Analyse comparative des modèles bio-optiques d'absorption de la matière organique dissoute colorée (CDOM) dans les eaux tropicales en utilisant les données Landsat 5 TM : cas du réservoir du Funil (Brésil)

Sarah MARTINS¹, Karem CHOKMANI¹, Enner ALCÂNTARA², Igor OGASHAWARA³, Anas EL ALEM¹

¹Centre Eau Terre Environnement (INRS); ² Département d'Ingénierie de l'Environnement (UNESP); ³Département des Sciences de la Terre (IUPUI)

Contexte et objectifs

- Contexte: La CDOM joue un rôle important dans la photochimie des écosystèmes aquatiques et peut être utilisée comme un indicateur de la qualité de l'eau.
- Objectif global: L'évaluation de plusieurs modèles bio-optiques pour estimer l'absorption historique de la CDOM ($a_{CDOM}(\lambda)$) à l'aide des données satellitaires du Landsat 5 TM (LT5TM) obtenues pendant 15 années (1995-2010).
- Objectifs spécifiques:
- 1. L'étude et la détermination d'un modèle bio-optique pour estimer l' a_{CDOM} pour un réservoir tropical eutrophique.

Résultats

I. L'analyse des modèles bio-optiques: 6 ME (eaux complexes) et 4 QAA-BBHR (eaux tropicales eutrophiques) ont été analysés (Table 1).

Table 1. Les modèles bio-optiques utilisés.				
Modèle	Туре	Input <i>R^ars</i>	Output	Reference
Griffin	EM	B1, B2, B3	$a_{CDOM}(400)$	Zhu et al., 2014
D'sa	EM	B1, B2	$a_{CDOM}(412)$	Zhu et al., 2014
Castilo	EM	B2, B3	$a_{CDOM}(412)$	Zhu et al., 2014
Kutser	EM	B2, B3	$a_{CDOM}(420)$	Zhu et al., 2014
Ficek	EM	B2, B3	$a_{CDOM}(440)$	Zhu et al., 2014
Mannino	EM	B1, B2	$a_{CDOM}(443)$	Zhu et al., 2014
QAA-BBHR(B3)	SA	B1, B2, B3, B4	$a_{dg}(485)$	Watanabe et al., 2016
QAA-BBHR(B4)	SA	B1, B2, B3, B4	$a_{dg}(485)$	Watanabe et al., 2016
QAA-BBHR+CDOM(B3)	SA	B1, B2, B3, B4	a _{CDOM} (485)	Watanabe et al., 2016; Zhu and Yu, 2013
QAA-BBHR+CDOM(B4)	SA	B1, B2, B3, B4	а _{сром} (485)	Watanabe et al., 2016; Zhu and Yu, 2013
^a <i>R</i> simulé / ME: Modèle Empiriq	με / SΔ·Ν	Iodèle Semi-Analytique		

2. Détermination de la distribution spatio-temporelle historique de la CDOM par imagerie satellitaire du LT5TM.

Méthodologie

- **d'** $a_{CDOM}(\lambda)$: mesure d'absorption • Données en laboratoire (spectrophotomètre) entre 390 et 730 nm (Figure 2).
- Données de réflectance:
- 1. Mesures *in situ:* spectroradiomètre sur la surface de l'eau (l'éclairement: $E_s(\lambda, \theta, \phi)$ et luminance totale: $L_t(\lambda, \theta, \phi)$). Après, ces données ont été converties en réflectance de terrain ($R_{rs_{terrain}}(0+)$) selon Kirk (2011 – Eq. 1).

- •*L'analyse d'ajustement*: R² et valeur p : l'index du modèle (ME) ou les valeurs estimées (SA) vs l' $a_{CDOM}(\lambda)$ mesuré.
- L'analyse des erreurs: NRMSE, %RMSE, Nash et Bias : la valeur mesurée vs la valeur estimée.
- •Résultat: On a trouvé une mauvaise performance des modèles biooptiques essayés (ME: R²<0.01 et valeur p>0.78 / QAAs: R²<0.14, valeur p>0.14, NRMSE>0.50, %RMSE>41, Bias<-0.46, Nash<-2.91).
- **II.** L'étude d'un nouveau modèle: Le modèle $a_{CDOM}(485)$ linéaire basé sur le ratio B4/B1 a été proposé après les analyses de corrélation (Figure 4) et de colinéarité (Figure 5).

•**Résultat**: R²=0.91, valeur p<0.05, NRMSE=0.09, %RMSE=7.27, Bias=0.0008, Nash=0.91. Le nouveau modèle a été capable d'identifier des petits changements en $a_{CDOM}(485)$ car sa grande sensibilité aux valeurs de réflectance (Figure 6).

2. Simulation des données ($R_{rs_{simulé}}$): intégration des données $R_{rs_{terrain}}$ hyperspectrales selon la fonction de réponse (Fr) et largeur (dx) de chaque bande spectrale du capteur TM (Eq. 2, Figure 3), afin d'utiliser les modèles bio-optiques en l'imagerie satellitaire du LT5TM.

Conclusions

•Les modèles étudiés n'ont pas réussi à bien estimer $a_{CDOM}(\lambda)$ sur le FHR.

•Un nouveau modèle a été développé basé sur le 485 nm.

•Le modèle proposé a été plus adaptée pour estimer l' a_{CDOM} en utilisant les données orbitales du LT5TM.

•Le modèle proposé a montré une grande sensibilité à la $R_{rs_{simulé}}$.

Remerciements

unesp

Merci à l'UNESP et à l'INRS pour l'infrastructure de recherche, à l'INPE pour donner les données utilisées, et aux CNPq et PFLA pour le soutien financier.

Canada

CNPa