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1. INTRODUCTION AND OBJECTIVES

The main objectives are to:

3. METHODS 4. RESULTS

2. STUDY AREA & ITS INTRIGUING “BRACKISH AREA”

Qcmax. extent

Conceptualisation of the palaeo-problem:

Numerical modeling is required to represent this coupled flow & transport 
problem (water density depends on salinity), in a system with complex 
geometry (e.g. topography) with spatial and temporal variations of model 
parameters and boundary conditions.

Numerical modeling approach:

5. CONCLUSION

i) Quantitative comparison of mass fluxes for different processes, alone (A, B, C) or coupled (A & C)

ii) A plausible reconstitution of the evolution of groundwater salinity and dynamics following deglaciation (A & C)

2Dxz(t) model flowchart for: C) variable density 
coupled flow & transport, with fully-transient 

conditions at model surface

1Dz(t) model for: A) advective-dispersive salt 
transport in and below the forming aquitard;

B) expulsion of saltwater from the forming 
aquitard due to clay accumulation & consolidation
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C. Density-driven free convection in the rock aquifer
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A. Aquitard salinity evolution
during and after sedimentation 

B. Consolidation and drainage during
sedimentation (S&C) of clays

t ≈ 2.5 ka t ≈ 8.2 ka

t = 13.0 ka ≈ 0 BP

This study aims to better understand changes in regional aquifer dynamics 
that followed the Champlain Sea marine incursion,  ≈13 000 years ago.

1. reconstruct the evolution of groundwater salinity and dynamics 
following deglaciation, using physically-based numerical models;

2. identify the key palaeo-hydrogeologic processes involved;
3. explain the present-day state of the system, especially the persistence 

of brackish groundwater even at shallow depths;
4. improve our understanding of high-amplitude marine transgression-

regression effects on groundwater systems in general.

Study area in Montérégie Est, Quebec, Canada

• The regional fractured-rock aquifer system 
underwent a complex late glacial history that 
left a sedimentary record and ~2 200 km2 of 
brackish groundwater.

• This brackish groundwater can be used as an 
indicator of the historical aquifer dynamics.

• The study area also benefits from high-
quality data available from a regional 
hydrogeological assessment (aka “PACES”).

 Density-driven free convection dominates salt transport in the rock aquifer, even in clay-confined areas.
 Consolidation of clay generates advective mass fluxes that bring salt into the rock aquifer.
 Diffusive fluxes from the base of the clay aquitard to the rock aquifer are negligible compared to other fluxes.
 Diffusive fluxes from the aquitard to the overlying sea / lake / surface are the dominant transport process 

controlling the post-marine evolution of salinity in the aquitard and, hence, underneath.
 Density-driven saltwater fingers sink until they reach the brine “floor”; afterward,  groundwater salinity is 

progressively homogenized by spreading and mixing.
 In higher areas not covered by clay, salty water leaching by fresh groundwater is substantial, whereas leaching 

is very limited under the aquitard, thus explaining the presence today of brackish groundwater in the aquifer.

Canada
SW St. Lawrence ValleyMontérégie Est

-120 0-100 -80 -60 -40 -20
-500

0
500

1000
1500

ice 
sheet

global sea 
level

ice load 
(thickness)

E
le

va
tio

n 
(m

)

Last glacial period timeline (cal ka BP)

(post-
glacial 
epoch)

(LGM)

Surface conditions during the last glacial cycle
(non-local example data for Waterloo, Ontario, Canada; adapted from Lemieux et al., 2008)
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Map source: Geol. Surv. Can. O.F. n°6960

red: salinity (TDS); qf: fluid flux (L3/T/L2); qm: mass flux (M/T/L2)
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Conceptualization of palaeo-conditions (at model surface):
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