

Introduction

To better document sources and sinks of Fe across the well-oxygenated Canada Basin in the Arctic Ocean, profiles of the concentrations and isotopic compositions of total Fe (Fe_{TOT}), 1M HCI extractable Fe (Fe_{HCI}), and residual Fe (Fe_{RES}) remaining after the HCI extraction were determined in sediment cores collected at 51, 619 and 3130 m depth, respectively in the shelf, slope and abyssal portion of this basin. Concentrations of Fe associated to pyrite (Fe_{PY}) were also determined in each of the cores through an operationally defined extraction protocol.

Sampling sites

Methodology

This sequential extraction scheme has been followed:

Digested sediments has been analysed for element concentration (ICP-AES) and Fe isotopic fractionation (MC-ICP-MS in high-resolution).

Figure 1. Sediment sampling sites with a box-corer in the Arctic Ocean

Table1. Sediment sampling locations and water depth

Station	Latitude	Longitude	Depth (m)
UTN5	67°40.2 (N)	168°57.5 (O)	51
CG2	70°42.0 (N)	142°49.9 (O)	619
S26	84°03.8 (N)	175°05.3 (E)	3130

		Results
UTN5 Fe (mg/g)	CG2 Fe (mg/g)	S26 Fe (mg/g)

Figure 4. Mean iron isotopic fractionation of the sediment cores. Fill dots represent the Fe_{TOT} fractions and empty dots, Fe_{HCI} fractions

Figure 3. Vertical profiles of δ^{56} Fe_{TOT} (blue), δ^{56} Fe_{HCI} (red), δ^{56} Fe_{Res} (green) and δ^{56} Fe_{PY} (purple) in the sediments core

Conclusion

Acknowledgments

The isotopic composition of Fe_{TOT} is slightly lighter in shelf sediments than in slope and deep basin sediments. In the shelf core, where the degree of pyritization (i.e., $DOP=Fe_{PY}/Fe_{HCI}+Fe_{PY}$) progressively increases below the sediment-water interface reaching up to 42% at 25 cm depth, there is no pronounced difference between the isotopic composition of Fe_{TOT} and those of Fe_{HCI} and Fe_{RES} in samples exhibiting significant pyrite enrichment. In contrast, the Fe_{HCI} pools in the slope and deep basin cores are characterized by a light isotope composition relative to that of Fe_{TOT} , undetectable or negligible concentrations of Fe_{PY} , and much higher concentrations and inventories of Fe_{HCI} than in shelf sediments.

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds Québécois de Recherche Nature et technologies (FQRNT) for their financial support. P. Girard, B. Patry and A. Bensadoune for their technical support.

References

Beard BL et al. 2003 Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chemical Geology 195(1-4):87-117 Scholz F et al. (2014) On the isotope composition of reactive iron in marine sediments: Redox shuttle versus early diagenesis. Chemical Geology 389:48-59. Severmann S et al. (2010) The continental shelf benthic iron flux and its isotope composition. Geochimica et Cosmochimica Acta 74(14):3984-4004