INRS

Development of Rating Curves Estimates for River Discharge using RADARSAT imagery

Karem Chokmani^{1*}, Marion Tanguy¹, Nastaran Saberi¹, Simon Perrault¹, Andres Jacome¹, Jimmy Poulin¹, Yves Gauthier¹, Monique Bernier¹

¹ Institut National de la Recherche Scientifique - Centre Eau Terre Environnement, Quebec City email: karem.chokmani@inrs.ca

1. BACKGROUND

Discharge measurement is an important parameter for many scientific and water management applications. This parameter is currently measured at ground-based gauging stations, for many rivers across the world. However, these gaging stations are scarce in high latitudes and in remote regions, are sometimes closed during maintenance operations and have a limited lifetime. The development of alternative methods to estimate discharge without in-situ measurements is thus essential.

Objectives

- To improve discharge estimates and forecasting in ungauged sites, through the development of width-discharge rating curves based on SAR imagery.
- To develop a non site-specific and fully automated method, applicable to rivers with a variety of fluvial morphology.

3. DATASETS AND SELECTED STATIONS

RADARSAT-1 AND 2 OBSERVATIONS

Datasets

Images selection criteria:

- Fine acquisition mode (spatial resolution of 8 m)
- **HH** Polarization ullet
- No snow or ice cover (visual inspection)

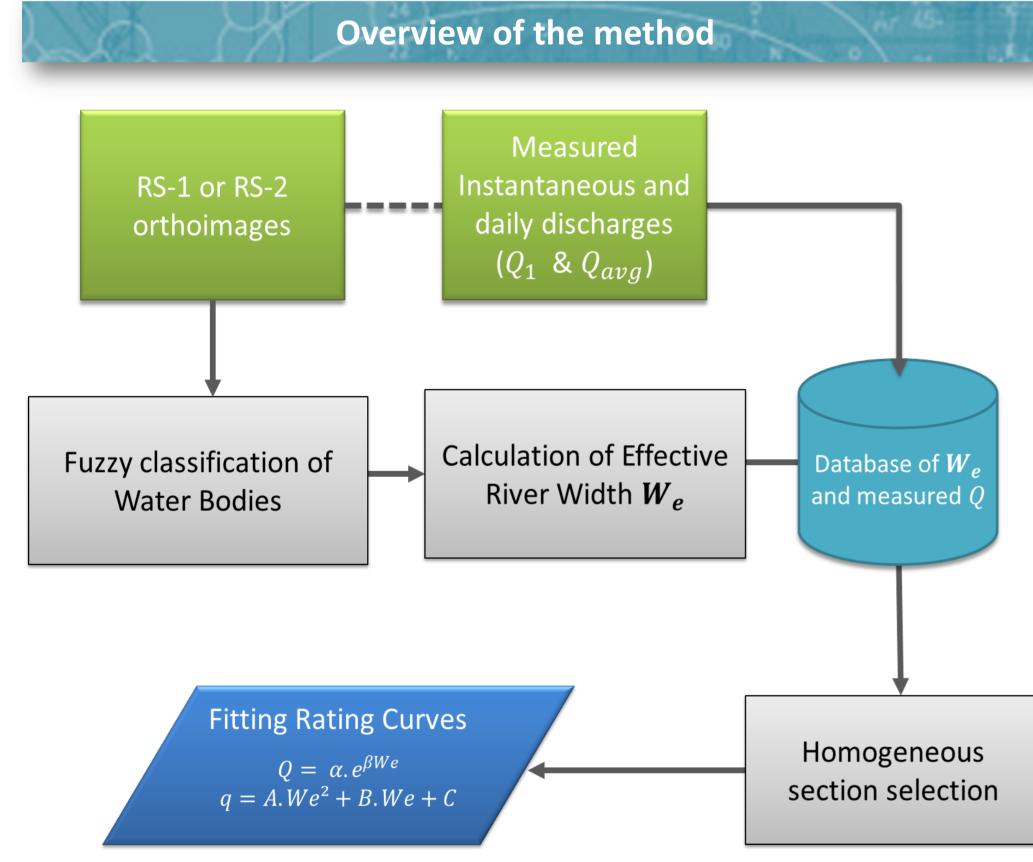
Hydrometric stations selection criteria:

- Minimum of 10 images per station (RS-1 or RS-2, in ascending OR descending mode)
- Availability of instantaneous or daily flow records lacksquareat the time /day of SAR images acquisitions
- Various hydrological and geomorphological characteristics.

ANCILLARY DATA

Selected stations

8 stations with different characteristics:


Size of watershed at station location, sinosity, lenght of river upstream of the station, difference between max and min discharge for the RS-1 or RS-2 images avalaible.

Station	Province	Number of RS images	Orbit	Size of watershed*
01BV006	NB	13 RS-2	Asc.	130 km²
020J026	NB	12 RS-2	Desc.	345 km²
02YS005	TN	16 RS-2	Desc.	2000 km²
01AQ002	NB	20 RS-1	Desc.	239 km²
02LE025	QC	41 RS-1	Desc.	879 km²
02LG005	QC	25 RS-1	Asc.	6768 km²
02OB017	QC	30 RS-1	Asc.	1263 km²
02YD002	NL	22 RS-1	Desc.	152 km²

2. WIDTH-DISCHARGE RATING CURVES METHODOLOGY

Innovative aspect of the method

Unlike previous studies, the method only requires SAR backscattering values and discharge values. These few requirements for the modelling process descreases input uncertainty levels.

- Instantaneous or daily flow rates between 1997 and 2013 (CEHQ and Env. Canada)
- Hydrographic network (National Hydro Network \bullet from Natural Resources Canada)
- Elevation database at the 1: 50 000 scale (Natural Resources Canada)

* Estimated at station location

F1, Ascending

4. RESULTS

Examples of Water presence probability and We estimation: Station 02LG005 (Gatineau River, QC)

Discharge: 14.95 m³/s RS-1 2004/09/21 Section 10= 228 m Section 11= 168 m

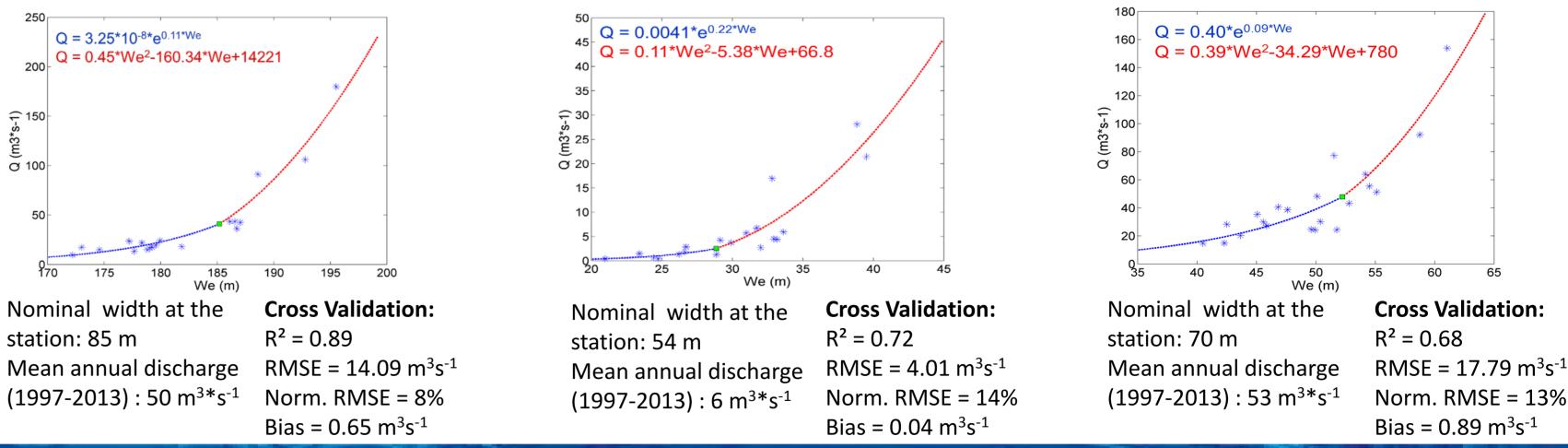
Example of SAR rating curves for somes of the selected stations

Discharge: 179 m³/s

Section 1-10= 203 m

Section 1-11= 195 m

Station 02LG005


RS-1 2008/05/03


F1N, Ascending

Station 02YD002

 $Q = 0.0041 * e^{0.22 * We}$ Q = 0.11*We²-5.38*We+66.8

Overview of the width-discharge rating curves methodology

DATA PROCESSING

- geometrically corrected Radar are and images intercalibrated
- Main river stream is isolated from the hydrographic network \bullet
- Water pixels identified using fuzzy classification theory. Pre- \bullet defined fuzzy threhsold (A: -18 dB and B: -16.5 dB) are used
- Homogeneous sections are then defined according to slope, sinuosity and river width (approach modified from Rosgen, 2004)
- River mean width *We* is estimated at each section, according to the fuzzy membership of each pixel to the « water class »
- Rating curves are estimated at each section, using We and discharge Q

5. CONCLUSIONS AND PERSPECTIVES

- The fuzzy logic approach allows precise detection of water and the calculation of *We* from RADARSAT-1 or 2 imagery
- River discharge can be estimated from RADARSAT imagery for different river widths
- For building a « virtual hydrometric station », we reccomand to :
 - Choose the best river section in terms of *We* dynamic related to river discharge
 - Use a set of images acquired from the same orbit (Asc. or Desc.), with close or similar incidence angles
 - Calibrate the SAR rating curve over a complete season (ice-free period)

6. ACKNOWLEDGEMENT

The autors acknowledge the Canadian Space Agency for funding this project, through the Earth Observation Application Development Program. Special thanks to Christian Prévost, from Natural Resources Canada and Lyse Champagne, from the Canadian Spatial Agency.

© Chokmani K. et al., EO Summit 2017, Wednesday 21st June