Supplementary material

Broth versus surface-grown cells: Differential regulation of RsmY/Z small RNAs by HptB in *Pseudomonas aeruginosa* by the Gac/HptB system

Fabrice Jean-Pierre¹, Julien Tremblay^{1,2} & Eric Déziel^{1*}

¹INRS-Institut Armand-Frappier, 531 Boul. Des Prairies, Laval, Québec, Canada

²National Research Council Canada, Montréal, Canada

*For correspondence. E-mail: eric.deziel@iaf.inrs.ca, Tel. 450-687-5010

Supporting experimental procedures

Congo Red assay

Tryptone (1%) agar plates were supplemented with 80 μ g ml⁻¹ Congo Red and 20 μ g ml⁻¹ Coomassie brilliant blue solidified with 0.5% agar (Bacto) were inoculated with 5 μ l of bacterial suspension diluted to OD₆₀₀ = 0.05 and incubated at room temperature for 7 days. Experiment was done using three replicates on two different days. Shown is typical EPS production phenotype.

β -galactosidase assays

Activity of *lacZ* fusion reporters was tested for β -galactosidase activity with *o*-nitrophenyl- β -D-galactopyranoside (ONPG, Thermo Fisher Scientific, Nepean, ON, Canada) as substrate (Miller, 1972). Each experiment was performed using three biological replicates. Overnight TSB cultures were diluted at a starting OD₆₀₀ of 0.05 in M9DCAA and incubated at 34°C. Results were obtained for five sampling points during bacterial growth over 8 hours.

After 12 hours incubation at 34°C the cells located at the extremity of three separate tendrils of a swarming strain were collected. The tendrils were resuspended in 100 μ l of 1X PBS and vortexed thoroughly. The OD₆₀₀ was measured using a Nanodrop ND-1000 and adjusted to an OD₆₀₀ = 0.1. β -galactosidase activity was determined as described above.

Static biofilm formation

A 500 µl bacterial suspension volume at $OD_{600} = 0.05$ was cultivated statically in a 5 mL polystyrene tube at 34°C during various sampling times in M9DCAA medium. For analysis, the tube was vigorously rinsed by milli-Q water then incubated 10 minutes with 1 mL of 1% crystal violet at room temperature then rinsed again with milli-Q water. The colorized biofilm ring was then solubilized with 4 mL of 95% ethanol then vortexed with glass beads. OD₅₉₅ was measured using a spectrophotometer. The experiment were performed using three technical replicates at least three times.

Creation of a *ΔhptBgacA* mutant by lambda-red recombinase

The mutated *gacA* gene was amplified from the *gacA*::MaR2xT7 ID34781 PA14 non-redundant set with the primers listed in Table S1. The $\Delta hptB$ mutant containing the pUCP18-RedS was grown in TSB supplemented with 300 µg ml⁻¹ carbenicillin to an OD₆₀₀ = 0.5 at 37°C. Then, the plasmid was induced for 3 hrs with 0.2% L-arabinose. After induction, the cells were washed four times with 1 ml of 10% sucrose and concentrated to a final volume of 100 µl. A concentration of 5 µg the gel-purified *gacA*::Mar2xT7 gene amplification was electroporated and incubated in 1 ml TSB for 2 hrs at 37°C. Transformants were selected by plating electroporated cells on TSB agar plates supplemented with 300 µg ml⁻¹ and incubated at 37°C until colonies were visible. The selected colonies were further verified by PCR for correct insertion using the PA14_gacA_For_FJP + FJP_PA14_gacA_Rev and PA3345_Left_FWD_HindIII + PA3345_Right_REV_SmaI primer sets.

Supporting figures

Table S1 Primers used in this study

Mutagenesis primers $(5' \rightarrow 3')$			
Name	Primer sequence		
PA3345_Left_FWD_HindIII	cccaagcttgggTGCGGGTCGAGGACAGCGG		
PA3345_Left_REV	ttctatcgttcgctaGAGATGCGGCGCGGACATTC		
PA3345_Right_FWD	tagcgaacgatagaaCGCCTGCGCAGCCTGCAT		
PA3345_Right_REV_SmaI	tcccccgggggaTACGCCAGGGAGGCTCGA		
PA14_gacA_For_FJP	TCGGCGATGGTCGCTATG		
FJP_PA14_gacA_Rev	TAGCGAGGAAGGCGCTCGC		
RT-PCR primers			
rsmZq_fwd	GAACACGCAACCCCGAAG		
rsmZq_rev	CCACTCTTCAGTCCCTCGTC		
rsmYq_fwd	AGGAAGCGCCAAAGACAATA		
rsmYq_few	GGGTTTTGCAGACCTCTATCC		
nadBq_fwd ¹	CTACCTGGACATCAGCCACA		
nadBq_rev ¹	GGTAATGTCGATGCCGAAGT		

*In bold = restriction sites. In italics = overlapping sequences to *hptB* gene $^{1}nadB$ housekeeping gene qRT-PCR primers from (Tremblay and Deziel, 2010)

Strains/Plasmids	ED #	Phenotype/Genotype	Reference
Strains			
PA14	14	UCBPP-PA14 wild-type strain	(Rahme et al., 1995)
$\Delta hptB$	1214	Markerless hptB deletion	This study
mvaT	289	<i>MrT7</i> transposition insertion mutant, Gm ^R , ID34492	(Liberati et al., 2006)
mvaU	806	<i>MrT7</i> transposition insertion mutant, Gm ^R , ID42058	(Liberati et al., 2006)
<i>rsmA</i> [−]	282	<i>MrT7</i> transposition insertion mutant, Gm ^R , ID44507	(Liberati et al., 2006)
PA3346 ⁻	1260	<i>MrT7</i> transposition insertion mutant, Gm ^R , ID31270	(Liberati et al., 2006)
PA3347	1261	<i>MrT7</i> transposition insertion mutant, Gm ^R , ID39911	(Liberati et al., 2006)
bswR ⁻	2681	<i>MrT7</i> transposition insertion mutant, Gm ^R , ID24728	(Liberati et al., 2006)
Plasmids			
pUCP18-RedS		Arabinose-inducible recombination plasmid, Cb ^R	(Lesic and Rahme, 2008)
pCTX-rsmY-lacZ		Self-proficient integration vector with <i>lacZ</i> reporter for <i>rsmY</i> transcriptional expression	(Brencic and Lory, 2009)
pCTX-rsmZ-lacZ		Self-proficient integration vector with <i>lacZ</i> reporter for <i>rsmZ</i> transcriptional expression	(Brencic et al., 2009)

Table S2 Strains used in this study

Supporting figures

Figure S1: Growth curve of the PA14 and $\Delta hptB$ strain in M9DCAA at 34°C. Data represents the average of three technical replicates. Error bars represent the standard deviation. Experiment was repeated at least twice.

Figure S2: Endpoint pictures of the $\Delta rsmY/Z$ mutants time-lapse analysis at different time points.

PA14

Figure S3: Exopolysaccharide fixation determined by Congo Red assay.

Figure S4: Biofilm formation assay of the PA14 and $\Delta hptB$ strains. Data represents the average of three replicates. Error bars represent the standard deviation. Experiment was repeated at least twice.

Figure S5: Various swarming phenotype. (A) Swarming motility of the PA14, *rsmA*⁻ and $\Delta hptB$ strains. (B) Surface coverage of the PA14, *rsmA*⁻ and $\Delta hptB$ strains. Data represents the average of three technical replicates. Error bars represent the standard deviation of the three technical replicates. Experiment was repeated at least twice. Statistical Student's *t*-test analysis was based on two independent experiments (**, p < 0.01).

mvaT-

Figure S6: Swarming phenotypes of the PA14, *mvaT* and *mvaU*⁻ strains.

Fig S7: Time-course of *rsmY-lacZ* and *rsmZ-lacZ* in various genetic backgrounds grown in M9DCAA broth over 8 hours. Data represents the average of three biological replicates. Error bars represent the standard deviation.

Fig S8: Time-course of *rsmY-lacZ* and *rsmZ-lacZ* in various genetic backgrounds grown as swarming colonies on M9DCAA. Data represents the average of three biological replicates. Error bars represent the standard deviation. Statistical Student's *t*-test analysis was performed with ns = not significant.

Figure S9: qRT-PCR on the $\Delta bswR$ mutant grown in M9DCAA broth and swarming conditions. Data represents the average of three biological replicates. Error bars represent the standard deviation of three biological replicates. Statistical Student's *t*-test analysis was performed on two independent experiments with *, p < 0.05, ns = not significant.

References

- Brencic, A., and Lory, S. (2009). Determination of the regulon and identification of novel mRNA targets of *Pseudomonas aeruginosa* RsmA. *Mol Microbiol* 72, 612-632. doi: 10.1111/j.1365-2958.2009.06670.x.
- Brencic, A., Mcfarland, K.A., Mcmanus, H.R., Castang, S., Mogno, I., Dove, S.L., and Lory, S. (2009). The GacS/GacA signal transduction system of *Pseudomonas aeruginosa* acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. *Mol Microbiol* 73, 434-445. doi: 10.1111/j.1365-2958.2009.06782.x.
- Lesic, B., and Rahme, L.G. (2008). Use of the lambda Red recombinase system to rapidly generate mutants in *Pseudomonas aeruginosa*. *BMC Mol Biol* 9, 20. doi: 10.1186/1471-2199-9-20.
- Liberati, N.T., Urbach, J.M., Miyata, S., Lee, D.G., Drenkard, E., Wu, G., Villanueva, J., Wei, T., and Ausubel, F.M. (2006). An ordered, nonredundant library of *Pseudomonas aeruginosa* strain PA14 transposon insertion mutants. *Proc Natl Acad Sci U S A* 103, 2833-2838. doi: 10.1073/pnas.0511100103.
- Miller, J.H. (1972). *Experiments in molecular genetics*. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.
- Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel, F.M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. *Science* 268, 1899-1902.
- Tremblay, J., and Deziel, E. (2010). Gene expression in *Pseudomonas aeruginosa* swarming motility. *BMC Genomics* 11, 587. doi: 10.1186/1471-2164-11-587.