe

Correction of artifacts

1500

 Compute mean corrected pixel value across the pipe wall for 180 different angles (2° apart)

 Compute mean corrected pixel value across the pipe wall for 180 different angles (2° apart)

ii. Compute percentage of pipe-wall loss for each pixel

$$\% loss = \left[1 - \left(\frac{\rho v - \rho v_{\min}}{\rho v_{\max} - \rho v_{\min}}\right)\right] \times 100$$

iii. Average the percentage of material loss (for 100-mm strips) over all 180 - 2° angles (360°)

Example for NEW-PIPE

NDT in Canada 2017 Conference (June 6-8, 2017)

Example for NEW-PIPE

NDT in Canada 2017 Conference (June 6-8, 2017)

Estimation of worst thickness loss

Estimation of worst thickness loss

NDT in Canada 2017 Conference (June 6-8, 2017)

Estimation of worst thickness loss

NDT in Canada 2017 Conference (June 6-8, 2017)

6

24

Summary of results

		CT scan image analysis		RFEC Tool			
				Sensitivity			Sensitivity
Pino	Dofact	Location	Thickness	zone	Location	Thickness	zone
гіре	Delect	(m)	loss (%)	coverage	(m)	loss (%)	coverage
				(%)			(%)
B-MAN-1A	#1	0.7	18	13	n.i.	n.i.	n.i.
	#2	1.3	22	22	1.2	22	22
B-MAN-1B	#1	0.7 - 0.9	16	13	0.8	17	13
	#2	1.6	15	17	1.6	28	17
B-MAN-2A	#1	0.8	34	13	n.i.	n.i.	n.i.
	#2	1.2 - 1.5	14	63	1.8	15	63
B-MAN-2B	#1	0.4	20	13	0.4	23	< 13
	#2	1	25	13	n.i.	n.i.	n.i.
	#3	1.4	48	13	1.3	26	13
LHSTCH-MC	#1	0.1	27	13	n.i.	n.i.	n.i.
	#2	0.7	20	24	0.7	38	24
LHSTCH-	#1	0.2	17	13	ni	ni	ni
НОР	#1 #2	0.2	17	13 12	1.1.	11.1. 20	11.1.
	#∠	1.4	١Z	10	1.4	20	× 13

n.i.: not identified

25

Conclusions

- Similar results for both techniques:
 - but RFEC tool: thickness loss ≥15% when averaged on the 13% most corroded area of the tool's sensitivity zone
- RFEC tool provides reliable information on the main corrosion defects and thus on the general structural state of water pipes
- RFEC tool cannot identify small corrosion pits:
 - could cause leaks and even initiate larger corrosion areas
 - better detected by leak detection methods (e.g. acoustic)
- Further tests required (more pipes, lined or coated pipes, ductile iron pipes)

Questions ?

Source : http://www.popsci.com/technology/article/2011-01/pigrobots-keep-gas-lines-blowing

Name	Pixel size (mm)	Slice thickness	Spacing between slices	
		(mm)	(mm)	
NEW-PIPE	0.492	1	0.7	
SILL-MAG-1A	0.517	1	0.7	
B-MAN-1A	0.492	1	0.7	
B-MAN-1B	0.492	1	0.7	
B-MAN-2A	0.492	1	0.7	
B-MAN-2B	0.492	1	0.7	
LHSTCH-MC	0.449	1	0.7	
LHSTCH-HOP	0.431	1	1.0	

