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ABSTRACT 

Bayesian inversion using maximum a posteriori (MAP) estimator is a quantitative 

approach that has been successfully applied to the electrical resistivity tomography 

inverse problem. In most approaches, model covariance parameters are generally chosen 

stationary and isotropic, which assumes statistical homogeneity of studied field. 

However, the statistical properties of resistivity within the Earth are, in reality, location 

depend due to spatially varying processes that control the bulk resistivity of rocks, such 

as water content, porosity, clay content, etc. In order to take into account the spatial 

variability of the resistivity field, we propose to use the non-stationary Matérn covariance 

family that is defined through linear stochastic partial differential equations. Two types of 

prior information are considered, structure orientation and spatially increasing range with 

increasing depth. The latter is applied successfully on the first synthetic model which 

aims at retrieving the depth of bedrock and the shape of conductive lens. In the second 

synthetic example, a conductive dyke model embedded into four layers is used to study 

the performance of structure orientation. Finally, the proposed approach is used to invert 

real data measured over an extensively characterized sandy-to-silty aquifer. Structure 

orientation of this aquifer was firstly determined by applying structure tensor calculated 

using gradients of gpr image. The introduction of this information gives a resistivity 

model that is more compatible with the aquifer structure.  

Keywords: electrical resistivity tomography, Bayesian inversion, Non-stationary Matérn 

precision matrix.  
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INTRODUCTION 

Electrical Resistivity tomography (ERT) or electrical imaging is among the most 

commonly used high-resolution geophysical techniques in many geoscientific domains, 

such as hydrogeophysics (e.g. Binley and Kemna, 2005), engineering geophysics (e.g. 

Ramirez et al., 1996) or mining exploration (e.g. Oldenburg et al., 1997). An overview of 

recent ERT developments can be found in (Loke et al., 2013). ERT consists in the 

resolution of an inverse problem to estimate the spatial distribution of electrical resistivity 

within the ground, from measurements of electrical potential variations caused by the 

injection of an electric current into the ground.  

The ERT inverse problem is ill-posed, nonlinear and underdetermined. Numerous 

inversion approaches have been published in the last three decades to tackle this problem 

(Loke et al., 2013). They can be separated in two groups: deterministic and stochastic 

approaches. Deterministic approaches are based commonly on the linearization of the 

forward problem operator using its first order Taylor expansion. The insufficiency of the 

ERT data to resolve the subsurface is commonly supplied (regularized) by the 

assumptions of model smoothness (e.g. Labrecque et al., 1996; Fridel, 2003) or 

blockiness (e.g. Loke et al., 2003). Thikonov regularization that produces smooth models 

is probably the most used for ERT and, more generally, in geophysical inversion. In 

stochastic approaches, all variables (data, model parameters and all related hyper-

parameters) are modelled as random variables, which are encoded in terms of probability 

distributions. Generally, the solution of the inverse problem is obtained by maximizing 

the posterior probability distribution. Maximum likelihood (ML) and maximum a 

posteriori (MAP) estimators are the most popular methods (e.g. Ulrych et al., 2001; 
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Tarantola, 2005).  Note that the MAP estimator and the family of regularized Newton 

estimators are equivalent when the regularization matrix is replaced by the square root of 

the inverse of the covariance matrix; regularization parameters can therefore be 

considered as scaling factors in the MAP formulation. Several methods for constraining 

the inversion of ERT data set using prior information provided by another geophysical 

methods or geological knowledge have been suggested (e.g. Kaipio et al. 1999; Saunders 

et al., 2005; Günther and Rücker, 2006; Johnson et al., 2007, 2012; Lelièvre and 

Oldenburg,  2009; Zhou et al., 2014; Caterina et al., 2014). Joint inversion is probably the 

most familiar technique (e.g. Günther and Rücker, 2006; Boucchedda et al, 2012). 

Geostatistical (e.g. Johnson et al., 2007; Herman et al., 2012) and structural inversion 

(Kaipio et al., 1999; Zhou et al., 2014) approaches are more and more used. In our case, 

structural information is extracted using gradient tensor in the same way as structurally 

inversion approach (Kaipio et al., 1999) but included in the inversion system using 

covariance function such as geostatistical inversion (Herman et al., 2012).   

In this paper, the ERT inverse problem is solved using Bayesian MAP estimation 

approach such as presented in Yang and Labrecque (1998). The key point of this 

approach is to choose a good model covariance function that best represents the true 

resistivity variability  within the Earth. In general, covariance functions are chosen 

stationary which means that their parameters (correlation length or range, variance and 

anisotropy)  depend only on the distance between any two points in the grid. In other 

words, the covariance function is assumed be spatially invariant over the investigated 

area. It implies that the geological heterogeneities share within the study area, some 

similarities in size (related to the range), orientation (related to the main anisotropy 
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directions), and variability of the physical property (related to the variance). However, in 

most real cases, spatial resistivity variability is position dependent because all parameters 

that affect bulk resistivity such as pore water resistivity, water content, temperature and 

clay content vary spatially with lithology and fluid. For example, a dipping layered 

resistivity model has a range that is more important in the direction of the dip. However, 

it is generally very difficult to assess non-stationarity when considering exclusively the 

measured potential data and well resistivity logs alone, as the already under-determined 

problem sees its degrees of freedom increase even more. In our methodology, all a priori 

information such as geological knowledge, ground penetration radar or seismic reflection 

techniques and ERT sensitivity are used to improve the knowledge of the non-stationarity 

in model parameters’ covariance matrix. More precisely, all additional information is 

introduced by allowing spatial variations of range or anisotropy or marginal variance. 

A few approaches have been developed for non-stationary covariance calculation. 

An overview is given in Sampson (2010) and Fuglstad et al.(2015b). In the literature  on 

geophysical inverse problems, Shamsipour et al.( 2013) used the Matérn-like process 

convolution of Paciorek and Schervish (2006) to invert gravity data. However, the 

covariance matrix is generally dense, especially when range parameter is high. Hence, 

efficient implementation of stochastic Bayesian approach using MAP estimator becomes 

critical for large-scale problems and non-stationary covariance functions. Unfortunately, 

inversion of the covariance matrix, as well as covariance matrix multiplication, can be 

efficiently calculated and with small memory requirements only for isotropic, stationary 

and regular grids cases (e.g. Linde et al., 2006). To avoid this problem, Aune et al. (2013) 

proposed to work with non-stationary precision matrix to invert amplitude variation with 
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angle (AVA) data.  In their approach, originally developed by Lindgren et al. (2011) 

based on the work of Whittle (1954), a Gaussian process is defined through linear 

stochastic partial differential equations (SPDE). The latter gives an explicit link between 

continuous Markov representations of the Matérn covariance and the Gaussian fields. 

One of the major advantages of this formulation is that the resulting precision matrix is 

very sparse, which enables efficient computation and reduces memory requirements for 

large-scale problems. In addition, non-stationarity can be easily implemented by spatially 

varying SPDE parameters. Matérn covariance functions are defined by their smoothness 

parameter ν  that controls the degree of the smoothness of the resistivity field. Due to the 

SPDE construction (Lindgren et al., 2011), only integer and half-integer of ν are used in 

this paper. It is to be noted that an approximation was proposed by (D., Hale, 2013, 

Colorado School of Mines, C.W.P. report No. 815) to calculate the non-stationary Matérn 

covariance for any real value of ν, but it is not considered here. In this work, we suppose 

that the model parameters have a Gaussian distribution with non-stationary Matérn 

covariance with unknown ν. Covariance parameters are determined by considering prior 

information. Indeed, the more information about the desired properties of the solution is 

included in the inversion system, the more realistic the resulting models are (Günther and 

Rücker, 2006; Kim et al., 1999). In practice, useful information about the desired 

geological model can be obtained through well and surface data.  In our case, we consider 

two types of prior information: structure orientations and ERT sensitivity. More 

precisely, the structure orientation can be extracted from ground penetrating radar or high 

resolution seismic reflection and included in the inversion system by spatially varying 

anisotropy factors. To address the fact that the data sensitivity of resistivity blocks 
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decreases as a function of their distance from electrode array measurements, the range is 

smoothly increased with the distance to the electrodes. In other words, resistivity blocks 

become increasingly correlated with the depth for the specific case of surface 

measurements. 

The paper is divided into three main sections. In the first part we provide a brief 

review of the theory of ERT modeling and stochastic inversion. The regularized ERT 

inverse problem is presented as the minimization of the Tikhonov parametric functional 

with a Gauss-Newton algorithm. In the second section of the paper we give a brief 

description of our new algorithm. Finally, in the third part, the proposed algorithm is 

applied to synthetic and field data to assess its reliability and performance.  

 

FORWARD MODELLING 

With the exception of simple models like stratified media, spheres and dykes, for 

which analytic solutions can be obtained, DC resistivity forward modelling consists in the 

numerical resolution of elliptic partial differential equations or integral equations.  In the 

present case, we use finite-differences with surface elements (weak finite-volume 

method) as proposed by Dey and Morrison (1979). The advantages of this method are 

that it is intuitive and easy to implement, in addition to yielding good accuracy in absence 

of topography and being fast.  

Assuming a current source that is a 3-D point at position (xs,ys,zs) in a 2-D Earth 

model of resistivity ρ(x,z) where the strike direction is given by the y-axis, the forward 

model governing equation in Fourier domain can be expressed as (Dey and Morrison, 

1979) 
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ρρρρ 2

1 2  for (x,z) ∈ Ω;  Ω= ΓsU Γ∞     

(1)   

subject to the boundary conditions applied to ∂Ω= ΓsU Γ∞ 

 

0
1

====++++
∂∂∂∂
∂∂∂∂

V
n

V

zx
λλλλ

ρρρρ ),(
        (2) 

 

where I is the current intensity, δ the Dirac function, k the wave number, n the 

outward normal and λ determines the boundary type. 

 

The transformed potential V and its inverse v are related by 

  

∫∫∫∫

∫∫∫∫

∞∞∞∞

∞∞∞∞

⋅⋅⋅⋅⋅⋅⋅⋅====

⋅⋅⋅⋅⋅⋅⋅⋅====

0

0

2
dk)ykcos()z,y,x(V)z,x(v

dy)ykcos()z,y,x(v)z,k,x(V

π

      (3) 

 

The closed domain Ω is delimited by the air–earth interface (Γs) and a fictitious 

boundary (Γ∞). Homogeneous Neumann boundary conditions are applied at the air–earth 

interface (λ =0) and homogeneous mixed boundary conditions are applied at the 

subsurface boundary based on the physical behaviour of the potential at a given distance r 

from the point source. The detailed discretization of equations (2) and (3) has been 

discussed in Dey and Morrison (1979) and will not be presented here. 
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INVERSE PROBLEM 

We consider a Bayesian approach to ERT inversion using maximum a posteriori 

(MAP) estimator (Tarantola and Valette, 1982). This approach requires specifying 

uncertainty on data noise and prior information on the model parameters. In a Bayesian 

context, both are expressed as an a priori probability density functions that are usually, 

but not necessarily, considered Gaussians. The conditional a posteriori probability of the 

model parameters, given the measured data, is obtained using Bayes rule. The MAP 

estimator consists of giving the solution that maximizes the a posteriori distribution. For 

more details about mathematical foundations, an excellent presentation can be found in 

Idier (2013) and  Tarantola and Valette (1982). 

If we assume Gaussian distributions for model parameters and measured data, the 

maximization of the posterior probability density is equivalent to the minimization of the 

following objective function (Tarantola, 2005): 

  ( ) ( )
2

2

2
12

2

2
1

)()( priormd mmCmFdCm −⋅+−=
−−

φ                       (4) 

where we denote the measured data as d, the a priori model mprior, the forward 

modelling operator as F, and covariance matrix of data noise and model parameters as Cd 

and Cm, respectively.  

 

In the most common approximation we may invoke the Tikhonov regularization 

(Tikhonov and Arsenin, 1977), and replace the square root of the inverse of the model 

covariance matrix by the regularization matrix R: 

���� = ���	
 − ������
� + ���		� −������

�
                                         (5) 
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In this paper, we used the following regularization matrix (Pidlisecky et al., 2007) 

when comparing our algorithm to smooth inversion: 

R = lx Dx + lz Dz + ls I, 

where: 

Dx: first derivative matrix in x direction 

Dz: first derivative matrix in z direction 

I: identity matrix 

lx, lz: smoothing weighting factors in x and z direction respectively  

ls: smallness or closeness weighting factor.   

 The only difference is the regularization parameter β that is not present in 

Bayesian formulation. Note that some authors (e.g. Linde et al., 2006) replaced the 

regularization matrix in (5) by the precision matrix and used the term ‘stochastic 

regularization’. Interface or boundary constraints can be implemented by weighting the 

regularisation matrix R. The weighting matrix contains small weights at the position of 

interfaces, and weights of one otherwise. When applied to the regularization matrix R, 

this results in sharp gradients at these positions. In other words, the model is smoothed by 

blocks. 

The minimization of equation (4) using a Gauss-Newton algorithm gives the 

following update equation: 

���� = �� + �	∆��, with 

∆�� = 	�� ����� + ������  ������	
 − ����� − ����	�� −����! (6) 
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Where i refers to the ith iteration and s is step length calculated using quadratic 

line search (Pidlisecky et al., 2007). Note that the regularization parameter can be 

interpreted in stochastic inversion as a scaling factor applied to the variance.  

  

MATÉRN PRECISION MATRIX 

The Matérn isotropic covariance function Cov(h) is given by (Handcock and 

Stein, 1993; Stein, 1999) 

�"#�$� = %&
�'()Γ�*� �κ‖$‖�*,*�κ‖$‖�; 			$	ϵ	ℝ0 ,    (7) 

where h is the separation distance between two location blocks, n is dimension of the 

field, Kν is a modified Bessel function of the second kind of order ν (Abramowitz and 

Stegun, 1972), Γ is the gamma function, κ is the spatial scaling parameter related to the 

range which measures how quickly the correlations decay with distance, and ν is the 

smoothness or shape parameter. The later controls the degree of smoothness of the spatial 

process. When ν is small, the resistivity distribution tends to be rough, and the opposite 

occurs when it is large. Because there is no simple relationship between the range r and 

κ, we used the same empirically derived formula as (Lindgren et al., 2011), that is r =√8 

ν/κ, corresponding to correlations near 0.1 at the distance r, for all ν. The marginal 

variance δ2 is given by  

 1� = 2�*�
�34�5 &⁄ 2�*�0 �⁄ �7&'      (8) 

The Matérn covariance function is widely used in geostatistics and in many other 

geoscience fields (Minasny and McBratney, 2005). By varying the smoothness parameter 

ν, it is possible to retrieve or approximate a few well-known covariance functions, as 
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presented in Table 1. It can be also linked to smooth regularisation operator as shown by 

Maurer et al. (1998).  

The idea of calculating a random Gaussian field with a Matérn covariance 

structure with SPDE was firstly introduced by Whittle (1954). More recently, Lindgren et 

al. (2011) extended Whittle’s work by discretizing the SPDE with finite-elements, which 

gives an efficient calculation of the Matérn precision matrix for any integer and half-

integer v value. The SPDE is given by (Whittle, 1963, 1954): 

�κ� − ∆�α �8 	τ	9�:� = ��:�, : ∈ ℝ0,α = 	ν + 0
� , κ > 0, ? > 0                 (9) 

where x(u) is a random Gaussian field at location u, W (u) is Gaussian white noise with 

unit variance, ∆ is the Laplace operator, and α= ν+ n/2, n is the dimension of the field. 

The discretization of equation (9) can be done using any numerical methods, such 

as finite-elements (Lindgren et al., 2011), finite-volumes (Fuglstad et al., 2015a) or finite-

differences (Aune et al., 2013). In this paper, we used the formulation of Lindgren et al. 

(2011) where the solution is obtained using finite-elements with linear basis functions. 

We chose not to present detailed derivations because they are quite involved and can be 

found in Lindgren and Rue (2007, Lund University Publications, Preprints in 

Mathematical Sciences No. 5). However, when the form of the discretized SPDE has 

been derived as an expression of the coefficients in the SPDE and the grid for α =1 (ν=0) 

and 2 (ν=1) (see appendix A), the Matérn precision matrix for any integer α > 2 is 

obtained using the recursive form of the SPDE (Lindgren et al., 2011). Half-integer 

values of α or ν are obtained using Taylor approximation the precision matrix as 

described in author's discussion response in Lindgren et al. (2011).  
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A covariance function is called isotropic when it is invariant in all directions at 

any point of the grid. Geometrical anisotropy occurs when the range is directional 

depend. For simplicity, we refer to geometrical anisotropy as anisotropy in all the text. To 

include anisotropy into the Matérn precision matrix, a tensor field H (2×2) is introduced 

in equation (9) such that 

�κ� − ∇ ∙ D∇�E �8 	τ	G�H� = I�H�, H ∈ ℝ0,α = 	ν + K
� , κ > 0, ? > 0,  (10) 

where H can be parameterized as proposed by (Fuglstad et al., 2015a) 

H=γ I + η g gT , 

with  g = [cos(θ) sin(θ)]T, γ > 0 and η > 0. The angle θ indicates how much the 

coordinate system has been rotated in clockwise direction. γ > 0 ensures that H is strictly 

a definite positive matrix. The marginal variance is now given by (Fuglstad et al., 2015a) 

( ) 21
222/

2

4)(

)(

λλλλλλλλττττκκκκππππαααα

νννν
δδδδ

vdΓ

Γ
=      (11) 

where λ1= γ+η and λ2 = γ are the eigenvalues of matrix H. 

The eigenvectors of H define the two principal directions of correlation ellipse and 

LM� N⁄  and LM� N⁄  can be considered as a measure of correlation lengths in these 

principal directions. 

 In (10), the statistical properties of the random field are characterized by 

the SPDE rather than by the Matérn covariance function (equation (7)). In such case, non-

stationarity can be easily handled by allowing spatial variation of κ, τ and H. In other 

words, nonstationary anisotropy is defined as ellipses around each point that describe 

locally a change of distances such that correlation lengths are different in different 

directions.  
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Precision matrix parameters determination 

 From equation (10), the Matérn precision matrix can be defined using four control 

parameters (ν,τ,κ,H) which give a great flexibility to handle all a priori information in 

the inverse system.  As previously mentioned, we consider only integer or half-integer 

values for the smoothness parameter ν of the stochastic partial differential equation 

parameter α (Lindgren et al., 2011). In the 2-D case (d=2), the precision Matérn matrix 

can be calculated for ν = 1/2,1,3/2,2,5/2,3,7/2,4,..... Note that for ν = 0, the random fields 

that are solutions of the stochastic differential equation (9) don’t have a Matérn 

covariance. For a fixed value of smoothness parameter ν, the spatial scaling parameter κ 

controls the spatial correlation length (range). The marginal variance as described by 

equation (11) depends on all parameters (ν,τ,κ,H). However, if ν and κ are fixed, τ can 

be used to control the variance.  

In practice, covariance parameters can be determined by variogram modelling of 

resistivity well logs data (Linde et al, 2006; Caterina et al., 2014). However, well logs 

data are generally not available or only available at some sparse locations of resistivity 

profile. In this case, geological knowledge can be used as a guideline to choose the range 

and the variance.  Another solution is to use V-V plot as proposed by Asli et al. (1999) to 

calculate the control parameter from data covariance. However, this approach was 

developed for linear inverse problem such as gravity inversion and needs covariance 

matrix multiplication with sensitivity matrix, which is not practical for large-scale 

problems.  
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In our methodology, we suppose first that ν is unknown and can take any integer 

or half-integer values. In practice, the maximum value considered in this work is 4. We 

believe that inversion with a few values of v, as v is smoothing factor, can give an idea 

about features in the resistivity model that are well constrained by the data. As previously 

mentioned, κ and τ are function of range and variance, but the latter are not known a 

priori. We circumvent the problem by relying on the experimental variogram of a model 

obtained after smooth resistivity inversion to determine the range r. The variance is taken 

as the square of the maximum resistivity value of smooth inversion. The effect of such 

choices will be studied in the first synthetic example.  

To introduce additional information using Matérn precision matrix, two types of 

non-stationary parameters were used. First, we considered spatial variation of the range 

parameter. In fact, as the sensitivity of ERT is inversely proportional to the distance from 

the electrodes, the resolution of deeper blocks should be lower than shallower blocks 

when surface measurements alone are input in the inversion. To take into account the 

decreasing resolution with increasing depth, Loke (M.H, Loke, 2015, Geotomo Software, 

Tutorial Notes) proposed for example to increase the size of blocks with depth. In this 

study, we chose to use the same block size on the entire region of interest, but we 

increased the correlation between blocks with depth by increasing the range parameter. It 

is important to note that the resistivity variability that can be assessed by ERT is scale 

dependent. In other words, the resistivity variability that can be seen by the smallest 

electrode separation measurements is different from those of largest electrode separation 

measurements. Increasing correlation length with the depth will reduce small scale 

variability that is not assessed by largest electrode separation. Generally, structural 
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information (layering, dip, structures directions) can be obtained from GPR or shallow 

seismic refraction/reflection. This information can be easily introduced in inversion 

system using non-stationary anisotropy that encodes it as correlation ellipse at each grid 

point 

   

ALGORITHM DESCIPTION 

The proposed approach can be divided in five main steps: 

1. Smooth inversion. 

2. Determination of the range r and the variance δ2 from smooth resistivity model. 

3. If GPR or seismic reflection or geological information are available  

     estimate H for each block using the structure tensor. 

else 

    consider spatial variation of the range parameter. 

4. Select v and calculate τ and κ from r and δ2 

5. Perform Bayesian inversion. 

The algorithm is stopped when the rms is bellow the target misfit of 1. In order to 

introduce GPR structural information into the stochastic inversion system, structure 

orientations should be extracted from GPR or seismic reflection image. In our case, we 

used the structure tensor that was initially introduced for corner detection (Förstner, 

1986; Harris and Stephens, 1988) and oriented texture analysis (Kass and Witkin, 1987). 

It consists of a field of symmetric positive matrices calculated from gradient tensor 

convolved with a Gaussian filter. It encodes the local orientation and anisotropy of an 

image.  
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SYNTHETIC STUDY 

The objectives of this section are to present the effect of the choice of parameters 

ν, τ and κ, and to highlight the flexibility and limitations of using non-stationary Matérn 

precision matrix for incorporating available information in the inversion system. Three 

synthetic models are used for that purpose. For all experiments, a 3% Gaussian noise was 

added to the data. The discretization of the region of interest was performed using regular 

grids of 0.25mx0.25m and 0.5mx0.5m for forward modelling and inverse problems 

respectively. A homogeneous model with a resistivity equal to the median value of 

apparent resistivity values was chosen as the initial model and a priori model for ERT 

data inversion. Note that when we refer to the layered model, the last layer has a semi-

infinite extension and the term ‘interface’ means the border forming a common boundary 

between two media of different resistivities. Note that all inversions presented in the 

synthetic study were converged to rms bellow the target misfit of 1. 

 

Synthetic model 1 

The first resistivity model, called Model 1, consists of three layers with a 

conductive infill within the deeper layer that aims at ressembling a clay lens in 

sedimentary environment. The measurements are simulated using a surface dipole-dipole 

protocol with 41 electrodes with a 1 m electrode spacing. Note that the dipole-dipole 

array is most suitable for vertical structure delineation and therefore not so efficient in 

resolving the resistivity contrast between the second layer (10 ohm.m) and the conductive 

infill. Before starting stochastic inversion, we will present first the results of smooth 

deterministic inversion in order to compare our approach with the conventional one. 
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Figure 1b shows the smooth inversion result without any constraint. As expected, 

the second layer, between 1 and 2 m depths, is not well resolved. It appears as a few 

localized conductive zones with resistivity values around 10 ohm.m. In addition, it is not 

possible to separate the conductive infill at 1 ohm.m from the second layer of resistivity 

of 10 ohm.m. Again, this can be explained by the sensitivity of the dipole-dipole array, 

which is not suitable to image horizontal structures. The top and the bottom of the 

conductive infill are not well defined but their extensions in x direction are well retrieved. 

To improve inversion results and reduce the effect of low sensitivity effect of dipole-

dipole array to horizontal structures, additional constraints should be used.   

First, we suppose that the layer interfaces at 1 m and 2 m are known, for example 

from ground-penetrating-radar or seismic data. Figures 1c and 1d show inversion results 

when interfaces are imposed at 1 m depth and both 1 m and 2 m depths, respectively. We 

can observe that in both cases the shape of the conductive infill is not improved. 

However, the second layer is better delimited although its resistivity shows a few lateral 

variations. To reduce the effect of dipole-dipole array sensitivity that “tries” to 

incorporate more vertical resistivity variations, lz was set to 0.2, much lower than lx which 

was set to 1. As the smoothness in the horizontal direction is stronger than in the vertical 

direction, layered structures are encouraged by the inversion. As shown in Fig. 1(e), the 

inversion result is considerably improved. The shape of the conductive infill is better 

defined but it extension in z appears more exaggerated than in reality. The shape of the 

conductive infill is better retrieved when all constraints are applied, as shown in Fig. 1f. 

A few artifacts are nevertheless introduced in the second layer. It is also interesting to 

Page 18 of 51GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 201  Society of Exploration Geophysicists.7

D
ow

nl
oa

de
d 

03
/3

1/
17

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



19 
 

note that all inversion runs cannot separate clearly the second layer and the conductive 

infill.   

  For stochastic inversion, we need to infer three parameters (ν, τ and κ). In the 

following tests, the smoothing parameter ν takes the values of 1, 1.5, 2, 3 and 4. As 

described above in the section presenting the precision matrix parameters determination, 

κ and τ are estimated from smooth inversion results. The experimental isotropic 

variogram obtained using smooth inversion results (Figure 1b) is shown in Figure 2.  We 

can observe that the sill is reached at approximately 8 m. The standard deviation is 

chosen to be 100.  

To study the effect of the variation of the range on inversion result, κ and the 

standard deviation were fixed to 2 and 100, respectively, and the range was varied from 2 

m to 20 m. Figure 3 shows inversion results for range values r of 2 m, 4 m, 6 m, 8 m, 10 

m and 20 m. It can be observed that when the range is greatly underestimated (2 m), a 

few artefacts appear in resistivity image (Fig 3a), but when the range is overestimated the 

resulting model is highly smoothed (Figure 3f). When it is equal to 4 m, the shape of 

conductive infill is better defined but the second layer appears as a few conductive zones. 

Increasing the value of the range improves the definition of the second layer but the 

conductive infill appears slightly smeared. Note that the results obtained using range 

values between 4 m and 10 m are quite similar. Hence, it is not critical to estimate 

precisely the range, as inversion results are satisfactory for a rather wide bracket of 

values. The same behaviour has already been observed in several papers using 

covariance-based inversion (Yeh and Liu, 2000, Hansen et al. 2006, Hermans et al. 2012, 
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Hermans et al., 2016). The range value of 8m obtained from smooth inversion appears a 

good candidate for stochastic inversion. 

 

In order to explore the effect of the standard deviation on inversion, the range 

parameter was fixed to 8 m and the standard deviation was varied from 10 Ω.m to 1000 

Ω.m. As shown in the Figure 4, the resistivity of the recovered models is not highly 

affected by the variations of standard deviation. This is due to the fact that the resistivity 

values are principally controlled by the data rather than the covariance term. However, 

when the standard deviation is too small the resistivity seems to be slightly under-

estimated. In contrary, when the standard deviation is over-estimated (Figure 4d), there is 

barely an effect on the inversion results. As shown by Day-Lewis and Lane (2004) the 

statistical parameters extracted from a tomogram are biased by the regularisation. 

Consequently, as the standard deviation determined from smooth inversion is necessarily 

underestimated (due to smoothing), we propose to use the maximum value of smooth 

resistivity. 

In conclusion, Bayesian inversion is more affected by the range than the variance. 

Without any borehole information, the range can be inferred from experimental 

variograms computed on smooth resistivity inversion images. However, as the inverted 

image is smooth, the range will be overestimated. 

 

To mimic smooth inversion with horizontal anisotropic smoothing (Figure 1e), 

Bayesianinversion was carried out using covariance matrix with horizontal anisotropy by 

choosing the rotation matrix g equal to (1, 0). Inversion results for different ν are shown 
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in the Figure 5. It appears clearly that the inversion results are greatly improved by 

introducing this information. Generally, all interfaces are well localized. The combination 

of horizontal anisotropy and the high sensitivity of the dipole-dipole array to vertical 

structures allows a very nice definition of the extensions of the conductive infill. The 

resistivity and continuity of the bedrock are better estimated for ν values of 3 and 4. This 

can be explained by the fact that when ν is high the smoothing effect is more pronounced 

which produces less resistivity variations and better estimation of bedrock resistivity.     

 

Finally, to reduce the effect of high sensitivity of the dipole-dipole array that tries 

to generate limited size structures rather than continuous layer in the inversion (see 

Figure 3 and 4), we introduce a spatially-varying range that increases smoothly the 

correlation between blocks as the depth increases. As the spatial scaling parameter κ is 

inversely proportional to the range parameter r, we used the following   

 

κ� 	= �O9 PκQ R S�TU�
VWX	S�TU�Y , κ��0Z	;	with	F�z� = �

aγ 	 , b = 1, …e.                                   (12) 

 

Where z is the depth of resistivity block i, N is the number of blocks, γ is a constant that 

controls the degree of variations of F(z) and κQ		, κ��0 are respectively the spatial scaling 

parameter values at surface and its minimum value corresponding to the maximum range. 

For inversions performed in this work, κQ	is selected on the basis that the range 

for surface blocks corresponds to the shortest distance between electrodes (here 1m). 

Inversion results with non-stationary correlation based on equation (12) are presented in 

the Figure 6. It is clear that the results are improved in comparison to smooth and 
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isotropic Bayesianinversion. We observe that the second layer is well delimited but not as 

well as in the case of Bayesian or smooth anisotropic inversion (Figure 5). This can be 

explained by isotropic range. However, the conductive infill is better retrieved in all 

cases. In addition, the resistive bedrock is better defined as v increases. In fact, the 

smoothing effect increases with increasing v, which allows retrieving a more 

homogeneous bedrock.   

 

Synthetic model 2 

The second model, shown in Figure 7, consists of a conductive dyke crossing five 

layers at 45 degrees. The resistivity of the layers varies between 50 ohm.m and 500 

ohm.m, and the latter is located in the center of the panel, where the ERT sensitivity is 

the lowest. A bipole-bipole crosshole survey with additional surface electrodes (Binley 

and Kemna, 2005) is simulated. Based on smooth inversion resistivity, r and δ were 

chosen to be 3 and 1000, respectively.  

Figure 7 shows the results obtained with smooth inversion as well as Bayesian 

inversion with stationary covariance model. We can observe that the resistivity images 

contain a few artefacts, the conductive dyke is not well defined and the fourth layer 

between 4 m and 6 m depths appears more conductive and in some cases not well 

delimited. It is interesting to note that Bayesian inversion with ν=1 gives the best result. 

More precisely, the conductive dyke is clearly distinguishable and the limits of the fourth 

layer are well determined (Fig. 7(c)). When ν increases, the resulting resistivity models 

are smoother, and the conductive dyke disappears from the images whereas the fourth 
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layer appears larger. As ν controls the smoothness of the resistivity image, the thin dyke 

is better characterised by the smallest value of ν.   

In order to demonstrate that our inversion with non-stationary anisotropy can 

successfully assimilate any knowledge of the geological and stratigraphic structures, we 

perform several experiments supplying various combinations of zones and preferential 

directions for the dyke model. We choose g=(- 1/2, 1/2) T in the dyke region and g=(1,0)T 

elsewhere for the first three tests. Inversion results are presented in Figure 8. In the three 

first tests, the a priori model was chosen to be (log (85)), log(1000) and log( 10000) 

respectively. As shown in Figures 8b to 8d, the a priori model doesn't have much effect 

on the final inversion results. This can be explained by the combination of three factors: 

(1) a good a priori information introduced in non-stationary anisotropy, (2) a large 

standard deviation and (3) the resolution of cross-borehole measurements. In the second 

experiment, the dip of the dyke was imposed to the whole domain by chosen g=(- 1/2, 

1/2) T constant on all grid cells. Inversion result shows that the dyke position is well 

retrieved (Figure 8e). However some artifacts are apparent and the layer between 4m and 

6m seems to have a dip. Finally, in the last test the anisotropy is defined by supposing 

vertical dyke located in the middle of the panel. Inversion result is presented in the Figure 

8f. Surprisingly, with wrong information the dyke can be seen but its shape cannot be 

retrieved.  Note that, in all cases, the estimated resistivity models were improved in the 

comparison to isotropic case. 
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INVERSION OF FIELD DATA 

The objective of this section is to demonstrate the effectiveness and flexibility of 

the proposed approach to invert real resistivity data. The structural constraints on the 

covariance come from a ground penetrating radar survey made at the same location than 

the ERT profile. The study area is located in St-Lambert-de-Lauzon, Québec, Canada 

(Figure 9). In 2008, a hydro-geophysical study was conducted in order to understand 

groundwater flow and contaminant transport in the shallow granular aquifer of the 

Beaurivage river sub-watershed. The latter encloses a decommissioned sanitary landfill 

emitting a leachate plume managed by natural attenuation (Paradis et al., 2014, Tremblay 

et al., 2014). The granular aquifer consists of 10 to 15 m thick heterogeneous sand layer 

over discontinuous till aquitard and interbedded with thin intercalated silty to clayey 

lenses. The bedrock aquifer is composed of fractured shale and sandstone. The water 

table is close to the surface at approximately 0.2 m to 2 m depth. A more detailed 

description can be found in (Gloaguen et al., 2012; Paradis et al., 2014; Tremblay et al., 

2013). ERT, cone penetrating test (CPT) and ground penetrating radar (GPR) were 

carried out  in order to characterize the aquifer geometry and to improve forecasting of 

mass transport. In the following, we will present the results of one survey line located in 

the North of the study area where all the data are collocated (Figure 9). 

 

 

2D ERT data acquisition was performed using an automatic resistivity imaging 

system with 96 electrodes and 2 m spacing. The dipole-dipole array protocol defined on a 

190 m long baseline was extended to 490 m long profile using a roll-along technique. In 
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total, 8394 electric potential differences were recorded. GPR data was acquired using a 

100 Mhz antennas. It was processed by applying a dewow filter, a spreading gain 

function, a bandpass filter (40–110 MHz) and Kirchoff migration (Cassidy, 2009). Time 

to depth conversion was performed using a constant velocity value of 0.07 m/ns obtained 

from CPT data and hyperbola fitting on diffractions on larger blocks in the top of the till. 

It is important to note that the maximum layer dip is generally less than 5 % except at the 

end of GPR profile where the dip is approximately 10%. It appears visually more 

important in the GPR image (Figure 10c) due to a vertical to horizontal scale ratio of 

1/10. 

The GPR image is shown in the Figure 10c. The base of sandy aquifer can be 

easily identified as the last strong reflection, which is located at depth between 5 m and 

12 m. Its stratification, typical of coastal environments, can be also observed and gives an 

idea of depositional modes. More details can be found in Paradis et al. (2014). The till, 

which is the aquitard, is characterized by the presence of boulders or cobbles that 

generates numerous hyperbolas at positions X=150 m to X=250 m and X=400 m to 

X=475 m. Two attenuated zones can be identified between X=0 m to X=150 m and 

X=275 m to X=350 m. Chemical analysis of pore water at these places show high water 

conductivities due to the sanitary landfill leachate plume.     

Smooth inversion results of ERT data are presented in Figure 10. In order to show 

structural similarity between GPR and resistivity images, a few interfaces extracted from 

GPR image are plotted (white lines) on all resistivity inversion images. For isotropic 

smoothing factors, the resistivity image presents a good structural similarity with GPR 

profile between 0 to 5 m depths, as shown in Figure 10a. This can be explained by the 
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fact that this zone is well constrained by ERT data. Below 5 m depth, a few conductive 

circular zones appear on the resistivity image, which are principally due to the sensitivity 

of dipole-dipole array. In addition, the base of sandy aquifer is not well as defined as the 

GPR section shows. To improve inversion results, an anisotropic smoothing factor was 

used (lz/lx=5) to favor horizontal structures. Inversion results are shown in Figure 10b. As 

expected, structural similarity between GPR and resistivity images is considerably 

enhanced. The layered structure of sandy aquifer is more pronounced and the base of the 

aquifer at positions X=0 to X=100m is the same as in the GPR section.  

In order to introduce GPR structural information into the Bayesian inversion 

system, structure orientations were extracted from GPR image using the structure tensor 

as described in algorithm description section. Note that the structure orientations are first 

calculated on the high resolution GPR image. After, the mean value on each resistivity 

block support (1 m2) is used to construct the structural orientation field g for each 

resistivity block of the grid. Figure 11a shows the structure orientation field as extracted 

from the GPR image.  

Inversion results using the non-stationary anisotropic Matérn precision matrix 

based on GPR information are presented in Figure 11. The structural similarity between 

ERT and GPR images is now highly enhanced. Between X=0 to X=120 m and X=400 m 

to X=475 m positions, the bedrock interface is continuous showing a high resistivity. In 

the contrary, the interface with the bedrock between X=100 m and X=400 m seems to be 

discontinuous with the base of sandy aquifer. This might be due to the presence of 

fractures generating a strong anisotropy. It is interesting to note that the structure 

orientations captured below the sandy aquifer interface in leachate zones don't affect 
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inversion results. It is clear from GPR section and resistivity images that structural 

information at these locations are not compatible. In other words, in high sensitivity 

zones where the inversion result is better constrained by measured data, structural 

constraints act as soft constraints. Resistivity model in these regions is controlled by the 

data rather than structural information that are not compatible with resistivity variability.     

 

CONCLUSION 

Structure orientation obtained from GPR image can be efficiently incorporated in 

constrained Bayesian inversion using nonstationary Matérn covariances. The latter are 

constructed using a finite-element discretization of the SPDE. In such formulation, 

nonstationarity of anisotropy and range parameters are easily implemented by spatially 

varying the SPDE parameters. Synthetic data tests show that inversions are robust to 

misdetermination of the variance, ranges and prior model. In practice, these parameters 

are estimated on the basis of smooth inversion results. When no structural prior 

information is available, we proposed to constraint the inversion by heuristically 

increasing the range with increasing depth. Our results indicate that the proposed 

approach can perform better than isotropic covariance based inversion. Further works 

should be realised to explore other functions for spatially varying range. Finally, 

structurally Bayesian constrained inversion was applied to characterize sandy aquifer  

contaminated by sanitary landfill leachate plume. GPR image serves to extract orientation 

structures that were included in inversion system using nonstationary anisotropic 

covariance. The introduction of this information gives a resistivity model that is more 
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compatible with the aquifer structure. The proposed approach can be easily extended to 

the 3D case and to unstructured meshes. 

  

APPENDIX A 

The discrete approximation of continuous Gaussian field x(u) can be constructed 

using basis functions, {ψk}, and weights, {wk}, 

9�H� = ∑ hi�H�j kj                                                              

(A-1) 

A stochastic weak formulation of the SPDE states that 

l〈�j, �κ� − Δ�E �8 	9�H�〉pjq�,…,V =	 r〈�j,��H�〉sjq�,…,V    (A-2) 

for each set of test functions {φk}. 

Replacing x(u) in (A-2) by (A-1) gives 

l〈�t, �κ� − Δ�E �8 	hu〉pt,v =	 r〈�j,��H�〉sj                                                              

(A-3) 

Let's study the case of α=2 and φi = ψi, 

κ�l〈h�,hu〉pt,v + l〈hu , −Δhu〉pt,v =	 r〈hi ,��H�〉sj                                      (A-4) 

if we define: 

w�,u = 〈h� ,hu〉 
x�,u = 〈hu , −Δhu〉

,�,u = 〈h� ,�κ� − Δ�hu〉 = κ�w�,u + x�,u
 

From equation (A-4), a weak solution to SPDE is given by A-1 where �κ�y +
z�{~}	�~, y�. Hence, the Matérn precision matrix of the weights, w, is given by 

����q���� = �κ�y + z��y���κ�y + z� = ��y���                                       (A-5) 
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Choosing test functions equal to the linear operator applied to  the basis functions 

( �t = �κ� − Δ�E �8 	hu ) leads the Matérn precision matrix for α=1  

����q���� = �κ�y + z� = �	                                                                          (A-6) 

Using A-2 and having precision matrix for α=1 and α=2, the Matérn precision 

matrix for any integer α greater than 2 can be calculated using the following recursive 

equation: 

����q���� = ��y������q������ y���,				� = 	3,4, …	                                                         
(A-7) 

Lindgren et al. (2011) proposed to use a piecewise linear basis (finite elements) 

which give only neighbouring basis functions overlap. Consequently, L and G are sparse 

matrix. However, the inverse of L is not sparse.  To overcome this problem, L is replaced 

with diagonal elements w�,u = 〈h�,1〉. As shown by Lindgren et al. (2011)  the resulting 

approximation error is small. 
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FIGURE CAPTIONS 

 

Figure 1: Smooth inversion results of Model 1 data. (a) true resistivity model, smooth 

inversion model (b) without constraints, (c) with constraints at the 1 m deep interface, (d) 

with constraints at the 1 m and 2 m deep interfaces, (e) with αz=0.2 and (f) with 

constraints at the 1 m and 2 m deep interfaces and αz=0.2. The white lines represent the 

true interfaces. 

Figure 2: Experimental isotropic semi-variogram obtained using smooth inversion 

resistivity image.  

Figure 3: Effect of variations of the range parameter r on Bayesian inversion results. (a) 

r=2 m, (b) r=4 m, (c) r=6 m, (d) r=8 m , (e) r=10 m and (f) r=20 m. The white lines 

represent the true interfaces. 

Figure 4: Effect of variations of the standard deviation (STD) on Bayesian inversion 

results. (a) δ=10 Ω.m, (b) δ=50 Ω.m, (c) δ=100 Ω.m, (d) δ=1000 Ω.m. The white lines 

represent the true interfaces. 

Figure 5: Bayesian inversion results of model 1 data using r = 8 m, δ=100 Ω.m, g=(1, 0) 

and in (a) model 1, (b) ν=1, (c) ν=2, (d) ν=2.5, (e) ν=3, (f) ν=4. The white lines represent 

the true interfaces. 

Figure 6: Inversion results using non-stationary correlation (a) model 1, (b) smooth 

inversion model with anisotropic smoothness factor, (c) (a) with additional constraints on 

interfaces at 1 m and 2 m depths; Bayesian inversion model resulting from using spatially 

varying range with (d) ν=1, (e) ν=1.5 and (f) ν=3. The white lines represent the true 

interfaces. 
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Figure 7: Inversion results of Model 2; (a) synthetic model, (b) smooth inversion, 

Bayesian inversion model with (c) ν=1, (d) ν=2.5, (e) ν=3 and (f) ν=4. The true 

interfaces are indicated with white lines; surface and borehole electrodes are represented 

by black circles and triangles respectively.  

Figure 8: Inversion results using structural anisotropy; (a) synthetic model, Bayesian 

inversion model with (b) v=1, (c) v=1 and mprior=log(1000), (d) v=1 and 

mprior=log(10000), (e) v=1 and g=(-1/2,1/2)T on all grid points and (f) v=1 and g=(0,1)T in 

the centre of panel (vertical dyke). The true interfaces are indicated with white lines; 

surface and borehole electrodes are represented by black circles and triangles 

respectively. 

Figure 9: Study area location. (a-b) general location, (c) study area limits with surface 

geological information, geophysical surveys, CPT and observation well location 

(modified from Paradis et al. (2014). The GPR and ERT line presented in this work is 

indicated by red arrow. 

Figure 10: GPR section and inversion results of Saint-Lambert data; (a) smooth inversion 

model, (b) smooth inversion model with anisotropic smoothing factor (lz/lx=5) and (c) 

GPR section. GPR interfaces are shown as white lines on resistivity images and as red 

lines on GPR section. 

Figure 11: GPR section (a) and inversion results of Saint-Lambert data using structural 

anisotropy; Bayesian inversion model with (a) ν=1, (b) ν=1.5. GPR interfaces are shown 

as white lines and red arrows represent structure orientations. 
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TABLE CAPTIONS 

 

Table 1 : The equivalent of the Matérn covariance function (Minasny and McBratney, 

2005). 
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TABLES 

 

Equivalent function Approximate function 

r > 0, Bounded r → ∞, Unbounded 

ν → 0 De Wijs: − log(h) 

ν > 0, integer − h
2ν

 log(h) 

ν > 0, non-integer Power: − h
2ν

 

ν = 0.5 Exponential: exp(− h / r) 

ν = 1 Whittle: (h / r) K1(h / r) − h
2
 log(h) 

ν → ∞ Gaussian: exp(− h
2
 / r

2
) 

 

 

Table 1 : The equivalent of the Matérn covariance function (Minasny and McBratney, 2005). 
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Figure 1: Smooth inversion results of Model 1 data. (a) true resistivity model, smooth inversion model (b) 
without constraints, (c) with constraints at the 1 m deep interface, (d) with constraints at the 1 m and 2 m 
deep interfaces, (e) with αz=0.2 and (f) with constraints at the 1 m and 2 m deep interfaces and αz=0.2. 

The white lines represent the true interfaces.  
Figure 1  
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Figure 2: Experimental isotropic semi-variogram obtained using smooth inversion resistivity image.  

Figure 2  
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Figure 3: Effect of variations of the range parameter r on stochastic inversion results. (a) r=2 m, (b) r=4 m, 
(c) r=6 m, (d) r=8 m , (e) r=10 m and (f) r=20 m. The white lines represent the true interfaces.  

Figure 3  
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Figure 4: Effect of variations of the standard deviation (STD) on stochastic inversion results. (a) δ= 10 

ohm.m, (b) δ= 50 ohm.m, (c) δ =100 ohm.m, (d) δ1000 ohm.m. The white lines represent the true 

interfaces.  
Figure 4  
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Figure 5: Stochastic inversion results of model 1 data using r = 8 m, δ=100 Ω.m, g=(1, 0) and in (a) model 

1, (b)  ν=1, (c) ν=2, (d) ν=2.5, (e) ν=3, (f) ν=4. The white lines represent the true interfaces.  

Figure 5  
423x207mm (300 x 300 DPI)  

 

 

Page 45 of 51 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 201  Society of Exploration Geophysicists.7

D
ow

nl
oa

de
d 

03
/3

1/
17

 to
 1

32
.2

39
.1

.2
31

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



  

 

 

Figure 6: Inversion results using non-stationary correlation (a) model 1, (b) smooth inversion model with 
anisotropic smoothness factor, (c) (a) with additional constraints on interfaces at 1 m and 2 m depths; 

stochastic inversion model resulting from using spatially varying range with (d) ν=1, (e) ν=1.5 and (f) ν=3. 

The white lines represent the true interfaces.  
Figure 6  
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Figure 7: Inversion results of Model 2; (a) synthetic model, (b) smooth inversion, stochastic inversion model 
with (c) ν=1, (d) ν=2.5, (e) ν=3 and (f) ν=4. The true interfaces are indicated with white lines; surface and 

borehole electrodes are represented by black circles and triangles respectively.  
Figure 7  
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Figure 8: Inversion results using structural anisotropy; (a) synthetic model, stochastic inversion model with 
(b) v=1, (c) v=1 and mprior=log(1000), (d) v=1 and mprior=log(10000), (e) v=1 and g=(-1/2,1/2)

T on all grid 
points and (f) v=1 and g=(0,1)T in the centre of panel (vertical dyke). The true interfaces are indicated with 

white lines; surface and borehole electrodes are represented by black circles and triangles respectively.  
Figure 8  
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Figure 9: Study area location. (a-b) general location, (c) study area limits with surface geological 
information, geophysical surveys, CPT and observation well location (modified from Paradis et al. (2014). 

The GPR and ERT line presented in this work is indicated by red arrow.  
Figure 9  
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Figure 10: GPR section and inversion results of Saint-Lambert data; (a) smooth inversion model, (b) smooth 
inversion model with anisotropic smoothing factor (lz/lx=5) and (c) GPR section. GPR interfaces are shown 

as white lines on resistivity images and as red lines on GPR section.  
Figure 10  
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Figure 11: GPR section (a) and inversion results of Saint-Lambert data using structural anisotropy; 
Stochastic inversion model with (a) ν=1, (b) ν=1.5. GPR interfaces are shown as white lines on ERT images 

and red arrows in GPR section represent structure orientations.  
Figure 11  
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