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Abstract 1 

Hydrological frequency analysis (HFA) is commonly used for the assessment of the risk 2 

associated to hydrological events. HFA is generally based on the assumptions of homogeneity, 3 

independence and stationarity of the hydrological data. Hydrological events are often described 4 

through a number of dependent characteristics, such as peak, volume and duration for floods. 5 

Unfortunately, in this multivariate setting, the verification of the above assumptions is often 6 

neglected. When a shift occurs in a data series, it can affect the stationarity and the homogeneity 7 

of the data. The objective of this paper is to study tests for shift detection in multivariate 8 

hydrological data. The considered shift tests are mainly based on the notion of depth function, 9 

except for one test that is considered for comparison purposes. A simulation study is performed to 10 

evaluate and compare the power of all these tests with hydrological constraints. A flood analysis 11 

application is also carried out to show the practical aspects of the considered tests. The power of 12 

the considered tests is influenced by a number of factors, including the sample size, the shift 13 

amplitude, the magnitude of the series and the location of the shift in the series. 14 

 15 

Keywords: shift, hypothesis testing, multivariate, stationarity, homogeneity, flood, depth. 16 

17 
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1. Introduction 18 

In general, in order to perform the statistical analysis of hydrological data a number of fundamental 19 

assumptions are required. More precisely, preliminary testing for stationarity, homogeneity and 20 

independence is a necessary step in any hydrologic frequency analysis (HFA) study [e.g. Rao and 21 

Hamed, 2000]. One or more of these assumptions can fail because of a number of reasons. For 22 

instance, the assumption of stationarity may not be verified because of a regime shift that can be 23 

due to an abrupt change in the watershed characteristics caused by natural or anthropogenic actions 24 

on the physical environment, such as deforestation or the construction of a hydraulic structure [e.g. 25 

Bobée and Ashkar, 1991; Burn and Hag Elnur, 2002, Ouarda and El-Adlouni, 2011]. Because of 26 

the growing evidence concerning climate change, the common assumption of stationarity of 27 

hydrologic phenomena may no longer hold. The presence of shifts in data series is highlighted in 28 

several hydrometeorological studies, such as floods [Seidou and Ouarda, 2007], precipitation 29 

[Beaulieu et al., 2008, 2010; Ouarda et al., 2014; Chen et al., 2016], low-flows [Ehsanzadeh et al., 30 

2011], wind speed [Naizghi and Ouarda, 2016], and temperature data [Jandhyala et al., 2014].  31 

The analysis of multivariate events is of particular interest in several applied fields, including 32 

hydrology. Indeed, complex hydrological events, such as floods, droughts and storms are 33 

multivariate events characterized by a number of correlated variables. For instance, volume (V), 34 

peak (Q) and duration (D) describe floods [Ouarda et al., 2000; Shiau, 2003; Yue et al., 1999]. The 35 

use of univariate HFA can lead to inaccurate estimation of the risk associated to a given event. 36 

Recently, several studies adopted the multivariate framework to treat extreme hydrological events, 37 

see e.g. [Chebana, 2013] for a summary and recent references. 38 

HFA is composed of four main steps: i) descriptive and explanatory analysis, ii) verification of the 39 

basic assumptions including stationarity, homogeneity and independence, iii) modeling and 40 
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estimation, and iv) risk evaluation and analysis. In the univariate setting, these steps are extensively 41 

treated [e.g. Rao and Hamed, 2000]. In the multivariate context, the first two steps (i and ii) 42 

attracted considerably less attention than the two others. For an overview of step i) in the 43 

multivariate framework, the reader is referred to Chebana and Ouarda [2011]. Checking the basic 44 

assumptions (step ii) is generally ignored in the hydrological literature in the multivariate setting. 45 

For instance, it is not treated in Kao and Govindaraju [2007], Song and Singh [2009] and 46 

Vandenberghe et al. [2010]. This step has a significant impact on steps iii) and iv). Therefore, 47 

ignoring step ii) may lead to inaccurate models and hence to wrong results and inappropriate 48 

decisions regarding resource management and infrastructure design. In order to avoid the loss of 49 

human lives and property associated with design event underestimation, or the increase in 50 

construction cost associated with overestimation, it is necessary to treat step ii) for a sound and 51 

complete multivariate HFA.  52 

Non-stationarity is a very wide notion and includes in particular the presence of one or several 53 

shifts in the data. Recently, Chebana et al. [2013] provided a review and application of multivariate 54 

nonparametric tests for monotonic trends and presented approaches that can be considered as a 55 

preliminary step in a complete multivariate HFA. Chebana et al. [2013] indicated that, for 56 

multivariate hydrological data, various types of non-stationarities can be found for which 57 

appropriate tests should by reviewed, compared and applied. 58 

The available literature on shift detection in the hydrological context is focused on the univariate 59 

setting. Nevertheless, statistical literature exists for the general multivariate setting. Hence, existing 60 

comparisons and evaluations of the proposed tests are based on scenarios and hypotheses that are 61 

not adapted to the hydrological context (e.g. sample size, scale, and distributions). In addition, these 62 

comparative studies are not exhaustive and are often not based on quantifiable performance criteria. 63 
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Consequently, there is a need for comparative studies that consider all available tests and are 64 

representative of hydrological reality, scale and constraints.  65 

Several multivariate shift tests are based on the concept of depth function. The latter is a statistical 66 

notion to measure the depth (or its opposite, the outlyingness) of a given point with respect to a 67 

multivariate data cloud or its underlying distribution. Depth functions were developed in the 68 

seventies and have been receiving increasing interest [e.g. Tukey, 1975; Liu, 1990; Zuo and 69 

Serfling, 2000; Mizera and Müller, 2004; Zuo and Cui, 2005; Lin and Chen, 2006; Liu and Singh, 70 

2006; Chebana and Ouarda  2011; Singh and Bárdossy, 2012; Lee et al., 2014; Wazneh et al., 71 

2013; 2015]. Depth functions provide a scale-standardized measure of the position of any data 72 

point relative to the center of the distribution due to its affine-invariant property [Li and Liu, 2004]. 73 

For the location shift, this property allows us to view the depth-based test statistics as scale-74 

standardized measures. Therefore, depth-based tests can be performed without the difficulty of 75 

estimating the variance of the null sampling distributions. Instead, the decision rule is derived by 76 

obtaining p-values using the idea of permutation.  77 

The objectives of the present paper are: 1) to show the importance of the testing step in a 78 

multivariate HFA, in particular shift testing, 2) to review shift tests that are available in the 79 

statistical literature and which are applicable to hydrological variables within the multivariate HFA 80 

context, and 3) to perform an overall evaluation and comparison of these tests under hydrological 81 

constraints (such as short sample size, specific distributions). 82 

This paper is organized as follows. Section 2 introduces the definitions and notations related to the 83 

shift concept. The considered tests are described in Section 3. The simulation study to evaluate the 84 

performance of these tests is presented in Section 4. Section 5 illustrates an application of the 85 

reviewed tests on hydrological data. The conclusions of the study and a number of perspectives are 86 

reported in Section 6. 87 



 6 

2. Shift concept 88 

A shift can be defined by the date at which at least one feature of a statistical model (e.g., location, 89 

scale, intercept and trend) undergoes an abrupt change [Seidou et al., 2007]. A large number of 90 

techniques can be found in the literature to identify the date of a potential shift and to check its 91 

significance. Most of the methodologies use statistical hypothesis testing to detect shifts in the 92 

slope or intercept of linear regression models [Easterling and Peterson, 1995; Vincent, 1998; Lund 93 

and Reeves, 2002]. For instance, Solow [1987], Easterling and Peterson [1995], Vincent [1998], 94 

Lund and Reeves [2002] and Wang [2003] used the Fisher test to compare a model with and without 95 

a shift. The Student and Wilcoxon tests can also be applied sequentially to detect shifts in data 96 

series [Beaulieu et al., 2007, 2008].  97 

Note that not all shift approaches are based on hypothesis testing. For instance, Wong et al. [2006] 98 

used the grey relational method [Moore, 1979; Deng, 1989] for single shift detection in stream flow 99 

data series. In some rare cases, curve fitting methods were used [e.g. Sagarin and Micheli, 2001; 100 

Bowman et al., 2006]. Extensive reviews of shift detection and correction methodologies in 101 

hydrology and climate sciences can be found in Peterson et al. [1998] and Beaulieu et al. [2009]. 102 

To define a shift, let  
1,...,i i n

x


 be a given d-variate dataset and ns 1  be a possible shift. If such 103 

s exists, the series is divided into two subsamples with sizes s and m = n-s such that: 104 

   

   

1 1

1 1

,..., ,...,

,..., ,...,

s s

m s n

y y x x

z z x x




         (1)  105 

Denote by 
1G  and 

2G  respectively the cumulative distribution functions of these two subsamples. 106 

The two distributions 
1G  and 

2G have the same form, except for the location, i.e. 
1 2( ) ( )G x G x δ  107 
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for all 
dx R  where 

dRδ is a constant vector. Consequently, when testing the presence of a shift 108 

at a position s of the series , the null and alternative hypotheses are respectively: 109 

0 :  0 i.e. there is no location shiftH δ        (2) 110 

1 :  0 i.e. there are two different subsamples at least in one component of H δ δ .  (3) 111 

3. The considered tests 112 

In the present paper, several tests to detect a shift in the location of multivariate series are 113 

considered. Except for the C-test, all the presented tests are based on depth functions. The C-tests 114 

is considered for comparison purposes. More details are given below regarding p-value evaluation. 115 

Table 1 presents a summary of the tests considered in this study. 116 

3.1. Depth functions 117 

The absence of a natural order for multivariate data led to the introduction of depth functions 118 

[Tukey, 1975]. They are developed and used in a number of research fields, e.g. in statistics by 119 

Mizera and Müller, [2004] and Ghosh and Chaudhuri [2005], in economics and social sciences by 120 

Caplin and Nalebuff  [1991a; b], in industrial quality control by Liu and Singh [1993] and in water 121 

sciences by Chebana and Ouarda [2008]. A detailed description and review of depth functions can 122 

be found in Zuo and Serfling [2000]. In the following we present a very brief overview of the main 123 

concepts. For a given cumulative distribution function F on  ( 1)d d  , a depth function can be 124 

defined. It is any non-negative bounded function which possesses a number of suitable properties, 125 

i.e. Affine invariance, Maximality at center, Monotonicity relative to the deepest point, Vanishing 126 

at infinity. 127 

 
1,...,i i n

x
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A number of depth functions have been developed and studied [Zuo and Serfling, 2000]. In the 128 

following, we present some of the key ones which are considered in this study:  129 

1. Tukey (or Halfspace) depth : for dx R with respect to a probability P on dR , it is defined as: 130 

   ; inf ( ) :  a closed halfspace that contains TD x P P H H x  (4) 131 

Chebana and Ouarda [2011] presented a simple illustration of the computation of this depth 132 

function.  133 

2. Mahalanobis depth: for a given distribution F on dR  with  and A any corresponding location 134 

and covariance measures, respectively, it is given by: 135 

 2

1
( ; )

1 ,A

MD x F
d x 




     (5)  136 

where      2 1,Ad x y x y A x y    is the Mahalanobis distance between points , dx y R given 137 

a positive definite matrix A.  138 

3. Simplicial depth: it is expressed as: 139 

   1 1; [ ,..., ]dSD x P P x S X X        (6)  140 

where 
1 1[ ,..., ]dS X X 

 is the random d-dimensional simplex with vertices 
1 1,..., dX X 

 which is a 141 

random sample from the distribution P. 142 

By replacing F with a suitable empirical function ˆ
nF , a corresponding sample version of a 143 

statistical depth function D(x; F) may be defined and denoted by ˆ( ) ( ; )n nD x D x F . Its asymptotic 144 

properties have been studied, for instance, in Liu  [1990], Massé [2002; 2004] and Lin and Chen 145 

[2006]. The computation of some depth functions is complex, especially for high dimensions, and 146 

requires approximations and specific algorithms, see for instance, Miller et al. [2003] and Massé 147 

and Plante [2009]. 148 
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In principle, each depth-based test can be defined using any available depth function. However, 149 

some of these tests were originally defined and their properties are studied on the basis of a specific 150 

depth function. Even though the problem and the tests can be defined in any dimension, the 151 

simulation study is based on the bivariate case. The obtained results and conclusions cannot be 152 

directly extended and generalized.  153 

3.2. Description of tests 154 

In this section, the considered multivariate shift detection tests are described as well as the method 155 

to evaluate their p-values. Performance comparison of these tests in the literature is also presented.  156 

The C-test (Cramér test) 157 

The Cramér test is a two-sample test proposed by Baringhaus and Franz [2004]. It is a 158 

generalisation of the univariate test proposed by Cramér [1928]. However, it is more appropriate 159 

to detect shifts in location. This test is based on the difference of Euclidian distances between the 160 

observations of the two different subsamples and the half sum of all Euclidian distances of 161 

observations of the same subsample. The corresponding test statistic is given by: 162 

2 2
1 1 , 1 , 1

1 1 1

2 2

s m s m

i i i j i j

i j i j i j

sm
C y z y y z z

s m sm s m   

 
      

  
       (7) 163 

where i jy z  is the Euclidian distance between the ith observation of the first subsample and the 164 

jth observation of the second subsample. Recall that s is the location of the shift (and hence the size 165 

of the first subsample) and m = n-s is the size of the second subsample.  166 

The null hypothesis H0 is rejected for large values of C. A large value of C means that the distance 167 

between the observations of the two subsamples is large and consequently, the two subsamples are 168 

different. To calculate the p-value, the bootstrapping method is used.  169 
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The M-test (Monitoring the Maximum Depth Points) 170 

According to Li and Liu [2004], the deepest point of a distribution is a location parameter. 171 

Consequently, if 
1G  and 

2G  are identical distributions, they would have the same deepest point, 172 

that is, the deepest points 
1G  and

2G should be the same. In addition, for a given depth function D, 173 

we have 
2 1 1 2
( ) ( )G G G GD D  . If there is an important change in location, 

1G  and 
2G would be 174 

different and 
2G would be located far away from the subsample from 

1G for which the depth value 175 

1 2
( )G GD   with respect to G1, is smaller, and vice-versa. Based on this idea, Li and Liu [2004] 176 

proposed the statistic: 177 

 
2 1 1 2

min ( ), ( )G G G GM D D          (8) 178 

Li and Liu [2004] used the simplicial depth function SD (6), but other depth functions can be used. 179 

Indeed, Li and Liu [2004] suggested the Mahalanobis depth function MD (5) for the elliptical 180 

distribution. They specified that the SD and TD depth functions can be used with any distribution. 181 

The null hypothesis H0 is rejected for small values of M. To approximate the corresponding p-182 

value, Li and Liu [2004] proposed Fisher’s permutation test [Snedecor and Cochran, 1967]. 183 

The T-test (Monitoring Shrinking Cusp Point) 184 

Li and Liu [2004] described a graphical approach called DD-plot (for depth-depth) to compare the 185 

location of two subsamples. In the context of the T-test, a DD-plot consists in plotting (D) 186 

    
1 2

,G GD x D x  with x being from either subsample. When the two subsamples follow exactly 187 

the same distribution, the DD-plot is a diagonal line that passes through the origin as illustrated in 188 

Figure 1a. However, if there is a location change, the graph has a form of leaf with its tip pointing 189 

toward the origin (Figure 1b). The more important the location change is; the closer the tip will be 190 
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to the origin (Figure 1c). The T-test is based on an approximation of the distance between the tip 191 

and the origin of the DD-plot. We define the set of points: 192 

          
1 1 2 2

| 1,..., , there is no :  and i j G j G i G j G ix i n x D x D x D x D x      (9) 193 

Then we find the point 
minx of Ω such that: 194 

       
1 2 1 2min min minG G G G

x
D x D x D x D x


         (10) 195 

If there are several points 
minx , we take the mean of the corresponding coordinates. The point 196 

identified by (10) is an approximation of the leaf-tip point of the DD-plot. The test statistic is then 197 

given by: 198 

    
1 2min min 2G GT D x D x          (11) 199 

Even though, the distance of the leaf-tip to the origin is approximately 2T , the use of the statistic 200 

T is equivalent. Similarly to the M-test, Li and Liu [2004] used the SD function (6) for the T-test. 201 

However, MD (5) and TD (4) depths can also be used. The p-value is obtained using the Fisher’s 202 

permutation test. 203 

The W-test (Wilcox test) 204 

The W-test was developed by Wilcox [2005]. Similarly to the M-test, the W-test is based on the 205 

idea that under the null hypothesis, the medians of the two subsamples must be similar. To define 206 

the W-test statistic, first the difference of each component is calculated 207 

( ) ( ) ( ) , 1,..., ;  1,..., ;   1,...,u u u

ij i jd z y u d i s j m      to constitute the vector     d

ijijij ddd ,,1  . 208 

Wilcox [2005] defined the test statistic by: 209 

1,..., ; 1,...,
( ) max ( )F F ij

i s j m
W D D d

 
 0         (12) 210 
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where F is the distribution of the set of vectors 
ijd and D is the TD depth function (4). Under the 211 

null hypothesis, we have W = 1, whereas under the alternative hypothesis, we have W < 1. The 212 

asymptotic distribution of W is unknown. However, Wilcox [2005] proposed some critical values 213 

C for significance levels 0.01;  0.025;  0.05;  0.10.   The values of C
are derived empirically 214 

from simulations using a least squares regression method, and under the assumption of normality. 215 

The null hypothesis is rejected when W is lower than C
. 216 

The QIA- and QIB-tests (quality index tests) 217 

Liu and Singh [1993] developed a Wilcoxon-type rank test based on data depth. This test can detect 218 

a location shift and/or a positive scale shift. The statistic of this test is given by: 219 

      



m

i

iGGsa zDyDyyy
n

Q
1

1 :,,#
1

       (13) 220 

Under the null hypothesis, Qa = 0.5 whereas if there is a shift in location, then Qa < 0.5.  Liu and 221 

Singh [1993] used MD (5). Zuo and He [2006] found that under some regularity conditions, the 222 

asymptotic distribution of Qa calculated with MD (5), TD (4) or projection depth is normal 223 

 2,N    with mean 0.5   and variance  2 1 1 /12s m    . In the present study, the 224 

asymptotic (QIA-test) and bootstrap (QIB-test) methods are used to evaluate the p-values. 225 

The Z-test (Zhang test) 226 

Zhang et al. [2009] developed a new test based on the statistic Qa (13) where the statistic of the Z-227 

test is given by: 228 

 
26

0.5aZ s m Q
n

            (14) 229 

To define Z, Zhang et al. [2009] used MD (5). To find the asymptotic distribution of Z, we define 230 

the matrix A: 231 
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221

211

1

1

ppp

ppp
A          (15) 232 

where  pi =
n

ni , i = 1 or 2 and ni is the number of observations in the ith subsample. Let r be the 233 

rank of A, and the nonzero eigenvalues of A are denoted by λ1,..,λr. Under H0, Z follows 234 

asymptotically a sum of independent chi-square distributions: 235 

2 2 2

1 2(1) (1) ... (1)rZ                  (16) 236 

This relation is also valid for the half-space and projection depth functions. The asymptotic method 237 

is used to evaluate the corresponding p-value. 238 

3.3. The p-value computation 239 

The p-value of a given test is a simple criterion commonly used by practitioners to decide for the 240 

acceptance or rejection of a target null hypothesis. The p-value is based on the distribution of the 241 

statistics of the underlying test. For some of the considered tests in the present study, the asymptotic 242 

or the exact distribution of the test statistic is unknown or difficult to obtain. Consequently, 243 

approximations of the distribution of test statistics, under the null hypothesis, are required. To this 244 

end, resampling methods are used. In the present paper, a permutation method [Snedecor and 245 

Cochran, 1967] and a bootstrap method are used. They are briefly described below. More details 246 

can be found, for instance, in Good [2005]. 247 

To apply the permutation method, the observations should be exchangeable, i.e. the observations 248 

should be independent and identically distributed [see e.g. Efron and Tibshirani, 1994]. This 249 

method consists in permuting np times the sample  
1,...,i i n

x


 without replacement where np is a large 250 

number. For each permuted sample, the s first elements constitute the first subsample and the 251 

remaining ones constitute the second subsample. The test statistic, generically denoted by S, is 252 
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calculated for each permutation  *

, 1,..., pi i nS  . The null hypothesis should be rejected for small values 253 

of the statistic. The p-value is the proportion of  *

, 1,..., pi i nS   smaller or equal to the value Sobs 254 

obtained from the original observed sample. 255 

The bootstrap method is similar to the permutation method, except that the sample  
1,...i i n

x


is 256 

resampled with replacement and the independence assumption is necessary [see e.g. Efron and 257 

Tibshirani, 1994].  258 

3.4. Review of comparative studies 259 

Some performance comparisons of the above tests are presented in the literature. The M- and T-260 

tests, given respectively in (8) and (11), were compared to the Hotelling [1947] T2 test by Li and 261 

Liu [2004]. The Hotelling’s T2 test is the most frequently used parametric test to detect location 262 

shift [e.g. Ye et al., 2002]. For normally distributed samples with unit variances, the powers of 263 

these three tests were found to be comparable, whereas for samples with Cauchy distribution with 264 

the same parameter, the M- and T- tests were shown to be more powerful than the Hotelling’s test. 265 

Moreover, in this case, the M-test outperformed the T-test. Note that both considered distributions 266 

(normal and Cauchy) are symmetric. In order to evaluate the performance of these tests for skewed 267 

distributions, Dovoedo and Chakraborti [2015] considered ten distributions belonging to five well-268 

known families of multivariate skewed distributions.  269 

Liu and Singh [2006] compared also the quality index test (13) to Hotelling’s test. For normal 270 

samples, the performances of the two tests were similar, while for Cauchy and Exponential samples 271 

the quality index test outperformed the Hotelling’s test. Baringhaus and Franz [2004] found that 272 

the C-test (7) performs almost as well as Hotelling’s test for normal and non-normal samples. 273 
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These comparisons and evaluations are not appropriate for hydrological applications, since the 274 

considered samples are not representative of the hydrological conditions where sample sizes are 275 

generally short, and the variables mainly follow extreme distributions such as the Gumbel and the 276 

Generalized Extreme Value (GEV) [e.g. El-Adlouni et al., 2010]. The Normal, Cauchy and t 277 

distributions are not commonly used in multivariate HFA. In addition, in the literature, only partial 278 

comparisons of the above tests were carried out and no overall comparison has been performed 279 

dealing with all of them (to the best knowledge of the authors, the only references performing such 280 

comparisons are those given in this section). 281 

4. Simulation study 282 

The objective of this simulation study is to evaluate and compare the performances of all the 283 

previously presented tests in the hydrological context, such as in the case of flood series based on 284 

flood peak Q and volume V. We also adopt samples with small sizes such as commonly 285 

encountered in hydrology.  286 

4.1. Adaptation to floods 287 

The previously presented tests can be applied to hydrological events such as floods, rain storms 288 

and droughts. In this paper, we focus on floods. Floods can be described by their peak Q, volume 289 

V and duration D, which can be correlated. Indeed, according for instance to Yue [2001] there is 290 

generally a strong correlation between Q and V, between V and D and a moderate correlation 291 

between Q and D. In the present paper, the above considered tests are used to detect location shifts 292 

in Q and V. These two variables are the most studied in hydrology for both the univariate and the 293 

bivariate cases (see e.g. Chebana, 2013).  294 

According to Sklar [1959], a bivariate distribution can be composed of marginal distributions and 295 

a copula. Some previous studies showed that the Q and V series can be marginally fitted by a 296 
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Gumbel distribution [Chebana and Ouarda, 2007; Shiau, 2003; Yue, 2001; Yue et al., 1999]. The 297 

cumulative Gumbel distribution is given by: 298 

( ) exp exp ,   and  real,    0
x

F x x


 


  
     

  
     (17)  299 

where x plays the role of each of the variables Q and V. The dependence between Q and V can be 300 

represented by the Gumbel logistic model [e.g. Aissia et al., 2012; Chebana et al., 2009; Shiau, 301 

2003; Yue et al., 1999], expressed according to the following copula: 302 

   
1

( , ) exp log( ) log ,  1 and 0 , 1
b b b

bC u v u v b u v
            

    (18)   303 

Note that 1 1b    where  is the usual correlation coefficient [see e.g. Genest and Rivest, 304 

1993; Gumbel and Mustafi, 1967]. 305 

The presented tests may be affected by several factors. In the simulation study, we examine the 306 

impact of the record length n (sample size) as well as the degree of change (shift amplitude) in each 307 

component of the multivariate series. 308 

For the simulation study, we generate samples (Q, V) according to models (17) and (18). We 309 

consider the Gumbel distribution as marginal for both Q and V. The corresponding parameters are 310 

denoted by: 311 

- 
1Q and 

1Q  for respectively the scale and location parameters for Q of the first s observations 312 

(before the shift); and 313 

-
2Q and 

2Q  for respectively the scale and location parameters for Q after the shift. 314 

We define similarly the parameters of V  ,V V   and the parameter b of the logistic Gumbel 315 

copula. 316 
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For the G  distribution before the shift, we selected the parameters of the Skootamatta basin in 317 

Ontario (Canada) which are also employed for simulation studies by Chebana and Ouarda [2007; 318 

2009]. Consequently, 
1Q = 15.85, 

1Q = 51.85, 
1V = 300.22 

1V  = 1239.8 and b = 1.414. Due to 319 

space limitations, the reader is referred to the above references for more details regarding the 320 

Skootamatta basin. 321 

We study the effect of the following two factors on the performance of the tests: the record length 322 

(n: sample size) and the amplitude of shifts in the location parameters  , since the tests are mainly 323 

designed to detect shifts in the location. Usually, the dependence parameter appears in the copula 324 

whereas the location and scale parameters are present in the marginal distributions [Hobæk Haff et 325 

al., 2010]. For location shift, we denote ( ) ( )+= xGxG 21
 where δ = (δQ, δV) is the vector of the 326 

shifts in the location of Q and the location of V respectively. In addition, the dependence level 327 

between the two variables Q and V is considered with three dependence levels corresponding to   328 

= 0.25 (low),  = 0.50 (moderate) and  = 0.75 (high) where the associated copula dependence 329 

parameter is respectively b = 1.155, 1.414 and 2.0.  330 

Even though the considered tests and the simulations are presented in the bivariate setting, they 331 

can also be defined when more than two variables are involved to characterize the phenomenon. In 332 

theory, the concepts of these tests can be extended to higher dimensions. However, some technical 333 

difficulties could arise. First, the computation of some depth functions (which is the basis of a 334 

number of the above tests) is complex and requires approximations and specific algorithms for 335 

higher dimensions (e.g. for the simplicial depth). Second, a number of issues that are related to 336 

models (especially for copulas) such as uncertainty increase, effectiveness of goodness-of-fit 337 

testing, model formula complexity and questionable representativety of some models, need to be 338 

addressed. Third, the number of the shift possibilities increases rapidly with the dimension, for 339 
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instance, with 3 variables we have 8 possibilities where the shift occurs without accounting for the 340 

different shift amplitudes (for each variable) as well as the different types of dependence between 341 

the variables (3 pairwise and 1 overall). Hence, the simulation results obtained in this paper cannot 342 

be generalised directly to higher dimensions, and additional work will be required for this purpose. 343 

4.2. Simulation design 344 

The conducted simulation study consists of two steps. In the first one, we generate a large number 345 

N of samples to evaluate the effects of different factors on the performance of the tests. Three 346 

sample sizes are considered n = 30, 50 and 80 corresponding to s=5, 10; 5, 10, 20 and 5, 10, 20, 347 

30 respectively. For each sample size, several amplitudes of location shift are considered: 𝛿= 10, 348 

20, -20, 40 and 70%. We generate the samples as follows: 349 

I. No change in all parameters: All the parameters of the distribution are the same before and 350 

after the shift. This allows to obtain samples under the null hypothesis (no shift) and therefore, 351 

for each record length n, we calculate the probability of type one error (α); 352 

II. Change in location parameters: The distribution before the shift (G1) is the same as after the 353 

shift (G2), except for the location parameters  in the marginal. We consider 3 cases:  354 

a. Change only in location of Q: ; 355 

b. Change only in location of V: ; 356 

c. Change in the location of Q and V simultaneously:  ,  Q V  = (10,10), (20,20), (20,-20), 357 

(40,40), and (70,70)%. 358 

For the evaluation of p-values, based on the permutation and the bootstrap methods, we use np = 359 

500 permutations or bootstrap samples. This value of np is proposed by Li and Liu [2004] for the 360 

M- and T-tests and is superior to the value 200 proposed by Baringhaus and Franz [2004] for the 361 

C-test. 362 

=  10, 20,40 and 70%Q

10,20,40 and 70%V 
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In the second step of the simulation study, we evaluate the performance of each test on the basis of 363 

the estimate ̂  of the type one error α and the power of the considered tests. In the present study, 364 

we fix α = 5%. Consequently, we reject H0 if the p-value is less than 5%. We consider a number of 365 

replications N=3000 which higher than the number of replications used by Li and Liu [2004], 366 

Wilcox [2005] and Zhang et al. [2009].  367 

Since the peak and the volume have very different scales, we also considered standardizing the 368 

generated samples (with the known standard deviation and its empirical estimate of the whole 369 

sample before and after the shift). Note that the standard deviation of a Gumbel distribution can be 370 

obtained directly from its scale parameter   as 6 .  371 

4.3. Simulation results 372 

In order to avoid repetition and for notation simplicity, the depth function will only be written in 373 

the test index when it is needed. For example, MTD-test is the M-test with TD depth function. 374 

I. Type one error estimation 375 

The estimates ̂  of α for the considered tests are presented in Table 2 (with and without 376 

standardization). First, we observe that the results are almost the same with and without 377 

standardization for all situations and tests. Since the critical level is fixed at α = 5%, a performing 378 

test should have ̂  as close as possible to 5%. From Table 2, we see that ̂  generally approaches 379 

5% when n increases. Values of ̂  for the M-test are close to 5% except for MTD and MSD in the 380 

case (n,s)=(30,10). The T- and C-tests have ̂  around 5% whatever the sample size. The W-test 381 

underestimates α while the QIB-, QIA- and Z-tests overestimate it. However, the QIBSD-, QIATD- 382 

and ZTD- tests have ̂  higher than 20% when (n,s)=(30,10) which means that they reject H0 more 383 

frequently when it is true. 384 

 385 
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II. Power evaluation 386 

Table 3 summarises the simulation results for shift detection tests for several shift amplitudes in Q, 387 

V and (Q,V). In general, these results show good behaviour for the tests in terms of power. The 388 

power increases with the shift amplitude 𝛿 and with the sample size n. In the present paper, a test 389 

power is considered high when it exceeds 95%.  390 

For n=30, Table 3 (part a) shows that high powers are generally recorded for large shift amplitudes 391 

i.e.  ,  Q V   = (70,0) or  ,  Q V   = (70,70). For the M- and T-tests, best powers are recorded 392 

with the MD depth function. The TD depth function gives best powers for the W-, QIA- and Z-393 

tests while for the QIB-test, the best power is reached with the SD depth function. However, as 394 

seen before, the QIBSD-, QIATD- and ZTD-tests are problematic when estimating α. Note that the 395 

depth function that provides the best test power is not necessarily the one with which the test was 396 

originally defined, e.g. M- and T-tests. For the C-test, the power depends on the variable in which 397 

the shift has occurred. Indeed, a shift only in Q leads to low power for the C-test, while the opposite 398 

is true when the shift is either in V or in (Q,V). This is due to the difference in the first term in (7) 399 

which can be affected by the scale of the series. In the case of floods, Q and V series have very 400 

different scales. Consequently, a change in Q does not have a great effect on the test statistic while 401 

the opposite is true for V (and hence for (Q,V)). We can conclude that the C-test is more sensitive 402 

to a change in V than a change in Q. This result was not shown in previous studies since the 403 

simulations were based on variables of the same nature and scale. This can be explained by the fact 404 

that the statistic C is based on the Euclidian distance which is not affine invariant whereas the 405 

depth-based tests are not affected by the scale since depth functions are usually affine invariant 406 

[Zuo and Serfling, 2000].  407 
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For n = 50, from Table 3 (part b), we can see that high powers are obtained starting form  ,  Q V 408 

= (0,40). For each test, the depth functions that lead to the best power when n = 30 are generally 409 

the same when n=50. The powers when n=50 are generally higher than the power corresponding 410 

to n=30 with a few exceptions: for QIB-, QIA-, and Z-tests with  ,  Q V  =(0,10), (10,0), (10,10), 411 

(0,20), (20,0) or (20,20).  412 

Table 3 (part c) summarizes the simulation results of the presented tests when n=80. Results show 413 

that high powers are observed starting from  ,  Q V  = (20,-20) for the M-, T- and WTD-tests. For 414 

the M-test, results are similar for the three considered depth functions for each shift amplitude 415 

whereas for the other tests, depth functions leading to the highest powers for n=80 are also the 416 

same as for n=30 or 50. Generally, the performances of the tests increase when the shifts of V and 417 

Q have different signs. For instance, the powers for  ,  Q V  = (20,-20) are higher than those 418 

corresponding to  ,  Q V  = (20, 20) for all tests. Note that the C-test power increases with n except 419 

when the shift is located only in Q. 420 

From these results one can conclude that, generally, best results are obtained by the M-, T- and W-421 

tests (with power higher or equal to that of the rest of the tests). For low sample sizes, high powers 422 

are observed for large shift amplitudes (70%), while for large sample sizes, high powers are 423 

observed starting from  ,  Q V  =(20,-20)%. For low shift amplitudes (10%), low powers are 424 

recorded for all the considered tests. Figure 2 illustrates the applicability (where power is 425 

reasonable or high) of considered tests for the combinations of the studied sample sizes and shift 426 

amplitudes. 427 

As shown in Table 3, the powers of the tests, in particular the C-test, are affected by the different 428 

scales in the variables V and Q. Table 4 presents results corresponding to the case when the 429 
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generated series are standardized using the corresponding estimated standard deviation. We 430 

observe that the standardized C-test provides better results especially when the change is 431 

symmetrical in V or in Q, such as the case  ,  Q V  = (0,20) or (20,0)%. However, it is still affected 432 

in the sense that the power is not the same when the variables are affected symmetrically. The other 433 

tests remain almost the same after standardization even though the power is reduced for some tests 434 

(e.g. QIB_SD, QIA, n=50). 435 

In Table 5, we consider standardizing with the estimated or known standard deviation. We observe 436 

from Table 5 that the power is close to being symmetric regarding the change in V or Q when the 437 

standard deviation is estimated, and the power becomes almost symmetric when the standard 438 

deviation is known. The improvement is increasing with the sample size where, for instance, the 439 

power is almost identical when a change affects either V or Q with the same shift magnitude.  Note 440 

that by construction, the depth-based tests should not be affected by the scale since the depth 441 

functions are affine-invariant (see Li and Liu, 2004). 442 

Table 6 presents evaluations of the power of the previous tests (with standardized samples) with 443 

different possibilities of the location of the shift through different values of s. We observe that for 444 

a given n, the power generally increases with s, with some exceptions such as for QIA and QIB for 445 

which the power decreases with s. We observe also that small values of s (mainly s = 5 in the 446 

present study) affect the depth computations of some tests like the M and QIB tests which presented 447 

unexpected behaviors (always 0% for M or 100% for QIB). 448 

Variations of the type one error (α) estimations and the power with respect to the dependence level 449 

are presented in Table 7. Regarding α estimation, for a given test, the estimation is practically 450 

unaffected for all three dependence levels. Regarding the power, in general for all depth-based 451 
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tests, the power is increasing with some exceptions related to the values of δQ and δV, such as (0,10) 452 

and (10,10). The C-test seems to be almost unaffected by the dependence level. 453 

During the simulation, a problem related to the set Ω occurred with the T-test. Indeed, the set Ω 454 

given in (9) can be empty. It was observed that Ω is rarely empty in general with the SD and MD 455 

depths, but it is often empty with the TD depth. This issue was not mentioned or considered in Li 456 

and Liu [2004]. These cases are excluded from the present computations. 457 

From the present simulation study, the following general observations can be made (also illustrated 458 

in Figure 2): 459 

- The C-test is more sensitive to a change in V than a change in Q; 460 

- For a small sample size (n=30), high power is observed only for high shift amplitudes; 461 

- For a large sample size (n=80), best powers are observed for the M-, T- and W-tests; 462 

- The QIB-, QIA- and Z-tests can be problematic especially for low shift amplitudes; 463 

- For type one error estimation, QIBSD-, the QIA- and ZTD-tests are problematic, especially 464 

when n=30. Good performances are observed for the M-, T-, W- and C-tests with all depth 465 

functions;  466 

- For low shift amplitudes  ,  Q V   = (0, 10), (10, 0) or (10, 10), powers are low. This means 467 

that a 10% change in one or both location parameters is not detected by the considered tests; 468 

- The C-test is severely affected by the scale and samples should be standardized to reduce 469 

this effect. However, the depth-based tests are less affected by the variable scale; 470 

- Generally, the power increases with the location shift s. However, some tests provided 471 

inconsistent results when s is very close to the beginning (or the end) of the series; 472 

- Generally the power of the depth-based tests increases with the dependence level whereas 473 

the C-test is almost unaffected by this factor. 474 
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5. Application 475 

In this section, the previously considered tests are applied to the data series of three stations 476 

(Moisie, Magpie and Romaine) with natural flow regimes. Moisie and Romaine are among a 477 

number of stations selected in Canada to be part of the Reference Hydrometric Basin Network 478 

(RHBN) used for the study of the impacts of climate change on hydrologic regimes in the country 479 

[Ouarda et al. 1999]. The three considered stations are located in the Cote Nord Region of the 480 

province of Quebec, Canada. The Moisie station (reference number 072301) is located on Moisie 481 

River at 1.5 km upstream of the Québec North Shore Labrador Railway (QNSLR) bridge with a 482 

drainage basin area of 19 012 km2. Data series are available from 1968 to 1998. The Magpie station 483 

(reference number 073503) is located at the outlet of Magpie Lake. Its drainage basin has an area 484 

of 7 201 km2 and observations are available from 1979 to 2004. The Romaine station (reference 485 

number 073801) is located at 16.4 km from the Chemin-de-fer bridge on Romaine River, with a 486 

drainage basin area of 12 922 km2 and available data from 1961 to 2006. Figure 3 and Table 7 487 

present respectively the geographical location and general information about the considered 488 

stations. 489 

Spring flood characteristics Q and V are extracted from daily streamflow series for each station. 490 

The peak Q is defined as the maximum annual of daily streamflow series whereas the volume V is 491 

the cumulative streamflow over the flood event, see e.g. Aissia et al. [2012] for formal definitions 492 

of flood variables. Note that the variables Q and V correspond to the same flood event each year. 493 

In particular, they correspond to the annual spring flood event which is generally the important 494 

flood event in the year and is caused mainly by snow melting [Aissia et al., 2012]. 495 

Figure 4 shows the time series of Q and V for the three stations. Since these stations are 496 

geographically close to each other (Figure 3), it is expected that any eventual shift would be 497 
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observed in all three stations. From Figure 4 we can see that a shift can be located in Q and V 498 

around 1984 for all three stations. Therefore, the previously presented tests (with and without 499 

standardizing the samples) are applied for each station in 1984. Statistics and p-values of the 500 

considered tests are summarized in Table 8. Note that, instead of the p-value, for the W-test the 501 

conclusion is presented as: 1 if there is a shift, 0 if not, since this test is based on critical thresholds 502 

[Wilcox, 2005].  503 

First, we observe that the standardization does not affect the values of the test statistics of the depth-504 

based tests whereas the C-test statistics are completely different. However, the p-values are almost 505 

the same and the standardization generally does not change the conclusions. Results show that all 506 

considered tests are in agreement with the existence of a shift in the Moisie station data. For 507 

instance, the p-values of the T-, QIB-, QIA-, Z- and C-tests are less than 1%. For Magpie station, 508 

the M-test is the only test which does not detect the presence of a shift for all depth functions 509 

whereas the T-test indicates a shift with all depth functions. This can be explained by the fact that 510 

for small sample sizes (Table 3a) the power of the M-test is lower than the power of the T-test. 511 

Considering Romaine station, only the TSD-, QIBTD-, QIBMD- and ZTD-tests cannot confirm the 512 

existence of a shift in the year 1984. 513 

From the results of the three stations, one can conclude that, the year 1984 is detected as a shift for 514 

the Moisie station by all tests (and depth functions) and for Romaine station by all tests (not all 515 

depth functions). However, for the Magpie station, 3 out of 6 tests detect the shift. Indeed, from 516 

Figure 4b one can see that a shift in 1984 is not very clear in Magpie station and the short sample 517 

data before the shift can have an impact on the power of considered tests. Since these stations are 518 

geographically close (Figure 3), one can say that 1984 represents probably a shift for all these 519 

stations. 520 
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6. Conclusions 521 

The aim of this paper is to study shift detection in the multivariate hydrological setting by 522 

comparing the power of several tests and by adapting these tests for hydrological practice. Shift 523 

detection is required to insure the validity of HFA assumptions (homogeneity and stationarity) and 524 

has hence a strong impact on the selection of the appropriate multivariate distribution. All 525 

considered tests are based on data depth, except for the C-test, which is considered for comparison 526 

purposes. An overall simulation study that considers all the considered tests and which takes into 527 

account the hydrological context, is performed to evaluate and compare the power of the considered 528 

tests to detect shifts in the location parameter of Q, V and (Q,V). These tests are also applied to a 529 

real-world flood case study consisting of three stations from the province of Québec, Canada. 530 

In general, the powers of these tests increase with the shift amplitude and with the sample size. 531 

However, the QIA-, QIB- and Z-tests may be problematic for small sample sizes and they 532 

overestimate the type one error α. The scale of the tested variables has an effect on the performance 533 

of the considered tests. Especially, the C-test is severely affected and requires a standardizing of 534 

the samples. In general, the tests are more powerful when the shift occurs far from the end or the 535 

beginning of the series. For low shift amplitudes, the considered tests do not perform well for all 536 

sample sizes. On the basis of the above comparison, and considering the nature of hydrological 537 

data, it can be recommended to use the M-, T- and W-tests. More precisely, for small sample sizes, 538 

the MD depth function is preferred for the M- and T-tests while the TD depth function is preferred 539 

for the W-test whereas TD and SD are not recommended when testing a shift far from the middle 540 

section of the series. 541 

The application of the considered tests to observed hydrological data shows their ability to detect 542 

multivariate shifts. It is also observed that the performance of the tests is affected by the length of 543 
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the sub-series before or after the shift. The current literature review and hydrologic simulations and 544 

application focused on the bivariate cases. It is recommended to examine the performance of these 545 

tests for higher dimensions in future research efforts. 546 
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Tables 

Table 1: Summary of the presented tests 

  Reference Designed to detect  p-value evaluation Used depth functions 
Comparison from the literature 

For normal samples For non-normal samples 

C-test 

Eq. (7) 

Baringhaus 

and Franz 

(2004) 

Location and/or 

scale shift 
Bootstrap NA The C-test performs almost as well as Hotelling test 

M-test 

Eq. (8) 

Li and Liu 

(2004) 
Location shift Permutation  

- Simplicial*   The M-test outperformed 

- Mahalanobis The powers of M-test, the T-test and both are 

 - Half-space T-test and Hotteling more powerful than the  

T- test 
Eq. (11) 

Li and Liu 

(2004) 
Location shift Permutation  

- Simplicial* tests are comparable Hotelling test 

- Mahalanobis 
  

  

W-test 

Eq. (12) 

Wilcox 

(2005) 
Location shift 

Critical thresholds 

given in 

Wilcox[2005] 

 - Half-space 

NA - Simplicial* 

- Mahalanobis 

Q-test 

Eq. (13) 

Liu and 

Singh (1993) 

Location and/or 

positive scale shift 

Bootstrap or 

asymptotic 

-  If p-value found asymptotically: The performances of    

 Mahalanobis* or Half-space the Q- and Hotelling The Q-test outperformed  

- If bootstrap is the p-value  tests are similar the Hotelling one 

evaluation: Half-space or Simplicial     

Z-test 
Eq. (14) 

Zhang et al. 

(2009) 

Multiple location 

and/or scale shift 
Asymptotic 

 - Half-space 

NA - Mahalanobis 

*with which the test was originally developed 
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Table 2 : Values of ̂ (estimate of  ) for the considered tests and for each sample size.  

n s 
M T W QIB QIA Z 

C 
TD MD SD* TD* MD SD TD* MD SD TD MD* SD TD MD* TD MD* 

30 10 1.3 5.2 0.1 3.9 5.5 5.0 2.7 0.2 1.5 10.1 6.7 86.5 46.2 19.3 22.0 7.6 5.1 

50 20 3.8 5.8 5.4 4.6 5.5 5.3 3.9 0.1 0.4 8.4 6.6 48.0 29.9 12.4 12.1 5.8 5.4 

80 30 4.1 5.1 5.0 5.0 5.2 5.1 2.6 0.0 0.2 6.8 6.0 27.1 22.8 9.9 8.2 4.6 6.0 

Standardized versions 

30 10 0.5 4.9 0.1 4.1 5.9 5.9 2.9 0.3 1.5 10.5 6.8 86.7 46.5 19.3 21.6 7.6 5.3 

50 20 2.1 5.4 4.5 3.7 5.5 4.9 2.8 0.0 0.4 8.3 6.9 47.3 29.2 12.3 11.7 5.4 4.9 

80 30 4.2 4.9 4.7 4.9 5.4 5.4 2.7 0.0 0.2 6.6 5.3 27.9 23.0 9.9 8.1 4.3 4.8 

with n: sample size, s: shift, *: the depth function with which the test is originally defined. Gray color indicates that 

̂  is close to 5% (between 3% and 7%).  
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Table 3 : Power comparison for the considered tests to detect shifts in Q, V or (Q,V). 

 

with n: sample size, s: shift location, 𝛿Q: shift amplitude in Q, 𝛿V: shift amplitude in V and *: the depth function with 

which the test is originally defined. Gray color indicates a test power higher than 95%. Numbers written in bold and 

underlined indicate the best power of each test for the corresponding  ,  Q V  . 

C

TD MD SD* TD MD SD* TD* MD SD TD MD* SD TD MD* TD MD*

a)

0 10 2.5 10.5 0.1 7.8 11.6 7.8 7.0 0.6 4.0 10.0 8.0 84.5 42.4 19.9 27.1 9.6 13.9

10 0 0.8 8.4 0.1 5.6 9.0 7.7 5.1 0.4 2.7 9.5 6.6 85.4 43.1 19.8 24.1 7.7 4.0

10 10 2.0 10.6 0.2 7.4 11.8 8.7 7.2 0.5 4.1 8.4 7.0 83.3 39.3 19.6 26.8 9.3 14.2

0 20 3.0 27.1 0.3 23.6 32.6 23.7 27.1 5.3 18.6 16.2 14.9 89.6 53.0 32.4 48.7 20.2 40.5

20 0 2.1 17.8 0.2 15.5 22.2 14.8 16.6 2.1 10.4 13.2 10.1 87.7 48.9 25.6 37.5 13.6 5.1

20 20 5.7 26.3 0.3 21.6 29.7 20.1 25.1 4.9 17.0 11.4 11.8 83.7 41.6 24.3 47.9 19.5 38.9

20 -20 13.1 54.6 0.4 49.4 65.0 41.5 60.1 21.6 47.9 45.6 38.2 95.9 84.1 61.6 75.7 46.6 40.6

0 40 17.5 77.3 0.9 71.1 86.5 65.1 84.6 51.3 76.7 54.1 53.6 97.0 82.8 72.7 91.9 74.9 91.7

40 0 14.1 60.5 0.8 53.1 67.5 46.2 65.0 26.9 54.0 36.8 35.4 94.0 72.1 55.2 80.3 51.6 5.5

40 40 17.1 74.3 0.7 65.7 80.6 63.8 80.6 43.2 71.1 39.8 43.3 94.7 69.8 60.2 91.8 72.0 92.3

70 0 22.6 96.6 1.0 87.4 98.4 84.2 98.6 86.2 96.6 81.0 83.4 99.7 95.4 92.7 99.4 96.1 6.3

70 70 23.5 98.8 1.4 86.9 99.2 90.8 99.2 93.5 97.5 83.7 88.6 99.9 94.7 94.8 99.9 99.4 99.9

b)

0 10 11.2 17.4 15.8 15.5 19.0 15.3 16.2 1.6 4.5 9.2 8.9 46.3 29.0 15.1 20.4 7.5 21.3

10 0 7.7 12.7 11.3 10.8 13.4 10.4 10.4 0.7 2.5 7.4 7.1 44.2 25.7 12.7 17.5 7.2 5.4

10 10 11.1 15.1 15.2 13.6 17.5 13.7 14.9 1.0 3.9 5.5 6.4 39.0 21.3 11.6 20.8 8.5 22.3

0 20 38.6 48.5 48.4 46.9 55.5 42.7 55.8 14.1 27.9 15.2 17.2 57.9 40.3 26.9 52.0 23.6 63.5

20 0 24.7 33.0 33.5 31.0 39.2 28.9 37.4 6.3 14.4 11.4 13.3 51.6 33.6 21.1 37.9 14.4 5.1

20 20 37.9 45.4 47.2 42.8 49.7 39.7 52.8 11.1 25.6 8.4 11.6 43.5 26.0 18.7 55.4 24.3 65.1

20 -20 79.9 86.7 84.4 85.8 91.2 81.2 92.9 56.7 76.9 63.4 58.8 89.5 87.1 70.8 88.1 65.5 64.5

0 40 95.9 97.5 97.4 97.0 98.4 94.8 99.2 88.1 95.8 65.1 73.9 93.4 84.8 81.3 98.8 92.2 99.6

40 0 82.3 87.5 86.0 86.3 91.5 81.2 93.0 59.8 78.8 41.3 48.0 80.8 68.4 59.7 90.5 69.8 6.1

40 40 96.8 96.3 96.8 94.5 97.5 92.6 98.8 79.3 93.4 45.9 57.0 84.0 67.7 66.6 98.9 90.2 99.7

70 0 99.8 99.9 99.9 99.3 100.0 99.5 100.0 99.5 99.9 92.5 96.5 99.5 97.8 98.2 100.0 99.9 6.8

70 70 100.0 100.0 100.0 98.3 100.0 100.0 100.0 99.8 99.9 93.9 98.0 99.8 98.0 98.7 100.0 100.0 100.0

c)

0 10 21.3 22.8 23.5 22.3 26.3 20.9 22.2 1.4 3.3 7.4 8.3 25.0 22.2 12.7 17.2 7.9 30.0

10 0 12.4 15.3 16.8 15.5 17.9 13.4 13.0 0.6 1.5 5.3 5.7 23.5 19.2 10.0 11.7 5.9 4.7

10 10 20.0 22.5 24.3 20.6 23.1 19.3 21.2 1.1 2.9 3.6 4.9 17.3 12.9 8.0 20.2 8.2 31.3

0 20 69.0 70.9 70.4 69.4 75.5 64.0 76.4 21.9 38.1 17.0 21.0 40.7 37.3 28.8 59.7 33.0 82.5

20 0 48.0 51.6 50.5 49.0 56.2 43.1 54.1 8.8 17.5 11.9 14.3 33.1 29.7 20.7 36.6 17.1 5.3

20 20 66.7 64.9 67.4 65.1 69.0 59.1 73.4 16.6 33.0 7.6 12.9 23.1 19.6 18.0 66.2 31.5 84.0

20 -20 97.3 97.8 97.0 97.7 98.6 95.6 99.3 78.9 90.8 78.3 74.9 89.2 93.0 82.7 94.9 82.0 85.2

0 40 99.9 99.9 99.8 99.9 100.0 99.6 100.0 97.4 99.5 79.0 87.3 94.7 91.1 90.8 99.8 98.8 100.0

40 0 98.5 98.2 98.2 98.3 99.2 96.2 99.5 81.2 92.8 51.7 60.5 78.5 73.6 69.6 79.0 86.4 5.9

40 40 99.9 99.7 99.8 99.7 99.7 99.1 100.0 92.6 98.9 50.1 66.5 81.1 69.5 73.2 100.0 98.8 100.0

70 0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 98.3 99.5 99.9 99.6 99.7 100.0 100.0 6.7

70 70 100.0 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 97.8 99.8 99.9 99.5 99.9 100.0 100.0 100.0

(n ,s ) = (30,10)

(n ,s ) = (50,20)

(n ,s ) = (80,30)

QIA ZQIB
LQ LV

M T W
Q V
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Table 4 : Power comparison for the considered tests to detect shifts in Q, V or (Q,V) with 

standardized samples (with estimated standard deviation). 

δQ δV 

M T W QIB QIA Z C 

TD MD SD* TD* MD SD TD* MD SD TD MD* SD TD MD* TD MD*  

a)  (n,s) = (30,10) 

0 10 1.1 10.8 0.0 8.4 12.3 9.1 7.7 0.7 4.2 10.2 7.6 85.1 43.6 21.1 27.5 9.3 9.2 
10 0 0.8 8.4 0.1 6.2 8.8 6.6 4.9 0.3 2.6 9.9 6.9 85.6 42.2 19.5 24.5 7.8 7.5 
10 10 1.0 11.3 0.1 7.9 10.7 8.5 6.3 0.2 3.5 7.2 6.3 83.6 36.5 17.3 26.3 8.8 12.6 

0 20 3.5 28.8 0.1 24.1 32.5 23.5 28.5 4.8 19.4 18.0 15.0 88.6 53.8 32.4 48.9 20.9 28.3 
20 0 2.2 18.4 0.1 14.7 22.8 14.9 16.9 2.4 10.6 12.9 10.6 87.3 49.3 26.1 37.0 13.5 17.6 
20 20 3.4 25.4 0.1 21.9 29.0 21.0 25.2 3.5 16.9 11.6 11.8 85.6 40.8 25.3 49.2 20.0 40.4 
20 -20 6.3 53.8 0.2 48.0 64.6 39.9 60.9 21.6 48.5 46.5 38.7 96.2 84.8 64.0 78.2 48.1 52.8 

0 40 10.8 79.0 0.6 71.1 86.2 64.3 85.5 50.2 76.8 53.0 54.6 97.3 83.6 73.2 93.4 75.7 87.0 
40 0 7.7 59.1 0.3 53.3 68.3 47.1 65.0 25.2 54.0 36.1 34.6 94.3 72.5 56.1 79.3 50.3 66.3 
40 40 9.2 74.3 0.6 66.2 81.1 63.6 81.1 42.7 70.8 38.2 42.2 94.4 68.8 60.0 91.7 71.2 93.7 

70 0 13.8 96.1 0.6 87.9 98.4 84.4 98.5 86.9 96.1 81.2 83.5 99.7 95.8 92.8 99.6 96.5 99.1 
70 70 16.2 99.1 1.3 86.0 99.3 91.0 99.3 94.1 98.1 85.2 89.7 99.9 95.3 95.2 99.9 99.3 100.0 

b)  (n,s) = (50,20) 

0 10 10.7 14.7 14.8 13.6 18.6 14.1 14.2 0.9 3.6 6.8 6.9 29.4 16.7 10.4 22.4 7.7 15.3 
10 0 6.7 10.6 10.5 9.5 11.3 9.7 9.3 0.5 1.8 6.5 6.7 27.3 16.0 9.7 18.3 7.3 10.1 
10 10 9.0 12.4 12.8 11.4 13.6 11.9 11.9 0.7 2.8 3.6 4.9 19.9 10.8 7.6 25.3 8.2 19.5 

0 20 40.7 47.0 47.8 46.5 55.0 43.0 54.8 12.7 26.9 14.9 17.6 41.6 29.9 22.9 55.2 24.1 50.4 
20 0 23.9 30.7 31.8 29.4 38.3 27.6 34.9 5.0 13.2 10.3 11.7 33.7 22.0 15.5 37.7 13.2 31.9 
20 20 37.5 42.2 46.0 42.8 50.0 38.2 53.6 9.6 25.3 6.8 11.3 27.8 16.9 15.2 63.3 26.3 67.4 
20 -20 79.3 88.2 83.4 85.7 91.2 80.4 92.3 57.8 77.0 65.4 61.6 82.1 81.6 68.9 87.8 64.7 87.0 

0 40 96.6 98.4 97.5 97.6 98.6 96.6 99.4 88.1 96.5 68.0 77.1 89.7 82.4 82.2 99.1 94.2 99.4 
40 0 83.3 88.4 87.9 87.4 92.2 84.4 94.3 58.7 80.8 41.7 49.8 71.8 60.4 56.8 92.7 69.1 93.6 
40 40 96.0 96.9 96.9 95.4 97.4 94.5 99.4 77.8 94.0 40.5 55.0 74.3 57.0 61.1 99.3 90.9 99.9 

70 0 100.0 100.0 100.0 99.5 99.9 100.0 100.0 99.8 100.0 95.3 98.3 99.5 98.4 98.9 100.0 100.0 100.0 
70 70 100.0 100.0 100.0 98.8 100.0 100.0 100.0 100.0 100.0 94.9 99.1 99.8 98.4 99.4 100.0 100.0 100.0 

c)  (n,s) = (80,30) 

0 10 21.3 23.3 22.7 21.9 27.1 19.5 21.8 1.2 3.1 6.3 8.0 26.7 22.8 12.8 15.0 7.0 22.9 
10 0 13.2 15.3 14.7 14.1 16.5 13.4 11.8 0.5 1.2 6.1 6.3 23.4 20.3 10.4 13.0 6.9 14.5 
10 10 18.8 20.4 21.6 19.5 22.5 16.9 19.5 0.7 2.6 3.2 4.6 15.9 12.3 7.3 19.6 8.0 31.6 

0 20 71.1 73.6 72.1 71.7 76.5 66.5 78.9 21.5 39.0 17.7 21.5 42.3 39.0 29.7 61.4 32.4 76.7 
20 0 49.3 51.2 51.7 50.4 57.5 45.7 56.3 7.5 16.7 10.9 13.6 32.7 29.1 20.3 38.1 16.2 55.7 
20 20 66.2 65.2 68.3 64.3 68.6 59.7 74.4 15.8 33.4 7.0 12.7 24.1 19.6 17.1 66.3 32.1 86.8 
20 -20 97.2 97.7 96.6 97.5 98.4 95.1 98.9 78.2 89.8 78.9 76.2 90.1 92.8 83.6 94.3 81.9 98.3 

0 40 99.9 99.9 99.9 99.9 99.9 99.6 100.0 97.6 99.3 79.2 86.7 94.6 91.1 91.2 99.9 98.7 100.0 
40 0 98.1 98.3 97.2 98.3 98.7 95.9 99.5 79.4 91.9 51.3 61.1 77.5 73.2 69.6 97.0 86.2 99.4 
40 40 99.8 99.7 99.6 99.5 99.7 99.0 100.0 92.1 98.2 48.9 66.0 79.8 69.1 73.1 99.9 98.4 100.0 

70 0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 98.2 99.6 99.9 99.5 99.8 100.0 100.0 100.0 
70 70 100.0 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 97.6 99.5 99.9 99.1 99.8 100.0 100.0 100.0 

with n: sample size, s: shift location, 𝛿Q: shift amplitude in Q, 𝛿V: shift amplitude in V and *: the depth function with 

which the test is originally defined. Gray color indicates a test power higher than 95%. Numbers written in bold and 

underlined indicate the best power of each test for the corresponding  ,  Q V  .  
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Table 5 : Power comparison for the considered tests to detect shifts in Q, V or (Q,V) with 

standardized samples (with estimated or known standard deviation). 

δQ δV 
M T W QIB QIA Z C M T W QIB QIA Z C 

SD* TD* TD* MD MD* MD*  SD* TD* TD* MD MD* MD*  

  Estimated standard deviation Known standard deviation 

 (n,s) = (30,10) (n,s) = (30,10) 

0 10 0.0 8.4 7.7 7.6 21.1 9.3 9.2 0.1 6.4 5.4 7.2 19.0 8.3 7.1 

10 0 0.1 6.2 4.9 6.9 19.5 7.8 7.5 0.0 7.1 5.2 6.8 19.0 7.7 7.3 

10 10 0.1 7.9 6.3 6.3 17.3 8.8 12.6 0.1 6.7 5.8 6.3 17.8 8.2 10.6 

0 20 0.1 24.1 28.5 15.0 32.4 20.9 28.3 0.1 15.6 17.0 10.6 26.2 13.7 19.4 

20 0 0.1 14.7 16.9 10.6 26.1 13.5 17.6 0.1 16.0 18.3 11.8 26.6 15.0 20.1 

20 20 0.1 21.9 25.2 11.8 25.3 20.0 40.4 0.2 16.2 19.2 9.7 21.9 16.3 32.5 

20 -20 0.2 48.0 60.9 38.7 64.0 48.1 52.8 0.5 39.9 48.6 29.5 53.4 36.4 40.7 

0 40 0.6 71.1 85.5 54.6 73.2 75.7 87.0 0.5 52.5 65.0 34.0 55.7 52.1 67.6 

40 0 0.3 53.3 65.0 34.6 56.1 50.3 66.3 0.4 52.6 63.4 33.3 53.9 50.1 68.8 

40 40 0.6 66.2 81.1 42.2 60.0 71.2 93.7 0.7 54.8 68.4 31.3 49.6 56.9 86.5 

70 0 0.6 87.9 98.5 83.5 92.8 96.5 99.1 0.7 86.7 98.3 83.2 92.0 95.6 99.5 

70 70 1.3 86.0 99.3 89.7 95.2 99.3 100.0 1.3 84.8 98.1 78.8 88.1 96.5 99.8 

 (n,s) = (50,20) (n,s) = (50,20) 

0 10 14.8 13.6 14.2 6.9 10.4 7.7 15.3 11.2 10.6 9.7 5.7 11.8 6.4 10.6 

10 0 10.5 9.5 9.3 6.7 9.7 7.3 10.1 12.5 10.4 10.3 6.9 12.9 6.9 10.8 

10 10 12.8 11.4 11.9 4.9 7.6 8.2 19.5 11.9 11.2 11.0 5.3 10.0 6.7 17.7 

0 20 47.8 46.5 54.8 17.6 22.9 24.1 50.4 33.2 30.3 35.0 12.4 19.2 14.1 36.5 

20 0 31.8 29.4 34.9 11.7 15.5 13.2 31.9 33.1 30.3 37.2 11.9 20.0 14.0 34.5 

20 20 46.0 42.8 53.6 11.3 15.2 26.3 67.4 36.8 33.1 39.2 9.8 15.2 17.7 57.3 

20 -20 83.4 85.7 92.3 61.6 68.9 64.7 87.0 74.5 75.7 86.0 47.0 60.2 50.7 75.2 

0 40 97.5 97.6 99.4 77.1 82.2 94.2 99.4 85.9 86.2 93.4 48.0 59.0 69.4 93.1 

40 0 87.9 87.4 94.3 49.8 56.8 69.1 93.6 87.1 86.6 93.2 47.9 59.0 70.1 93.6 

40 40 96.9 95.4 99.4 55.0 61.1 90.9 99.9 89.8 86.7 95.1 38.7 48.6 76.3 99.2 

70 0 100.0 99.5 100.0 98.3 98.9 100.0 100.0 99.9 99.6 100.0 97.1 98.1 100.0 100.0 

70 70 100.0 98.8 100.0 99.1 99.4 100.0 100.0 99.9 98.5 100.0 93.9 96.0 99.9 100.0 

 (n,s) = (80,30) (n,s) = (80,30) 

0 10 22.7 21.9 21.8 8.0 12.8 7.0 22.9 15.7 15.8 13.1 6.6 10.4 6.2 15.0 

10 0 14.7 14.1 11.8 6.3 10.4 6.9 14.5 15.6 14.7 13.2 6.6 10.8 6.4 16.5 

10 10 21.6 19.5 19.5 4.6 7.3 8.0 31.6 17.6 16.1 15.6 4.7 8.0 7.6 26.2 

0 20 72.1 71.7 78.9 21.5 29.7 32.4 76.7 49.6 49.4 54.4 12.5 18.9 15.7 53.3 

20 0 51.7 50.4 56.3 13.6 20.3 16.2 55.7 49.9 50.6 55.1 13.4 19.6 16.4 52.9 

20 20 68.3 64.3 74.4 12.7 17.1 32.1 86.8 55.1 52.8 60.3 10.3 14.9 23.3 76.5 

20 -20 96.6 97.5 98.9 76.2 83.6 81.9 98.3 91.9 94.2 96.9 58.5 68.0 63.3 94.8 

0 40 99.9 99.9 100.0 86.7 91.2 98.7 100.0 98.1 98.1 99.5 62.8 70.9 86.8 99.4 

40 0 97.2 98.3 99.5 61.1 69.6 86.2 99.4 98.1 98.1 99.4 61.7 70.0 86.1 99.4 

40 40 99.6 99.5 100.0 66.0 73.1 98.4 100.0 98.4 98.1 99.6 48.8 56.2 92.3 99.9 

70 0 100.0 99.9 100.0 99.6 99.8 100.0 100.0 100.0 100.0 100.0 99.7 99.8 100.0 100.0 

70 70 100.0 99.7 100.0 99.5 99.8 100.0 100.0 100.0 100.0 100.0 98.3 98.8 100.0 100.0 
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Table 6 : Power evaluation of the considered tests with various combinations of n and s. 

δQ δV 

M T W QIB QIA Z C 

TD MD SD* TD* MD SD TD* MD SD TD MD* SD TD MD* TD MD*  

a)  (n,s) = (30,5) 

0 10 0,0 8,0 0,0 6,1 9,9 6,9 2,5 0,0 2,7 14,9 8,6 100,0 68,4 38,8 38,2 16,0 7,3 
10 0 0,0 7,3 0,0 4,8 7,7 7,0 1,6 0,0 1,7 14,2 7,4 100,0 69,7 38,3 36,7 14,1 6,3 
10 10 0,0 10,5 0,0 6,4 10,4 7,6 2,4 0,0 2,8 12,9 8,1 100,0 65,8 37,3 38,3 15,3 10,4 

0 20 0,0 14,7 0,0 15,2 23,5 14,9 9,5 0,1 10,2 20,3 12,8 100,0 72,6 45,9 50,9 24,8 18,6 
20 0 0,0 13,0 0,0 11,1 16,3 11,4 5,3 0,1 5,6 16,7 10,0 100,0 71,9 43,0 45,7 18,6 12,8 
20 20 0,0 17,5 0,0 15,6 22,6 13,9 10,7 0,1 11,0 16,1 10,6 100,0 67,2 41,4 49,2 22,2 27,6 
20 -20 0,0 23,5 0,0 26,0 42,7 27,9 21,7 1,0 21,2 36,7 24,9 100,0 89,4 66,9 71,2 42,3 32,7 

0 40 0,0 41,0 0,0 44,5 66,4 44,8 47,5 3,7 49,7 50,3 39,5 100,0 89,2 74,7 85,5 63,9 65,3 
40 0 0,0 29,7 0,0 31,1 47,4 30,4 28,0 1,1 29,4 35,7 25,9 100,0 84,0 63,6 73,6 45,7 43,0 
40 40 0,0 44,9 0,0 41,1 61,7 42,2 47,0 3,4 48,1 42,6 36,0 100,0 81,9 66,4 81,3 59,5 78,4 

70 0 0,0 64,3 0,0 60,3 88,3 68,4 76,6 19,4 77,8 74,1 65,9 100,0 95,2 88,5 95,3 87,0 90,2 
70 70 0,0 81,7 0,0 62,5 93,6 81,0 86,3 39,9 86,9 82,0 77,8 100,0 96,3 92,0 98,0 93,2 99,3 

b)  (n,s) = (50,5) 

0 10 0,0 9,0 0,0 8,0 10,1 7,1 1,6 0,0 1,6 11,1 7,5 100,0 73,9 41,6 39,2 15,2 7,8 
10 0 0,0 6,8 0,0 6,1 7,9 5,9 0,9 0,0 0,9 10,2 5,9 100,0 72,9 38,7 35,9 14,5 6,2 
10 10 0,0 9,4 0,0 8,6 11,1 7,2 1,7 0,0 2,0 8,9 6,6 100,0 66,7 37,5 34,7 14,4 10,2 

0 20 0,0 17,6 0,0 20,7 27,0 15,9 8,0 0,0 8,5 17,1 12,9 100,0 76,2 47,6 51,3 25,4 21,3 
20 0 0,0 13,0 0,0 12,4 18,4 11,1 4,2 0,0 4,6 14,1 9,2 100,0 74,2 44,2 45,8 20,1 13,7 
20 20 0,0 18,3 0,0 20,0 27,2 14,8 9,5 0,0 9,9 13,2 10,5 100,0 69,5 43,5 49,5 23,1 31,1 
20 -20 0,0 25,0 0,0 37,0 49,6 31,3 19,2 0,5 18,9 35,1 25,9 100,0 92,0 70,4 74,9 46,6 36,6 

0 40 0,0 43,7 0,0 54,5 71,4 46,7 45,4 2,9 46,9 47,2 40,7 100,0 91,0 76,4 86,6 65,4 71,0 
40 0 0,0 32,2 0,0 41,8 55,7 33,5 28,1 0,7 29,3 33,0 27,0 100,0 85,4 65,8 75,2 49,2 51,8 
40 40 0,0 45,2 0,0 53,2 67,4 43,7 46,8 2,2 47,5 41,2 35,5 100,0 83,0 68,8 83,1 62,2 82,2 

70 0 0,0 65,6 0,0 75,4 92,1 70,5 76,8 16,1 77,9 73,1 66,9 100,0 96,5 90,6 96,6 89,6 93,9 
70 70 0,0 82,5 0,0 80,5 95,9 79,9 87,2 39,2 87,5 82,3 78,8 100,0 96,8 92,7 98,4 94,8 99,6 

c)  (n,s) = (50,10) 

0 10 7,7 12,6 6,8 10,2 13,6 10,8 5,1 0,1 2,2 9,2 7,9 80,7 47,3 20,7 25,3 9,2 10,5 
10 0 5,7 9,7 5,4 8,1 11,0 9,1 3,5 0,1 1,4 8,8 6,8 82,1 49,0 20,7 23,4 7,3 8,1 
10 10 7,7 13,6 6,0 9,9 13,9 9,8 4,9 0,1 1,7 7,0 5,9 79,1 40,8 19,1 24,8 9,0 14,6 

0 20 22,3 31,6 17,0 32,4 39,5 28,3 24,5 2,6 14,8 15,7 14,1 86,6 57,4 34,1 48,4 21,5 35,3 
20 0 16,3 24,0 13,4 21,9 27,7 20,2 14,9 1,2 7,7 12,1 10,8 84,6 53,9 29,1 37,4 13,9 23,6 
20 20 23,6 32,3 18,6 29,2 37,2 27,1 24,3 2,7 14,9 10,7 11,4 81,3 44,1 26,6 48,6 20,9 50,0 
20 -20 46,1 62,4 32,6 64,8 75,5 51,1 61,5 17,6 45,5 49,5 42,4 95,4 89,5 69,0 81,2 52,9 66,0 

0 40 62,5 85,5 44,6 83,0 91,6 69,9 85,7 48,8 76,3 56,0 57,7 97,1 87,2 77,0 94,0 80,9 92,6 
40 0 49,2 66,8 36,9 67,0 77,5 54,8 65,1 23,7 52,6 37,8 38,9 93,5 76,1 60,5 81,8 58,3 77,0 
40 40 61,6 82,1 46,1 76,9 86,7 69,0 82,6 41,7 70,2 41,6 46,4 93,8 74,1 64,8 93,4 77,2 97,2 

70 0 70,4 98,2 52,8 95,4 99,5 87,5 98,7 88,6 97,0 85,4 88,6 99,8 97,3 95,4 99,7 98,4 99,9 
0 70 69,7 99,4 53,5 93,1 99,8 91,7 99,5 94,0 98,2 85,8 90,8 99,7 96,1 95,5 99,8 99,5 100,0 
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δQ δV 

M T W QIB QIA Z C 

TD MD SD* TD* MD SD TD* MD SD TD MD* SD TD MD* TD MD*  

d)  (n,s) = (80,5) 

0 10 0,0 9,2 0,0 9,1 11,6 8,4 1,4 0,0 1,4 9,5 6,6 100,0 74,1 41,3 38,5 16,0 8,6 
10 0 0,0 8,1 0,0 6,9 9,5 7,8 1,0 0,0 0,9 8,3 6,0 100,0 74,1 41,0 37,2 15,3 6,6 
10 10 0,0 10,7 0,0 9,8 12,2 8,5 1,7 0,0 1,7 8,7 6,2 100,0 69,2 39,2 37,5 15,1 11,5 

0 20 0,0 17,3 0,0 22,7 29,7 19,7 8,1 0,0 8,8 16,7 13,2 100,0 77,7 51,4 53,1 26,6 23,4 
20 0 0,0 12,2 0,0 15,0 19,7 12,0 3,2 0,0 3,5 11,0 8,9 100,0 76,0 44,5 45,1 19,5 14,6 
20 20 0,0 18,4 0,0 20,7 29,0 17,4 7,6 0,0 7,8 11,5 9,8 100,0 70,9 43,8 49,8 22,7 32,5 
20 -20 0,0 25,3 0,0 43,1 53,3 39,0 18,7 0,3 18,0 33,2 26,0 100,0 93,5 73,0 75,9 49,1 40,8 

0 40 0,0 43,8 0,0 60,8 74,8 54,1 46,7 2,0 47,3 46,0 40,6 100,0 91,5 77,8 87,0 67,6 75,3 
40 0 0,0 30,9 0,0 43,8 56,1 37,9 25,7 0,4 26,9 30,9 26,0 100,0 86,2 64,5 74,2 48,6 51,6 
40 40 0,0 43,5 0,0 56,8 70,5 48,6 45,7 1,4 46,2 38,2 34,6 100,0 83,3 68,3 83,2 64,0 83,8 

70 0 0,0 66,1 0,0 81,7 93,8 75,0 76,9 16,2 78,3 73,9 67,8 100,0 97,5 90,7 97,2 89,9 96,0 
0 70 0,0 81,0 0,0 84,7 95,6 82,7 86,4 38,1 87,0 81,9 78,8 100,0 96,6 93,0 98,7 95,3 99,7 

e)  (n,s) = (80,10) 

0 10 9,4 13,3 10,3 12,3 15,7 10,7 4,0 0,1 1,5 7,8 7,2 74,9 49,4 22,1 23,9 8,7 12,1 
10 0 7,3 10,1 9,4 9,8 11,7 9,7 2,9 0,1 0,9 6,9 6,3 75,4 50,3 20,9 22,5 8,1 9,7 
10 10 9,3 14,1 10,0 11,8 15,7 10,8 3,9 0,2 1,9 5,4 5,9 69,6 43,5 19,4 22,3 8,3 16,5 

0 20 34,2 37,1 33,5 40,5 46,4 32,0 24,6 2,4 14,7 15,4 16,1 79,9 59,7 36,4 48,6 23,2 41,1 
20 0 21,7 25,3 21,2 26,2 32,4 22,8 12,9 0,8 6,7 10,7 10,7 78,4 56,3 29,7 36,0 14,9 26,3 
20 20 34,8 36,7 33,3 38,6 44,0 31,4 24,7 2,1 14,2 9,4 11,2 72,7 47,7 28,5 48,3 20,6 56,8 
20 -20 64,9 69,8 59,8 74,7 81,9 56,0 62,4 15,7 44,9 49,1 44,3 93,6 90,4 70,5 83,0 57,2 72,9 

0 40 80,9 88,2 76,1 88,7 93,9 71,6 85,7 47,5 75,1 57,0 59,5 95,5 88,6 79,0 95,1 82,0 95,8 
40 0 65,4 71,8 61,5 74,2 82,0 57,6 65,0 20,7 50,1 35,4 37,4 91,0 78,8 62,0 83,7 58,6 82,0 
40 40 79,5 83,5 74,9 82,9 89,1 70,7 81,9 39,3 69,3 40,5 46,3 91,0 76,3 65,3 93,7 78,0 98,0 

70 0 87,6 99,1 83,6 97,2 99,7 86,5 98,7 86,2 95,9 84,2 87,4 99,4 97,1 94,5 99,7 98,4 99,9 
0 70 89,6 99,7 85,3 95,8 99,8 91,7 99,5 94,5 98,3 87,4 92,0 99,8 97,2 96,6 99,9 99,6 100,0 

f)  (n,s) = (80,20) 

0 10 14,6 18,8 19,5 18,3 22,4 17,7 12,1 0,3 2,1 7,4 7,7 37,0 30,9 15,7 16,6 6,4 18,1 
10 0 10,4 13,3 14,0 12,1 16,0 13,5 7,1 0,1 1,0 6,2 5,7 34,8 28,7 13,1 13,4 5,5 12,7 
10 10 14,1 19,5 20,0 17,2 21,0 16,9 11,5 0,6 2,3 4,3 5,6 28,0 21,4 11,5 17,9 7,8 26,8 

0 20 56,0 60,9 61,1 58,2 67,1 54,3 56,6 11,1 24,9 17,0 19,4 52,5 46,0 31,0 53,5 27,2 64,2 
20 0 37,8 41,2 42,1 39,8 47,2 36,5 35,1 3,3 10,1 10,9 11,9 42,4 37,2 22,3 34,0 14,9 44,0 
20 20 52,8 53,6 58,6 53,8 58,6 49,1 53,2 8,4 22,6 8,1 11,9 34,5 27,4 20,9 57,9 28,7 78,5 
20 -20 92,0 93,4 92,0 93,4 96,0 88,5 94,4 54,4 76,8 69,9 66,9 90,0 92,6 79,7 92,1 73,5 94,5 

0 40 99,1 99,2 99,0 98,8 99,5 97,0 99,6 88,1 96,4 71,0 78,6 93,3 89,6 85,6 99,6 96,4 99,9 
40 0 93,2 94,3 93,6 93,7 96,1 87,2 95,1 58,4 78,9 45,3 52,0 79,0 72,8 64,9 93,4 78,5 97,3 
40 40 98,7 98,4 98,2 97,7 98,5 94,7 99,1 78,5 92,9 45,7 60,2 82,1 71,2 70,1 99,2 94,3 100,0 

70 0 100,0 100,0 100,0 99,8 100,0 99,7 100,0 99,8 99,9 95,0 97,8 99,8 98,9 99,2 100,0 100,0 100,0 
0 70 100,0 100,0 100,0 99,2 100,0 100,0 100,0 99,9 100,0 95,2 99,0 99,9 98,8 99,5 100,0 100,0 100,0 
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Table 7 : Type one error estimate and power evaluation with respect to the dependence level 

δQ 
δV 

M T W QIB QIA Z C M T W QIB QIA Z C M T W QIB QIA Z C 

SD* TD* TD* MD MD* MD*  SD* TD* TD* MD MD* MD*  SD* TD* TD* MD MD* MD*  

 
 Estimated standard deviation Estimated standard deviation 

Estimated standard deviation 

 
 (n,s) = (50,20) (n,s) = (50,20) 

(n,s) = (50,20) 

 
 b = 1.155 (with rho = 0.25)  b = 1.414 (with rho = 0.50) b = 2.000 (with rho = 0.75) 

0 0 4.9 3.4 2.4 6.0 11.3 5.2 4.1 5.4 4.6 3.9 6.6 12.4 5.8 5.4 4.7 3.9 3.0 6.3 11.5 5.4 4.7 

0 10 13.8 12.0 12.9 7.2 12.5 6.6 15.9 14.8 13.6 14.2 6.9 10.4 7.7 15.3 20.8 19.8 21.9 10.2 17.7 8.2 12.2 

10 0 10.6 9.0 8.7 6.3 11.3 6.6 11.1 10.5 9.5 9.3 6.7 9.7 7.3 10.1 15.9 15.6 15.5 7.7 13.9 7.0 9.5 

10 10 17.3 14.8 15.3 5.9 10.0 9.4 21.6 12.8 11.4 11.9 4.9 7.6 8.2 19.5 13.9 13.1 13.1 5.7 10.8 6.8 20.4 

0 20 41.6 38.0 46.9 13.5 21.5 19.4 50.7 47.8 46.5 54.8 17.6 22.9 24.1 50.4 70.1 71.7 82.2 34.2 47.2 45.3 54.2 

20 0 27.9 26.4 30.3 10.4 17.1 12.3 33.9 31.8 29.4 34.9 11.7 15.5 13.2 31.9 48.6 51.0 57.3 21.5 32.1 24.1 33.8 

20 20 53.1 48.9 60.9 14.1 21.5 29.4 71.9 46.0 42.8 53.6 11.3 15.2 26.3 67.4 42.6 38.4 47.8 11.0 18.1 19.7 63.2 

20 -20 68.2 68.5 79.6 41.2 55.0 42.5 80.1 83.4 85.7 92.3 61.6 68.9 64.7 87.0 97.3 98.6 99.7 89.7 94.5 95.3 94.0 

0 40 94.2 92.5 97.8 58.7 69.5 84.1 99.0 97.5 97.6 99.4 77.1 82.2 94.2 99.4 99.9 99.5 100 95.8 97.9 99.8 99.9 

40 0 80.7 77.8 88.8 36.2 47.3 56.9 90.9 87.9 87.4 94.3 49.8 56.8 69.1 93.6 97.3 97.9 99.6 79.5 86.2 93.6 96.0 

40 40 97.7 96.7 99.2 62.6 71.3 95.0 100 96.9 95.4 99.4 55.0 61.1 90.9 99.9 94.7 91.8 97.5 52.6 62.1 84.8 99.4 

70 0 99.8 99.3 100 91.2 94.4 99.2 100 100 99.5 100 98.3 98.9 100 100 100 97.7 100 99.9 100 100 100 

70 70 100 97.6 100 99.0 99.7 100 100 100 98.8 100 99.1 99.4 100 100 100 98.8 100 97.6 98.7 100 100 
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Table 8 : General information about the Moisie, Magpie and Romaine stations. 

Station 

name 

Station 

number 
Latitude Longitude 

Period of 

record 

(#years) 

Area 

(Km2) 

Moisie 072301 50 21 09 -66 11 12 1968-1998 (31) 19 012 

      

Magpie 073503 50 41 08 -64 34 43 1979-2004 (26) 7 201 

      

Romaine  073801 50 18 28 -63 37 07 1961-2006 (46) 12 922 

      

 

Table 9 : Test statistics and p-values of M-, T-, QIB-, QIA-, Z- and C-test and 

decision (1: shift, 0: no shift) of W-test. 

Tests 
M T W QIB QIA Z 

Cramer 
TD MD SD* TD* MD SD TD* MD SD TM MD* SD TD MD* TD MD* 

a)  Without standardizing the samples 

Moisie 
Stat 0.08 0.00 0.00 0.32 0.10 0.19 0.22 0.06 0.06 0.10 0.06 0.00 0.10 0.06 16.0 20.5 9353.21 

p-val 0.00 0.01 0.05 0.00 0.00 0.00 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Magpie 
Stat 0.30 0.00 0.00 0.60 0.20 0.30 0.5 0.3 0.3 0.3 0.19 0.00 0.30 0.19 0.99 2.92 1132.50 

p-val 0.16 0.54 0.53 0.08 0.09 0.07 0 0 0 0.47 0.32 0.02 0.11 0.02 0.32 0.09 0.03 

Romaine 
Stat 0.50 0.10 0.10 0.70 0.30 0.30 0.63 0.50 0.60 0.40 0.31 0.10 0.40 0.31 2.50 4.08 2478.40 

p-val 0.03 0.07 0.07 0.03 0.09 0.19 0 1 1 0.10 0.11 0.04 0.05 0.01 0.11 0.04 0.01 

b)  With standardizing the samples 

Moisie 
Stat 0.07 0.00 0.00 0.31 0.10 0.20 0.21 0.05 0.04 0.09 0.04 0.00 0.09 0.04 17.1 21.2 9.13 

p-val 0.00 0.03 0.03 0.00 0.00 0.00 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Magpie 
Stat 0.26 0.00 0.00 0.54 0.18 0.22 0.45 0.24 0.21 0.24 0.13 0.00 0.24 0.13 2.47 5.74 3.19 

p-val 0.06 0.34 0.38 0.02 0.04 0.01 0 1 1 0.18 0.09 0.01 0.03 0.00 0.12 0.02 0.00 

Romaine 
Stat 0.47 0.08 0.06 0.68 0.24 0.24 0.58 0.44 0.52 0.35 0.31 0.13 0.35 0.31 3.37 5.64 4.53 

p-val 0.02 0.04 0.05 0.01 0.01 0.05 1 1 1 0.09 0.07 0.02 0.04 0.01 0.07 0.02 0.00 

 

 

  



 40 

 

 

a)      b) c) 

Figure 1 : DD-plot for a) two identical subsamples, b) two different subsamples and c) two 

very different subsamples. 
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Figure 2 : Diagram of the applicability of considered tests for studied sample lengths (n) 

and shift amplitudes (𝛿). 

(%) 
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Figure 3 : Geographical location of the Moisie, Magpie and Romaine stations. 
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a)  

b)  

c)  

Figure 4 : The V and Q time series of a) Moisie, b) Magpie and c) Romaine stations. 


