Modeling spatio-temporal variability of algal bloom using MODIS imagery of inland waters

C. Ratté-Fortin¹, K. Chokmani¹, A. El Alem¹ claudie.ratte-fortin@ete.inrs.ca ¹INRS–ETE, 490 rue de la Couronne, Québec, Qc, Canada, G1K 9A9

Fonds de recherche sur la nature et les technologies Québec 🕌 🛣

Abstract

This study is part of a project aimed to monitor and assess past, present and future water quality in inland waters using MODIS imagery downscaled to 250 m spatial resolution (MODIS-D-250). The objectives of this study is:

- To develop a water bodies (inland, coastal, and open ocean) cloud masking based on a linear discriminant analysis algorithm using MODIS-D-250.
- To establish a regional portrayal of the harmful algal blooms (HABs) occurrence on Southern Quebec using a geospatial database including the phenology features of HABs (e.g. beginning, duration, intensity).
- To develop a statistical model which will estimate the predisposition of lakes in developing HABs according to their physiographic and climatic characteristics.

2-Defining phenological variables

ØGRIL

NIVERSITE DE RECHERCHE

1-Proceeding from MODIS imagery to chl-a concentrations at 250 m spatial resolution

From 2000 to 2016...

Downloading MODIS Level 1B product

Pre-processing steps: (1) Downscaling bands 3-7 from 500 m to 250 m spatial resolution Trishchenko (2) Re-projection (3) Atmospheric correction

(2006)

El Alem

(2014)

Ratté-Fortin

(2017)

El Alem

(2014)

Land mask: Distinguishing water pixels from mixed (land-water) pixels

Cloud mask :

Detecting cloud/haze over water bodies containing optically active components

Chl-a concentration:

and ending day.

5 Frequency: Number of bloom episode per year.

3-Portrayal of HABs in southern Quebec

Top 20 observable lakes with bloom occurrence

Namo	Frequency	Mean intensity	Max intensity	Mean extent	Max extent
Name	(days)	(ug/L)	(ug/L)	(%)	(%)
1 Lac Saint-Pierre	372	18	5554	78%	81%
2 Lac Saint-Louis	372	14	834	67%	75%
3 Lac De Montigny	340	26	487	66%	68%
4 Fleuve Saint-Laurent	340	19	2468	71%	75%
5 Baie Missisquoi	339	19	1223	63%	67%
6 Lac Simard	332	18	2490	71%	74%
7 Fleuve Saint-Laurent	317	16	81	46%	53%
8 Canal de Beauharnois	314	19	133	53%	58%
9 Lac Saint-François	313	15	1163	19%	23%
10 Lac Fournière	311	21	309	65%	71%
11 Lac Malartic	293	24	541	69%	73%
12 Fleuve Saint-Laurent	290	16	434	75%	80%
13 Lac Heney	286	25	149	58%	65%
14 Lac La Motte	270	23	42	84%	87%
15 Lac Duparquet	269	21	189	72%	75%
16 Fleuve Saint-Laurent	269	18	4879	83%	85%
17 Réservoir Baskatong	268	44	5066	6%	8%
18 Lac Gaboury	263	29	97	81%	84%
19 Lac Saint-Jean	257	31	2224	1%	1%
20 La Belle Rivière	256	18	28	76%	81%

Hydrological areas

Quantitative validation: Monte-Carlo cross validation

	Observed										
Predicted		Water	Haze	Cloud	Total	Commission error	St	iccess ra	te		
	Water	696	0	0	696	0%	100%				
	Haze	0	324	0	324	0%	100%				
	Cloud	0	8	1184	1192	1%	99%				
	Total	696	332	1184	2212						
	Omission error	0%	2%	0%							
	Success rate	100%	98%	100%			95% confidence interval of the mean				
	Global success						99.4%	99.6%	99.8%		
	Kappa						99.0%	99.3%	99.7%		

- A new cloud mask has been developed with an improved resolution of 250 m, leading to an increase of exploitable data in the context of water colour studies.
- The model shows a **better performance** than the MODIS cloud mask when it's applied on turbid waters, and particularly on highly turbid waters located at the edge of the urban area.
- The model shows a low commission error which is essential for an accurate algal blooms monitoring. Indeed, the presence of clouds/fog/aerosols affects the estimation of chl-a concentration.

Qualitative validation: model applied on images

4-Links between HABs and physiographic

and climatic characteristics?

A statistical model (copulas) will be developed to analyze and describe the relations between phenology features (e.g. beginning, frequency, duration and intensity) and climatic, physiographic and anthropologic characteristics in connection with HAB's development (e.g. temperature, precipitation, lake depth, watershed area, agricultural land uses). Through the development of the model, (i) we will be able to estimate the predisposition of HABs on a lake based on environmental characteristics on the watershed, (ii) we will improve our knowledge about the impact of these anthropic perturbations, and (iii) evaluate the impact of climate change on HABs occurrence.

References

- El Alem A. (2014) Développement d'une approche de suivi des fleurs d'eau d'algues à l'aide de l'imagerie désagrégée du capteur MODIS, adaptée aux lacs du Québec méridional. Doctoral thesis, Université du Québec, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Quebec, Canada.
- Trishchenko A.P., Luo Y., Khlopenkov K.V. (2006) A method for downscaling MODIS land channels to 250 m spatial resolution using adaptive regression and normalization. Remote Sensing for Environmental Monitoring 6366:36607-36607.
- Ratté-Fortin C., Chokmani K., El Alem A., (2017) A novel algorithm for cloud detection over inland water bodies using 250m downscaled MODIS imagery (in submission).