
dikra.khedhaouiria@ete.inrs.ca

Spatio-temporal post-processing of the CFSR daily precipitation across the Great Lakes region (Canada)
Dikra Khedhaouiria1, Alain Mailhot1, Anne-Catherine Favre2 

1- Institut National de la Recherche Scientifique - ETE 2 - LTHE - Grenoble (France)

 

1.Introduction
Precipitation information at the local scale are 
needed for many fields, e.g. design of 
hydraulic infrastructures.

Reanalysis datasets are an attractive alternative:
the past state of the atmosphere is reconstructed 
using Numerical Weather Prediction (NWP) 
models assimilating past observations.

Reanalysis datasets cover continuously past period 
across the earth with a relatively high temporal 
and spatial resolution for several climate 
variable as precipitation.

However, reanalysis datasets cannot be directely 
used due to, among others, resolution mismatch 
and model bias. Therefore, reanalysis needs to be 
post-processed before they can be used.

In this study, precipitation products 
are from one reanalysis:
The Climate Forecast System Reanalysis (CFSR)  

2.Objectives
Apply stochatistic downscaling approaches combined 
with meta-Gaussien latent field on CFSR precipitation 
in order to generate random daily sequences with local 
properties (as opposed to gridded value) and with 
spatio-temporal consistency.

Regionalize the at-site downscaling parameters. 
As CSFR covers the whole territory, it will be 
then possible to generate daily precipitation 
datasets (not developed here).

3.Data

Hourly datasets aggregated to daily
Period: 1979-2009
Resolution: ~ 38 km
Coupled model: Ocean-Atmosphere-Land 

 
331 stations: 
Each year: less than 90% missing values
Each station cover at least 10 
years of the 1979-2009 period

CFSR (Saha et al. 2010) Observation network

Great Lakes region defined by Plummer et al. (2006)

The stochastic post-treatment is used to correct 
and downscale CFSR precipitation
Post-processing of reanalysis series is achieved in two steps : 
one for the precipitation occurrence (LR model) and 
one for the precipitation intensity (VGLM model)
Post-processing approach demonstrated high potential for 
providing precipitation that reproduce at-site statistics, 
indices, and the specific annual cycle of the Great-Lake region

The next step is to interpolate (e.g. 
kriging) the LR and the VGLM 
parameters to post-process reanalysis 
series at sites without historical records
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4. Method
4.1 Stochastic post-treaments of precipitation ( Wong et al. 2014)

 

 

 

  

4.3. Daily precipitation at sites 
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Combine the probability of occurrence 
and intensity to define the local daily 
precipitation distribution:

Pr (Z ≤ zi) =pi FΓ(μi, γi; 𝑥𝑖) + (1- pi)

4.1.b. Vector Generalized Linear Model (VGLM) is used 
to estimate the precipitation intensity

Daily local gamma distribution conditionnal, 
where zi is local daily precipitation,

to the simulated intensity xi

μi = μ0  + μ1 log(1+𝑥𝑖)+ μ2 cos(2πd/T) + μ3 sin(2πd/T)
γi = γ0 + γ1 log(1+𝑥𝑖)

Pr ( Z ≤ zi | X =xi )  = FΓ (μi, γi; xi)
 

Daily precipitation distribution is represented by a two-parameter
Gamma distribution (μ, γ), [position and shape]
VGLM models allow the daily precipitation 
parameters at sites to be functions 
of daily precipitations estimated by CFSR 
through the following expression:

μk,γmare estimated by the maximum-likelihood method
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Montreal - 10 January 1979

The observed precipitation that day 
is ~17mm at Montreal Station. 
The VGLM model estimates, for that
day, the probability to observe a 
precipitation inferior or equal to 
17mm is 0.6
 

4.1.a. Logistic Regression (LR) is used to estimate 
local precipitation occurence probabilities

= α0 + α1 log(𝑥𝑖+1) + ...
   α2 cos(2πd/T) + α3 sin(2πd/T)

pi
1 - pi

log( )
 

probability of rain at a given site 
conditionnal on the intensity estimated 
by the reanalysis xi  for the same day  i

 LR aims at modelling the pattern 
of dry and wet days at sites 

αk	are estimated by 
the maximum-likelihood method
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Probability of 0.6 to observe a 
wet day at Montreal Station 
when it rains ~2.5mm at the 
concerned CFSR grid-cell
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4.2. Random meta-Gaussian latent field definition (Serinaldi et al. 2014)

Fit spatial covariance function of
the observed daily precipitation

for each season
 

Random simulation of the
gaussian field, y(s), at each CFSR 

grid-cell coordinates

Append the temporal persistence, ρ,
to the random field 

(Podgorski & Wegener,2012):

 

Generate from that distribution with the
uniform random field obtained by the
meta-gaussian definition

5. Evaluation
Metrics to be evaluated
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relative difference 2.5%

relative difference 5%

post-treated mean

99.7% post-treated interval

90% post-treated interval

rd 2.5%

2.5% < rd 5%

rd> 5%

Climate evaluation of the daily precipitation

Spatial evaluation

Mean, mean on wet days, number of wet days, 95th percentile

Spatial correlation of the the daily precipitation at the pair of sites

Annual evaluation
Climate indices from the ETCCDI indices (World Meteorological 
Organization’s Expert Team on Climate Change Detection 
and Indices)

Annual cycle of the precipitation

CASE* framework evaluation

*Comprehensive And Systematic Evaluation

6. Results

The generated series displayed good climate characteristics 
(good representation of the marginals: occurrence and intensity)

Noticeable improvement compared to CFSR

Climate evaluation of the daily statistics

Annual evaluation

Spatial evaluation 

The meta-Gaussian field 
enabled the generation accurate 
spatial correlation even
at the season scale

CFSR overestimated 
the spatial correlations 
of the daily precipitationFraction of annual values

displaying a good or fair 
performance for each sites

Annual cycle of precipitation

Around 30% of sites had 100% of their annual index series in the good 
category  
For the remaining sites, this percentage dropped between 60 to 90% and 
for the same series, while the remaining years fell in the fair category 

Here again, post-processed CFSR showed for the majority of sites 
and index, better estimates than CFSR

Annual cycles estimated from regionally-
averaged daily precipitation

Post-processed series enabled
the simulation of the regional 
annual cycle of the precipitation

Good or fair estimates of regional 
month amounts were generrally 
obtained in post-processed series

CFSR cycle was not concordant 
with the observed cycle 

The meta-Gaussian latent field can be
used to generate spatially consistent 
precipitation series with adequate 
temporal persistence
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